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Abstract

We propose a simple, incentive compatible procedure based on binarized linear
scoring rules to elicit beliefs about real-valued outcomes - multiple point predictions.
Simultaneously eliciting multiple point predictions with linear incentives reveals the
subjective probability distribution without pre-defined intervals or probabilistic state-
ments. We show that the approach is theoretically as robust as existing methods,
while adapting flexibly to different beliefs. In a laboratory experiment, we compare
our procedure to the standard approach of eliciting discrete probabilities on pre-defined
intervals. We find that elicitation with multiple point predictions is faster, perceived as
less difficult and more consistent with a subsequent decision. We further find that mul-
tiple point predictions are more accurate if beliefs vary between participants. Finally,
we provide experimental evidence that pre-defined intervals anchor reports.
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1 Introduction
Economic modelling and decision making under uncertainty often rely on subjective beliefs and
the elicitation thereof. We consider beliefs about real-valued variables (e.g., income, profit, infla-
tion, growth rates, exchange rates, survival rates, infection rates, second-order probabilities, or the
timing of an event), which take the form of continuous probability distributions. The economic lit-
erature provides numerous applications for eliciting beliefs about real-valued variables in practice.1

While mechanisms to elicit these beliefs can be theoretically equivalent, they often have different
psychological implications. Experimental evidence for the applicability of different methods is con-
text dependent (for reviews about belief elicitation in the lab, see Schlag et al., 2015; Schotter and
Trevino, 2014; Trautmann and van de Kuilen, 2015).

In this paper, we propose to elicit subjective probability distributions framed as multiple point
predictions (MPP). We avoid probabilistic language and use a simple incentive scheme based on
aggregating multiple linear scoring rules (Schlaifer and Raiffa, 1961). We provide a theoretical
framework for the incentivized elicitation of subjective probability distributions and compare our
approach in a laboratory experiment to the commonly applied method of eliciting beliefs using
interval probabilities (IP). We find that elicitation with MPP is faster, perceived as less difficult
and more predictive of subsequent behavior. We further find that elicited distributions of MPP
are more accurate if participants received different information signals and show that pre-defined
intervals anchor reports.

1.1 Elicitation of Interval Probabilities

A common procedure for eliciting subjective probability distributions is to divide the real line
into intervals and elicit the discrete distribution on those intervals. This elicitation of IP can
be incentivized with the widely applied quadratic scoring rule (QSR) (Costa-Gomes et al., 2014;
Harrison et al., 2014; Huck and Weizsäcker, 2002; McKelvey and Page, 1990; Nyarko and Schotter,
2002; Rutström and Wilcox, 2009). By rewarding subjects with the probability of winning a fixed

1For reviews on belief elicitation in macro and development economics in general see Manski (2018) and
Delavande et al. (2011). Armantier et al. (2013) review elicitation of inflation expectations. For examples
eliciting beliefs about real-valued variables see Dominitz and Manski (1997) for income, Vargas Hill (2009)
for coffee prices, and De Mel et al. (2008) for small business profits. Other examples arise for the onset of an
event, as the timing can be considered as real-valued outcome: Delavande and Kohler (2009) elicit beliefs on
mortality over time. Similar data is collected in the Health and Retirement Study; See Wang (2014) for an
application. Carman and Kooreman (2014) elicit beliefs about contracted influenza and heart disease over
time.
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payoff, binarized scoring rules are incentive compatible for risk averse or risk seeking preferences.2

We generalize this procedure and show in a unified framework, using binarized scoring rules,
that any bounded density can be elicited without pre-defined intervals.

1.2 Elicitation of Multiple Point Predictions

For events, no simple linear scoring rule truthfully elicits the event probability. However, for
subjective probability distributions on the real line, linear incentives identify pre-defined CDF
levels. We propose to elicit MPP simultaneously by aggregating asymmetric linear incentives. This
procedure identifies quantiles of the subjective probability distribution.

We show that MPP can be used to elicit points of the subjective CDF without assuming risk
neutrality. While IP allow to choose at which outcome levels the CDF is revealed, MPP allow to
choose at which probability levels the CDF is revealed. Without anchors or explicit probabilistic
statements3, MPP provide similar information about the subjective probability distribution as IP.

The intuition behind point predictions is rather natural. On a regular basis we encounter
uncertainty such as “How many days will I need to finish the project?”. We commonly express our
beliefs in point estimates (e.g., “I need 10 days.”) instead of probabilities (“There is a 50% chance
that I need less than 10 days.”). Moreover, the consequences of over- or underestimation might
be rather different. If finishing one day too late is more costly than one day too early, we would
express a higher estimate (“12 days.”). If instead finishing a day early is more costly than a day
late, we would express a lower estimate (“8 days.”).

Applying MPP, we rely on the same intuition. Each point estimate influences the payout in a
simple linear relationship. By varying the asymmetry between under- and overestimation, we can
elicit different quantiles of the underlying subjective probability distribution. We argue that point
predictions allow to construct a simple and intuitive elicitation mechanism.

Our procedure overcomes several potential caveats of currently used methods. Many methods
require individuals to communicate their beliefs in probabilistic form. Whereas expert forecasters
may have little difficulties communicating in probabilistic form, most populations (e.g., high school
students) may struggle when asked for IP. Outside of the lab, individuals rarely communicate their
beliefs in that way. Simple point predictions, however, were criticized for being uninformative

2This approach is also referred to as binary lottery procedure. The idea goes back to Smith (1961).
Binarized scoring rules are analyzed in Hossain and Okui (2013) for generic properties and the mean, in
Schlag and van der Weele (2013) for single quantiles, and in Harrison et al. (2015) for discrete distributions.
Other methods that account for risk-aversion are based on the mechanism introduced in Karni (2009) which
involves two layers of randomization. Demuynck (2013) proposes to elicit single quantiles and Qu (2012) IP.

3We call reports “probabilistic” if they are in the form of a probability distribution.
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about the uncertainty (Engelberg et al., 2009). MPP allow convenient communication and reveal
uncertainty.

Moreover, as many existing methods depend on pre-defined intervals they suffer from anchoring
and bin effects. Benjamin et al. (2017) provide evidence of bin effects in incentivized experiments,
whereby the belief reports systematically depend on the intervals used to elicit beliefs and Tversky
and Kahneman (1975) introduce individuals’ tendency to insufficiently adjust their estimates from
anchors. This effect has later been confirmed in experimental work by Wright and Anderson (1989)
and quantitatively assessed by Jacowitz and Kahneman (1995).

Finally, incentivized reports are often based on complex payoff functions (e.g., proper scoring
rules first introduced in Brier, 1950; Winkler, 1967). Some procedures show payoffs contingent
on outcomes, which allows respondents to explore the incentive structure (e.g., Harrison et al.,
2014; Holt and Smith, 2016). Other procedures explicitly tell participants that it is optimal to
report their “true beliefs”. Offerman et al. (2009) argue that this recommendation is debatable,
as it depends on decision theoretic assumptions. The simple linear scoring rule in MPP facilitates
rather than complicates the elicitation of subjective beliefs.

1.3 Theoretical Contribution

To provide the theoretical foundations for MPP, we build on the seminal work in Hossain and Okui
(2013) and extend binarized scores to the elicitation of the entire density (see Proposition 1) and
simultaneous elicitation of multiple quantiles (see Theorem 1). We aggregate multiple linear scoring
rules and elicit a set of quantiles simultaneously without assuming bounded support or limiting tail
behavior. Previous work established similar results for the mean property (Hossain and Okui, 2013)
and single quantiles (Schlag and van der Weele, 2013) under more restrictive assumptions on the
belief distribution. Under risk-neutral preferences, related scoring procedures have been considered
in Jose and Winkler (2009) and Fissler and Ziegel (2016). We consider the more general class of
probabilistically sophisticated preferences as introduced in Machina and Schmeidler (1992). Thus,
our results extend to risk-averse and risk-seeking expected utility preferences, but do not generally
hold for uncertainty (or ambiguity) averse preferences.

We further show that extremely asymmetric linear incentives can reveal the minimum and max-
imum of the distribution (see Proposition 3). Bellini and Bignozzi (2015) show that the minimum
and maximum are properties that are non-elicitable with standard procedures. To the best of our
knowledge, we provide the first approach that reveals a non-elicitable property.

Compared to the QSR on IP, our linear incentives are unbounded for unbounded subjective
belief distributions. Binarized scores require bounded scores to be incentive compatible. We show
that the arising biases can be bounded conveniently. In numerical simulations we further illustrate
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reference framing incentives binarized outcome
Manski and Neri (2013) IP QSR No elicited event probability
Neri (2015) IP QSR No bid and offer in auction experiment
Harrison et al. (2017) IP QSR No number of coloured balls
Budescu and Du (2007) IP,Q unspecific No stock prices
Palley and Bansal (2019) IP,Q QSR,LSR Yes multiple
Harrison et al. (2015) IP QSR Yes number of coloured balls
Hossain and Okui (2013) SPP QSR Yes hypothetical stock prices
Costa-Gomes et al. (2014) SPP QSR No transfer in trust game
Dufwenberg and Gneezy (2000) SPP LSR No return in lost wallet game
Sapienza et al. (2013) SPP PCSR No return in trust game
Charness and Dufwenberg (2006) SPP PCSR No ratio of cooperation in trust game
Kirchkamp and Reiß (2011) SPP LSR No bid in auction game
Survey of Professional Forecasters5 IP - - inflation, GDP, etc.
Survey of Consumer Expectations6 IP - - inflation, household income, etc.
Altig et al. (2020) IP,MPP - - sales, investments, etc.

Table 1: Examples of belief elicitation on real-valued outcomes. Framing of elicitation is
denoted by interval probabilities (IP), single point predictions (SPP), quantiles (Q), and multiple
point predictions (MPP). Incentives are denoted as quadratic scoring rule (QSR), linear scoring
rule (LSR), and piecewise-constant scoring rule (PCSR).

adequate design choices to prevent those biases. In the simulations, we also consider linear incentives
without binarizing and show that risk-aversion would lead to overreporting of uncertainty.

