
Gutenberg School of Management and Economics

& Research Unit “Interdisciplinary Public Policy”

Discussion Paper Series

On Testing Capacity Constraints in Pickup-
and-Delivery Problems with Trailers in 

Amortized Constant Time
Michael Drexl

November 26, 2018

Discussion paper number 1823

Johannes Gutenberg University Mainz
Gutenberg School of Management and Economics

Jakob-Welder-Weg 9
55128 Mainz

Germany
https://wiwi.uni-mainz.de/

https://wiwi.uni-mainz.de/


Contact details

Michael Drexl
Faculty of Applied Natural Sciences and Industrial Engineering 
Deggendorf Institute of Technology
Dieter-Görlitz-Platz 1
94469 Deggendor
Germany 

Chair of Logistics Management
Gutenberg School of Management and Economics
Johannes Gutenberg University
Jakob-Welder-Weg 9 
55128 Mainz 
Germany 

michael.drexl@th-deg.de

All discussion papers can be downloaded from http://wiwi.uni-mainz.de/DP

http://wiwi.uni-mainz.de/DP
mailto:michael.drexl@th-deg.de


On Testing Capacity Constraints in
Pickup-and-Delivery Problems with Trailers in

Amortized Constant Time

Technical Report LM-2018-08

Michael Drexl
Faculty of Applied Natural Sciences and Industrial Engineering

Deggendorf Institute of Technology, Deggendorf, Germany
and

Chair of Logistics Management, Gutenberg School of Management and Economics,
Johannes Gutenberg University, Mainz, Germany

E-mail: michael.drexl@th-deg.de

26th November 2018

Abstract

Efficient feasibility tests are important in many heuristics for routing problems. This paper
considers several variants of pickup-and-delivery problems with trailers. Its contribution con-
sists in the description of amortized constant-time procedures for testing observance of ca-
pacity constraints when inserting tasks into routes. It is demonstrated that the presence of
vehicles with detachable trailers makes capacity feasibility tests considerably more involved.
Keywords: Pickup-and-Delivery; Trailers; Constant-Time Feasibility Test

1 Introduction

Pickup-and-delivery problems (PDPs) are concerned with the transport of goods or persons from
different origins to different destinations. PDPs come in several variants and have received a lot
of attention in the literature (see the surveys by Parragh et al. [19, 20], Doerner and Salazar-
González [5], and Battarra et al. [1]). Whereas vehicle routing problems (VRPs, the special case of
the PDP where either all pickups or all deliveries occur at a central depot) with trailers are rather
well examined (see the surveys by Prodhon and Prins [21], Section 3.3, Cuda et al. [4], Section 4,
and the more recent works by Parragh and Cordeau [18] and Rothenbächer et al. [23]), PDPs with
trailers (PDPTs) are rarely studied in the literature, despite their practical relevance. There are
several works on PDPs where vehicles consisting of a tractor and a semi-trailer are employed to
perform full-load tasks, i.e., where a vehicle can transport only one task at a time (for example,
Cheung et al. [3], Xue et al. [29], Tilk et al. [27]), but this author is aware of only two papers
(Bürckert et al. [2], Drexl [6]) dealing with less-than-truckload tasks, i.e., the case where more
than one task can be on a vehicle at the same time. The present paper is concerned with PDPTs
of the latter type.
Heuristics based on neighbourhood search are widely used approaches for solving many different
kinds of vehicle routing problem, including the various types of PDPs. A decisive aspect for the
performance of such methods is their ability to quickly test the feasibility of an insertion of a
customer or task into a route. There are several theoretical papers on efficient feasibility testing,
for example, Hunsaker and Savelsbergh [12], Haugland and Ho [11], Firat and Woeginger [7]
(dial-a-ride problems), and Masson et al. [17] (PDP with time windows and transfers). In a similar
vein, the present work deals with testing whether the insertion of a task into a feasible PDPT
route maintains capacity feasibility of the route.
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The contribution of the paper consists in the description of amortized constant-time feasibility
tests for several variants of PDPTs. ‘Amortized constant-time’ means that the tests require con-
stant time, independent of the number of tasks on the route, but use auxiliary data which must
be computed in a preprocessing step that does not run in constant time.
The presentation focuses on capacity tests. An efficient test for time window feasibility that can
be used for all PDP(T) types considered in this paper is presented in Drexl [6], based on earlier
work by Savelsbergh [26] and Masson et al. [17]. Other seminal papers on feasibility tests for
routing problems are Savelsbergh [24, 25], Kindervater and Savelsbergh [16], Funke et al. [8],
Irnich et al. [15], Irnich [13, 14], Vidal et al. [28], Grangier et al. [9], and Gschwind and Drexl
[10], but none of these considers routing problems with trailers.
The rest of the paper is structured as follows. In the next section, the PDP(T) types of interest
in this work are specified. Then, the notation used in the paper and the formal modelling of the
different PDPT variants are explained in Section 3. Afterwards, Section 4 describes how capacities
can be tested in linear and in amortized constant time. Section 5 concludes the paper with a
summary and an outlook.

2 PDP Variants

Following the PDP classification of Battarra et al. [1], the problem variants covered in this paper
are:
• One-to-one problems: each task consists in the transport of a particular commodity from a given

pickup location to a given delivery location. The transported commodities are not interchange-
able. This is obvious for passenger transport. In goods transport, applications arise, e.g., in
letter mail and parcel services as well as full and less-than-truckload forwarding.

