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Abstract

This paper studies an extension of the well-known one-to-one pickup-and-delivery problem
with time windows. In the latter problem, requests to transport goods from pickup to delivery
locations must be fulfilled by a set of vehicles with limited capacity subject to time window
constraints at locations. The goods are not interchangeable; what is picked up at one particu-
lar location must be delivered to one particular other location. The extension discussed here
consists in the consideration of a heterogeneous vehicle fleet comprising lorries with detach-
able trailers. Trailers are advantageous as they increase the overall vehicle capacity. However,
some locations may be accessible only by a lorry without a trailer. Therefore, special locations
are available where trailers can be parked while lorries visit accessibility-constrained loca-
tions. This induces a nontrivial tradeoff between an enlarged vehicle capacity and the neces-
sity of scheduling detours for parking and reattaching a trailer.
The contribution of the present paper is threefold: (i) It studies a practically relevant gener-
alization of the one-to-one pickup-and-delivery problem with time windows. (ii) It develops an
exact amortized constant-time procedure for testing the feasibility of an insertion of a trans-
port task into a given route with regard to time windows and lorry and trailer capacities and
embeds this test in an adaptive large neighbourhood search algorithm for the heuristic solu-
tion of the problem. (iii) It provides a comprehensive set of benchmark instances on which the
running time of the constant-time test is compared with a naïve one that requires linear time.
The results of computational experiments show significant speedups of one order of magnitude
on average.
Keywords: Vehicle routing; Pickup-and-delivery; Trailers; Adaptive large neighbourhood search;
Insertion heuristic; Constant-time feasibility test.

1 Introduction

The one-to-one pickup-and-delivery problem with time windows and trailers (PDPTWT) can be
described as follows. There is a set of requests or tasks to transport specified amounts of goods
between paired pickup and delivery locations. To fulfil the tasks, a set of capacitated vehicles
consisting of single lorries and lorry-trailer combinations (LTCs) is available. Each vehicle has a
given start and a given end location. The start location of a vehicle may differ from the vehicle’s
end location. A trailer has the same start and the same end location as its associated lorry. Each
single lorry and each LTC has a fixed cost, incurred only if it fulfils at least one task, and a travel
cost for moving from one location to another. Fixed and travel costs may differ between vehicles;
for LTCs, travelling between two locations with the trailer attached may be more expensive than
without. Capacities may also differ between vehicles. LTCs have a lorry capacity and a trailer
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capacity. After picking up and before delivering the goods of a certain task, vehicles may visit
other pickup and/or delivery locations. All pickup and all delivery locations can be visited by a
single lorry and by an LTC lorry without its trailer. However, some pickup and some delivery
locations may have accessibility constraints in the sense that they cannot be visited by an LTC
lorry when the trailer is coupled. Because of these accessibility restrictions, there are also parking
and transshipment locations (PTLs). At PTLs, trailers can be decoupled, parked, and re-coupled,
and load can be transshipped between an LTC lorry and its trailer. In this paper, a fixed lorry-
trailer assignment is assumed. This means that each trailer can be pulled only by one lorry, and
only this lorry can transfer load to or from the trailer. All task locations, i.e., all pickup or delivery
locations, can be visited by any lorry, all locations designated as reachable by trailer can be visited
by any trailer, and PTLs can be visited by all LTC lorries and trailers. Each task location is visited
exactly once, whereas PTLs can be visited more than once by the same or different LTCs. The
load to be picked up at a task location can be split arbitrarily between a lorry and its trailer if the
location is visited by an LTC.
Each location has a single, hard time window that may be equal to the length of the planning
horizon and thus nonrestrictive. Arrival at a location before the start of its time window is allowed
and incurs waiting time but no cost. Waiting time is not limited. There are fixed service times at all
task locations and all PTLs. At PTLs, there are two service times, one for the decoupling and one
for the re-coupling operation. Travel times between locations and service times are independent
of the current vehicle, of its current load and, for LTCs, of whether or not the trailer is attached.
Travel and service times as well as fixed and travel costs are time-independent. All vehicles are
available throughout the complete planning horizon.
An LTC route may visit any location and is partitioned into the main route, which is the part
of the route where the lorry pulls its trailer, and zero or more subroutes that start and end at
a PTL where the lorry parks its trailer while visiting one or more task locations. An LTC lorry
may perform several consecutive subroutes starting and ending at the same PTL before finally
pulling away its trailer. If a delivery location is visited on a subroute and the corresponding pickup
location has been visited before this subroute, it must be ensured that the entire amount of goods
bound for this delivery location is on the lorry at the start of the subroute. This may require a
load transfer from a trailer to its lorry at a PTL.
There is no congestion at PTLs: arbitrarily many trailers can be parked at a PTL at the same
time. Without loss of generality, it is assumed that a load transfer, if any, between an LTC lorry
and its trailer takes place only directly before a decoupling operation, not when re-coupling. The
duration (service time) of a decoupling operation includes time for a potential load transfer.
The problem is static and deterministic, i.e., all data are known in advance.
The objective of the PDPTWT is to find a feasible solution with a minimal (or, at least, low) sum
of fixed and travel costs. A feasible solution consists of a set of feasible routes, one for each single
lorry and one for each LTC, so that each task is covered by exactly one vehicle (single lorry or
LTC). A route is feasible if and only if it starts at the start depot of the vehicle that performs
the route, fulfils zero or more tasks, and ends at the vehicle’s end depot, while maintaining all
time windows, accessibility constraints, and lorry and trailer capacities. In a feasible solution, the
following nine cases are possible with regard to accessibility constraints:

Pickup can be visited with a trailer
yes yes no no

Delivery can
be visited

with a
trailer

yes 1 2 yes
Pickup is
visited on

main route

yes 3 4 5 6 no
no 7 yes
no 8 9 no

yes no yes no
Delivery is visited on main route

Figure 1 shows an example LTC route that fulfils the nine tasks t1, . . . , t9. For i = 1, . . . ,9, pi and
di respectively denote the pickup and the delivery location of task ti. The route starts and ends
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at the depot bottom left and performs four subroutes, two each at the parking and transshipment
locations ptl1 and ptl2. In the figure, task ti corresponds to case i of the above table for i = 1, . . . ,9.

Figure 1: Example LTC route

Depot

ptl1

ptl2p1

d1
p2

d2

p3

d3

p4

d4

p5

d5

p6

d6

p7

d7p8

d8

p9

d9

Main route (LTC lorry + trailer)

Subroute (LTC lorry only)

There is no lack of practical applications of the PDPTWT. This author has seen use cases in the
supply of supermarkets, beverage stores, and apparel stores, in the transport of ready-mixed con-
crete garages and commercial waste bins, and, most notably, in the less-than-truckload business,
where containers, swap-body platforms, and smaller collective consignments are transported by
LTCs.
The contribution of this paper is threefold: (i) It studies a practically relevant extension of the
one-to-one pickup-and-delivery problem with time windows. Put differently, it generalizes vehicle
routing problems (VRPs, i.e., problems where either all pickups or all deliveries take place at a
central depot) with trailers to pickup-and-delivery problems. (ii) It develops an exact amortized
constant-time procedure for testing the feasibility of an insertion of a task into a given PDPTWT
route concerning time windows and lorry and trailer capacities and embeds this test in an adapt-
ive large neighbourhood search algorithm for the heuristic solution of the problem. ‘Exact’ means
that the testing procedure will declare the insertion as feasible if and only if the route resulting
from the insertion is feasible. ‘Amortized constant-time’ means that the test itself takes constant
time and is independent of the number of tasks (or, equivalently, the number of locations visited)
on the route, but that the test uses auxiliary data which must be computed in a preprocessing
step which does not run in constant time. (iii) The paper provides a comprehensive set of new
benchmark instances and empirically compares the running time of the constant-time test on
these instances with a naïve one that requires linear time.
The rest of the paper is structured as follows. The next section gives a brief review of related lit-
erature. Section 3 presents the adaptive large neighbourhood search procedure used to solve the
PDPTWT. In Section 4, the insertion feasibility tests regarding time and capacity are described.
Section 5 presents the newly created benchmark instances and discusses the computational res-
ults obtained on them. Finally, Section 6 gives a conclusion and proposes topics for further re-
search.

2 Related Work

This section briefly reviews pertinent literature, focussing on works concerned with pickup-and-
delivery problems, routing problems with trailers, and efficient feasibility tests in heuristics for
routing problems.
Pickup-and-delivery problems (without trailers) exist in several variants (one-to-one, one-to-many-
to-one, many-to-many, simultaneous delivery and pickup) and have been extensively studied in
the last decades. Important surveys are presented by Parragh et al. [26, 27], Doerner and Salazar-
González [9], and Battarra et al. [2]. These works also provide classification schemes for the dif-
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ferent variants. The static, deterministic, multi-vehicle, one-to-one variant with time windows is
the most widely studied type. Exact algorithms for this problem are presented by Ropke et al.
[34], Ropke and Cordeau [33], and Baldacci et al. [1]. According to Battarra et al. [2], the most
successful heuristic procedures, by Bent and Van Hentenryck [3] and Ropke and Pisinger [35],
are both based on large neighbourhood search.
Routing problems with trailers have also attracted a lot of interest from researchers. The surveys
by Prodhon and Prins [32] and Cuda et al. [7] contain sections on VRPs with trailers, which are
commonly referred to as truck-and-trailer routing problems (TTRPs). Most works on TTRPs con-
sider no time windows. Exact algorithms for TTRPs with time windows (TTRPTWs) are presented
by Parragh and Cordeau [25] and Rothenbächer et al. [36]. Heuristics for TTRPTWs are described
by Drexl [10] (heuristic column generation), Lin et al. [22] (simulated annealing), Derigs et al.
[8] (hybrid local and large neighbourhood search, attribute-based hill climber), and Parragh and
Cordeau [25] (adaptive large neighbourhood search).
Pickup-and-delivery problems with time windows and trailers are less well studied. Most papers
on this topic consider approaches for problems where vehicles consisting of a tractor and a semi-
trailer are employed to perform full-load tasks, i.e., where a vehicle can transport only one task at
a time. Examples are the problems examined by Cheung et al. [6] (attribute-decision model), Xue
et al. [46] (tabu search) and Tilk et al. [42] (branch-and-price-and-cut). Concerning the PDPTWT
version studied here, this author is aware of only one paper: Bürckert et al. [5] describe a holonic
multi-agent system heuristic for a generalization of the PDPTWT in the context of long-distance
transport. The authors take into account eight types of resource: driver, lorry with loading capa-
city, lorry without loading capacity, tractor, trailer, semi-trailer, chassis, and swap-body. Adequate
combinations of these resources must be created to fulfil tasks.
Seminal works on efficient feasibility tests for insertion or local search procedures for different
types of VRPs and PDPs are the ones by Savelsbergh [37, 38, 39], Kindervater and Savelsbergh
[20], Funke et al. [13], Irnich et al. [18], Irnich [16, 17], Masson et al. [24], Vidal et al. [43], and
Grangier et al. [14]. None of these, however, considers routing problems with trailers.