Finally, we discuss why MPP often provide sharper bounds on the CDF than IP. Taking an
example from the Survey of Consumer Expectations (Armantier et al., 2017) by the Federal Reserve
Bank of New York, we illustrate how IP often provide little information on heterogeneous belief
distributions, whereas MPP are informative irrespective of the heterogeneity of beliefs4.

1.4 Experimental Evidence

In the second part of the paper, we present an experimental application of belief elicitation by
MPP, and compare it to the elicitation of IP.

Previous laboratory experiments focused mainly on event probabilities (see Schlag et al., 2015;
Schotter and Trevino, 2014; Trautmann and van de Kuilen, 2015, for reviews). Belief elicitation on
real-valued outcomes dominantly relied on IP (Table 1) or single point predictions.

The statistical literature focuses more on unincentivized expert elicitation (see O’Hagan et al.,
4We differentiate between “heterogeneous” and “homogeneous” beliefs. While the former describes varying

beliefs across participants, the latter describes similar beliefs across participants. In our experiment, we
induce belief heterogeneity by varying the level of information that participants receive about the outcome.

5See Croushore (1993).
6See Armantier et al. (2017).
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2006, for a review). Similarly, economic surveys mostly rely on IP (often called histograms or
bins) without incentives. We conjecture that applied work relies mostly on IP instead of quantile
elicitation, as quantiles are arguably more complicated to explain to participants than IP.

We add to the sparse experimental literature on real-valued outcomes and provide first evidence
on the merits and drawbacks of eliciting MPP compared to the widely used elicitation of IP.

In a concurrent paper, Palley and Bansal (2019) provide a related experimental comparison by
explicitly eliciting quantiles. We rely on a more intuitive framing with MPP. Further, we analyse
calibration (unbiasedness) and accuracy in a more general framework based on the realized value
instead of empirical marginal distributions.

For the sake of comparability, we incentivize the IP reports with the QSR and apply binarized
scores for both methods. In a laboratory experiment, we elicit subjective probabilities over five
different real-valued outcomes. The domains differ in the level of complexity and cover symmetric
and skewed distributions, ambiguity and skill-based assessments. We exogenously vary the strength
of the available information and argue that this affects the degree of belief heterogeneity across
participants. This allows us to compare performance under homogeneous beliefs (previous to an
information update) as well as varying levels of heterogeneous beliefs (after an information update).
We find that neither approach dominates across all evaluation metrics and applications. Despite
the fact that the two approaches predict identical responses under probabilistically sophisticated
preferences, we find strong evidence for differing response behaviors within evaluation metrics and
applications.

Throughout, our results indicate that the interval thresholds serve as anchors. Increasing the
information set on which beliefs are elicited, improves the accuracy of MPP reports more than
the accuracy of IP reports. We conjecture, that insufficient adjustments from external anchors
prevent participants reporting IP from incorporating the full information set. We further find that
the distributions elicited by MPP are more consistent with a subsequent decision. This effect is
especially prominent after providing strong information signals. This is an important property,
when elicitation is used in economic modelling, instead of forecasting.

We confirm our hypothesis of the interval thresholds functioning as anchors in a separate ex-
periment and show that the position and length of the intervals heavily influence the mean and
standard deviation of elicited distributions. In applications, beliefs are unknown and vary across
participants, rendering uniformly adequate intervals infeasible. Individual specific adaptation of
intervals, on the other hand, can influence responses and complicate comparisons across individ-
uals. Especially for non-expert respondents these effects may lead to distorted reports. As MPP
operates without pre-defined outcome values, reports cannot be biased by externally given anchors.

With regard to applicability, participants that reported beliefs with MPP required less time
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and were more likely to react positively to subjective perception questions after the experiment.
In the following section, we provide the theoretical background on property elicitation, show a

numerical study on biases from risk-aversion and unbounded support, and discuss how to recover
probability distributions after eliciting CDF points. Section 3 describes the experimental design.
Results are provided in Section 4, followed by a discussion in Section 5. The appendix contains
a more technical treatment, proofs, and additional results. An online supplementary document is
available with additional details and a description of the experiment.

2 Theory of Property Elicitation
In this section we review the theoretical background of the elicitation of subjective probability
distributions with binarized scoring rules. Consider the task of eliciting an agent’s belief about a
real-valued random variable y. A state of belief is represented by a subjective probability P, which
is denoted as a CDF –or where possible by its density– on the outcome space R of y.

We elicit specific properties T (P) of the subjective probability (e.g., a quantile or the likelihood
of an interval) based on the well-known procedure of binarized scoring rules. The agent chooses a
report x from the report space X . After observing the random variable y, the agent is remunerated
based on the scoring rule s, which is a function of the outcome y and the issued report x. Specifically,
the agent receives a prize if the score s(x, y) exceeds a uniformly distributed random variable with
suitably chosen support.

We assume that the agent has no other stakes concerning the random variable y and acts
probabilistically sophisticated (Machina and Schmeidler, 1992). See Regularity Conditions 1 in the
Appendix for details. Thus, our results hold for expected utility maximizing agents, irrespective
of their risk attitude.7 The remainder of this section tackles the question which properties of
the distribution can be elicited by the approach above and how the reports (partially) identify
the subjective probability distribution P. We call an elicitation method incentive compatible for a
property T if the optimal report of a probabilistically sophisticated agent with subjective probability
P is T (P). Further, a series of elicitation methods is called essentially incentive compatible if the
optimal report of an agent converges to T (P). Thus, essentially incentive compatible mechanisms
allow to elicit a property with an arbitrary degree of accuracy.

Hossain and Okui (2013) provide an essentially incentive compatible mechanism for the mean
under tail assumptions. They also construct a generic incentive compatible mechanism for every

7We note that there is mixed empirical evidence on binarized incentives inducing risk neutral behavior
with Cox and Oaxaca (1995) and Selten et al. (1999) providing evidence against and Harrison et al. (2013,
2015) and Hossain and Okui (2013) providing evidence for the validity of the procedure.
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property with bounded scoring rules. Schlag and van der Weele (2013) show examples for several
properties, including the quantile assuming bounded support. In Section 2.2, we add a straight
forward extension to reveal the entire density. In Section 2.3, we focus on MPP and show that our
procedure is essentially incentive compatible for multiple quantiles simultaneously without assuming
bounded support or restricting tail behaviour. Additionally, we show that extreme quantiles can
be used to construct essentially incentive compatible mechanisms for the minimum and maximum
of the distributions.

2.1 Eliciting Interval Probabilities

Let us consider the most prominent example for the elicitation of a property: interval probabilities.
The common approach is to choose some thresholds c1, . . . , cn−1 that define the respective property
Tc(P) = (P(y ≤ c1),P(c1 < y ≤ c2), . . . ,P(y > cn−1)) and to apply the QSR for discrete probabili-
ties. The eligible reports are probability vectors for n outcome values, X := {x ∈ [0, 1]n|

∑
i xi = 1}.

After issuing the report x = (x1, . . . , xn) and observing the outcome y in the kth interval, the agent
wins the prize if the QSR for multiple events,

s(x, y) = 2xk −
∑
i

x2
i + 1, (1)

exceeds a uniformly drawn random variable with support [0, 2]. Under probabilistic sophistication,
this elicitation mechanism is incentive compatible for the discrete probability distribution Tc as
the score is bounded (Hossain and Okui, 2013). That means, the agent is incentivized to report
the true probability distribution. Note, however, that this procedure does not reveal the entire
distribution P. We refer to this method as elicitation of interval probabilities.

2.2 Eliciting the Entire Probability Distribution

We show how to elicit the entire probability distribution using a continuous generalization of the
QSR (Matheson and Winkler, 1976). The report space X contains probability density functions.
We assume that the eligible distributions have bounded densities with some bound B. Given a
reported density function p(·), we compute the score as

s(p, y) = 2p(y)−
∫
R
p(w)2dw +B.

Subsequently, we draw a uniformly distributed random variable on [0, 3B]. The agent receives a
fixed payoff if the score exceeds the random draw.

7



Proposition 1 (density). Under probabilistic sophistication the mechanism described above is in-
centive compatible for the probability density function.

Up to technicalities, the proposition follows from the properness (Gneiting and Raftery, 2007)
and boundedness of the score (Hossain and Okui, 2013, Theorem 1). An elementary proof is given
in Appendix A.

With Proposition 1 any property could be elicited indirectly by eliciting the density and sub-
sequently calculating the respective property. However, the communication of a whole distribution
can be burdensome, or impossible, without parametric assumptions and the involved scoring rule
is complex.

2.3 Elicitation of Multiple Point Predictions

Instead of probabilistic reports, we propose to elicit multiple point predictions. Each prediction
is incentivized by a different linear scoring rule, which allows to infer quantiles of the underlying
distribution. While the quantile is a rather complex concept, there exist simple linear proper
scoring rules. In contrast, interval probabilities are simple concepts, that can only be incentivized
by complex scoring rules (like the QSR). A key element of our approach is to focus the participant’s
attention on the payoff function. The probabilities are subsequently inferred by the researcher. In
doing so, MPP do not require the participant to understand formal probability concepts, nor to
communicate in probabilistic statements.

For each point prediction x the payoff depends on the distance between x and the true outcome
y. In particular, this difference is multiplied by a positive factor a or b, depending on whether the
point forecast underestimates or overestimates, and then deducted from an initial endowment e.

sa,b(x, y) =

e− a · |x− y| if x ≤ y (underestimation),

e− b · |x− y| if x > y (overestimation).
(2)

The expected score maximizing strategy is to report the quantile of P with level α = a

a+ b
(Schlaifer

and Raiffa, 1961). With the results in Hossain and Okui (2013) it follows that the binarized version
of the score in Equation (2) is robust beyond risk neutrality if the support of the distribution is
bounded. A single point prediction, however, does not allow to do meaningful inference on the
subjective probability distribution.