• One-to-many-to-one problems: each task consists in either the transport of a commodity from
a central depot to a delivery location (linehaul tasks) or the transport from a pickup location
to the depot (backhaul tasks). Practical applications are common in supplying supermarkets,
beverage stores, apparel stores and, above all, in the less-than-truckload business. Several
subtypes of one-to-many-to-one problems can be distinguished:
– The VRP with mixed backhauls: linehaul and backhaul tasks can occur anywhere on a route.
– The VRP with backhauls: all linehaul tasks on a route must be fulfilled before a pickup

location of a backhaul task can be visited. In this and the previous subtype, it is possible that
a route fulfils only linehaul or only backhaul tasks.

– The VRP: the special case where all tasks are either linehaul or backhaul tasks.
– The simultaneous PDP: any task location may require a delivery of a good from the depot

and a pickup of another good for transport back to the depot; the delivery and the pickup
must be performed during one visit.

Note that the goods to be transported in one-to-many-to-one problems may be interchange-
able or not. For linehaul tasks, this makes a difference. For example, in soft drink distribution,
crates with full bottles are delivered to households, and empty crates are taken back. It is irrel-
evant whether household A receives crate 1 of a particular soft drink brand and household B
receives crate 2 of the same brand or the other way round. By contrast, in freight forwarding
of consignments on pallets, each loaded pallet of a linehaul task has a specific destination. For
the algorithmic treatment of such problems, these issues do not matter. What counts is that the
capacity requirements of each task are taken into account correctly. In reality, however, if goods
are not interchangeable, the driver must ensure that the right items are delivered to linehaul
customers.

• Many-to-many PDPs: goods picked up at a location can be used to fulfil demand at several other
locations (e.g., bike-sharing systems, empty container movement, raw milk bulk transports).
Mostly, only a single commodity is considered in this problem type. Many-to-many PDPs come
in four sub-variants: it may be allowed or forbidden that a vehicle leave or enter the depot with
some load.
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For all these problem variants, it is sensible to consider the use of vehicles with detachable trail-
ers. Trailers are advantageous as they increase the overall vehicle capacity. However, some loca-
tions may be accessible only by a lorry without a trailer, e.g., because of insufficient manoeuvring
space. Therefore, special parking and transshipment locations (PTLs) are available where trail-
ers can be parked while lorries visit accessibility-constrained locations. This induces a non-trivial
trade-off between an enlarged vehicle capacity and the necessity of making detours to park and
reattach trailers, and, as will be demonstrated in the following, makes capacity feasibility tests
considerably more involved.

3 Notation and Modelling

The following subsections describe how each of the above PDPT variants is represented by a
suitable digraph D = (V , A). This is helpful to understand which insertions of tasks into routes
are possible and how capacity feasibility can be tested. In all variants, each task t has a pickup
capacity requirement qt

p ≥ 0 and a delivery capacity requirement qt
d ≤ 0. The vertex set V of D

contains a start and an end depot vertex, s and e respectively, one pickup and one delivery vertex
for each task, and one vertex for each PTL. The pickup and the delivery vertices are referred to as
task vertices. Each vertex v ∈V has an associated capacity requirement qv ∈R, which is zero for the
depot and the PTL vertices. Moreover, for modelling some of the above PDPT variants, ‘artificial’
task vertices are used. Each task vertex is visited exactly once in a feasible solution, whereas
PTL vertices can be visited more than once. All artificial vertices are reachable with a trailer. The
arc set A, in principle, contains one arc for each pair of vertices, and, to model the possibility of
consecutive subroutes (definition in next paragraph), there is a loop on each PTL vertex. Some
exceptions apply: there is no arc entering s, leaving e, leading from s to a delivery vertex, from
a pickup vertex to e, or from a delivery vertex to the associated pickup vertex. Moreover, there
are additional restrictions on the arc sets of the different problem variants as specified in the
respective subsections below.
Associated with D is a vehicle fleet made up of single lorries and LTCs. All vehicles start their
routes at s and end them at e. Each vehicle k has a lorry capacity of Ql

k and a trailer capacity of Qt
k.

For single lorries k, Qt
k = 0. The route of an LTC consists of the main route, where the lorry pulls

its trailer, and zero or more subroutes starting and ending at a PTL where the trailer is parked
while the lorry performs one or more pickups and/or deliveries. Several consecutive subroutes can
start and end at the same PTL before the trailer is re-coupled and pulled away. If the pickup of
a task whose delivery is performed on a subroute has been performed before this subroute, the
entire load of the task must be on the lorry at the start of the subroute. This may require a load
transfer from a trailer to its lorry when decoupling. In the present paper, it is assumed that such
load transfers are possible without restrictions, and that, at pickup locations reachable by trailer,
the load to be picked up can be split arbitrarily between a lorry and its trailer.
Although costs and times are not relevant for capacity tests, note that the locations associated
with any two vertices u and v determine the distance-dependent costs and the travel times of the
arcs (u,v) and (v,u), if these exist, and are therefore relevant for the definition of the objective
function and for time-window feasibility tests. With regard to the PDPTs considered here, for
non-artificial (‘real’) vertices, travel costs and times are computed on the basis of the respective
physical locations, and artificial task vertices are located at the start or the end depot, as indicated
in each case.

3.1 The One-to-One PDPT

The one-to-one PDPT is the simplest case. For any task t, the associated pickup vertex has a
capacity requirement of qt

p > 0, and the delivery vertex requires qt
d < 0 capacity units. There is an

arc between each pair of vertices, with the exceptions mentioned above.
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3.2 The VRPT with Mixed Backhauls

Extending the approach by Ropke and Pisinger [22] to trailers, this problem type is modelled as
follows. Each linehaul task is represented by an artificial pickup vertex located at the central
depot and a delivery vertex at the physical delivery location. Similarly, for each backhaul task,
there is a pickup vertex at the physical pickup location and an artificial delivery vertex at the
depot. For a linehaul or backhaul task t, the capacity requirements of linehaul and backhaul
pickup and delivery vertices are qt

p > 0 and qt
d < 0. The only arcs leading to an artificial pickup

vertex come from the start depot vertex or other artificial pickup vertices, the only arcs emanating
from an artificial delivery vertex lead to other artificial delivery vertices or to the end depot. There
is no arc from an artificial pickup to an artificial delivery vertex.