3 Adaptive Large Neighbourhood Search for the PDPTWT

Adaptive large neighbourhood search (ALNS) is a very widely and successfully used metaheur-
istic, in particular for, but not limited to, many different types of routing problem. ALNS was first
used by Ropke and Pisinger [35] and extends the large neighbourhood search principle introduced
by Shaw [40] by adding different removal and reinsertion operators and an adaptive operator se-
lection scheme. Pisinger and Ropke [30] present a tutorial and a literature survey on (A)LNS.
The basic idea of large neighbourhood search is to repeatedly perform the following steps. Given
an incumbent solution, some of its elements are removed and reinserted to create a new solution
that replaces the current incumbent if it either improves the best solution found so far or fulfils
some other acceptance criterion.
The ALNS used for the computational experiments described in this paper follows the set-up de-
scribed by Ropke and Pisinger [35]. All removal and reinsertion operators described by Ropke and
Pisinger [35] (random, worst and Shaw removal, basic greedy, regret-2, -3, -4 and -M reinsertion)
are applied, a roulette wheel procedure with adaptive weight adjustment is employed for select-
ing the removal and reinsertion operators in each iteration, and a simulated annealing acceptance
criterion is used. In addition, the following three removal strategies are built into the ALNS. In
the arc frequency history removal heuristic, proposed by Masson et al. [23], the aim is to remove
tasks that seem to be at bad positions compared to the best known solutions. The heuristic keeps
track of how often each arc (connection between two locations) appears in any one of the solutions
contained in a fixed-size set composed of the best solutions found so far. In each ALNS iteration,
if a solution enters or leaves this set, the frequencies of the arcs in this solution are incremented
or decremented accordingly. When the arc frequency history removal heuristic is selected, a fre-
quency value is computed for each task by summing up the frequencies of the arcs over which the
pickup and the delivery locations of the task are reached and left in the current solution. Then,
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with a certain amount of randomness as proposed by Ropke and Pisinger [35], the tasks with
the lowest frequency values are removed. The zero-split removal heuristic, proposed by Parragh
et al. [28], removes sequences of task locations where the vehicle is empty when reaching the first
location and when leaving the last. Longer sequences are preferred, and the removed tasks are
reinserted one by one. Finally, the subroute removal heuristic, as its name implies, removes entire
subroutes, which are selected at random. ‘Removing a subroute’ means that all tasks with at least
one location on the subroute are removed. The removed tasks are reinserted one by one in this
heuristic, too.
The worst and Shaw removal heuristics exist in a static and a dynamic version. In the static
versions, the removal criteria are computed anew only once in an ALNS iteration, in the dynamic
versions, they are updated after each removal of a single task. The removal criterion for a task in
the worst removal heuristic is the difference in the costs of the current solution with and without
the task. The Shaw removal operator uses, for each pair of tasks, a relatedness measure that
takes into account the distances between the pickup locations, the distances between the delivery
locations, the overlap of the time windows of the pickup locations, the overlap of the time windows
of the delivery locations, and the difference between the capacity requirements of the two tasks.
In lieu of the noise mechanism used by Ropke and Pisinger [35], the ALNS uses insertion pref-
erence strategies. In each iteration of a reinsertion heuristic, one of the following five strategies
is randomly selected and applied before deciding which task to insert into which route: (i) make
the insertion of tasks where the pickup location can be visited with a trailer more attractive;
(ii) similar for tasks where this is not the case; (iii) make the insertion into single lorry routes
more attractive; (iv) similar for LTC routes; (v) make it more attractive to insert tasks where the
pickup location can be visited with a trailer into LTC routes. This is achieved by appropriately
modifying the insertion costs of tasks into particular routes.
When, in an insertion step, the creation of a new subroute must be tested, which is necessary
when a location not reachable by trailer is to be inserted directly after a location that is left with
the trailer coupled, the ALNS selects a suitable PTL, but not necessarily the one closest to the
task location in question. Similar to what is done in the removal heuristics, a certain degree of
randomness is introduced.

4 Feasibility Tests

In the following, we propose techniques to test the temporal and capacitive feasibility of task
insertions into routes performed by single lorries or LTCs in constant time, given appropriate
auxiliary data computed in a preprocessing step. (In a slight abuse of terminology, ‘amortized
constant time’ is abbreviated by ‘constant time’ here and in what follows.) As will be shown, the
preprocessing to determine or update the necessary auxiliary data for a route to test time window
as well as capacity feasibility takes time quadratic in the number of tasks fulfilled or locations
visited on the route, but it is performed only once for a given solution. The resulting data are then
used for all feasibility tests, i.e., for testing all potential insertion positions of all unplanned tasks.
The routines are embedded in the ALNS metaheuristic described in the previous section. They
could, however, also be used within other metaheuristic or local search approaches.
In this section, the following notation is used. Each task t from pickup location p to delivery
location d is denoted by t = (p,d) and has a capacity requirement qt > 0, which means that qt units
of load must be picked up at p and −qt units must be delivered at d. The capacity requirement
at each location u is denoted by qu. Hence, qp > 0 for each pickup location p, qd < 0 for each
delivery location d, and qu = 0 for each vehicle depot or PTL u. Each location u has a single,
hard time window [au,bu], 0 ≤ au ≤ bu ≤ T, where T is the length of the planning horizon. The
depot locations have a time window of [0,T]. Each task location u has a unique service time
(duration) su, and each PTL u has a decoupling duration (including a fixed time for a potential
load transfer) of sdec

u and a coupling duration of scoup
u . For each pair (u,v) of locations, tuv denotes

the travel time from u to v. Each single lorry, each LTC lorry, and each trailer has a specified one-
dimensional capacity, denoted by Ql

k and Qt
k respectively. For a single lorry k, Qt

k = 0. The symbol
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‘==’ serves as equality operator, ‘=’ is the assignment operator, and ‘x += y’ is used as shortcut for
‘x = x+ y’.
The descriptions assume that feasibility of an insertion of a task t = (p,d) into an existing route r =
(0,1, . . . ,n−1,n), with p to be inserted directly after position (zero-based index of the route) h and
d to be inserted directly after position i, is to be tested. If r is performed by an LTC and the
trailer is attached when leaving h, a location triple p̃ = ptlp → p → ptlp corresponding to a new
subroute is inserted after h; similar for i and d. ptlp is a suitable trailer parking location; similar
for d. Note that p, d, ptlp, ptld, p̃, and d̃ are locations, whereas h and i are indices on a route.
To simplify notation, when referring to a location visited at a certain position on a route, only the
index is used: for example, the start of the time window of index i, i.e., of the ith location visited
on a route, is denoted by ai, and the travel time between index i and a to-be-inserted location v is
denoted by tiv etc.
Indices h and i indicate positions in the route before p and d are inserted. Hence, if h == i, then d
is to be inserted directly after p, or, if a triple p̃ = ptlp → p → ptlp is to be inserted, directly after
the triple. If, however, d cannot be reached with a trailer and p is left with the trailer attached
or a triple p̃ is to be inserted, then a triple d̃ = ptld → d → ptld is inserted. In principle, if h == i
and p or d must be surrounded by a decouple-couple pair, it would also be possible to surround
both p and d by one pair. This might be beneficial for instances where many pickups are close to
their deliveries. For simplicity of exposition, we do not consider this additional possibility in the
present paper. When this option is used, constant-time feasibility tests are just as well possible
with the auxiliary data structures described in the following subsections; the formal description,
though, is tedious. Moreover, in the course of an ALNS, configurations where it is beneficial that
the pickup and the delivery of a task are surrounded by a decouple-couple pair will often be
achieved automatically as a result of the removal steps.
Several consecutive subroutes by one LTC lorry at the same PTL are modelled by inserting a
decouple-couple pair for each subroute. It is assumed that the fixed service times at PTLs are
incurred also in such cases.

4.1 Time Windows

In this paper, we consider neither route duration constraints nor time-dependent costs and thus
need not strive to minimize route duration. Under these conditions, it is optimal regarding feas-
ibility to consider only as-early-as-possible schedules, i.e., to assume that a vehicle always leaves
a location at the earliest possible point in time; this provides the maximum possible flexibility at
subsequent positions on the vehicle’s route.
Testing time-window feasibility of an insertion in linear time is trivial: the locations of the to-be-
inserted task are tentatively inserted (including PTLs for decoupling and coupling, if necessary);
the route is traversed, starting at the depot at time zero; travel, service and waiting times are
added; finally, the resulting earliest possible starts of service are compared with the location time
windows.
Testing time-window feasibility in constant time is a little more involved. To do so, Savelsbergh
[39] introduced the concept of forward time slack (FTS). The FTS at a position on a route indicates
by how much the earliest possible start of service at this position can be postponed without viol-
ating a time window at this or a subsequent position on the route. We adapt this idea to test the
feasibility of the insertion of a pickup-and-delivery task (p,d) into a PDPTWT route r = (0, . . . ,n)
as follows.
First, note that a triple ũ = ptlu → u → ptlu can be regarded as a meta-location or segment (cf.
Irnich [16], Vidal et al. [43]) and handled as if it were a single location. Hence, whenever the in-
sertion of a triple ũ needs to be tested because the task location u cannot be reached with a trailer,
the time window of the corresponding meta-location is tested. (However, when an insertion of a
triple for a location u is to be actually performed, the sequence ptlu → u → ptlu must be inserted,
because the new subroute created by inserting the triple might be enlarged by an insertion of a
task location in a later iteration.) The time window [aũ,bũ] of a meta-location need be precom-
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puted only once, before the start of the ALNS, for each task location u and each PTL ptl. This can
be done by setting

aũ =max(aptl ,au − tptl,u − sdec
ptl ),

bũ =min(bu − tptl,u − sdec
ptl ,bptl − tu,ptl − su − tptl,u − sdec

ptl ).

If aũ > bũ, then ptl cannot serve as parking location for visiting u. Otherwise, the service time sũ
of a meta-location ũ is set to

sũ = sdec
ptlu

+ tptlu,u + su + tu,ptlu + scoup
ptlu

.