The following theorem shows how to elicit multiple quantiles simultaneously without assuming
bounded support. Let α = (α1, . . . , αn) be a vector of n different quantile levels on the unit interval
(0, 1). We choose appropriate positive numbers ai, bi such that αi = ai

ai+bi
. For each level the agent
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issues a point estimate xi. Subsequently, the final score is computed by summing up the positive
values of each single score, i.e.,

sα(x, y) =
n∑
i=1

max(sai,bi
(xi, y), 0). (3)

The agent receives a fixed payoff if the score exceeds a uniformly distributed random draw on
[0, ne].

Theorem 1 (multiple quantiles). Assume a probabilistically sophisticated agent with a subjective
probability with strictly positive density.

(i) For sufficiently large endowments e the mechanism above is essentially incentive compatible
for the quantiles with levels α1, . . . , αn.

(ii) Consider a given point prediction x∗i . If the mass of the tail intervals can be bounded by
P0(y < x∗i −e/bi) < c1 and P0(y > x∗i +e/ai) < c2, the mechanism is incentive compatible for
the quantile with level α∗i such that the error in terms of the quantile level can be bounded by

−αic2 < α∗i − αi < (1− αi)c1.

See Appendix A for technical details. The intuition is as follows: The agent avoids large
prediction errors, thus the location of the point predictions follows the belief distribution. The
more asymmetric ai and bi are, the more the agent is incentivized to report a point prediction in
the tail of the distribution. More uncertainty is reflected in a wider spread of point predictions.

As the agent cannot be punished for extreme forecast errors beyond having probability zero of
receiving the reward, small initial endowments incentivize neglecting the tails of the distribution.
To avoid eliciting distorted quantiles, the initial endowment e has to be chosen large enough. Point
(i) of Theorem 1 shows that the arising distortion vanishes with increasing initial endowment.

Point (ii) of Theorem 1 allows to bound the error in terms of the actually reported quantile
level. Given a point forecast x∗i , one can form an assumption about the subjective probability of
extreme forecast errors, and obtain bounds on the actually reported quantile level α∗i . The lower
bound −αic2 arises if the left tail is neglected, and the reported point forecast is too low and
corresponds to a lower quantile level α∗i . The upper bound (1 − αi)c1 arises if the right tail is
neglected, and the reported point forecast corresponds to a higher quantile level α∗i . Those are
worst case bounds. In applications, distributions are often unbounded in both tails, and the arising
biases cancel out partly. See the numerical simulations in Section 2.4 for an illustration.

Here, we propose to sum up the positive individual scores of each point prediction. Similar
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results can be obtained by summing up the unrestricted scores of each prediction at the cost of
small endowments in one prediction possibly distorting other predictions.

We assume the existence of a strictly positive density for convenience only. For partially constant
CDFs and discrete measures the quantile is set-valued and the respective point prediction is an
element of the set. For an example with a discrete distribution, consider an agent who is sure that
the outcome will be 0. In this case, all quantiles of the belief distribution are 0 and the agent would
indeed issue 0 for any point prediction.

Under bounded support, Theorem 1 implies a multiple quantile version of the well-known result
that asymmetric linear loss functions with binarized scores are incentive compatible for a quantile
(e.g., Schlag and van der Weele, 2013).

Proposition 2 (bounded support). If the agent has a subjective probability with bounded support
of length B and e > Bmax(a1, b1, . . . , ak, bk),the mechanism described above is incentive compatible
for the quantiles with levels α1, . . . , αn.

The minimum and maximum of a distribution are generally not elicitable (Bellini and Bignozzi,
2015). However, the following proposition shows that they are essentially elicitable in the sense
that they can be approximated by extreme quantiles. We propose to elicit a set of extreme quantile
levels (e.g., α = (0.1, 0.01, 0.001)).

Proposition 3 (minimum). For large bi and large e
bi
, the mechanism above is essentially incentive

compatible for the minimum of the distribution.

Note that for subjective probabilities with infinite support the minimum may be −∞ in which
case the best responses also diverges. Analogously the maximum can be approximated with levels
close to one (e.g., α = (0.9, 0.99, 0.999)). See Appendix A for details.

2.4 Numerical Study

In this subsection we investigate two issues. First, we analyse how risk aversion would distort MPP
in the absence of binarized incentives. Second, we investigate the adequate choice of the initial
endowment e for MPP with binarized incentives.

Throughout, we numerically compute the MPP reports based on three point predictions that
elicit the 0.25, 0.5, and 0.75-quantile. The results can be seen in Figure 1. We consider agents
with three different subjective probability distributions, as illustrated in the first row through their
densities. The agents hold a uni-modal, a multi-modal, and an asymmetric belief distribution,
respectively. The second and third row depict the optimal reports for the three point predictions,
where the dashed line shows the true values of the target quantiles.
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Figure 1: Numerical solutions to MPP. Each column assumes a different belief distribution.
The belief’s density is illustrated in the first row. The second row shows the optimal response of a
risk averse agent to MPP without binarized scores for different levels of relative risk aversion. The
third row shows the best response of a risk averse agent to MPP with binarized scores for different
initial endowments. The dashed lines show the true quantile values.

In particular, the second row shows the best response for preferences with constant relative risk
aversion if MPP is administered without binarizing, paying out the score s(0.25,0.5,0.75) of Equation
(3) in profits. In this case, a risk neutral agent reports the quantiles correctly. A risk averse agent,
however, puts additional weight on extreme forecast errors and reports an overly large spread. The
results suggest that the distortion can be considerable for moderate coefficients of relative risk
aversion. Also note, that the median is distorted by risk-aversion under asymmetric distributions
only. Finally, the asymmetric distribution illustrates that risk aversion leads to over-reporting of
heavy tails. Harrison et al. (2017) provide a related discussion on the effects of risk-aversion on the
elicitation of IP without binarized scores. They find that the distortions from risk attitudes are
less severe than for eliciting event probabilities.

The third row considers MPP with binarized scores as proposed in Section 2.3 for a risk averse
agent for different initial endowments e. The penalty terms ai, bi for each quantile are normalized
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to one. The endowments e are given as the probability they cover. The value 0.5 means that the
endowment is equal to the length of the 0.5 central confidence interval (or the difference between
the 0.75- and 0.25-quantile). Proposition 2 states that the optimal response is identical to the
elicited quantiles, if e covers the whole support. If the support is unbounded, as here, Theorem
1 states that the best response converges to the elicited quantiles for large e. An elicitor has to
choose the initial endowment large enough. As illustrated in the last row of Figure 1, for small
initial endowments the responses are drawn towards the modal interval, neglecting the tails of the
distribution and therefore under-reporting uncertainty for unimodal distributions.

In applications, the choice of the initial endowment e is crucial, as small values induce biases in
the optimal response as shown here. For practical implementation, the results suggest the following
rule of thumb: The initial endowment e should be as least as large as the length of the 50% central
confidence interval of the subjective belief distribution. For all three distributions considered here,
this choice essentially delivers the targeted quantiles.

2.5 Partial Identification and Bounds

The quantile reports x = (x1, . . . , xn) from MPP for levels α = (α1, . . . , αn) allow to infer about the
subjective probability P, that αi = P(y ≤ xi) for i = 1, . . . , n. This coincides with the information
obtained when eliciting IP with thresholds c = x on the n + 1 intervals (−∞, x1], . . . , (xn,∞).
By design, MPP allow to fix the probability levels αi and IP allow to fix the thresholds ci. Both
essentially reveal the same amount of information about the subjective probability distribution.

The subjective probability distribution P is only partially identified. However, we obtain the
set of distributions that is consistent with the elicited CDF points and bounds on properties of
interest (compare Bissonnette and de Bresser, 2018; Engelberg et al., 2009).

It is a core feature of the quantile reports that they are automatically distributed over the
mass of the distribution as wished by the elicitor. In elicitation of IP, the support of the subjective
distribution might be located outside of the elicited intervals, or the whole support might be located
in one single interval.

Consider an example that is loosely based on the Survey of Consumer Expectations (Armantier
et al., 2017) by the Federal Reserve Bank of New York that elicits the expected percentage change
of earnings in one year.8 We consider three individuals with different beliefs in Figure 2. The
first row depicts the belief density. The second and third row depict the true CDF in black. The
dots mark CDF points identified by MPP and IP respectively. The grey area illustrates the set of

8The actual thresholds are c = (−12,−8,−4,−2, 0, 2, 4, 8, 12). For another example of unincentivized
elicitation on pre-defined intervals see the inflation and output growth forecasts in the Survey of Professional
Forecasters (Croushore, 1993).
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Figure 2: Elicited CDF points and the space of consistent CDFs for three examples.
Each column contains the true belief as pdf in the first row, and the elicited CDF points and the
space of consistent CDFs in the second and third row for IP with c = (−12,−6, 0, 6, 12) and MPP
with α = (0.05, 0.25, 0.5, 0.75, 0.95) respectively. The black line depicts the true CDF in the second
and third row. The dashed lines illustrate the interval thresholds for IP and the probability levels
for MPP.

consistent CDFs.9 The individual in the first column perceives significant uncertainty about her
earnings but expects on average no changes. The IP thresholds are well suited to identify this
belief. The second individual is more optimistic and more certain about future earnings. With IP
the elicitor obtains little information about the CDF shape in the interval [0, 6]. Asking for MPP
the elicitor obtains no information about the tails of the CDF. The third individual expects more
than 12% income rise. IP provide essentially no information about the expectations beyond 12%,
as illustrated by the large grey area, while MPP adapts flexibly and remains informative about the
belief. In summary, the examples show that MPP can adapt more flexibly to heterogeneous beliefs,
but cannot bound the tails of the CDF beyond the elicited levels without additional assumptions.
Proposition 3, however, guarantees that the extreme points of the distribution can be approximated
with extreme quantiles.

Let us consider bounding other properties, e.g. the mean, median or interquartile range. Any
property that is monotone with respect to stochastic dominance (e.g., the mean or the median),
can be bounded easily by the respective property for the CDF that dominates and is dominated
by all other consistent CDFs. In the following we analyze which method provides sharper bounds.
We assume that the support of the distribution is bounded.10 For the mean property, it follows

9For the ease of exposition we abstract from rounding or the bounds derived in Theorem 1. The more
general framework would allow to infer that P(y ≤ xi) ∈ [αi − ci, αi + Ci] for suitable bounds ci and Ci.