3.3 The VRPT with Backhauls

When all linehauls must be performed before any backhaul, the setup described in the previous
subsection can be modified as follows. No arc exists from an artificial pickup vertex to a real pickup
vertex or from a real pickup vertex to a real delivery vertex. Moreover, it must be ensured that
the precedence requirements are not undermined by visiting PTLs; i.e., sequences such as . . . →
linehaul delivery → decoupling → backhaul pickup → coupling → linehaul delivery → . . . must
not be allowed. This can be achieved by storing, for each route, the position of the last linehaul
delivery. When an insertion is tested and the pickup vertex is a pickup of a backhaul, i.e., a
non-artificial pickup, insertion of this vertex is considered only after the last linehaul delivery
position. Similarly, the last insertion position to consider for a non-artificial delivery of a linehaul
is after the last non-artificial delivery. Ropke and Pisinger [22] use a different concept, that of
precedences, which is applicable in the presence of trailers as well.

3.4 The VRPT

Vehicle routing problems with trailers can be represented as instances of VRPTs with mixed
backhauls without requiring further modelling.

3.5 The Simultaneous PDPT

Ropke and Pisinger [22] propose the following modelling approach for the simultaneous PDP:
each task location requiring a delivery and a pickup is represented by a ‘delivery task’ and a
‘pickup task’. The delivery (pickup) vertex of each pickup (delivery) task is located at the depot.
Moreover, the costs of all arcs emanating from a delivery vertex of a delivery task are set to a
very high value, except for the arc leading to the pickup vertex of the partner task, which has
cost zero. These high-cost arcs are necessary, because otherwise, inserting a single task would be
impossible. After inserting a single task, whether a delivery or a pickup task, the next task that
is inserted will always be the partner task, because this will remove a high-cost arc and will thus
dramatically improve the current solution.
An alternative approach that avoids having to create two tasks for each original task, i.e., avoids
doubling the instance size, and prevents difficulties with precedences in the presence of PTLs
works as follows. Each task t is represented by an artificial pickup vertex located at the start depot
and a delivery vertex located where the simultaneous delivery and pickup must occur. The amount
to be picked up at the artificial pickup vertex equals qt

d, the original amount to be delivered. The
actual amount to be delivered at the delivery vertex is set to qt

p−qt
d, i.e., to (original pickup amount

− original delivery amount). This means that delivery vertices with positive capacity requirement
are possible (note that the delivery amount of a task is always non-positive), and that there can
be different absolute values for the pickup and the delivery amount of a task; see the example
in Section 4.2.1. No arc exists from a delivery vertex or from a PTL vertex to an artificial pickup
vertex.

4



3.6 The Many-to-Many PDPT

Similar to the modelling of backhauling problems, a task is represented by an artificial vertex loc-
ated at the depot, and similar to the approach for the simultaneous PDP(T), the absolute values of
the pickup and the delivery amount of a task may differ. If the task consists of a pickup (delivery)
at a vertex, the artificial vertex is located at the end (start) depot. The capacity requirement at an
artificial vertex is zero; its partner vertex has the original positive (if it is a pickup) or negative
(if it is a delivery) capacity requirement. The only arcs leading to an artificial pickup vertex come
from the start depot or other artificial pickup vertices, the only arcs emanating from an artificial
delivery vertex lead to other artificial delivery vertices or the end depot. Moreover, there is no arc
from an artificial pickup to an artificial delivery vertex.
Many-to-many PDP(T)s are special in (at least) two respects. First, as mentioned, four sub-
variants are possible: it may be allowed or forbidden that a vehicle leave or enter the depot with
some load.
When no loading at the start depot is allowed but load may be brought to the end depot, it should
be tested in a preprocessing step whether the total load to be picked up is at least as much as
the total load to be delivered. If this is not the case, no feasible solution exists. Moreover, on
each route, sufficiently many pickups must be performed before any deliveries are possible, and it
must be ensured in the capacity tests that the total load of a single lorry or an LTC is always non-
negative. Likewise, if it is forbidden to bring load to the end depot, but loading at the start depot
is allowed, it should be tested in advance whether the total load to be delivered is at least as much
as the total load to be picked up, and one or more delivery tasks must be inserted into an empty
route before any pickup task. If both conditions are required, a route with one task is necessarily
infeasible, and the insertion of a task into a feasible route also makes the route infeasible. This
can be handled by allowing (penalized) infeasible solutions in a surrounding algorithm that uses
the capacity test. Then, the return value of the test should not be simply ‘true’ or ‘false’, but the
amount by which the vehicle capacity and/or the zero load balance at the start and/or end depot
is/are violated.
Second, many-to-many PDP(T)s are special because they possess the property, rarely encountered
in vehicle routing problems, that removing a task from a feasible route can make the route infeas-
ible. This holds true irrespective of whether or not it is allowed to pick up or deliver load at the
depot. For example, consider the following route, performed by a single lorry with capacity 100
(the artificial pickup and delivery vertices at the depot are omitted for simplicity):

Vertex s 1 2 3 4 5 6 e

Capacity 0 +50 +50 –50 –50 +50 –30 0
requirement

Removing vertex 5 makes the route infeasible even if loading at the depot is allowed. In the
present paper, however, the focus is on (feasible) insertions, so issues arising when removing
tasks are not discussed further here.