The travel times to and from a meta-location ũ are those to and from ptlu. The travel costs to ũ
are those to ptlu for a lorry with its trailer plus those from ptlu to u plus those from u to ptlu,
both for a lorry without its trailer. The travel costs from ũ are those from ptlu for a lorry with its
trailer.
Second, the following auxiliary data are used:
• ei: Earliest point in time at which service at index i can begin.
• wi: Waiting time at index i, i.e., time period between arrival and beginning of service at i.
• wi j: Cumulated waiting time between i and j, i.e., sum of waiting times at indices i, . . . , j.
• fi: Forward time slack at i.
These quantities are computed for each route in a preprocessing step as follows:

e0 = a0; ei =max(ai, ei−1 + si−1 + ti−1,i); i = 1, . . . ,n

w0 = 0; wi =max(0,ai − ei); i = 1, . . . ,n

w00 = 0; w0i = w0,i−1 +wi; i = 1, . . . ,n

f0 = b0 − e0; fi =min( fi−1,bi − ei +w0,i−1 +wi); i = 1, . . . ,n

The cumulated waiting time wi j for i > 0 need not be stored but can be computed on-the-fly
as wi j = w0 j −w0i. This means that the computation of the auxiliary data requires linear time
in n. Nevertheless, as each wi j may be used more than once in each ALNS iteration, it seems
reasonable to compute and store these values in advance. Filling an appropriate data structure
requires quadratic time in n. Thus, the overall time complexity of computing all auxiliary data for
testing time-window feasibility of inserting a task into a route is quadratic in the number of tasks
on the route. Given these data, time-window feasibility of an insertion can be tested as described
in Algorithm 1 (cf. Masson et al. [24]).
Note that it is sufficient to execute lines 1–7 of Algorithm 1 only once for each h with a given
PTL ptlp. If TestTimeWindows returns false in line 7, it makes no sense to test further insertion
positions for d with h as insertion position for p or p̃, because neither p nor p̃ can be inserted
after h or later on r; hence, the next position for inserting p can be considered.
Due to the limited planning horizon, if a task location not reachable by trailer is to be inserted at a
certain position on a main route, i.e., when a new subroute must be created, in principle all PTLs
must be tested for whether an insertion at this position is possible. This, of course, increases
the running time of an insertion heuristic. However, if only a subset of all PTLs is considered,
an insertion heuristic may miss some feasible solutions, and the solution quality of the overall
algorithm may deteriorate. The time window feasibility test described in Algorithm 1 receives as
input a particular choice of PTL for the pickup and for the delivery location. Therefore, the test
is exact in the sense that it will correctly consider the insertion of a specific triple ptlv → v →
ptlv feasible if and only if the insertion of this specific triple is feasible. If several PTLs shall be
considered, Algorithm 1 must be embedded in a loop over these PTLs.

4.2 Capacities

Time-window tests are the same for single lorry as well as LTC routes: at each position on a
route, the earliest start of service must lie within the time window of the respective location. By
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Algorithm 1 TestTimeWindows(p, p̃,d, d̃, r,h, i)
Input: Pickup-and-delivery task t = (p,d)

Route r = (0,1,2, . . . ,n)
Indices of insertion positions h, i with 0≤ h ≤ i ≤ n−1
Meta-locations p̃ = ptlp → p → ptlp and d̃ = ptld → d → ptld for p and d respectively,
for a specific PTL ptlp for p and a specific PTL ptld for d (only if r is performed by an
LTC)

Result: Returns true iff inserting p or p̃ into r after index h and d or d̃ after i (or, iff h == i,
after p or p̃) is feasible regarding all time windows, false otherwise

1 u = p
2 if p cannot be reached with trailer and trailer is currently attached
3 u = p̃
4 // Test feasibility of inserting u after h
5 eu =max(au, eh + sh + th,u)
6 if eu > bu
7 return false
8 // ∆h+1 is the time shift at h + 1, the increase of eh+1, caused by inserting

u
9 ∆h+1 =max(0, eu + su − eh+1 + tu,h+1)

10 if ∆h+1 > fh+1
11 return false
12 v = d
13 if d cannot be reached with trailer and trailer is currently attached
14 v = d̃
15 // Test feasibility of inserting v after i
16 if i > h // Delivery not directly after pickup
17 ev =max(av,ai +max(0,∆h+1 −wh+1,i)+ si + ti,v)
18 if ev > bv
19 return false
20 // ∆i+1 is the time shift at i+1 caused by inserting v
21 ∆i+1 =max(0, ev + sv − ei+1 + tv,i+1)
22 if ∆i+1 > fi+1
23 return false
24 else // i == h, i.e., delivery directly after pickup
25 ev =max(av, eu + su + tu,v)
26 if ev > bv
27 return false
28 ∆i+1 =max(0, ev + sv + tv,i+1 − ei+1)
29 if ∆i+1 > fi+1
30 return false
31 return true
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contrast, the presence of trailers requires additional capacity tests for LTC routes compared to
single lorry routes. In this section, we first describe verbally what must be tested in linear- and
constant-time capacity tests. Afterwards, we present our linear- and constant-time test routines.
At each position of single lorry routes and main routes of LTCs, the total load balance, which is
the difference between the load picked up on the route so far minus the load delivered so far, must
be less than or equal to the lorry plus the trailer capacity.
For capacity considerations on subroutes, the following two quantities are relevant:
• The minimal lorry load at decoupling, i.e., the minimal load that must inevitably be in the lorry

upon leaving the decoupling location. This load is equal to the maximum of the following two
values:
– The difference between the total load balance at the decoupling location and the trailer ca-

pacity.
– The sum of the capacity requirements incurred by the deliveries on the subroute whose

pickups lie before the subroute. (This value is nonnegative, so that the minimal lorry load
at the decoupling location is nonnegative as well.)

• The subroute load balance at each position, i.e., the difference between the sum of the load in
the lorry at the start of the subroute plus the load picked up on this subroute so far minus
the load delivered on this subroute so far. (The subroute load balance can be positive, zero, or
negative.)

A subroute is capacity-feasible if and only if the first quantity is less than or equal to the lorry
capacity and the absolute value of the second is less than or equal to the lorry capacity at each
position.

4.2.1 Testing Capacities in Linear Time

To test capacity-feasibility of an insertion in linear time, we use the procedure detailed in Al-
gorithm 2. For simplicity, the vehicle index k is omitted: Ql and Qt are used instead of Ql

k and Qt
k

to denote the lorry and the trailer capacity.
Testing capacity in linear time for single-lorry routes is simple: the to-be-inserted task is tentat-
ively inserted, one pass over the route is performed, and the capacity requirement at each position
is added to the total load and compared with the lorry capacity (lines 2–6).
Testing capacity for LTC routes is not entirely straightforward even in linear time. As discussed
above, it must be known at the start of a subroute how much load must be in the lorry to be able to
perform the deliveries whose pickups are not on this subroute. This information is gathered in one
forward pass over the route (lines 10–15). (In reality, it is of course not enough to have this amount
of load in the lorry at the start of a subroute. It is also necessary to have the right commodities
aboard the lorry, those that must be delivered on this subroute. This, however, has to be ensured
by the driver. For algorithmic planning, it is sufficient to test whether enough loading capacity
is available on the lorry.) The second pass (lines 19–37) then performs the actual capacity test
on main routes and subroutes (total load at all positions, minimal load at decoupling positions,
subroute load balance at all positions on subroutes).

4.2.2 Testing Capacities in Constant Time

To test the feasibility of the insertion of a pickup-and-delivery task (p,d) in constant time, the
following data, computed for each route in a preprocessing step, can be used.
1. TrailerAttached: An array of boolean values. TrailerAttached[i] indicates whether or not the

trailer is attached upon leaving (the location corresponding to) index i.
2. MaxTotalLoadOfSegment: A two-dimensional array of nonnegative integers. MaxTotalLoadOf-

Segment[i][offset] stores, for an index i on a route, the maximal load balance from the start of
the route at any index from i up to and including i+offset. In particular, MaxTotalLoadOfSeg-
ment[i][0] stores the overall load picked up but not delivered yet from the start depot to and
including the location at index i.
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Algorithm 2 TestCapacityLinear(r,k)
Input: Route r = (0,1,2, . . . ,n) with to-be-inserted task tentatively inserted, including de-

coupling and coupling locations where necessary, and capacity requirements qv ∈ Z,
v = 0,1,2, . . . ,n
Vehicle k (single lorry or LTC) with capacities Ql and Qt; for single lorries, Qt == 0

Result: Returns true iff lorry and, if applicable, trailer capacity of k are maintained at each
index of r, false otherwise

1 TotalLoad= 0
2 if Qt == 0 // Test for single lorries
3 for v = 0,1,2, . . . ,n
4 TotalLoad+= qv
5 if TotalLoad>Ql

6 return false
7 else // Test for LTCs
8 LoadAtStartOfSubrouteToDeliver = array of integers of length n+1, initialized to 0
9 IndexOfLastDecouple= 0

10 for v = 0,1,2, . . . ,n
11 if v corresponds to a decoupling location
12 IndexOfLastDecouple= v
13 if Trailer is not attached upon leaving v
14 if v corresponds to a delivery and associated pickup is before current subroute
15 LoadAtStartOfSubrouteToDeliver[IndexOfLastDecouple]+= (−1) · qv

16 MinLorryLoadSinceLastDecouple= 0
17 MaxLorryLoad= 0
18 MaxLorryLoadSinceLastDecouple= 0
19 for v = 0,1,2, . . . ,n
20 TotalLoad+= qv
21 if TotalLoad>Ql +Qt

22 return false
23 MaxLorryLoad=min(TotalLoad,Ql)
24 if v corresponds to a decoupling location
25 MinLorryLoadSinceLastDecouple=
26 max(TotalLoad−Qt,LoadAtStartOfSubrouteToDeliver[v])
27 if MinLorryLoadSinceLastDecouple>Ql

28 return false
29 MinLorryLoadSinceLastDecouple=max(MinLorryLoadSinceLastDecouple,0)
30 MaxLorryLoadSinceLastDecouple=MaxLorryLoad
31 if Trailer is not attached upon leaving v
32 MinLorryLoadSinceLastDecouple=max(MinLorryLoadSinceLastDecouple+ qv,0)
33 if MinLorryLoadSinceLastDecouple>Ql

34 return false
35 MaxLorryLoadSinceLastDecouple=min(MaxLorryLoadSinceLastDecouple+ qv,Ql)
36 if qv < 0 and MaxLorryLoadSinceLastDecouple< 0
37 return false
38 return true
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For example, consider the following route:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Capacity 0 +40 +10 0 +10 +20 –40 +5 –10 0 –10 –20 –5 0
requirement

This route contains one subroute, which starts at index 3 and ends at index 9, i.e., the zero
value at index 3 corresponds to a decoupling process at some PTL, and the zero value at in-
dex 9 represents the associated coupling process at this PTL. The load balances from indices 2
to 6 are +50, +50, +60, +80, and +40; thus, MaxTotalLoadOfSegment[2][4] = +80. Moreover,
MaxTotalLoadOfSegment[8][0]=+35.

3. TotalLoadDeliveredButNotPickedUpOnSubroute: An array of nonnegative integers. If i is an in-
dex corresponding to a decoupling location, TotalLoadDeliveredButNotPickedUpOnSubroute[i]
stores the overall load delivered but not picked up on the respective subroute.

4. LoadBalanceFromStartOfSubroute: An array of integers. LoadBalanceFromStartOfSubroute[i] sto-
res, for an index i on a subroute, the positive, negative or zero load balance from the start of
the subroute up to and including i.
In the above example route, LoadBalanceFromStartOfSubroute[7]=−5= 10+20−40+5.