10For unbounded support, the boarder parts of the CDF would be unbounded and so would be most
properties (e.g., the mean).
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from linearity arguments that the bounds after eliciting IP and MPP are equally sharp. The
median property is uniquely identified by MPP, whereas IP can only identify the interval in which
the median lies. The mode property cannot be bounded without further assumptions by either
method.11

Generally, it is harder to find valid bounds on measures of dispersion.12 Conveniently, elicitation
of MPP identifies the interquantile range between the elicited quantiles. If, for example, the 0.25
and 0.75-quantile are elicited, MPP identifies the 0.5 confidence interval.

3 Experimental Design
In a laboratory experiment we compare belief elicitation with MPP to the standard procedure of
eliciting beliefs via IP. The experiment was based on OTree (Chen et al., 2016) and was conducted
at the Frankfurt Laboratory for Experimental Economic Research (FLEX) between December 2017
and December 2019. In total we recruited 327 subjects through the online system ORSEE (Greiner
et al., 2004) divided into 16 sessions with 8 − 24 participants in each session. Our subject pool
consisted of German undergraduate and graduate students with a median age of 23 years, where
58% have taken at least one university level statistics course.

3.1 Main Experimental Treatments

The main experiment comprised four (2× 2) different treatments as illustrated in Figure 3a. Each
subject was randomly assigned to one of the four treatments. In two of the treatments we elicited
IP using the binarized QSR as described in Section 2.1. In the remaining two treatments we elicited
MPP using binarized linear incentives as described in Section 2.3.

We analyze how the heterogeneity of beliefs influences the comparison. The second treatment
variation was the information updates that were presented to the subjects during the experiment:
Participants were either exposed to a weak or strong information update.

3.2 Domains

We elicited subjective probabilities for five different fields of application. The order in which
these domains were presented varied randomly between subjects to avoid order effects. Figure

11Note that Engelberg et al. (2009) require the additional assumption that the mode lies in the interval
with the highest probability to provide partial identification.

12Dillon (2016) provides results for bounding the mean and variance simultaneously allowing for imprecisely
reported interval probabilities.
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IPweak (n=74) IPstrong (n=64)
IP with QRS IP with QRS

& &
Weak Information Update Strong Information Update

MPPweak (n=70) MPPstrong (n=74)
MPP with linear scores MPP with linear scores

& &
Weak Information Update Strong Information Update

(a) Experimental treatments

Elicitation of Subjective Probabilities (IP or MPP)
↓

Information Update (weak or strong)
↓

Elicitation of Subjective Probabilities (IP or MPP)
↓

Investment Decision
↓

Results

(b) Elicitation procedure within each domain

Figure 3: Experimental Design. This table summarizes the experimental treatments and elici-
tation procedure within each of the five domains

3b illustrates the timeline within each domain. An explanation screen was shown first. Then,
the subjective probabilities were elicited. Next, subjects were given an information update, which
provided either weak or strong information. Afterwards, we elicited the subjects’ beliefs again.
After the second round of belief elicitation, we elicited if participants were willing to pay a given
amount of credits13 in exchange for receiving the uncertain outcome y in credits. Participants could
either accept or reject the offer. This one-shot decision gives insights into the location of the mean
within a participant’s subjective distribution. We frame this measure as a common investment
decision and use it as a consistency check of elicited beliefs with a subsequent decision.

For a summary of the domains and the used information updates see Table 2. In the dice
domain, the uncertain outcome was the sum of ten virtual dice rolls. In the dots domain it was
the amount of dots shown on the computer screen. The true value was randomly chosen between
150 and 250. The number domain exhibited a randomly chosen number between 0 and 99. In
the more complicated ball domain, we virtually presented an urn with 60 balls, numbered from
1 − 60. As a second step, we blindly drew 10 out of these 60 balls without replacement and put
them into another urn, without showing the result to the participants. Next, we drew three balls
with replacement from the second urn and showed them to the participants before putting them
back into the urn. Finally, the participants were asked to estimate the number on the fourth ball
that was drawn from that second urn. In the temperature domain subjects were asked to report on
the highest temperature in Frankfurt of a particular day in 2016.

Whereas the ball domain should induce asymmetric beliefs, the dice domain and number domain
should induce symmetric beliefs. These domains are inherently random. In comparison, the dots
domain is skill/effort-based. Finally, the temperature domain is closest to a real life forecasting
task. We chose domains that vary with respect to their level of complexity in order to provide

13Offers were uniformly distributed around the unconditional mean of the uncertain outcome y, i.e. on
the interval [0.9E[y], 1.1E[y]].
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Domain Weak Update Strong Update
Dice: Sum of ten dice rolls Two dices Six dices
Dots: Number of dots Comparison with small rectangle Comparison with similar sized rectangle
Number: Random number (0-99) Second digit First digit
Ball: Urn draw of numbered balls (1-60) One additional draw Six additional draws
Temperature: Past temperature in Frankfurt Temperature one week before Temperature one week & one day before

Table 2: Information Updates. This table shows the information updates that were given to
participants before the second round of belief elicitation.

insights on the performance of our method in a wide array of potential applications.

3.3 Belief Elicitation in Detail

With both methods, we elicited three CDF points. In the IP treatments, we elicited the four
probabilities simultaneously:

What do you think is the percentage chance that y is smaller than c1?
What do you think is the percentage chance that y is between c1 and c2?
What do you think is the percentage chance that y is between c2 and c3?
What do you think is the percentage chance that y is larger than c3?

The thresholds (c1 to c3) were fixed within each domain and were chosen to divide the attainable
values into four equally sized segments. The amount of credits earned was calculated using a rescaled
version of Equation (1) such that each credit represented a 0.5 percentage chance of winning an
extra 10e if that round of belief elicitation was drawn for payoff in the end.

In the MPP treatments, we elicited three point forecasts simultaneously:

What do you say is y,. . .
. . . if underestimation is three times less costly than overestimation?
. . . if overestimation and underestimation are equally costly?
. . . if overestimation is three times less costly than understimation?

For all three questions, the credits earned were calculated using the linear scoring rule from Equation
(2). Varying costs for over- and underestimation is equivalent to choosing different parameters for
a and b. Here, we chose the parameters for a and b such that the 0.25-quantile, the 0.5-quantile,
and the 0.75-quantile were elicited. We tried to provide equal stakes in all treatments. Resulting
average earnings were 10.40€ and 11.10€ in the MPP, and 11.40€ and 11.70€ in the IP treatment,
for the weak and strong updates, respectively. For details on the experiment and instructions, see
the online supplement.
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4 Results
There are two major applications of subjective probabilities in economics. First, they can be used as
forecasts or prior distributions in Bayesian analysis (Garthwaite et al., 2005; O’Hagan et al., 2006).
Second, they are used as input in decision-theoretic models to explain behavior under uncertainty
(Manski, 2004). We denote the two different applications as forecasting and economic modelling.
Forecasting strives to accurately describe the actual distribution of the unknown outcome, whereas
in economic modelling the subjective probabilities should accurately represent the belief of an agent
– which may differ from the actual distribution of the outcome. Hence, depending on the application
at hand, different evaluation criteria are important.

In Section 4.1, we evaluate potential biases of the elicited subjective probability distributions
compared to the Bayes distribution and the actual outcome. In Section 4.2, we focus on the accuracy
of the elicited subjective probability distributions. We use average linear scores/loss functions to
judge the predictive value of the elicited quantiles for the true realization. In Section 4.3, we assess
the consistency of the elicited beliefs with a subsequent decision, which is an important property
for economic modelling. Subsequently, in Section 4.4, we zoom into the issue of anchoring and
provide evidence for a possible channel that drives our results. Finally, in Section 4.5, we report
results on the applicability of the two methods.

4.1 Forecasting: Biases

We begin with arguably the most common approach (Schlag et al., 2015, Table 1) for the evaluation
of potential biases in subjective probabilities: The comparison with Bayesian probabilities. Note
that this kind of analysis is not possible for the temperature or dots domain, where no natural
Bayesian probabilities are available.

Subsequently, we compare the predictive distributions to the actual outcome y. Since we do
not rely on Bayesian predictions for this, we are able to include the dots and temperature domain
in the analysis. We understand the outcome y and the predictive distribution P as realizations
in a joint probability space14, which allows us to analyze forecasting performance without unduly
strong assumptions on the data generating process. This more widely applicable approach comes
at the cost of additional noise, as the comparison substitutes the unknown distribution with a draw
from this distribution.

14The idea goes back to DeGroot and Fienberg (1983); Murphy and Winkler (1987). See Gneiting and
Katzfuss (2014) for a recent review.
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Figure 4: Comparison between reports and Bayesian distributions. For the IP treatment,
the reported probabilities are plotted against the Bayes probabilities at the elicited threshold levels.
For the MPP treatment, the elicited quantile levels are plotted against the reported quantile levels
of the Bayes distribution. The Bayes distribution is computed based on the individual and time
specific information. Dashed lines depict perfect Bayesian reports. Additional noise in form of a
uniform distribution with support [−0.05, 0.05] was added.

4.1.1 Comparison of reports with Bayesian distributions

Figure 4 depicts a comparison between the reported subjective CDF values and Bayesian CDF
values. For both, MPP and IP, we observe that reports deviate from the Bayesian distribu-
tions. Table 6 in Appendix B shows that average biases range from 0% to at most 12.8% and are
partly significant. Overall, the visual evidence suggests a strong correlation between the reported
subjective and the Bayesian CDF points.

4.1.2 Comparison of predictive distributions with Bayesian distributions

For a more in-depth comparison between MPP and IP, we consider the distributions obtained
by fitting parametric distributions to the elicited CDF values. We call the resulting distribution
a predictive distribution. We consider four commonly applied procedures that are illustrated in
Figure 5. The atoms distribution assumes a discrete distribution, where the mass is located at the
midpoint of each elicited interval15 (compare Hill, 2010; Lahiri and Teigland, 1987; Lahiri et al.,
1988). The pl distribution assumes a piecewise linear CDF (compare Diebold et al., 1999; Guiso
et al., 2002; Zarnowitz and Lambros, 1987), which is equivalent to a piecewise constant density.