4 Feasibility Tests

Generally speaking, for a route to be feasible regarding capacity constraints, it must be ensured
that the vehicle capacity is not exceeded at any vertex, and that enough load can be aboard the
LTC (when on the main route) or the lorry (when on a subroute) to satisfy any subsequent negative
capacity requirements. Put differently, it must be ensured on the main route and on all subroutes
that, when reaching a vertex with positive capacity requirement, the load in the LTC or the lorry
plus this positive capacity requirement does not exceed the LTC or the lorry capacity; likewise,
when reaching a vertex with negative capacity requirement, enough load must be in the LTC
or the lorry to satisfy this capacity requirement. It will become clear in the following that in
particular the latter aspect is non-trivial on subroutes and, for the many-to-many PDPT, also on
the main route.
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The algorithms and data structures presented in this section are extensions of those described in
Drexl [6] for the one-to-one PDPT. The algorithmic descriptions assume that the feasibility of an
insertion of a task t with associated pickup vertex p and delivery vertex d, written as t = (p,d),
into a feasible route r = (0,1, . . . ,n− 1,n) which is performed by single lorry or LTC k is to be
tested. Vertex p is to be inserted directly after position (zero-based index of the route) h; d is to
be inserted directly after position/index i. If p cannot be reached with a trailer, r is performed
by an LTC, and the trailer is attached when leaving h, a location triple p̃ = ptlp → p → ptlp
corresponding to a new subroute must be inserted after h; similar for i and d. ptlp is a PTL
vertex; similar for d. Note that p, d, ptlp, and ptld are vertices, whereas h and i are indices on
a route. However, to simplify notation, when referring to a vertex visited at a certain position on
a route, only the index is used: for example, the capacity requirement of the vertex at index i is
denoted by qi.
Indices h and i indicate positions in the route before p and d are inserted. Hence, if h == i, then d
is to be inserted directly after p, or, if a triple p̃ = ptlp → p → ptlp must be inserted, directly after
the triple. If, however, d cannot be reached with a trailer and p is left with the trailer attached or
a triple p̃ is to be inserted, then a triple d̃ = ptld → d → ptld is inserted. If h == i and p and/or
d must be surrounded by a decouple-couple pair, it would also be possible to surround both p
and d by one such pair, but this makes no difference for capacity feasibility. Several consecutive
subroutes by one LTC lorry at the same PTL are modelled by inserting a decouple-couple pair for
each subroute. For simplicity, the vehicle index k is omitted: Ql and Qt are used instead of Ql

k and
Qt

k to denote the lorry and the trailer capacity. The capacity requirements of the task t = (p,d)
to be inserted are indicated by qp and qd. For each problem type, qp and qd are determined from
the original capacity requirements of task t as described in Sections 3.1–3.6. In the pseudocode,
the symbol ‘==’ serves as equality operator, ‘=’ is the assignment operator, and ‘x += y’ is used as
shortcut for ‘x = x+ y’.

4.1 Testing Capacities in Linear Time

Testing capacity in linear time for single-lorry routes is simple: the to-be-inserted task is tent-
atively inserted, one pass over the route is performed, and the capacity requirement at each
visited vertex is added to the total load and compared with the lorry capacity, cf. lines 16–20
in Algorithm 1. By contrast, testing capacity in the presence of trailers is not entirely straight-
forward. The procedure detailed in Algorithm 1 can be used. The procedure covers all problem
types considered in this paper, because large parts of the routine apply to all types. As indicated
in the pseudocode, lines 2–15 can be omitted for problem types other than many-to-many, and
lines 23–30 can be ignored for many-to-many-problems.
For problem types other than many-to-many, it must be known at the start of a subroute how
much load must be in the lorry to be able to perform the deliveries whose pickups are not on this
subroute. This information is gathered in one forward pass over the route (lines 23–30) and stored
in an array LoadDeliveredButNotPickedUpOnSubroute. Note that, in practice, it is not sufficient to
have the correct amount of load in the lorry at the start of a subroute. It is also necessary to have
the right commodities on the lorry, those that must be delivered on this subroute, but this must
be ensured by the driver.
For many-to-many problems, one forward pass over the route is performed to determine how
much load must be picked up at the depot. This amount is determined by the most negative load
balance at any vertex on the route. If loading at the start depot is not allowed and a negative
load balance occurs at a vertex, the insertion is infeasible (lines 2–8). If load may be picked up
at the start depot, a second pass over the route (lines 17–20 or 34–52) tests whether there is
sufficient capacity taking this load into account. If no load may be brought to the end depot, but
the load balance from any index to the end of the route is positive, the route is infeasible as well
(lines 9–14). Moreover, for many-to-many problems, it must be ensured for all subroutes that at
each non-artificial delivery vertex, sufficient load is available on the lorry to perform the delivery.
This load may have been picked up earlier on the subroute or before the subroute. It is possible
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that not enough load has been picked up earlier on the subroute and that, at the same time, not
enough load has been picked up before the subroute. This is tested in lines 50–52.

4.2 Testing capacities in constant time

In the following, it is described how capacity feasibility can be tested in constant time. Algorithm 2
is for the one-to-one and the one-to-many-to-one problem types. The constant-time test for many-
to-many PDPTs differs significantly from the tests for the other problem types. Thus, it is presen-
ted separately, in Algorithm 3.

4.2.1 One-to-One and One-to-Many-to-One PDPTs

The following data structures are used in the test for the one-to-one and the one-to-many-to-one
PDPT variants. These were introduced by Drexl [6] for the one-to-one PDPT.
1. MaxTotalLoadOfSegment[i][offset] is the maximal load balance from the start of the route at

any index from i up to and including i + offset. In particular, MaxTotalLoadOfSegment[i][0]
is the overall load picked up but not delivered yet from the start depot to and including the
location at index i.
For example, consider the following route in a one-to-one PDPT:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Capacity 0 +30 +10 0 +20 –30 +10 +15 –10 –10 0 –20 –15 0
requirement

This route contains a subroute that starts at index 3 and ends at index 10. The load balances at
indices 1 to 6 are +30, +40, +40, +60, +30, and +40; thus, MaxTotalLoadOfSegment[1][5]=+60.
Moreover, MaxTotalLoadOfSegment[7][0]=+55.