5. MaxLoadBalanceFromStartOfSubroute: A two-dimensional array of nonnegative integers. Max-
LoadBalanceFromStartOfSubroute[i][offset] stores, for an index i on a subroute, the maximum
of zero and the largest load balance from the start of the subroute to any index from i up to
and including i+offset.
In the above example, MaxLoadBalanceFromStartOfSubroute[6][2] = 0 = max(0,−10,−5,−15)=
max(0,LoadBalanceFromStartOfSubroute[7]).

6. IndexOfLastPrecedingDecouple: An array nonnegative integers. IndexOfLastPrecedingDecouple[i]
stores the index where the last decoupling that precedes i on the route occurs.

7. OffsetOfNextCoupling: An array of nonnegative integers. OffsetOfNextCoupling[i] stores the
number of positions on the route from i until the next index of a coupling process.

MaxTotalLoadOfSegment and MaxLoadBalanceFromStartOfSubroute can be filled using a nested
forward pass, i.e., by iterating over all indices j ≥ i for each index i on the route. All other data
structures described above can be filled or updated by passing through a route once. This means
that all necessary preprocessing data for a route can be computed in quadratic time in the number
of tasks on the route.
Given these data, the capacity feasibility of an insertion of a task t = (p,d) into an existing route r,
with p to be inserted directly after position (zero-based index of the route) h and d to be inserted
directly after position i, can be tested as described in Algorithm 3. It is evident that the algorithm
itself runs in constant time, i.e., its running time is independent of the number of tasks or the
number of locations visited on route r.
Note that, to test the capacity constraints, it is irrelevant whether or not the pickup and/or the
delivery location of the task to be inserted must be surrounded by a decouple-couple pair for inser-
tion at the position in question, as decoupling and coupling processes have a capacity requirement
of zero.
Note further that, similar to the situation in Algorithm 1, if TestCapacityConstant returns false
from line 3 or line 16, it is unnecessary to consider further potential insertion positions for d for
the current insertion position of p. Instead, the next position for inserting p can be considered.
Hence, it is sufficient here to execute lines 2–16 of Algorithm 3 only once for each h.

5 Computational Experiments

5.1 Benchmark Instances

To this author’s knowledge, there are no benchmark instances for the PDPTWT as studied in this
paper. Therefore, a set of instances has been created to perform computational experiments with
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Algorithm 3 TestCapacityConstant(p,d, r,h, i,k)
Input: Pickup-and-delivery task t = (p,d) with capacity requirement q > 0

Route r = (0,1,2, . . . ,n)
Indices of insertion positions h, i with 0≤ h ≤ i ≤ n−1
Vehicle k (single lorry or LTC) with lorry and trailer capacities Ql and Qt; for single
lorries, Qt == 0

Result: Returns true iff inserting p or a triple p̃ = ptlp → p → ptlp into r after index h and d
or a triple d̃ = ptld → d → ptld after i (or, iff h == i, after p or p̃) is feasible regarding
lorry and trailer capacity, false otherwise

1 // Evaluate feasibility of insertion regarding total LTC capacity
2 if Ql +Qt <MaxTotalLoadOfSegment[h][i−h]+ q
3 return false
4 // Evaluate feasibility of insertion regarding lorry capacity
5 if i > h // Delivery not directly after pickup
6 // Evaluate feasibility of insertion of pickup
7 if TrailerAttached[h] == false // Trailer not attached when leaving h
8 ind = IndexOfLastPrecedingDecouple[h]
9 MinLoadAtDecouple=max(MaxTotalLoadOfSegment[ind][0]−Qt,

10 TotalLoadDeliveredButNotPickedUpOnSubroute[ind])
11 LoadAfterPickup=MinLoadAtDecouple+LoadBalanceFromStartOfSubroute[h]+ q
12 offset=OffsetOfNextCoupling[h+1]
13 if h+OffsetOfNextCoupling[h]≥ i
14 offset= i−h
15 if LoadAfterPickup+MaxLoadBalanceFromStartOfSubroute[h+1][max(0,offset−1)]>Ql

16 return false
17 // Evaluate feasibility of insertion of delivery
18 if TrailerAttached[i] == false
19 if i−h ≥OffsetOfNextCoupling[h] // Delivery not on same subroute as pickup
20 ind = IndexOfLastPrecedingDecouple[i]
21 MinLoadAtDecouple=max(MaxTotalLoadOfSegment[ind][0]−Qt,
22 TotalLoadDeliveredButNotPickedUpOnSubroute[ind])
23 if MinLoadAtDecouple+MaxLoadBalanceFromStartOfSubroute[ind][i− ind]+q >Ql

24 return false
25 else // i == h, i.e., delivery directly after pickup
26 if TrailerAttached[h] == false
27 ind = IndexOfLastPrecedingDecouple[h]
28 MinLoadAtDecouple=max(MaxTotalLoadOfSegment[ind][0]−Qt,
29 TotalLoadDeliveredButNotPickedUpOnSubroute[ind])
30 if MinLoadAtDecouple+LoadBalanceFromStartOfSubroute[h]+ q >Ql

31 return false
32 return true
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solution procedures. A well-known and widely used set of benchmark instances for pickup-and-
delivery problems with time windows and without trailers has been proposed by Li and Lim [21]
and is available at www.sintef.no/projectweb/top/pdptw/li-lim-benchmark. This set com-
prises six classes of instances, with 100, 200, 400, 600, 800, and 1,000 task locations, and thus
with 50, 100, 200, 300, 400, and 500 tasks respectively. The instances have been derived from
the Solomon instances for the vehicle routing problem with time windows (Solomon [41]), and in
analogy to the original data, the Li and Lim instances are also partitioned into six classes LC1,
LC2, LR1, LR2, LRC1, and LRC2 according to structural characteristics as follows: ‘C’ stands
for geographically clustered tasks which, for the PDPTW and the PDPTWT, also means that the
pickup and the delivery location of a task are close together; ‘R’ stands for geographically ran-
domly distributed tasks; ‘1’ stands for restrictive time windows so that only few tasks per route
are possible; and ‘2’ stands for less restrictive time windows and a longer planning horizon, which
makes longer routes (routes covering more tasks) possible. Each instance has a homogeneous
fleet, and start and end depot location of the vehicles coincide.
As pointed out by Derigs et al. [8], p. 544, some benchmark instances for vehicle routing problems
with trailers are constructed such that there is no need to use lorry-trailer combinations at all,
because the capacity of the lorry is high enough for transporting the entire demand and/or the
time windows are so restrictive that a vehicle cannot serve many customers. This has also been
observed when trying to modify the Li and Lim instances for use with trailers. Therefore, the
benchmark instances for the PDPTWT have two vehicle classes: lorry-trailer combinations and
single lorries. The single lorries have artificially high fixed cost, so that they are used only when
necessary to ensure that all tasks are covered. Such cases can occur when the time windows of a
task are so tight that there is not enough time to decouple the trailer to visit the pickup or the
delivery task.
With this in mind, the Li and Lim instances have been adapted to the PDPTWT as follows:
• Every even-numbered location (as listed in the original Li and Lim instance file) is reachable

by trailer, i.e., locations 0, 2, 4, 6. . . ; the odd-numbered ones are not.
• Starting with location 0 (the depot), every second location that is reachable by trailer may be

used for parking and transshipment; i.e., for locations 0, 4, 8, 12. . . , a PTL is created. This
means that the number of PTLs is approximately half the number of tasks.

• As mentioned, the time windows of task locations are generally too short in the Li and Lim in-
stances, so that no LTCs are used. Therefore, each original time window [au,bu] of a task loca-
tion u is enlarged to au =max(0,au−TWShift) and bu =min(bu+TWShift,T), where TWShift=
�100+ (AvgPickupTime+AvgDeliveryTime)/2�, and AvgPickupTime and AvgDeliveryTime re-
spectively indicate the arithmetic mean of the service times at pickup and at delivery locations
as indicated in the original files, rounded down to the nearest integer.

• The time windows of parking and transshipment locations are set to the complete planning
horizon, i.e., to the time window of the depot. According to the author’s practical experience,
this is a mild and realistic assumption.

• The decoupling and coupling service times at PTLs are set to AvgPickupTime and AvgDeliv-
eryTime respectively.

• The number of single lorries as well as the number of LTCs is considered unlimited.
• Single lorries are assigned a fixed cost of 1,000; LTCs have no fixed cost.
• As in the Li and Lim instances, Euclidean distances are used for travel times as well as travel

costs. For LTCs, travel times and costs are the same whether or not the trailer is currently
attached.

• Capacities of single and LTC lorries are set to the vehicle capacity specified in the respective
original instance; trailer capacities are set to 150 % of the lorry capacity.

There is an arc between two locations u and v, i.e., a location v can be visited directly after a
location u, unless au + ts

u + tuv > bv, where ts
0 = 0 for the depot location 0, ts

u = su for all task
locations u, and ts

u =min(AvgPickupTime,AvgDeliveryTime) for all PTLs u.
Table 1 shows the distribution of the number of instances of the different types and basic instance
characteristics. Note that the number of tasks differs slightly between instances of the same size
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Table 1: Instance characteristics

Average Average

Size
class

Type No. in-
stances

No.
tasks

No.
loca-
tions

No.
PTLs

No.
arcs

Length
planning
horizon

Length
time

window

Pickup
service

time

Delivery
service

time

Capacity
require-

ment

Lorry
capa-
city

100
LC1 9 53 135 27 16,309 1,236 584 80 90 19 200
LC2 8 51 130 26 13,964 3,390 1,131 86 90 18 700
LR1 12 53 134 27 17,633 230 209 9 10 15 200
LR2 11 51 129 26 15,492 1,000 562 10 10 15 1,000
LRC1 8 53 136 27 17,961 240 220 9 10 17 200
LRC2 8 51 130 26 15,528 960 501 10 10 17 1,000
All 56 52 132 27 16,222 1,100 513 32 34 16 543

200
LC1 10 105 266 53 63,713 1,351 628 81 90 18 200
LC2 10 101 256 51 54,852 3,598 1,191 87 90 19 700
LR1 10 105 264 53 63,138 634 341 9 10 17 200
LR2 10 101 255 51 55,630 2,535 959 10 10 17 1,000
LRC1 10 105 266 53 64,724 634 312 9 10 18 200
LRC2 10 101 255 51 55,989 2,535 755 10 10 18 1,000
All 60 103 260 52 59,674 1,881 698 34 37 18 550

400
LC1 10 210 527 106 248,962 1,501 652 82 90 18 200
LC2 10 203 510 102 217,304 3,693 1,177 87 90 19 700
LR1 10 209 525 105 241,818 804 384 9 10 18 200
LR2 10 202 507 102 218,047 3,213 1,135 10 10 18 1,000
LRC1 10 208 523 105 246,120 765 337 9 10 18 200
LRC2 10 203 509 102 220,785 3,060 827 10 10 18 1,000
All 60 206 517 104 232,172 2,173 752 34 37 18 550