15The outer intervals are assumed to have the same length as the neighboring interval.
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Figure 5: Elicited CDF points and parametric distributions. The fitted distributions are
illustrated as CDFs (left plot) and densities (right plot).

Further, we fit predictive distributions by minimizing

inf
θ

∑
i

(F (xi; θ)− αi)2,

where xi and αi are obtained by the reports and F (·, θ) is the CDF of the distribution for the
parameter θ. In particular, we fit a normal distribution (compare Boero et al., 2015; Clements,
2014; Dominitz and Manski, 2011; Giordani and Söderlind, 2003; Gouret and Hollard, 2011; Hurd
et al., 2011) and a beta distribution (compare Delavande, 2008; Engelberg et al., 2009; Manski and
Neri, 2013; Neri, 2015).16

Figure 5 illustrates several stylized facts about the parametric assumptions: Measures of central
tendency, like the mean and median, are relatively robust to the choice of distributional assump-
tions. Measures of dispersion, like interquantile ranges or the variance, depend heavily on the
chosen fit, where the atoms distribution always has a lower variance then the pl distribution. This
simple observation challenges the common approach to construct variance estimates of the subjec-
tive distribution with only a small number of elicited CDF points. In particular, the assumption
invoked for the atoms distribution, putting all mass at the midpoints of the intervals, potentially

16Other distributional fits in the literature that we do not consider are the log-normal distribution (used
for income expectations in Dominitz, 2001; Dominitz and Manski, 1997; McKenzie et al., 2013), triangular
densities (Kaufmann and Pistaferri, 2009) and cubic-splines (Bellemare et al., 2012).
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(a) Mean.
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(b) Standard deviation.

Figure 6: Comparison between fitted distributions and Bayesian distributions. For the
mean plot, the target variable is Z := mean(P)−mean(Pbayes), where P denotes the fitted predictive
distribution and Pbayes the Bayesian distribution. For the standard deviation plot the target variable
is Z := sd(P)− sd(Pbayes). Throughout, the error bars show 95% confidence intervals. Participants
are pooled in the first round of elicitation (first), and distinguished after receiving the information
update (weak and strong).

underestimates the uncertainty, if the true subjective belief distribution is not atomic.
We apply different fits for each domain. In particular, we fix the beta distribution for the

ball and dots domains as they are bounded (and the ball domain often exhibits asymmetric dis-
tributions), and the normal distribution for the remaining domains as it does not require that we
externally choose the support of the distribution. In Appendix B, we provide results of all fitting
methods described here. All results are based on simple averages or differences in means.

Figure 6 depicts the average difference between the predictive distributions and the Bayesian
distributions in terms of the mean and standard deviation. The left panel (a) shows that the
position of the predictive distributions are largely unbiased. The right panel (b) provides evidence
that the uncertainty is consistently misjudged. While we find large uncertainty estimates for the
dice domain, both elicitation procedures provide overly confident predictive distributions for the
ball domain17.

17A fact referred to as overconfidence, or more specifically as overprecision (compare Alpert and Raiffa,
1982; Brenner et al., 1996; Fox and Clemen, 2005; Haran et al., 2010; Lichtenstein and Fischhoff, 1977).
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Figure 7: Ratio of over-predictions compared to quantile level. The target variable is
Z := 1(y < qα(P))−α, where qα(P) denotes the α-quantile of the fitted predictive distribution. The
plot depicts average ratio of overpredictions compared to expected ratio. Values over zero indicate
a tendency to overpredict the outcome, values below a tendency to underpredict the outcome.
Throughout, the error bars show 95% confidence intervals. Participants are pooled in the first
round of elicitation (first), and distinguished after receiving the information update (weak and
strong).

4.1.3 Comparison of predictive distributions with realized outcomes

We now turn to the analysis of the bias of the predictive distributions compared to the realized
outcome. If the predictive distributions are unbiased, the α quantile exceeds the realized outcome
with the probability α. Figure 7 depicts the ratio of overpredictions compared to the expected
ratio. A coefficient of zero indicates an unbiased or calibrated forecast. We can reject unbiased
distributions in the dots and temperature domain for the MPP treatment. The strong information
update erases a large part of the bias in the temperature domain. The IP treatment shows some
evidence against an unbiased distribution in the dots domain, where the 0.75-quantile tends to be
underpredicted. The observed pattern is consistent with the intervals providing helpful anchors in
the first round that alleviate biases in perception. We will have a closer look at this explanation in
section 4.4. The results after the information update suggest that the bias in the MPP treatment
can be reduced by additional information.

At this point it is worth noting that the analysis above considers different elicitation and fit
methods for a random participant and a specific domain. As each participant encountered each
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Figure 8: Difference in accuracy. The target variable is denoted as Z := lα(qα(P), y) with the
linear asymmetric loss function lα(x, y) = |x−y||1(x > y)−α|, where qα(P) denotes the α-quantile
of the fitted predictive distribution. The plot depicts differences in average linear loss between the
two procedures divided by the average in the IP treatment, so that negative values indicate superior
accuracy of MPP.

domain only once, we cannot evaluate the calibration of one specific participant in one specific
domain, nor can we make a statement for real economic decisions without additional assumptions.
The observed biases are, for example, perfectly consistent with participants’ beliefs following some
rule of thumb that is unbiased across the relevant decisions in daily life, while being biased at the
specific tasks encountered in our experiment.

4.2 Forecasting: Accuracy

Unbiasedness and accuracy are different concepts, which do not necessarily agree as to which
elicitation method performs best (Gneiting and Katzfuss, 2014). An elicitation method can provide
perfectly unbiased distributions that provide little useful information because they lack sharpness.
We now consider the accuracy of the predictive distributions.

The accuracy of a property of the predictive distribution can be measured with proper scoring
rules (Gneiting, 2011). The average linear asymmetric absolute error between the 0.25-quantile, the
median, and the 0.75-quantile of the predictive distribution and the realized outcome is depicted in
Figure 8. Before the information update both methods seem to provide equally accurate predictive
distributions across almost all quantiles, except for the dots domain, where the bias analyzed above
translates into higher errors for MPP. After the information update, the evidence suggests that
MPP provide at least equally accurate predictive distributions for all but the dots domain across
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(1) (2) (3) (4)
0.25-quantile Median 0.75-quantile Consistency

MPP * Weak info −0.462 7.317 7.130 0.017
(11.858) (12.575) (12.221) (0.036)

MPP * Strong info 13.012 22.691∗ 45.289∗∗∗ 0.119∗∗∗
(13.131) (13.304) (14.318) (0.041)

MPP −10.698 −8.856 −11.484 −0.028
(8.778) (8.477) (8.652) (0.026)

Weak information 18.018∗∗ 8.230 5.897 0.020
(8.188) (8.352) (8.288) (0.025)

Strong information 55.619∗∗∗ 41.991∗∗∗ 31.134∗∗∗ 0.009
(9.339) (9.177) (10.177) (0.030)

Constant 257.826∗∗∗ 260.489∗∗∗ 262.141∗∗∗ 0.648∗∗∗
(5.908) (5.574) (6.100) (0.019)

Table 3: Accuracy and consistency on information heterogeneity. Dependent variables in
columns (1-3) are denoted as Z := lα(qα(P), y) with the linear asymmetric loss function lα(x, y) =
|x − y||1(x > y) − α|, where qα(P) denotes the α-quantile of the fitted predictive distribution.
Realized losses are ranked within each domain. Higher ranks indicate more accurate predictions.
The dependent variable in column (4) is the consistency between fitted predictive distribution and
investment decision, which is given if the mean of the fitted predictive distribution is above the
offer and the offer was accepted or if the mean is below and the offer was rejected. Otherwise, the
responses are inconsistent. Standard errors are clustered at the individual level. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01

all quantiles. In most domains, the difference in accuracy is more favorable for MPP under more
heterogeneous information (after the strong information update).

We test whether the strong information update indeed improved the accuracy of MPP more than
the accuracy of IP. Columns 1− 3 of Table 3 show that both methods benefit from the information
update, but the improvement is stronger for MPP reports. A weak information update, as opposed
to no information, improves the relative performance of MPP for the 0.25-quantile and the 0.75-
quantile, albeit these effects are not significant. A strong information update benefits the accuracy
of distributions based on MPP reports significantly more for the median and the 0.75-quantile.
The relative performance increase for the 0.25-quantile is not statistically significant. Arguably, IP
could potentially benefit here if thresholds adapted to the current information.

To summarize, the bias in the dots domain led to less accurate beliefs with MPP. In all other
domains, MPP provided at least as accurate beliefs. Averaged over all five applications, additional
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information improved the accuracy of MPP more than the accuracy of IP. This is consistent with
the argument that pre-defined intervals act as anchors, which improves accuracy for uninformed
participants. Under increasing information those anchors are less helpful (or even distorting).
Consequently, eliciting MPP should be considered whenever it is challenging to construct intervals
that are uniformly adequate across all participants.

4.3 Consistency with Investment Decision

For economic modelling an elicitation mechanism should provide accurate evidence on the sub-
jective belief of an agent, not necessarily on the actual distribution of the outcome. A natural
benchmark arises if we use the subjective probabilities to predict behavior based on a decision-
theoretic model. A well-behaved elicitation mechanism provides accurate predictions of individual
behaviour in economic decisions.

As described in Section 3.2, we confronted participants with an investment decision by offering
them an amount of credits in exchange for receiving the uncertain outcome y in credits after the
second round of belief elicitation. We analyze if the investment decision is consistent with the
mean of the predictive distribution. Elicited distributions and subsequent action are denoted as
consistent if the mean of the predictive distribution is above (below) the offer and the offer was
accepted (rejected). Otherwise, the observed actions are denoted as inconsistent.18

Figure 9 depicts the difference in average consistency. On average both elicitation methods
provide a high consistency rate of about 50% to 85% (compare Figure 14 in Appendix B). No
consistent pattern arises after the weak information update. After the strong information update,
the beliefs elicited with MPP were 5% to 20% more often consistent with the investment decision.
Column (4) of Table 3 confirms the positive effect of the strong information update for MPP
elicitation.