2. TrailerAttached[i] is true if the trailer is attached when leaving i, false otherwise.
3. IndexOfLastPrecedingDecouple[i] stores the index of the last decoupling that precedes i.
4. If i is the start of a subroute, LoadDeliveredButNotPickedUpOnSubroute[i] is the sum of the

pickup amounts of those tasks on the subroute whose pickups lie before i.
5. If i is on a subroute, LoadBalanceFromStartOfSubroute[i] is the positive, negative or zero load

balance from the start of the subroute up to and including i.
In the above example route, LoadBalanceFromStartOfSubroute[9]=−5= 20−30+10+15−10−
10.

6. OffsetOfNextCoupling[i] stores the number of positions from i to the next index of a coupling
process.

7. If i is on a subroute, MaxLoadBalanceFromStartOfSubroute[i][offset] stores the maximum of
zero and the largest load balance from the start of the subroute to any index from i up to and
including i+offset.
In the example, MaxLoadBalanceFromStartOfSubroute[5][3] = +15 = max(0,−10,0,+15,+5) =
max(0,LoadBalanceFromStartOfSubroute[7]).

As an example of the simultaneous PDPT, consider the following five tasks:

Task t1 t2 t3 t4 t5

Original amount to be delivered +5 +20 +10 +12 +16
Original amount to be picked up +10 +15 +10 +18 +13
qt

p +5 +20 +10 +12 +16
qt

d 5 –5 0 +6 –3

Assume these five tasks are fulfilled by the following route:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Task – t1 t2 t3 t4 t5 t5 – t1 t3 t2 – t4 –

Vertex type s P P P P P D Dec D D D Co D e

Artificial? No Yes Yes Yes Yes Yes No No No No No No No No

Capacity 0 +5 +20 +10 +12 +16 –3 0 +5 0 –5 0 +6 0
requirement
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Algorithm 1 TestCapacityLinear(r,k)
Input: Route r = (0,1,2, . . . ,n) with to-be-inserted task tentatively inserted, including decoupling and

coupling vertices where necessary, and capacity requirements qv ∈R, v = 0,1,2, . . . ,n
Vehicle k (single lorry or LTC) with capacities Ql and Qt; for single lorries, Qt == 0

Result: Returns true iff lorry and, if applicable, trailer capacity of k are maintained at each vertex of
r; false otherwise

1 TotalLoad= 0
2 if Problem type is many-to-many
3 LoadBalance= 0
4 for v = 1,2,3, . . . ,n−1
5 LoadBalance+= qv
6 TotalLoad=min(TotalLoad,LoadBalance)
7 if Loading at start depot is not allowed and TotalLoad< 0
8 return false
9 if Unloading at end depot is not allowed

10 LoadBalance= 0
11 for v = n−1,n−2,n−3, . . . ,1
12 LoadBalance+= qv
13 if LoadBalance> 0
14 return false
15 TotalLoad= (−1) ·TotalLoad
16 if Qt == 0 // Test for single lorries
17 for v = 1,2,3, . . . ,n−1
18 TotalLoad+= qv
19 if TotalLoad>Ql

20 return false
21 else // Test for LTCs
22 LoadDeliveredButNotPickedUpOnSubroute = array of integers of length n+1, initialized to 0
23 if Problem type is not many-to-many
24 IndexOfLastDecouple= 0
25 for v = 1,2,3, . . . ,n−1
26 if v is a decoupling vertex
27 IndexOfLastDecouple= v
28 if Trailer is not attached upon leaving v
29 if v is a delivery vertex and corresponding pickup v′ < IndexOfLastDecouple
30 LoadDeliveredButNotPickedUpOnSubroute[IndexOfLastDecouple]+= qv′

31 MinLorryLoadSinceLastDecouple= 0
32 MaxLorryLoad= 0
33 MaxLorryLoadSinceLastDecouple= 0
34 for v = 1,2,3, . . . ,n−1
35 TotalLoad+= qv
36 if TotalLoad>Ql +Qt

37 return false
38 MaxLorryLoad=min(TotalLoad,Ql)
39 if v is a decoupling vertex
40 MinLorryLoadSinceLastDecouple=
41 max(TotalLoad−Qt,LoadDeliveredButNotPickedUpOnSubroute[v])
42 if MinLorryLoadSinceLastDecouple>Ql

43 return false
44 MinLorryLoadSinceLastDecouple=max(MinLorryLoadSinceLastDecouple,0)
45 MaxLorryLoadSinceLastDecouple=MaxLorryLoad
46 if Trailer is not attached upon leaving v
47 MinLorryLoadSinceLastDecouple=max(MinLorryLoadSinceLastDecouple+ qv,0)
48 if MinLorryLoadSinceLastDecouple>Ql