600
LC1 10 315 791 158 551,278 1,496 653 81 90 18 200
LC2 10 305 764 153 483,976 3,815 1,197 87 90 19 700
LR1 10 314 788 158 512,648 1,206 476 9 10 18 200
LR2 10 303 759 152 476,558 4,823 1,527 10 10 18 1,000
LRC1 10 314 788 158 517,217 1,206 391 9 10 18 200
LRC2 10 303 760 152 472,827 4,823 1,056 10 10 18 1,000
All 60 309 775 155 502,417 2,895 883 34 37 18 550

800
LC1 10 419 1,051 210 946,974 1,676 676 82 90 18 200
LC2 10 406 1,018 204 855,818 3,811 1,200 87 90 19 700
LR1 10 418 1,049 210 871,608 1,688 573 9 10 18 200
LR2 10 404 1,012 203 836,128 6,751 1,989 10 10 18 1,000
LRC1 10 418 1,048 210 848,080 1,573 431 9 10 18 200
LRC2 10 404 1,012 203 815,230 6,289 1,224 10 10 18 1,000
All 60 412 1,032 207 862,306 3,631 1,016 34 37 18 550

1,000
LC1 10 525 1,314 263 1,420,904 1,824 684 82 90 18 200
LC2 10 508 1,272 255 1,325,717 3,914 1,210 87 90 19 700
LR1 10 523 1,309 262 1,325,967 1,925 617 9 10 18 200
LR2 10 504 1,263 253 1,290,588 7,697 2,195 10 10 18 1,000
LRC1 10 524 1,312 263 1,228,887 1,821 453 9 10 18 200
LRC2 8 505 1,266 253 1,252,281 7,284 1,492 10 10 18 1,000
All 58 515 1,290 258 1,309,291 3,967 1,095 35 38 18 534

All
All 354 267 670 134 497,857 2,617 828 34 36 18 546

class in the Li and Lim instances. Therefore, the values in the columns from ‘No. locations’ to ‘No.
Arcs’ are averages, too. By construction of the instances, the column ‘No. Tasks’ also indicates the
number of task locations reachable by trailer. Lorry capacities are the same for all instances of
the same size class for each type.
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5.2 Results

The code was programmed in C++ and compiled with Microsoft Visual Studio Enterprise 2017,
Version 15.5.3. The experiments were run on a workstation with the Windows 10 Education oper-
ating system, an Intel Xeon E5-1660 v3 @ 3.00 GHz CPU, and 64 GB RAM in single-thread mode.
The parameters used in the ALNS are listed in Table 3 in the Appendix.
To assess the relative performance of the linear- and the constant-time test, 10,000 ALNS itera-
tions were performed with both tests for all instances of size classes 100, 200, and 400, i.e., those
with at most 200 tasks. For the larger instances, computation times using the linear-time test
became too long, so that, for size classes 600, 800, and 1,000, only the constant-time test was
used. For the linear-time test, the time windows are tested together with the capacities in the
loop of line 3 or 19 in Algorithm 2. The constant-time test first examines time window feasibility,
then capacities. Aggregated results are shown in Table 2; detailed results by instance are given
in Tables 4–9 in the Appendix.
The most important finding that can be read from Table 2 is that the speedup of the constant-time
test compared to the linear one is considerable for all instance types and ranges from a factor of
nine to a factor of 142, with an average of 38. This demonstrates that the effort of implementing
the constant-time test is well justified.
Further insights that can be obtained from the data in Table 2 are:
• The larger the instance, the higher is the iteration number where the best solution was found.
• The number of routes in the best solution found can differ significantly between instances of

the same size class and type.
• As LTC routes have no fixed cost, most routes are actually LTC routes. This also shows that the

instances are a suitable test bed for routing problems with trailers (remember the comment on
page 13).

• In particular for the larger instances with long planning horizon and wide time windows, the
number of subroutes greatly exceeds the number of LTC routes, meaning that the average LTC
route performs more than one subroute. Most PTLs are used only once.

• The running times for the instances with more tasks per route, i.e., fewer routes, are consist-
ently higher than those for the other instances.

• The speedup for the LR and LRC instances increases with increasing instance size; for the LC
instances, this is not the case.

• The speedup is significantly greater for the instances with fewer routes (classes with ‘2’).

6 Conclusions and Outlook

This paper has studied the PDPTWT, a routing problem which aims at fulfilling a set of transport
tasks between pickup and delivery locations, subject to time window constraints and accessibility
restrictions, by means of a fleet consisting of single lorries and lorry-trailer combinations. Proced-
ures to test the temporal and capacitive feasibility of inserting a task into an existing route have
been presented. Given adequate data computed in a preprocessing step, these procedures run in
constant time. They have been embedded in an adaptive large neighbourhood search algorithm
for the heuristic solution of the PDPTWT. A comprehensive set of benchmark instances has also
been created. The results of computational experiments are presented which show significant
speedups that can be realized with the constant-time feasibility test.
Topics for further research abound.
As the focus of the research presented here was on efficient feasibility testing, not on solution
quality, many options exist regarding algorithmic refinements to improve solution quality of the
ALNS. First of all, local and/or very large-scale neighbourhood search routines could be added, as
done, e.g., by Derigs et al. [8] and Gschwind and Drexl [15]. Also, matheuristic components, e.g.,
solving a set-covering problem with all generated routes at the end of the ALNS, cf. Parragh and
Schmid [29], Villegas et al. [45], could be helpful. Another refinement would be to add a splitting

15



Table 2: Aggregated computational results (minimum / average / maximum)

Size
class

Type Iteration where
best solution

was found

No.
routes

No. LTC
routes

No. sub-
routes

No.
PTLs
used

Running time
ALNS with

constant-time
test

Ratio
running

time
linear /

constant

100
LC1 1,850 /5,505 /9,249 10 / 11 / 11 10 /11 / 11 10 /10 / 11 6 / 8 /10 42 / 44 / 47 10 / 11 / 12
LC2 282 /3,956 /8,699 4 / 4 / 4 4 / 4 / 4 3 / 4 / 4 2 / 3 / 4 71 / 78 / 90 35 / 37 / 39
LR1 4,794 /8,111 /9,850 11 / 11 / 11 11 /11 / 11 10 /11 / 12 6 / 7 / 9 39 / 42 / 45 9 / 9 / 10
LR2 414 /5,977 /9,916 2 / 3 / 4 2 / 3 / 4 2 / 3 / 5 1 / 3 / 5 75 / 112 / 156 33 / 47 / 58
LRC1 4,938 /8,062 /9,916 11 / 12 / 12 11 /12 / 12 11 /12 / 14 6 / 8 /11 39 / 42 / 43 9 / 9 / 10
LRC2 2,474 /5,334 /9,999 3 / 3 / 4 3 / 3 / 4 3 / 4 / 5 2 / 3 / 4 74 / 92 / 110 32 / 39 / 43
All 282 /6,276 /9,999 2 / 7 / 12 2 / 7 / 12 2 / 7 / 14 1 / 5 /11 39 / 68 / 156 9 / 25 / 58

200
LC1 5,116 /8,530 /9,980 20 / 21 / 21 20 /21 / 21 20 /21 / 22 12 /14 /16 148 / 157 / 169 11 / 12 / 12
LC2 2,762 /5,676 /9,606 6 / 7 / 8 6 / 7 / 8 6 / 7 / 9 4 / 6 / 8 240 / 280 / 350 36 / 39 / 41
LR1 4,497 /7,663 /9,645 8 / 10 / 11 8 /10 / 11 8 /12 / 16 7 / 9 /11 175 / 198 / 229 19 / 22 / 26
LR2 294 /7,799 /9,949 3 / 4 / 5 3 / 4 / 5 5 / 8 / 15 3 / 7 /13 375 / 617 / 987 69 / 90 /121
LRC1 6,133 /8,675 /9,878 9 / 11 / 12 9 /11 / 12 10 /12 / 15 7 /10 /13 175 / 190 / 230 18 / 21 / 27
LRC2 212 /6,869 /9,759 4 / 5 / 6 4 / 5 / 6 5 /10 / 18 5 / 9 /17 314 / 482 / 657 53 / 69 / 82
All 212 /7,535 /9,980 3 / 9 / 21 3 / 9 / 21 5 /12 / 22 3 / 9 /17 148 / 321 / 987 11 / 42 /121

400
LC1 7,750 /9,320 /9,998 36 / 39 / 42 36 /39 / 42 35 /40 / 42 19 /25 /29 468 / 494 / 521 11 / 11 / 12
LC2 5,247 /8,429 /9,977 12 / 13 / 14 12 /13 / 14 13 /14 / 15 9 /12 /14 735 / 854 /1,048 34 / 36 / 38
LR1 6,366 /8,456 /9,987 15 / 18 / 21 15 /18 / 21 17 /21 / 26 13 /18 /20 538 / 630 / 763 19 / 24 / 31
LR2 4,193 /8,404 /9,961 5 / 7 / 9 5 / 7 / 9 13 /19 / 25 12 /17 /22 1,198 /1,943 /3,432 76 /101 /142
LRC1 6,771 /8,677 /9,989 15 / 21 / 24 15 /21 / 24 17 /23 / 27 14 /18 /21 493 / 554 / 681 18 / 21 / 29
LRC2 3,927 /8,600 /9,968 7 / 9 / 12 7 / 9 / 12 13 /22 / 27 13 /19 /23 940 /1,394 /2,434 59 / 78 /108
All 3,927 /8,648 /9,998 5 / 18 / 42 5 /18 / 42 13 /23 / 42 9 /18 /29 468 / 978 /3,432 11 / 45 /142

600
LC1 8,262 /9,523 /9,958 57 / 61 / 64 57 /61 / 64 55 /61 / 65 34 /40 /45 778 / 820 / 868
LC2 8,330 /9,425 /9,964 19 / 21 / 22 19 /21 / 22 20 /24 / 32 17 /22 /28 1,092 /1,259 /1,505
LR1 3,047 /8,285 /9,981 18 / 25 / 31 17 /24 / 31 23 /34 / 47 21 /30 /37 1,010 /1,163 /1,452
LR2 7,062 /8,658 /9,915 7 / 10 / 12 7 /10 / 12 28 /42 / 60 25 /35 /48 2,216 /3,584 /5,803
LRC1 7,960 /9,290 /9,991 18 / 28 / 32 18 /28 / 32 25 /32 / 36 22 /26 /31 876 / 994 /1,391
LRC2 5,731 /9,177 /9,995 8 / 12 / 17 8 /12 / 17 29 /44 / 61 25 /37 /53 1,742 /2,394 /4,247
All 3,047 /9,060 /9,995 7 / 26 / 64 7 /26 / 64 20 /40 / 65 17 /32 /53 778 /1,702 /5,803