Again, anchoring is a possible channel for MPP outperforming IP as IP reports may be distorted
towards the anchors provided. Those anchors have a larger impact in the strong information
treatment, where beliefs are heterogeneous and therefore the provided bins less suitable on average.
If the anchors distorted the reports more than the subsequent investment decision, the beliefs are
more likely to be inconsistent, as observed in the data.

18Several studies find that belief elicitation can influence subsequent action (Croson, 1999, 2000; Erev
et al., 1993; Gächter and Renner, 2010; Rutström and Wilcox, 2009), whereas others could not detect this
effect (Costa-Gomes and Weizsäcker, 2008; Nyarko and Schotter, 2002; Wilcox, 2006). Our setting does not
allow to test if elicited beliefs are consistent with behavior that would have occurred in the absence of the
elicitation procedure. We find, however, no significant deviations in the investment decision between the two
different elicitation procedures.
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Figure 9: Difference in consistency with investment decision. The plot depicts differences
in the ratio of consistent choices, where positive values indicate superior consistency of MPP.
The distribution and the investment decision are consistent, if the mean of the fitted predictive
distribution is above the offer and the offer was accepted or if the mean is below and the offer was
rejected. Otherwise, the responses are inconsistent.

We find that MPP is more predictive of subsequent behavior in an experimental game. Natu-
rally, it remains an open question if similar results hold for other potentially more consequential
economic decisions. The results presented here can only be regarded as first evidence that MPP
might be a suitable tool for economic modelling.

4.4 Anchoring in IP

Based on the previous findings, we conducted an additional experiment, in which we took a deeper
look at the influence of the pre-defined thresholds for IP. We confronted 45 participants, who did
not participate in the main experiment, with an instance from the dot domain containing 225 dots.
In this version, we elicited IP under varying thresholds (c1 to c3) between subjects. We manipulated
the intervals in two dimensions, as illustrated in Figure 10: For participants of group Right, we
shifted all original thresholds by 50 points to the right. In a cross-variation, we reduced the original
length of each interval from 50 points to 25 points (Narrow) while keeping them centered at 200 and
250 respectively. Otherwise, the description and incentives were identical to the main experiment.

We compute the mean and standard deviation of the reported distributions of this additional
experiment, assuming that the mass of the distributions is located at the midpoint of the intervals,
and subsequently regress mean and standard deviation on the treatment indicators in Table 4.

The results show that the pre-defined intervals strongly anchor the elicited IP. Shifting the
intervals by 50 points to the right, causes a 40 points (80%) increase in the mean of the predictive
distributions. Similarly, narrowing the intervals by half, decreases the standard deviation of the
elicited distributions by 11 points (70%). We conclude that the intervals provide anchors that
influence participants. Consequently, if beliefs are heterogeneous across participants, elicitation of
IP suffers from the fact that the fixed intervals influence some of the reports. Generally, an elicitor
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Treatment Intervals

Original & Right 150 200 250

200 250 300

Original & Right
(Narrow)

175 200 225

225 250 275

Figure 10: Intervals in anchoring experiment. The table depicts the interval thresholds in the
four different treatments relative to the true number of dots, 225.

should be aware that the choice of interval thresholds may have a severe impact on the elicited
beliefs.

4.5 Applicability: Time and Participant’s Perception

Finally, we compare the applicability of the elicitation methods. The participants spent on average
28 minutes on the whole survey, where MPP participants were 9% faster (p-value < 0.01). For the
first probability elicitation, IP subjects took on average 96 seconds and MPP subjects were 25%
faster (p-value < 0.01). For the last probability elicitation IP took on average 47 seconds and MPP
was 11% faster (p-value = 0.12). Thus, MPP was faster for unexperienced participants and the
advantage reduced when applying the same mechanism multiple times19.

Table 5 shows the treatment’s impact on subjective perception questions elicited after the
experiment. On average MPP participants reported that the experiment was less difficult, and
stated to have felt less insecure and stressed and more content during the experiment. Overall,
the experience seems to be more comfortable with MPP elicitation, an important property for
preventing drop-outs and ensuring high take-up rates in panel data sets.

19Note that participants in the IP treatment had to report four probabilities whereas participants in the
MPP treatment only had to report three point estimates. While we cannot rule out that this explains a large
part of the observed difference, we consider the fact that learning reduces the difference as first suggestive
evidence against this explanation.
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Mean Standard deviation

Right 39.6∗∗∗ 2.3
(7.3) (2.7)

Narrow 19.0∗∗ -10.6∗∗∗
(7.3) (2.7)

Constant 204.6∗∗∗ 14.4∗∗∗
(6.6) (2.5)

Observations 45 45
R2 0.5 0.3

Table 4: Anchoring. Right reports effect estimates of increasing the pre-specified intervals by 50
points on the mean and standard deviation of the elicited distributions. Narrow reports the effect
estimates of reducing the length of the intervals by half. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

MPP IP Difference p-value
How mentally exhausting did you find the experiment? 0.09 0.31 -0.22 0.13
How difficult did you find your tasks in the experiment? 0.02 0.28 -0.26 0.06
How insecure did you feel during the experiment? -0.07 0.36 -0.43 0.01
How stressed did you feel during the experiment? -0.77 -0.47 -0.29 0.07
How bored did you feel during the experiment? -0.97 -1.09 0.12 0.38
How relaxed did you feel during the experiment? 0.51 0.44 0.08 0.58
How content did you feel during the experiment? 0.51 0.17 0.35 0.01

Table 5: Perception of experiment. The responses are encoded by Not at all (-2), Almost not
at all (-1), Not sure/Neutral (0), Quite a bit (1), and Very much (2). The MPP and IP columns
indicate average values across all participants (n = 282). For each question, the better performing
method is marked in bold letters. The p-values are derived from an unpaired two-sample t-test
with two-sided alternative.
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5 Discussion
Cognitive abilities to assess beliefs in form of subjective probability distributions were found to
be limited (Hogarth, 1975). This renders elicitation burdensome and threatens the validity of
probabilistic statements in economic modelling and expert forecasting altogether. Probabilistically
sophisticated preferences like subjective expected utility (Savage, 1954) postulate that agents act
“as if” they hold a belief in form of a probability distribution. However, choices can be consistent
with a probability distribution, while the agent is unable to express this distribution explicitly.

In a general framework for the elicitation of real valued beliefs, we show how to elicit the
entire subjective probability distribution, which provides more information than eliciting a discrete
distribution on pre-defined intervals.20 Acknowledging the complexity of reporting and scoring
probability distributions, we propose to use MPP with linear incentives instead. Similar to IP,
this procedure reveals a finite set of CDF points of the belief distribution. Conveniently, point
predictions rely on simple incentives, adapt flexibly to heterogeneous beliefs, and do not influence
beliefs by providing anchors through pre-defined intervals.

We provide experimental evidence that pre-defined intervals indeed anchor (and potentially
bias) elicited beliefs. Interestingly, we find that the bias acts in two different ways: Higher(lower)
interval thresholds lead to higher(lower) mean values of the elicited distribution. Larger(smaller)
intervals lead to larger(smaller) uncertainty expressed in the elicited distributions. MPP does not
require any pre-defined thresholds and therefore can operate entirely without external anchors. It is
possible that point predictions influence one another. To minimize such internal anchoring we elicit
and score all point predictions simultaneously. It is, however, an open question if the experimental
findings of our design are robust with respect to the number and extremity of quantile levels. If
external anchors are wished for by the elicitor, a natural way to provide them would be by setting
default responses for the MPP reports.

The bounded scores for eliciting the entire distribution or MPP can be of separate interest for
expert forecasting. A profit maximizing expert with limited liability (Carroll, 2019; Osband, 1989),
can be properly incentivized by bounded scores. In this context, additional complexity should be
manageable, and eliciting the full density might be preferable.

The experimental evidence suggests that individuals are able to understand and complete the
MPP procedure and to report informative estimates. Applying a wide range of criteria and appli-
cation domains, we find that both methods have their merits and drawbacks so that an application

20Note that a similar extension is possible with the linear quantile scores to elicit all quantiles simultane-
ously in which case the infinite sum of scores converges to the Continuous Ranked Probability Score (CRPS)
as shown in Laio and Tamea (2007). For incentive compatibility the continuous QSR requires bounded
densities, the CRPS bounded support.
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of one or the other should be evaluated depending on the domain and objective of the elicitation.
Under homogeneous beliefs and if anchoring is desired or no concern, IP may be more suitable.
The faster elicitation and the more positive self-reported emotional reactions suggest that MPP
might be more suitable in long surveys and panels that otherwise could suffer from drop outs.

It is often argued that it is preferable to incentivize belief elicitation.21 If incentives are infeasible
or the incentivized elicitation is prone to adverse effects of stakes and hedging (Armantier and
Treich, 2013), researchers commonly rely on unincentivized IP reports. We argue that in this case,
MPP with hypothetical payoffs can be useful. In an additional experiment presented in Appendix
C, we find no evidence that such hypothetical questions fundamentally change the conclusions of the
main experiment, which suggests that MPP is applicable in surveys. In this additional experiment,
we further show how extreme quantile reports induce similar responses to asking for the minimum
or maximum.

This paper considers probabilistically sophisticated preferences on real-valued outcomes that
allow beliefs to be represented by a single probability measure. For a related mechanism that
considers ambiguity averse preferences for events see Schmidt (2019).

We abstracted from rounding in this study. However, rounding is a common feature observed
for discrete probability questions in surveys and experiments (Bissonnette and de Bresser, 2018;
Kleinjans and Soest, 2014; Manski and Molinari, 2010). While we would expect most of the findings
on rounding to transfer to point predictions, including its useful aspects of signaling ambiguity or
skill, the negative consequences (like systematic biases in the tails) are arguably less severe.