49 return false
50 MaxLorryLoadSinceLastDecouple=min(MaxLorryLoadSinceLastDecouple+ qv,Ql)
51 if MaxLorryLoadSinceLastDecouple< 0
52 return false
53 return true
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This route contains a subroute that starts at index 7 and ends at index 11. The load balances at
indices 2 to 10 are +25, +35, +47, +63, +60, +60, +65, +65, and +60; thus, MaxTotalLoadOfSeg-
ment[2][8] = +65. Moreover, MaxTotalLoadOfSegment[12][0] = +66, LoadBalanceFromStartOfSub-
route[10] = 0, and MaxLoadBalanceFromStartOfSubroute[10] = +5 = max(0,+5,+5,0) = LoadBal-
anceFromStartOfSubroute[8] = LoadBalanceFromStartOfSubroute[9].
The decisive aspect for the feasibility test of simultaneous PDPTs is that the delivery amount is
not necessarily the negative of the pickup amount. In algorithm 2, this is taken into account in
lines 6–8 and 32–36.
MaxTotalLoadOfSegment and MaxLoadBalanceFromStartOfSubroute can be initialized and updated
with a nested loop, by iterating over all indices j ≥ i for each index i. The other data structures can
be determined in a single loop. Hence, computing the preprocessing data is possible in quadratic
time in the number of tasks on the route.
Algorithm 2 uses these data to test the capacity feasibility of an insertion of a task t = (p,d) into
an existing route r, with p to be inserted directly after position (zero-based index of the route) h
and d to be inserted directly after position i. It is evident that the running time of the algorithm
is constant, independent of the number of vertices visited on the route.
Algorithm 2 returns false in line 4 if the total capacity is less than the maximal total load between
the pickup and the delivery plus the pickup amount. For the simultaneous PDPT, false is returned
in line 8 if the former condition is fulfilled or the total capacity is less than the maximal load
between the delivery and the end of the route plus the pickup plus the delivery amount. The
latter condition must be tested because, as explained in Section 3.5, for the simultaneous PDPT
the sum of the pickup and the delivery amount indicates the change of load at deliveries.
The algorithm returns false in line 23 if p is to be inserted on a subroute and the minimal load
that must be in the lorry when leaving the decoupling vertex plus the load balance from the start
of the subroute up to h plus qp plus the maximal load balance, counted from the beginning of the
subroute, from h+1 to i or to the end of the subroute, whichever vertex is visited earlier, exceeds
the lorry capacity.
False is also returned if d is to be inserted on a subroute and the minimal load that must be in
the lorry when leaving the decoupling vertex plus the maximal load balance from the start of the
subroute up to i plus qp exceeds the lorry capacity (line 31).
Moreover, for the simultaneous PDPT, similar to the situation on the main route, the algorithm
returns false in line 36 if the minimal load aboard the lorry when leaving i plus qd plus the
maximal load balance from i+1 to the end of the subroute exceeds the lorry capacity.
Finally, algorithm 2 returns false in line 43 if d is to be inserted directly after p on a subroute and
the total load upon leaving h plus qp exceeds the lorry capacity.
If Algorithm 2 returns false from line 4, 8, or 23, further potential insertion positions for d need
not be tested with the current insertion position of p. Instead, the next potential position for
inserting p can be considered. Hence, it is sufficient to execute lines 2–23 of Algorithm 2 only
once for each h.
Note also that lines 14–23 and 37–43 in Algorithm 2 are never reached for the simultaneous
PDPT, as a pickup is never on a subroute.

4.2.2 The Many-to-Many PDPT

In the capacity test for the many-to-many PDPT, all data structures from Section 4.2.1 are em-
ployed, except for LoadDeliveredButNotPickedUpOnSubroute. In addition, the following data struc-
tures are used:
For testing the total vehicle capacity:
1. OffsetsToWhereActualTotalLoadIsMaximal indicates, for each index i on the route, the non-

negative offset from i to the index where the overall load in the vehicle, not taking into account
what might have to be picked up at the depot, is maximal.

2. MaxActualTotalLoad stores the maximal physical load from each index i until the end of the
route, not taking into account any load that might have to be picked up at the depot. This load
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Algorithm 2 TestCapacityConstantOneToOneAndOneToManyToOnePDPT(p,d, r,h, i,k)
Input: Pickup-and-delivery task t = (p,d) with capacity requirements qp ≥ 0 and qd ∈R

Route r = (0,1,2, . . . ,n)
Indices of insertion positions h, i with 0≤ h ≤ i ≤ n−1
Vehicle k (single lorry or LTC) with lorry and trailer capacities Ql and Qt; for single lorries,
Qt == 0

Result: Returns true iff inserting p or a triple p̃ = ptlp → p → ptlp into r after index h and d or a
triple d̃ = ptld → d → ptld after i (or, iff h == i, after p or p̃) is feasible regarding lorry and
trailer capacity, false otherwise

1 // Evaluate feasibility of insertion regarding total capacity
2 if Problem type is not simultaneous
3 if Ql +Qt <MaxTotalLoadOfSegment[h][i−h]+ qp
4 return false
5 else
6 if Ql +Qt <max{MaxTotalLoadOfSegment[h][i−h]+ qp,
7 MaxTotalLoadOfSegment[i][n− i]+ qp + qd}
8 return false
9 if Qt == 0

10 return true
11 // Evaluate feasibility of insertion regarding lorry capacity
12 if i > h // Delivery not directly after pickup
13 // Evaluate feasibility of insertion of pickup
14 if TrailerAttached[h] == false // Trailer not attached when leaving h
15 ind = IndexOfLastPrecedingDecouple[h]
16 MinLoadAtDecouple=max(MaxTotalLoadOfSegment[ind][0]−Qt,
17 LoadDeliveredButNotPickedUpOnSubroute[ind])
18 LoadAfterPickup=MinLoadAtDecouple+LoadBalanceFromStartOfSubroute[h]+ qp
19 offset=OffsetOfNextCoupling[h+1]
20 if h+OffsetOfNextCoupling[h]≥ i
21 offset= i−h
22 if LoadAfterPickup+MaxLoadBalanceFromStartOfSubroute[h+1][max(0,offset−1)]>Ql