800
LC1 7,969 /9,154 /9,965 73 / 81 / 87 70 /80 / 87 70 /79 / 84 47 /53 /58 1,081 /1,141 /1,202
LC2 7,271 /9,407 /9,942 27 / 28 / 30 24 /27 / 30 31 /36 / 48 23 /30 /39 1,484 /1,754 /1,923
LR1 7,632 /9,187 /9,998 22 / 32 / 39 19 /27 / 36 28 /41 / 57 26 /37 /48 1,406 /1,628 /2,083
LR2 7,592 /9,470 /9,942 7 / 13 / 17 7 /12 / 16 30 /58 / 81 26 /50 /71 2,816 /4,581 /7,905
LRC1 8,637 /9,521 /9,989 26 / 40 / 47 24 /36 / 40 35 /43 / 50 32 /37 /43 1,116 /1,286 /1,743
LRC2 6,887 /8,658 /9,992 12 / 16 / 21 12 /15 / 20 35 /68 /103 32 /58 /79 2,040 /2,893 /4,923
All 6,887 /9,233 /9,998 7 / 35 / 87 7 /33 / 87 28 /54 /103 23 /44 /79 1,081 /2,214 /7,905

1,000
LC1 5,994 /8,963 /9,999 92 /103 /110 88 /95 /103 88 /94 /108 62 /68 /78 1,310 /1,477 /1,597
LC2 7,300 /9,098 /9,988 34 / 36 / 38 32 /35 / 36 40 /48 / 58 33 /42 /52 1,956 /2,196 /2,581
LR1 8,048 /9,504 /9,997 27 / 40 / 50 22 /32 / 40 37 /54 / 68 34 /48 /55 1,822 /2,151 /2,800
LR2 8,723 /9,477 /9,910 10 / 16 / 21 10 /14 / 17 43 /69 / 99 42 /62 /83 3,275 /5,497 /1,002
LRC1 7,727 /9,518 /9,998 33 / 51 / 59 29 /41 / 48 50 /57 / 71 42 /48 /60 1,698 /1,888 /2,665
LRC2 8,358 /9,499 /9,934 14 / 20 / 24 13 /18 / 21 56 /89 /118 50 /75 /97 2,937 /4,035 /6,626
All 5,994 /9,338 /9,999 10 / 45 /110 10 /40 /103 37 /68 /118 33 /56 /97 1,310 /2,834 /1,002

All
All 212 /8,366 /9,999 2 / 23 /110 2 /22 /103 2 /34 /118 1 /28 /97 39 /1,359 /1,002 9 / 38 /142
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procedure based on dynamic programming that finds optimal PTLs for given routes, cf. Prins [31]
and Villegas et al. [44].
Regarding modelling extensions, many additional practically relevant constraints could be taken
into account. Two particularly interesting extensions are loading constraints such as last-in-first-
out, and the impossibility of transferring load between an LTC lorry and its trailer. Of special
relevance in connexion with constant-time feasibility tests are limits on route duration and on the
time or the number of intermediate stops between the pickup and the delivery of a task. Load-
dependent service times require an optimization of the load transfer amounts from lorry to trailer
at decoupling and coupling locations, a considerable additional intricacy. Time-dependent costs
(and route duration constraints, too) lead to the difficult situation that an as-early-as-possible
schedule need no longer be optimal (Savelsbergh [39]), thus violating a fundamental assumption
on which the feasibility tests described in the present paper are based.
Also other variants of pickup-and-delivery problems, such as one-to-many-to-one problems (also
called vehicle routing problems with backhauls, Irnich et al. [19]), many-to-many, and simultan-
eous PDPs (Battarra et al. [2]), lend themselves to consider a fleet containing trailers.
Furthermore, in many pickup-and-delivery applications, the possibility or even the requirement
to split tasks exists (cf. the survey by Drexl [11] and the more recent papers by Masson et al. [24]
and Grangier et al. [14]). This means that a task t = (p,d) can be decomposed into two subtasks
or legs, (p, tl) and (tl,d) at transshipment locations tl. The legs of split tasks can be performed
by different vehicles, and this creates an interdependence between routes: changes in one route
may make one or several or all other routes infeasible. This interdependence requires a synchron-
ization regarding time and load and, when trailers are considered, leads to the PDPTWT with
synchronization.
Of course, all of the above extensions and variants can also be considered in a dynamic and/or
stochastic context, where some information becomes known only after execution of a route plan
has begun and/or some data are known only in the form of random variables, cf. Berbeglia et al.
[4] and Flatberg et al. [12].
Finally, there is yet no exact algorithm for solving the PDPTWT. Computing optimal solutions to
larger PDPTWT instances is surely a challenging but worthwhile endeavour.
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Appendix

The subsequent Table 3 specifies the parameter settings of the ALNS used for the computational
experiments. The following Tables 4–9 present the detailed computational results for each of the
benchmark instances with these settings. Table 2 was compiled based on these data. Euclidean
distances were computed with full double precision, 10,000 iterations were performed, and the
objective function values were rounded to three digits.

Table 3: ALNS parameter settings

Parameter Value

Value for computing start temperature 5
Cooling rate 0.99975
Maximum number of iterations between update of performance statistics 100
Score 1 33
Score 2 9
Score 3 13
Score update factor 0.1
Absolute parameter for determining minimal number of tasks to be removed per iteration 30
Absolute parameter for determining maximal number of tasks to be removed per iteration 60
Relative parameter for determining minimal number of tasks to be removed per iteration 0.1
Relative parameter for determining maximal number of tasks to be removed per iteration 0.4
Randomization degree of worst removal heuristics 3
Randomization degree of Shaw removal heuristics 6
Randomization degree of arc frequency history removal heuristic 6
Randomization degree of zero split removal heuristic 6
Randomization degree of subroute removal heuristic 6
Distance weight parameter of Shaw removal heuristics 9
Time weight parameter of Shaw removal heuristics 3
Load weight parameter of Shaw removal heuristics 2
Number of solutions to be considered for arc frequency history removal 50
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Table 4: Detailed computational results size class 100

Instance Objective
function

value

Iteration where
best solution was

found

No. routes No. LTC
routes

No.
subroutes

No. PTLs
used

Running time
ALNS with

constant-time
test (secs.)

Ratio
running

time
linear /

constant

lc101 970.473 6,326 11 11 10 9 42 10.7
lc102 944.132 6,396 10 10 10 9 44 10.4
lc103 1,015.599 8,318 11 11 10 8 42 10.6
lc104 951.527 3,546 10 10 10 9 46 11.6
lc105 986.038 5,441 10 10 10 7 43 11.1
lc106 972.096 5,194 11 11 10 8 44 10.8
lc107 1,013.618 1,850 11 11 11 9 45 10.7
lc108 998.764 9,249 11 11 11 10 46 10.7
lc109 959.115 3,228 10 10 10 6 47 11.3
lc201 691.886 3,004 4 4 4 4 71 37.7
lc202 716.538 7,761 4 4 4 4 79 35.5
lc203 725.034 282 4 4 4 3 80 36.1
lc204 659.023 8,699 4 4 4 4 90 36.1
lc205 661.215 4,978 4 4 3 3 71 35.7
lc206 664.417 1,897 4 4 4 2 76 38.1
lc207 679.853 1,363 4 4 3 3 77 37.5
lc208 676.502 3,667 4 4 3 3 79 38.8
lr101 1,138.993 7,753 11 11 11 7 43 9.6
lr102 1,171.374 4,794 11 11 11 6 45 10.0
lr103 1,223.400 4,819 11 11 10 7 40 9.1
lr104 1,090.987 8,552 11 11 10 6 41 9.6
lr105 1,136.728 9,054 11 11 10 6 43 9.6
lr106 1,152.816 9,850 11 11 11 9 40 9.4
lr107 1,216.950 9,236 11 11 11 8 40 9.2
lr108 1,162.082 6,254 11 11 10 6 39 8.8
lr109 1,127.926 9,309 11 11 12 6 43 9.9
lr110 1,109.671 9,538 11 11 12 6 40 9.6
lr111 1,207.751 9,313 11 11 12 9 45 9.5
lr112 1,162.763 8,856 11 11 11 7 42 9.7
lr201 1,041.385 7,809 4 4 4 3 75 33.2
lr202 1,071.902 7,699 3 3 3 3 91 40.6
lr203 969.654 7,084 3 3 5 5 107 45.6
lr204 846.491 4,767 2 2 2 2 142 57.6
lr205 992.878 7,503 3 3 4 3 98 43.1
lr206 975.402 9,916 3 3 5 5 103 44.3
lr207 884.184 3,222 2 2 2 1 139 57.1
lr208 734.643 414 2 2 2 1 156 57.1
lr209 928.528 2,202 3 3 4 4 104 44.4
lr210 938.639 5,383 3 3 3 2 109 48.5
lr211 833.859 9,747 3 3 3 2 104 45.4
lrc101 1,395.622 8,464 12 12 12 8 42 8.9
lrc102 1,505.317 9,916 12 12 12 11 42 8.7
lrc103 1,257.967 8,890 11 11 11 6 42 9.2
lrc104 1,197.082 6,581 11 11 11 8 43 9.6
lrc105 1,502.650 9,346 12 12 14 10 43 8.9
lrc106 1,440.623 4,938 12 12 12 9 41 8.8
lrc107 1,315.167 8,371 11 11 12 8 41 9.0
lrc108 1,284.733 7,992 11 11 11 7 39 9.2
lrc201 1,311.424 9,792 4 4 5 4 74 32.1
lrc202 1,192.597 5,102 3 3 3 2 82 36.5
lrc203 1,020.702 9,999 3 3 3 3 97 40.2
lrc204 819.319 3,083 3 3 3 3 108 41.0
lrc205 1,220.710 5,258 4 4 4 2 76 34.6
lrc206 1,175.625 2,474 3 3 4 4 93 39.9
lrc207 1,108.881 2,517 3 3 3 3 94 41.3
lrc208 885.852 4,444 3 3 3 3 110 42.7
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Table 5: Detailed computational results size class 200

Instance Objective
function

value

Iteration where
best solution was

found

No. routes No. LTC
routes

No.
subroutes

No. PTLs
used

Running time
ALNS with

constant-time
test (secs.)