It is possible to ask for the maximum and minimum of the support before eliciting IP. Unfor-
tunately, there exists no proper scoring rule for those properties, which disqualifies this procedure
for many applications. Nevertheless, using unincentivized maximum and minimum statements or a
single point estimate to construct intervals may improve the performance of belief elicitation using
IP.

While theoretically any number of quantile levels could be elicited, eliciting three quantiles (e.g.,
at the levels of 0.25, 0.50 and 0.75) seems adequate for many applications. It directly identifies
a measure of central tendency (the median) and of uncertainty (the interquantile range) without
parametric assumptions. At the same time, it requires only a reasonable amount of time and cog-
nitive capacity. If the elicitor is more interested in the tails of the distribution, other specifications
of MPP might be more suitable.

21Schlag et al. (2015) provide a survey over several incentivized belief elicitation methods and their per-
formances, Harrison (2014) compares non-incentivized to incentivized belief elicitation and finds a bias for
non-incentivized methods across demographic boards, Blanco et al. (2010) consider how incentivized belief
reports in the laboratory affect hedging against adverse payoff outcomes, and Gächter and Renner (2010)
consider public good games and find that incentivized belief reports increase belief accuracy and influence
decisions in these games.
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Appendix
A Proofs
We provide formal statements of the main results. Let the state space be denoted by Ω = R× [0, 1],
where each state ω = (y, r) consists of the real valued y and some randomization device outcome
r. An event E is a subset of Ω. Let P bet the set of eligible probability measures for y on R.
Let X be the action space of the agent, and x ∈ X the report issued by the agent. A function
s : X ×R 7→ R is called a scoring rule. For any scoring rule within the binary lottery procedure in
Section 2, every report x ∈ X can be associated with a binary act ME(x)m that pays prize M if
the event E(x) = {(y, r) ∈ Ω | s(x, y) > r} realizes and m otherwise.

We assume probabilistically sophisticated preferences as introduced in Machina and Schmeidler
(1992) with some measure P0 for the real-valued outcome y and where the randomisation device r
is perceived as independent.

Regularity Conditions 1 (Probabilistic Sophistication (Machina and Schmeidler, 1992)). There
exists a probability measure PΩ on Ω such that for all events E and E′ and all payoffs M � m

MEm �ME′m ⇐⇒ PΩ(E) ≥ PΩ(E′),

and PΩ = P0 × U [0, 1] for some P0 ∈ P.

Regularity Conditions 1 hold for a subjective expectation maximizing agent, if the unknown
utility function depends only on the obtained prize and is otherwise independent of the uncertain
outcome y.

Proposition 1 (density). For absolutely continuous measures P with densities that are P0-almost
surely bounded by B ∈ R and for the scoring rule

s(p, y) = 2p(y)−
∫

Ω
p(w)2dw +B,

any element of arg maxp∈PME(p)m with E(p) = {(y, r) ∈ Ω | s(p, y) > 3Br} is a density of P0.

Note that the result naturally extends to discrete measures. In fact, IP in Section 2.1 is a
special case of Proposition 1, as for discrete probability distributions p(y) = pk and thus s(p, y) =
2pk−

∑
p2
k+1. For discrete distributions a random draw on [0, 2] instead of [0, 3] suffices as pk ≥ p2

k

for pk ∈ [0, 1].
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Proof. As
∫

Ω p(w)2dw ≤
∫
ΩBp(w)dw = B and p(y) ≥ 0, it holds that s(p, y) ∈ [0, 3B]. Thus, the

agent maximizes

PΩ(s(p, y) > 3Br) = Ey∼P0 [Er∼U [0,1][1(s(p, y) > 3Br)]] = Ey∼P0 [ 1
3B s(p, y)].

Consider for any density p the term

∆p = E[s(p0, y)]− E[s(p, y)],

where p0 is a density of P0. It holds that

∆p =
∫

2p0(y)2dy −
∫
p0(w)2dw − (

∫
2p(y)p0(y)dy −

∫
p(w)2dw)

=
∫
p0(y)2 − 2p(y)p0(y) + p(y)2dy

=
∫

(p0(y)− p(y))2dy ≥ 0

If p ∈ arg maxp∈P Ey∼P0 [s(p, y)], then ∆p = 0 and thus p = p0 Lebesgue-almost surely. Conse-
quently, p is also a density of P0.

Theorem 1 (multiple quantiles). Consider ai, bi > 0 for i = 1, . . . , n. Let P be a class of absolutely
continuous probability distributions with finite moment and strictly positive density on their support.
Consider the scoring rule

se(x, y) = 1
ne

n∑
i=1

max(sai,bi
(xi, y), 0)

with

sai,bi
(xi, y) =

e− ai · |xi − y| if x ≤ y (underestimation),

e− bi · |xi − y| if x > y (overestimation).
(4)

Let x∗(e) = (x∗1(e), . . . , x∗n(e)) = arg maxx∈Rn ME(x)m with E(x) = {(y, r) ∈ Ω | se(x, y) > r} and
αi = ai/(ai + bi) for i = 1, . . . , n.

(i) For i = 1, . . . , n it holds that

x∗i (e)→ qαi(P0) for e→∞,

where qαi(P0) denotes the quantile at level αi of the distribution P0.

(ii) Consider a fixed endowment e ∈ R and the according optimal point prediction x∗i for i =
1, . . . , n. If the tails of P0 are bounded with P0(y ≤ x∗i −e/bi) < c1 and P0(y > x∗i +e/ai) < c2,

40



then
x∗i = qα∗i (P0)

for some level α∗i such that

−αic2 < α∗i − αi < (1− αi)c1.

Note that the result can be extended to densities that are not strictly positive and to discrete
distributions under more complicated notation. In this case, some quantiles are set-valued and the
best response converges to an element of the set.

Proof. For notational convenience we define the score associated with the ith point prediction as
s+
i = max(sai,bi

(xi, y), 0) and thus se(x, y) = 1
ne

∑
s+
i . As 0 ≤ s+

i ≤ e it follows that 0 ≤ se(x, y) ≤
1, and the agent maximizes

PΩ(se(x, y) > r) = Ey∼P0 [Er∼U [0,1][1(se(x, y) > r)]] = Ey∼P0 [se(x, y)].

We can investigate each point forecast xi separately as

arg max
x∈Rn

E[se(x, y)] = arg max
x∈Rn

E[ 1
ne

∑
s+
i ]

= arg max
x∈Rn

∑
E[s+

i ]

=(arg max
x1∈R

E[s+
1 ], . . . , arg max

xn∈R
E[s+

n ])

where the last equation holds true as the expected score E[s+
i ] does not depend on xj with j 6= i.

The score s+
i is non-zero for xi − e/bi < y < xi + e/ai. Thus,

E[s+
i ] =

∫ xi

xi−e/bi

e+ bi(y − xi)f(y)dy +
∫ xi+e/ai

xi

e+ ai(xi − y)f(y)dy,

where f denotes a density function of P0. We denote the cdf of P0 with F and compute the
derivative

∂

∂xi
E[s+

i ] =
∫ xi+e/ai

xi

aif(y)dy −
∫ xi

xi−e/bi

bif(y)dy

= ai[F (xi + e/ai)− F (xi)]− bi[F (xi)− F (xi − e/bi)]

= biF (xi − e/bi) + aiF (xi + e/ai)− (ai + bi)F (xi)
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by Leibniz rule. The first order condition is

F (xi) = biF (xi − e/bi) + aiF (xi + e/ai)
ai + bi

.

The second derivative is

∂2

(∂xi)2E[s+
i ] = bif(xi − e/bi) + aif(xi + e/ai)− (ai + bi)f(xi).

Case (i):
As F is a cdf, F (xi−e/bi)→ 0 and F (xi+e/ai)→ 1 for e→∞. Thus, the first order condition

implies F (xi)→ ai
ai+bi

= αi. Given our assumptions, F is strictly monotone and continuous on the
support and we can conclude that xi → qαi(P).

Consider the second order condition to show that the first order condition is sufficient. It holds
that lime→∞ f(xi − e/bi) = lime→∞ f(xi + e/ai) = 0 and

∂2

(∂xi)2E[s+
i ] = −(ai + bi)f(xi) < 0

as f is strictly positive on the support and an off-support xi cannot be optimal.

Case (ii):
Define the constants c1 and c2 such that F (x∗i − e/bi) < c1 and 1 − F (x∗i + e/ai) < c2. It follows
that

F (x∗i ) <
bic1 + ai
ai + bi

= αi + c1
bi

ai + bi
= αi + c1(1− αi),

F (x∗i ) >
ai(1− c2)
ai + bi

= αi(1− c2).

Thus, the error (in terms of the quantile level) can be bounded with

−αic2 < F (x∗i )− αi < c1(1− αi).

Proposition 2. If P contains only distributions with bounded support of length B and e >
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Bmax(a1, b1, . . . , an, bn), it follows that

x∗ = (qα1(P0), . . . , qαn(P0)).

Proof. If the support of f is bounded with length B then, e > Bbi guarantees that F (xi−e/bi) = 0
and e > Bai that F (xi + e/ai) = 1. In this case, the first order condition reduces to F (xi) = αi.
The second order condition holds as f(xi − e/bi) = 0 and f(xi + e/ai) = 0 and f(xi) > 0.

We define the minimum property

min : P 7→ Ω : P 7→ inf{x ∈ Ω |P(x) > 0},

and analogously the maximum property

max : P 7→ Ω : P 7→ sup{x ∈ Ω |P(x) > 0}.

Proposition 3. If bi →∞ and e
bi
→∞, the best response converges to the minimum of the support,

i.e.,
x∗i → min(P0).

If ai →∞ and e
ai
→∞, the best response converges to the maximum of the support.

Proof. If bi →∞ and e
bi
→∞, we observe that

F (xi) =
F (xi − e/bi) + ai

bi
F (xi + e/ai)

ai
bi

+ 1 → 0.

As f is strictly positive the quantile for every level is unique and for every c ∈ {t ∈ R|p0(t) > 0}
there exists a level α∗i ∈ (0, 1) such that qα∗i (P0) = c.