Ratio
running

time
linear /

constant

lc1_2_1 3,093.290 6,607 21 21 21 14 148 11.1
lc1_2_2 3,611.993 9,872 21 21 22 15 152 11.3
lc1_2_3 3,436.951 9,878 20 20 21 13 155 11.3
lc1_2_4 3,210.840 8,006 20 20 21 12 169 12.2
lc1_2_5 3,141.552 9,966 21 21 22 15 156 11.3
lc1_2_6 3,169.339 9,874 21 21 21 16 156 11.5
lc1_2_7 3,145.988 6,885 20 20 20 12 158 11.6
lc1_2_8 3,103.838 5,116 21 21 21 14 157 11.7
lc1_2_9 3,449.571 9,980 21 21 21 14 162 11.7
lc1_2_10 3,399.748 9,111 21 21 22 13 161 11.8
lc2_2_1 2,175.912 5,701 8 8 9 8 240 36.2
lc2_2_2 2,170.040 5,847 7 7 7 6 273 37.8
lc2_2_3 2,013.353 2,762 7 7 7 6 300 38.2
lc2_2_4 1,890.106 9,606 6 6 6 5 350 39.2
lc2_2_5 1,988.849 9,398 6 6 6 6 251 38.9
lc2_2_6 2,078.159 5,568 6 6 6 4 259 38.0
lc2_2_7 1,997.970 4,334 6 6 7 6 266 38.5
lc2_2_8 2,051.189 5,528 7 7 7 6 285 40.7
lc2_2_9 2,030.965 3,779 7 7 7 6 284 39.2
lc2_2_10 1,990.755 4,238 6 6 6 5 293 40.1
lr1_2_1 3,264.972 7,485 10 10 10 8 175 18.8
lr1_2_2 3,216.481 7,291 10 10 12 9 187 20.3
lr1_2_3 2,951.496 8,292 10 10 14 11 195 21.9
lr1_2_4 2,474.494 4,992 9 9 11 7 229 25.8
lr1_2_5 3,256.285 9,645 11 11 11 7 185 19.1
lr1_2_6 3,068.128 4,497 11 11 16 11 203 22.1
lr1_2_7 2,677.863 8,742 10 10 11 8 198 22.3
lr1_2_8 2,475.545 9,575 8 8 8 7 219 26.2
lr1_2_9 3,091.304 8,916 10 10 11 9 186 20.4
lr1_2_10 2,757.828 7,195 10 10 15 11 198 21.9
lr2_2_1 3,479.459 8,296 5 5 5 3 375 69.4
lr2_2_2 3,295.378 9,884 4 4 8 8 524 83.2
lr2_2_3 3,052.134 8,236 4 4 15 13 617 84.6
lr2_2_4 2,325.207 7,696 4 4 8 8 840 96.6
lr2_2_5 3,311.055 8,910 4 4 8 7 500 87.7
lr2_2_6 3,279.246 9,949 4 4 10 8 570 85.3
lr2_2_7 2,712.065 9,178 3 3 6 6 714 100.9
lr2_2_8 1,962.325 294 4 4 6 5 987 120.6
lr2_2_9 3,253.515 7,558 4 4 7 6 522 89.4
lr2_2_10 2,756.037 7,993 4 4 7 5 517 85.0
lrc1_2_1 2,892.339 6,809 12 12 13 13 175 17.8
lrc1_2_2 2,794.063 6,133 11 11 13 12 178 19.8
lrc1_2_3 2,663.717 8,898 9 9 13 11 203 22.8
lrc1_2_4 2,442.196 9,414 9 9 11 10 230 26.8
lrc1_2_5 3,102.716 9,166 11 11 11 9 180 18.9
lrc1_2_6 2,812.237 8,063 12 12 15 12 176 18.9
lrc1_2_7 2,826.656 9,688 11 11 11 7 187 20.3
lrc1_2_8 2,635.937 9,878 10 10 10 7 184 20.2
lrc1_2_9 2,593.870 9,457 10 10 13 10 185 20.7
lrc1_2_10 2,553.282 9,247 10 10 12 9 206 22.1
lrc2_2_1 2,861.418 8,416 6 6 12 9 314 53.3
lrc2_2_2 2,577.954 6,528 6 6 10 9 364 54.5
lrc2_2_3 2,393.727 212 5 5 7 6 500 72.4
lrc2_2_4 2,241.657 2,418 4 4 7 7 657 82.3
lrc2_2_5 2,859.009 8,398 5 5 18 17 466 72.1
lrc2_2_6 2,668.582 9,234 5 5 12 9 439 66.1
lrc2_2_7 2,544.252 9,759 5 5 9 9 434 61.1
lrc2_2_8 2,419.297 9,696 4 4 8 8 526 73.9
lrc2_2_9 2,272.824 6,722 4 4 5 5 527 75.0
lrc2_2_10 2,181.054 7,304 4 4 11 11 593 75.8
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Table 6: Detailed computational results size class 400

Instance Objective
function

value

Iteration where
best solution was

found

No. routes No. LTC
routes

No.
subroutes

No. PTLs
used

Running time
ALNS with

constant-time
test (secs.)

Ratio
running

time
linear /

constant

lc1_4_1 8,157.242 9,894 40 40 42 29 468 10.9
lc1_4_2 8,326.408 9,606 39 39 39 24 490 11.4
lc1_4_3 8,181.272 9,487 38 38 40 24 511 11.9
lc1_4_4 7,998.630 9,611 36 36 35 23 521 12.3
lc1_4_5 8,452.623 8,748 42 42 42 28 472 11.0
lc1_4_6 7,965.205 7,750 40 40 40 25 482 11.2
lc1_4_7 8,101.512 9,001 40 40 42 28 491 11.3
lc1_4_8 8,065.265 9,911 39 39 39 26 483 11.1
lc1_4_9 8,606.076 9,197 38 38 39 27 506 11.4
lc1_4_10 8,063.120 9,998 37 37 39 19 516 11.5
lc2_4_1 4,634.553 8,424 13 13 13 9 735 33.9
lc2_4_2 4,718.921 9,331 13 13 14 9 830 34.9
lc2_4_3 4,732.656 5,581 13 13 15 13 943 35.3
lc2_4_4 4,832.596 5,247 13 13 15 12 1,048 35.8
lc2_4_5 4,793.259 9,977 14 14 14 13 760 34.8
lc2_4_6 4,330.294 8,316 12 12 13 11 810 36.2
lc2_4_7 4,455.024 9,622 13 13 14 14 830 36.6
lc2_4_8 4,542.666 8,399 13 13 13 11 843 38.0
lc2_4_9 4,796.374 9,561 13 13 15 12 863 36.5
lc2_4_10 4,542.475 9,835 13 13 15 13 880 37.8
lr1_4_1 7,600.421 9,901 21 21 24 20 538 18.9
lr1_4_2 7,122.111 8,661 20 20 20 19 589 21.4
lr1_4_3 6,293.120 9,987 17 17 19 18 650 24.5
lr1_4_4 5,453.027 9,352 15 15 17 13 756 28.9
lr1_4_5 7,197.859 6,366 20 20 26 20 544 22.8
lr1_4_6 6,924.309 9,903 18 18 20 16 614 22.3
lr1_4_7 6,248.194 6,972 17 17 23 19 660 26.0
lr1_4_8 5,421.693 7,130 15 15 18 15 763 30.5
lr1_4_9 6,931.926 9,867 19 19 20 17 574 20.8
lr1_4_10 6,615.693 6,418 18 18 23 20 616 22.9
lr2_4_1 8,661.925 9,136 9 9 15 12 1,198 76.2
lr2_4_2 7,568.071 9,942 8 8 19 16 1,528 83.5
lr2_4_3 6,753.730 4,193 8 8 25 22 1,981 97.3
lr2_4_4 5,311.441 9,961 6 6 18 16 2,868 122.0
lr2_4_5 7,686.022 8,490 8 8 17 16 1,400 93.2
lr2_4_6 6,735.141 4,596 8 8 20 17 1,678 93.4
lr2_4_7 6,054.436 8,945 6 6 15 13 2,238 114.8
lr2_4_8 5,226.712 8,953 5 5 13 12 3,432 142.5
lr2_4_9 7,196.682 9,888 8 8 24 22 1,508 94.0
lr2_4_10 6,732.745 9,932 8 8 24 22 1,599 93.7
lrc1_4_1 7,147.617 9,910 24 24 24 21 493 17.9
lrc1_4_2 6,410.331 6,771 21 21 24 19 546 20.6
lrc1_4_3 6,093.626 8,966 19 19 24 19 580 23.4
lrc1_4_4 5,340.786 9,989 15 15 17 14 681 29.1
lrc1_4_5 7,131.683 9,877 23 23 27 20 512 17.8
lrc1_4_6 6,542.183 9,589 22 22 24 16 515 19.3
lrc1_4_7 6,635.200 6,959 21 21 25 18 547 19.6
lrc1_4_8 6,390.169 9,938 22 22 23 21 550 19.7
lrc1_4_9 6,440.317 7,864 20 20 21 16 550 20.7
lrc1_4_10 5,877.081 6,906 19 19 20 15 565 22.2
lrc2_4_1 6,755.846 9,929 12 12 27 23 940 59.0
lrc2_4_2 6,372.873 5,437 10 10 22 20 1,184 69.9
lrc2_4_3 5,277.173 8,829 8 8 13 13 1,489 81.4
lrc2_4_4 4,656.752 9,893 7 7 24 22 2,434 108.1
lrc2_4_5 6,432.971 9,520 10 10 20 19 1,079 65.4
lrc2_4_6 6,318.373 3,927 10 10 27 21 1,094 67.4
lrc2_4_7 5,902.167 9,607 9 9 21 17 1,230 73.5
lrc2_4_8 5,560.296 9,767 8 8 21 18 1,424 81.6
lrc2_4_9 5,289.767 9,968 8 8 15 15 1,467 85.1
lrc2_4_10 5,264.808 9,125 8 8 25 22 1,598 88.1
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Table 7: Detailed computational results size class 600

Instance Objective
function

value

Iteration where
best solution was

found

No. routes No. LTC
routes

No.
subroutes

No. PTLs
used

Running time
ALNS with

constant-time
test (secs.)