First, consider the case min(P0) = −∞. Take some c ∈ R. As F (y < c) > 0, there exists bi, e
such that the first order condition implies F (xi) < F (c) and consequently xi < c. Thus, F (xi)→ 0
implies xi → −∞.

Now consider the case of a finite min(P0). For any c > min(P0), there exists bi, e such that
αi < F (c) and consequently xi < c. As xi ≥ min(P0) for all bi, e, it follows that F (xi)→ 0 implies
xi → min(P0).

Again, we check that the second order condition is fulfilled

∂2

(∂xi)2E[s+
i ] = bi(f(xi − e/bi)− f(xi))− aif(xi) < 0.
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It follows that
x∗i → min(F ) for bi →∞ and bi

e →∞.

A similar arguments gives x∗i → max(F ) for ai →∞ and ai
e →∞.
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Figure 11: Mean: Comparison between fitted distributions and Bayesian distributions.
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The target variable is Z := mean(P)−mean(Pbayes). The MPP and IP value indicate the bias of
the extracted mean forecast.

B Results
This section provides the full set of results, complementing the plots in Section 4 that show the
best performing fit only. The interpretation of the results remains unaffected. Throughout, the
error bars show 95% confidence interval in figures and parentheses show the respective p-values in
tables.

45



Figure 12: Standard deviation: Comparison between fitted distributions and Bayesian
distributions.
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The target variable is Z := sd(P) − sd(Pbayes). The MPP and IP value indicate the bias of the
extracted standard deviation forecast.
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Figure 13: Difference in accuracy - absolute error
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The target variable is denoted as Z := |median(P)− y|. The MPP and IP value indicate average absolute error normalized
by the highest possible absolute error within each domain. The MPP − IP value indicates the average difference normalized
by IP , where negative values indicate superior accuracy of MPP.
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Figure 14: Consistency of willingness to pay and subjective probabilities
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The target variable is 1 if the mean of the predictive distribution is above the offer and the offer was accepted or if the mean
is below and the offer was rejected. Otherwise, the dependent variable is 0 indicating inconsistent behavior. The MPP and
IP value indicate the average ratio of consistent behavior within each treatment and domain. The MPP − IP coefficient
indicates the average difference normalized by the IP value, where positive values indicate superior consistency of MPP.
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MPP IP
topic info 0.25 0.5 0.75 1 2 3
ball first 3 1.2 -2.2 -0.2 -2.1 -2.8

(1.45)∗∗ (1.38) (1.36) (0.91) (1.3) (1.21)∗∗

weak 0.4 -1.6 -5.9 1.6 -2.7 -5.8
(1.56) (1.76) (2.08)∗∗ (1.34) (1.78) (1.61)∗∗∗

strong -1.6 0.0 1.9 1.6 1.2 -0.2
(1.85) (1.83) (1.92) (1.6) (1.95) (1.59)

dice first -10.6 -6.8 7.6 -12.8 -4.2 12.6
(1.86)∗∗∗ (2.14)∗∗∗ (1.84)∗∗∗ (0.92)∗∗∗ (1.24)∗∗∗ (0.95)∗∗∗

weak -11.5 -6.5 3.5 -8.4 -1.4 12.3
(2.31)∗∗∗ (3.1)∗∗ (2.99) (1.08)∗∗∗ (2.34) (1.32)∗∗∗

strong -8.5 -2.4 5.6 -3.2 10.4 11.8
(2.65)∗∗∗ (3.37) (2.66)∗∗ (0.86)∗∗∗ (3.35)∗∗∗ (2.02)∗∗∗

number first 4.1 0.5 -2.1 2.0 -1.0 -3.9
(1.38)∗∗∗ (0.94) (1.15)∗ (0.84)∗∗ (0.78) (0.73)∗∗∗

weak -2.3 -3.7 -8 6.0 -0.6 -4.4
(1.88) (1.73)∗∗ (2.34)∗∗∗ (2.06)∗∗ (1.6) (1.48)∗∗∗

strong -11.4 -5.7 2.9 3.6 1.5 0.8
(1.71)∗∗∗ (2.06)∗∗ (2.64) (4.2) (3.62) (2.52)

Table 6: Comparison between reports and Bayesian values per task. Columns 0.25, 0.5 and
0.75 show the differences between issued point forecast and the respective true Bayesian quantile
in percentage points. Columns 1, 2 and 3 show the differences of the issued interval probability
and respective true Bayesian probabilities in percent. Brackets show standard deviations of the
differences. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Additionally, we provide quantitative evidence for the deviations from the Bayesian values in
Figure 4, per task (Table 6) and aggregated over all tasks (Table 7).

49



MPP IP
info 0.25 0.5 0.75 1 2 3
first -1.6 -1.9 1.4 -4.1 -2.5 2.4

(0.99) (0.97)∗ (0.92) (0.62)∗∗∗ (0.68)∗∗∗ (0.71)∗∗∗

weak -4.7 -4.0 -3.1 -0.8 -1.6 1.1
(1.19)∗∗∗ (1.38)∗∗∗ (1.51)∗∗ (0.94) (1.15) (1.04)

strong -6.8 -2.5 3.5 0.5 4.6 4.4
(1.28)∗∗∗ (1.5) (1.39)∗∗ (1.37) (1.75)∗∗ (1.23)∗∗∗

Table 7: Comparison between reports and Bayesian values on aggregate. Columns 0.25,
0.5 and 0.75 show the differences between issued point forecast and the respective true Bayesian
quantile in percentage points. Columns 1, 2 and 3 show the differences of the issued interval
probability and respective true Bayesian probabilities in percent. Brackets show standard deviations
of the differences. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

C Additional experiment: Unincentivized reports
In this section we provide the results of an additional experiment which was conducted with a
sample of 89 participants after the main experiment.

In this additional experiment, we applied the same two treatments as before (MPP and IP,
weak and strong information updates). The participants were asked for the number of heads out
of 100 coin flips. The weak and strong information update was the number of heads in the first 50
and 90 flips, respectively.

Since participants of that additional experiment had completed the main experiment before,
they were already aware of the general procedure when entering the additional experiment. After
having completed the main experiment we therefore informed them about the differences that
applied to the remainder of the respective session. The crucial difference to the main experiment
is that the participants were explicitly told that these reports would not influence their payments.
(Compare the explanation in Section S2.5 of the supplementary document.)

As such we can investigate if hypothetical incentives can be used to elicit beliefs. While this is
common practice in applied studies with probability questions, little is known about the reliability of
unincentivized reports that use the incentive structure merely as an explanation and communication
device.

Further, we elicited more CDF points in this experiment. For MPP we elicited seven quantiles
for the levels

α = ( 1
101 ,

1
11 ,

1
4 ,

1
2 ,

3
4 ,

10
11 ,

100
101).

For IP, we first asked for the minimum and maximum (What is the minimum/maximum number
of times that the coin shows “heads” out of this 100 coin flips?), divided this interval into seven
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Figure 15: Reported probabilities beyond minimum and maximum. Histogram of reported
probabilities (in %) for the interval beyond the minimum (left plot) and the maximum (right plot)
in the IP treatment.

equidistant subintervals, and finally elicited the nine probabilities on the generated intervals.
Note, that while these changes render a direct comparison between behaviour in the main

experiment and behaviour in this additional experiment impossible, this additional experiment
further contributes to the comparison of MPP versus IP. We aim to provide first evidence that belief
elicitation using MPP can be beneficial in settings beyond experimental work (e.g., unincentivized
surveys).

C.1 Reports for minimum and maximum

We find that about 80% of participants report positive probabilities for the intervals beyond the
minimum and maximum report. Similar patterns were observed in Delavande et al. (2011) and
Dominitz and Manski (1997). Thus, the reported probabilities and the minimum and maximum
estimates are not consistent.

In Figure 15, we see that most participants report positive probabilities that are relatively
small. In over 80% of the cases the reported mass does not exceed 0.1. One interpretation of the
results would be that participants neglect the tails and issue extreme quantiles instead of the actual
minimum/maximum.

In the MPP treatment, we can use the extreme quantiles to approximate minimum/maximum
reports (compare Proposition 3). Indeed, we see in Figure 16 that the lowest elicited quantile
and the minimum report behave in a similar manner. Before the information update only a small
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Figure 16: Minimum reports. Histogram of minimum reports for IP and extreme quantile reports
for MPP in the first round, and after the weak and strong information update.

ratio of participants reports the true minimum at 0. Clearly, the information updates are largely
incorporated logically, as both updates correctly increase the reported minimums and the strong
information does so more heavily. We obtain similar results for the maximum, which are not shown
here.

C.2 Biases and accuracy

We apply the same analysis as in the main part of the paper. Two observations for each elicitation
method were deleted as the mean of their predictive distribution was below 30 or above 70 indicating
that the participants either misunderstood or put no thought in the task. Figure 17a shows that
there is no evidence for a biased mean of the predictive distribution.

Figure 17b suggests that participants overestimate uncertainty for the 100 coin flips, but are
mostly able to judge the distribution for the 10 remaining coin flips after the strong information
update. A possible explanation is that participants overestimate the uncertainty of a binomial
distribution with many observations (Benjamin et al., 2017).

The average absolute error of the median in Figure 18 shows no evidence against equal accuracy
of both elicitation procedures.

In summary, the experiment provides no evidence that the absence of incentives, the elicitation
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(a) Mean.
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(b) Standard deviation.

Figure 17: Comparison between fitted distributions and Bayesian distributions. For the
mean plot, the target variable is Z := mean(P) −mean(Pbayes). For the standard deviation plot
the target variable is Z := sd(P) − sd(Pbayes). Throughout, the error bars show 95% confidence
intervals. Participants are pooled in the first round of elicitation (first), and distinguished after
receiving the information update (weak and strong).
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Figure 18: Difference in accuracy. The target variable is denoted as Z := |median(P)− y|. The
MPP and IP value indicate average absolute error normalized by the highest possible absolute
error within each domain. The MPP − IP value indicates the average difference normalized by
IP , where negative values indicate superior accuracy of MPP.

of additional CDF points, and flexible support for the IP treatment fundamentally change the
conclusions of the main experiment.
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