lc1_6_1 16,466.091 9,762 62 62 62 43 778
lc1_6_2 16,521.563 9,763 61 61 61 37 799
lc1_6_3 16,629.909 8,754 58 58 58 38 826
lc1_6_4 16,045.254 9,958 57 57 55 34 857
lc1_6_5 17,075.448 9,886 64 64 61 45 789
lc1_6_6 17,092.862 9,858 64 64 65 44 820
lc1_6_7 16,287.753 9,772 61 61 59 36 818
lc1_6_8 17,413.197 9,934 62 62 63 43 815
lc1_6_9 18,047.010 9,281 62 62 63 35 834
lc1_6_10 17,327.674 8,262 59 59 61 41 868
lc2_6_1 10,207.809 9,964 22 22 25 22 1,092
lc2_6_2 9,563.355 8,330 19 19 21 17 1,204
lc2_6_3 9,454.697 9,235 20 20 26 22 1,352
lc2_6_4 8,949.587 9,736 20 20 20 19 1,505
lc2_6_5 9,761.939 9,942 20 20 23 22 1,137
lc2_6_6 9,809.889 9,927 22 22 32 28 1,189
lc2_6_7 9,437.012 9,493 21 21 25 23 1,216
lc2_6_8 9,172.899 8,737 21 21 24 20 1,263
lc2_6_9 9,478.359 9,545 21 21 24 23 1,263
lc2_6_10 8,853.279 9,338 20 20 23 21 1,367
lr1_6_1 16,971.485 9,266 31 31 47 37 1,010
lr1_6_2 17,411.229 5,466 27 25 34 30 1,074
lr1_6_3 14,309.551 9,961 24 24 31 28 1,229
lr1_6_4 12,432.560 8,843 18 17 23 21 1,406
lr1_6_5 16,143.579 7,255 28 28 37 34 1,016
lr1_6_6 16,917.078 9,557 25 23 34 30 1,119
lr1_6_7 13,302.893 9,981 23 23 28 26 1,215
lr1_6_8 11,141.020 9,976 19 19 33 31 1,452
lr1_6_9 15,254.064 9,497 28 28 36 30 1,021
lr1_6_10 16,886.003 3,047 26 25 35 34 1,088
lr2_6_1 18,358.684 8,917 12 12 42 34 2,216
lr2_6_2 15,947.769 8,049 12 12 45 37 2,843
lr2_6_3 14,063.910 7,062 10 10 41 37 3,651
lr2_6_4 11,140.270 9,007 7 7 28 25 5,599
lr2_6_5 17,091.142 7,637 11 11 60 48 2,596
lr2_6_6 15,925.030 9,745 10 10 43 32 3,230
lr2_6_7 13,519.317 9,566 9 9 45 38 4,105
lr2_6_8 10,320.749 7,862 7 7 29 26 5,803
lr2_6_9 15,666.296 9,915 10 10 37 29 2,819
lr2_6_10 15,595.795 8,820 11 11 54 45 2,975
lrc1_6_1 13,855.237 9,714 32 32 35 25 876
lrc1_6_2 12,973.273 9,991 29 29 35 28 969
lrc1_6_3 12,659.233 9,834 25 25 34 30 1,117
lrc1_6_4 9,902.372 9,652 18 18 25 22 1,391
lrc1_6_5 13,645.705 7,960 32 32 36 31 898
lrc1_6_6 13,554.014 8,787 30 30 32 24 901
lrc1_6_7 12,950.530 8,703 29 29 35 27 933
lrc1_6_8 13,145.138 8,813 28 28 30 26 931
lrc1_6_9 13,227.627 9,645 28 28 29 24 951
lrc1_6_10 12,424.974 9,805 26 26 32 23 977
lrc2_6_1 14,628.817 9,995 17 17 61 53 1,742
lrc2_6_2 13,179.837 9,591 14 14 59 50 2,131
lrc2_6_3 11,013.262 9,799 11 11 32 27 2,705
lrc2_6_4 9,414.274 9,639 8 8 29 25 4,247
lrc2_6_5 13,483.235 9,753 15 15 39 32 1,802
lrc2_6_6 13,981.647 9,152 13 13 47 39 1,865
lrc2_6_7 12,920.265 8,311 11 11 34 28 2,220
lrc2_6_8 12,120.200 9,915 12 12 43 40 2,291
lrc2_6_9 13,734.873 5,731 11 11 50 41 2,321
lrc2_6_10 12,396.543 9,886 10 10 44 35 2,618
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Table 8: Detailed computational results size class 800

Instance Objective
function

value

Iteration where
best solution was

found

No. routes No. LTC
routes

No.
subroutes

No. PTLs
used

Running time
ALNS with

constant-time
test (secs.)

lc181 29,779.459 9,751 84 84 84 58 1,081
lc182 34,001.982 7,969 81 79 76 56 1,129
lc183 31,269.812 8,397 78 78 79 53 1,148
lc184 31,909.582 8,508 73 70 70 47 1,202
lc185 32,090.767 9,405 87 87 84 55 1,136
lc186 30,526.773 9,015 84 84 83 57 1,152
lc187 30,846.858 8,924 82 82 80 51 1,123
lc188 31,051.107 9,965 82 82 83 54 1,141
lc189 31,594.426 9,834 79 79 75 50 1,148
lc1810 31,669.092 9,775 79 79 79 52 1,147
lc281 15,159.593 9,597 28 28 32 25 1,484
lc282 16,926.027 9,467 30 30 48 39 1,628
lc283 19,443.635 8,930 28 24 33 32 1,727
lc284 17,848.417 9,571 27 25 32 26 1,922
lc285 14,943.285 9,821 27 27 31 23 1,631
lc286 15,451.011 9,651 29 29 43 34 1,766
lc287 15,270.417 9,942 27 26 32 26 1,835
lc288 14,743.008 9,902 28 28 31 28 1,823
lc289 14,756.891 9,916 28 28 32 27 1,804
lc2810 15,605.859 7,271 29 29 43 36 1,923
lr181 41,949.098 9,001 38 27 48 42 1,431
lr182 32,628.581 9,008 37 32 48 45 1,513
lr183 30,878.496 9,914 29 23 39 35 1,686
lr184 21,989.100 9,897 22 19 34 34 2,082
lr185 32,183.407 9,916 39 36 57 48 1,406
lr186 33,190.601 9,998 35 28 36 30 1,515
lr187 25,346.191 9,803 29 27 35 33 1,684
lr188 20,062.252 7,632 23 21 28 26 2,083
lr189 34,384.747 8,366 37 31 48 43 1,406
lr1810 31,676.044 8,330 34 27 41 35 1,471
lr281 33,711.230 7,592 17 16 81 71 2,816
lr282 28,988.585 9,681 13 13 59 55 3,589
lr283 23,193.891 9,942 12 11 51 43 4,739
lr284 18,490.427 9,455 8 8 34 31 7,834
lr285 29,125.350 9,666 15 14 70 58 3,105
lr286 24,148.337 9,663 14 14 58 47 3,967
lr287 22,686.727 9,918 12 12 62 56 5,224
lr288 17,010.234 9,518 7 7 30 26 7,905
lr289 27,858.035 9,842 13 13 66 54 3,235
lr2810 25,980.059 9,423 14 14 70 54 3,395
lrc181 33,874.714 8,637 47 40 48 40 1,116
lrc182 29,331.441 9,941 44 39 43 35 1,230
lrc183 24,651.073 8,960 36 33 42 35 1,411
lrc184 19,563.444 9,296 26 24 35 32 1,743
lrc185 32,054.570 9,468 45 39 43 38 1,179
lrc186 30,576.310 9,699 44 38 42 38 1,225
lrc187 29,794.101 9,970 43 39 50 43 1,208
lrc188 26,477.220 9,989 39 36 45 37 1,268
lrc189 22,577.839 9,984 38 38 46 37 1,224
lrc1810 24,871.446 9,263 37 34 39 35 1,258
lrc281 25,832.234 6,887 21 20 75 59 2,040
lrc282 24,480.590 9,191 17 14 51 50 2,551
lrc283 19,833.313 9,929 16 15 53 44 3,133
lrc284 14,549.916 9,218 12 12 35 32 4,923
lrc285 23,944.816 7,576 19 19 103 79 2,408
lrc286 24,865.120 8,616 17 15 87 76 2,401
lrc287 22,520.066 6,938 16 16 76 64 2,543
lrc288 21,990.194 8,369 16 15 84 71 2,848
lrc289 19,734.446 9,866 15 15 77 68 2,864
lrc2810 19,399.705 9,992 13 13 39 39 3,223
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Table 9: Detailed computational results size class 1,000

Instance Objective
function

value

Iteration where
best solution was

found

No. routes No. LTC
routes

No.
subroutes

No. PTLs
used

Running time
ALNS with

constant-time
test (secs.)

lc1101 65,073.718 9,695 108 94 89 64 1,310
lc1102 67,649.754 7,571 103 90 93 70 1,369
lc1103 55,315.955 9,803 95 90 93 69 1,516
lc1104 53,303.065 7,549 92 88 88 63 1,521
lc1105 61,452.807 9,950 105 95 91 65 1,426
lc1106 59,887.447 9,518 110 103 96 68 1,465
lc1107 55,160.075 9,995 105 102 98 72 1,494
lc1108 63,357.039 9,999 105 96 94 69 1,512
lc1109 61,419.643 5,994 108 103 108 78 1,557
lc11010 54,890.505 9,554 97 93 90 62 1,597
lc2101 22,527.689 9,988 35 34 40 33 1,956
lc2102 23,792.805 7,876 36 35 51 46 2,169
lc2103 23,031.139 9,819 34 34 48 42 2,321
lc2104 25,118.021 9,545 34 32 46 39 2,581
lc2105 24,710.473 9,475 37 35 41 37 2,073
lc2106 23,694.035 9,704 36 35 46 40 1,995
lc2107 25,279.518 9,221 38 36 58 52 2,179
lc2108 25,028.226 7,300 37 35 49 42 2,237
lc2109 25,348.545 8,748 37 36 55 50 2,259
lc21010 21,934.962 9,304 36 36 44 35 2,185
lr1101 59,691.009 9,975 50 35 61 51 1,822
lr1102 48,538.500 9,997 45 39 64 53 1,909
lr1103 44,318.348 9,671 37 29 53 48 2,215
lr1104 32,194.887 9,130 27 22 37 34 2,739
lr1105 56,018.817 9,783 49 40 68 55 1,837
lr1106 45,459.665 9,881 42 35 49 43 2,026
lr1107 41,921.754 9,202 35 26 48 43 2,305
lr1108 35,527.347 9,499 28 23 48 46 2,800
lr1109 48,613.159 9,857 46 39 53 50 1,888
lr11010 47,691.898 8,048 41 32 59 52 1,968
lr2101 51,690.254 9,868 21 17 99 83 3,275
lr2102 45,995.484 9,789 18 16 70 64 4,190
lr2103 36,607.173 9,896 16 13 43 42 5,416
lr2104 27,180.136 9,254 12 12 59 54 9,069
lr2105 46,941.618 9,595 18 15 77 67 3,775
lr2106 41,616.661 8,730 17 15 70 61 4,741
lr2107 34,561.985 9,174 14 12 64 59 6,095
lr2108 26,083.772 9,832 10 10 50 46 10,024
lr2109 43,679.631 8,723 18 15 86 72 4,052
lr21010 41,890.994 9,910 16 13 75 72 4,336
lrc1101 56,643.406 9,370 59 44 57 42 1,698
lrc1102 48,314.071 9,827 56 48 71 60 1,814
lrc1103 39,926.935 9,798 46 39 51 45 2,051
lrc1104 32,640.504 7,727 33 29 50 45 2,665
lrc1105 54,919.086 9,631 58 47 58 44 1,717
lrc1106 55,289.112 9,903 55 39 55 50 1,708
lrc1107 46,741.471 9,827 50 39 51 42 1,758
lrc1108 50,108.697 9,452 51 39 61 52 1,790
lrc1109 46,641.948 9,651 50 39 52 45 1,803
lrc11010 39,637.235 9,998 47 42 59 51 1,871
lrc2101 39,684.964 9,595 24 20 101 86 2,937
lrc2102 37,322.263 9,847 23 20 102 81 3,435
lrc2103 30,658.094 9,759 19 18 80 69 4,325
lrc2104 25,217.808 9,934 14 13 56 50 6,626
lrc2105 38,071.655 9,897 21 16 88 74 3,442
lrc2106 33,867.241 9,521 21 21 118 97 3,379
lrc2107 33,795.104 9,081 18 16 83 73 3,720
lrc21010 33,794.739 8,358 18 16 85 71 4,416
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