23 return false
24 // Evaluate feasibility of insertion of delivery
25 if TrailerAttached[i] == false
26 if i−h ≥OffsetOfNextCoupling[h] // Delivery not on same subroute as pickup
27 ind = IndexOfLastPrecedingDecouple[i]
28 MinLoadAtDecouple=max(MaxTotalLoadOfSegment[ind][0]−Qt,
29 LoadDeliveredButNotPickedUpOnSubroute[ind])
30 if MinLoadAtDecouple+MaxLoadBalanceFromStartOfSubroute[ind][i− ind]+ qp >Ql

31 return false
32 if Problem type is simultaneous
33 offset=OffsetOfNextCoupling[i+1]
34 if MinLoadAtDecouple+ qp +LoadBalanceFromStartOfSubroute[i]
35 +qd +MaxLoadBalanceFromStartOfSubroute[i+1][offset]>Ql

36 return false
37 else // i == h, i.e., delivery directly after pickup
38 if TrailerAttached[h] == false
39 ind = IndexOfLastPrecedingDecouple[h]
40 MinLoadAtDecouple=max(MaxTotalLoadOfSegment[ind][0]−Qt,
41 LoadDeliveredButNotPickedUpOnSubroute[ind])
42 if MinLoadAtDecouple+LoadBalanceFromStartOfSubroute[i]+ qp >Ql

43 return false
44 return true
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is aboard the vehicle at index i+OffsetsToWhereActualTotalLoadIsMaximal[i].
As an example, consider the following route:

Index 0 1 2 3 4 5 6 7 8 9

Capacity 0 +50 +10 –70 +30 +25 –5 +15 –25 0
requirement

For this route, MaxActualTotalLoad[3] = +65 = 0+ 30+ 25− 5+ 15, and OffsetsToWhereActu-
alTotalLoadIsMaximal[3]= 4.

3. MostNegativeLoadBalanceFromStart indicates, for each index i, the most negative load balance
(or zero if there are only pickups up to i) from the start of the route to i. The term ‘most negat-
ive’ is used instead of ‘smallest’ or ‘minimal’ to point out that all values are less than or equal
to zero. A ‘minimal’ or ‘smallest’ element of an arbitrary set of numbers may be positive.
In the example, MostNegativeLoadBalanceFromStart[2]= 0, and MostNegativeLoadBalanceFrom-
Start[3]=−10.

4. MostNegativeLoadBalancesFromPosToEndOfRoute specifies, for each index i, the most negative
load balance (or zero if there are only pickups) from i until the end of the route.
In the example, for indices 3, 4, and 6, MostNegativeLoadBalancesFromPosToEndOfRoute equals
−70, 0, and −15.

5. LoadBalanceFromTo[i][offset] is the load balance from i to i+offset.
In the example, LoadBalanceFromTo[2][2]=−30, LoadBalanceFromTo[3][4]=−5, and LoadBal-
anceFromTo[4][1]=+55.

For testing lorry capacities on subroutes:
1. MostNegativeLoadBalanceOnSubrouteFromTo[i][offset] is the most negative load balance from

i until i+offset on the subroute where i is visited, counted from the beginning of the subroute.
As an example, consider the following route:

Index 0 1 2 3 4 5 6 7 8 9

Capacity 0 +50 0 –20 +30 –25 –5 0 –25 0
requirement

This route contains a subroute that starts at index 2 and ends at index 7. MostNegativeLoad-
BalanceOnSubrouteFromTo[2][offset] equals zero for offset = 0 and −20 for offset = 1, . . . ,4. For
index 4 and offset = 0, 1, and 2, the values are 0, −15, and −20.

2. MostNegativeLoadBalanceOnSubrouteFromAnyVertexBeforeUntilPos[i] specifies the most neg-
ative load balance from any vertex that precedes i on the subroute, including i, up to i.
In the example, the values for indices 2–6 are 0, −20, 0, −25, −30.

3. MostNegativeLoadBalanceFromIUntilEndOfSubroute[i] indicates the most negative load balance
on the segment from any index i until the end of the subroute, counted from i.
In the above example, the values of MostNegativeLoadBalanceFromIUntilEndOfSubroute, for
indices 2–6, are −20, −20, 0, −30, and −5.

LoadBalanceFromTo and MostNegativeLoadBalanceOnSubrouteFromTo can be filled using a nes-
ted forward pass, i.e., by iterating over all indices j ≥ i for each index i on the route; the other
data structures can be filled or updated in one pass. As explained in Section 4.2, MaxTotalLoadOf-
Segment[i][offset] is the maximal load balance from the start of the route at any index from i
up to and including i+offset. For the many-to-many problem where loading at the start depot is
allowed, MaxTotalLoadOfSegment also takes into account the load that must be picked up at the
depot, by adding this load to each component of MaxTotalLoadOfSegment. Computing the load to
be picked up at the depot can be done in one additional forward pass over the route, which does not
change the time complexity of determining the preprocessing data. Hence, the preprocessing data
for a many-to-many-PDPT route can be computed in quadratic time in the number of tasks on the
route. With these data structures, capacity feasibility can be tested as described in Algorithm 3.
It is easy to see that the algorithm itself runs in constant time.
Algorithm 3 returns false in line 8 if the maximal load in the vehicle, disregarding any load
brought from the depot, at any index from and including h until the end of the route (i.e., Max-
ActualTotalLoad[h]) plus qp plus the rest of the load that still needs to be picked up at the depot
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even after inserting p exceeds the total vehicle capacity. To exemplify this, consider the following
route and assume h = 3 and qp = 40:

Index 0 1 2 3 4 5 6 7

Capacity 0 –10 +10 +10 –30 +30 –100 0
requirement

It is easy to see that 90 units of load must be picked up at the depot for the route to be feasible,
10 units of which are needed at index 1, 10 at index 4, and 70 at index 6. The maximal load
in the vehicle anywhere after h, not taking into account load brought from the depot, is 30 at
index 5. Up to this point, 20 units of load picked up at the depot have been unloaded. Hence, the
expression in line 5 equals (−1) · (−90)+ (−20)=+70. The value to be subtracted from qp in line 6
is (−1) · (−90)+ (−10) = +80. This value is greater than qp, so that the overall value of line 6 is
negative, and this means that the entire amount qp can be used to substitute load brought from
the depot. This, in turn, means that inserting p does not increase the load at any index, which
implies that the insertion is feasible. Now assume that the capacity requirement at index 6 is
−50. Then, 40 units must be picked up at the depot, and line 5 equals (−1) ·(−40)+(−20)=+20. In
line 6, +30 must be subtracted from qp, so that the value of line 6 is +40−30 =+10. This means
that 30 units of qp can be used to help satisfy the negative capacity requirements at indices 4 and
6, so that the 30 units picked up at the depot to this end are no longer necessary. This, in turn,
means that inserting p after h increases the load from h+1 onwards by 10 units, which may or
may not violate the total vehicle capacity.
The return false in line 11 is self-explanatory.
The return false in line 19 has the following rationale: qp ≤ 0 implies that |qd| > 0. To satisfy this
negative capacity requirement, additional load can be picked up at the depot if this is allowed and
if there is free capacity up to index i. In any case, for the insertion of d to be feasible, it must
still be possible to satisfy all negative capacity requirements after i, which, in other words, means
that the maximal possible load after d must be at least as much as the absolute value of the most
negative load balance computed from i until the end of the route.
The return false in line 35 can be explained as follows. The minimal load aboard the lorry when
leaving a decoupling vertex must be the maximum of the following quantities: (i) the absolute
value of the most negative load balance on the subroute up to and including h, (ii) the absolute
value of the most negative load balance on the subroute from h+1 until the end of the subroute
minus qp, and (iii) the total load in the vehicle when leaving the decoupling vertex minus the
trailer capacity. Then, when p is inserted, the load after p is the sum of this minimal load, the
load balance from the start of the subroute up to h, and qp. If this sum exceeds the lorry capacity,
the insertion is infeasible.
The algorithm returns false in line 40 if the absolute value of the most negative load balance on
the subroute on which d is to be inserted, computed from any index before i up to i, plus |qd|
exceeds the lorry capacity, as this quantity is a lower bound for the amount of load that must be
aboard the lorry after decoupling when d shall be inserted after i.
Finally, Algorithm 3 returns false in line 51 when, after inserting d directly behind i, not enough
load can be in the lorry to satisfy the most negative load balance on the subroute after i. This
is tested as follows. The load that can be in the lorry at the decoupling vertex equals the load
balance from the start of the route up to the decoupling vertex plus the maximal additional load
that can be picked up at the depot. The load at i is the minimum of the lorry capacity and the load
at the decoupling vertex plus the most positive load balance from the start of the subroute up to i
plus the most negative load balance on the subroute from any vertex before up to i. The load after
visiting d is then equal to the load at i plus qd, and this load must be non-negative and greater
than or equal to the absolute value of the most negative load balance from i+1 to the end of the
subroute.
Note that lines 21 ff. are valid whether or not loading at the start depot is allowed.
An alternative feasibility testing procedure for the many-to-many PDP without trailers is de-
scribed by Kindervater and Savelsbergh [16].
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Algorithm 3 TestCapacityConstantManyToManyPDPT(p,d, r,h, i,k)
Input: Pickup-and-delivery task (p,d) with capacity requirements qp ≥ 0 and qd ≤ 0

Route r = (0,1,2, . . . ,n)
Indices of insertion positions h, i with 0≤ h ≤ i ≤ n−1
Vehicle k (single lorry or LTC) with lorry and trailer capacities Ql and Qt; for single lorries,
Qt == 0

Result: Returns true iff inserting p or a triple p̃ = ptlp → p → ptlp into r after index h and d or a
triple d̃ = ptld → d → ptld after i (or, iff h == i, after p or p̃) is feasible regarding lorry and
trailer capacity, false otherwise

1 // Evaluate feasibility of insertion regarding total capacity
2 if qp > 0
3 offset=OffsetsToWhereActualTotalLoadIsMaximal[h]
4 if MaxActualTotalLoad[h]
5 +((−1) ·MostNegativeLoadBalanceFromStart[n]+MostNegativeLoadBalanceFromStart[h+offset])
6 +(qp − ((−1) ·MostNegativeLoadBalanceFromStart[n]+MostNegativeLoadBalanceFromStart[h]))
7 >Ql +Qt

8 return false
9 if Unloading at end depot is not allowed

10 if max(0,LoadBalanceFromTo[0][h])+ qp +LoadBalanceFromTo[h+1][n− (h+1)]> 0
11 return false
12 else
13 MaxAdditionalLoadThatCanBePickedUpAtDepot= 0
14 if Loading at start depot is allowed
15 MaxAdditionalLoadThatCanBePickedUpAtDepot=Ql +Qt −MaxTotalLoadOfSegment[0][i]
16 MaxTotalLoadAfterDelivery=
17 MaxTotalLoadOfSegment[i][0] +MaxAdditionalLoadThatCanBePickedUpAtDepot+ qd
18 if MaxTotalLoadAfterDelivery<max(0,(−1)·MostNegativeLoadBalancesFromPosToEndOfRoute[i+1])
19 return false
20 // Evaluate feasibility of insertion regarding lorry capacity
21 if Qt > 0 and i > h // Vehicle is an LTC and delivery is not directly after pickup
22 // Evaluate feasibility of insertion of pickup
23 if qp > 0 and TrailerAttached[h] == false
24 ind = IndexOfLastPrecedingDecouple[h]
25 MinLoadAtDecouple= (−1) ·MostNegativeLoadBalanceOnSubrouteFromTo[ind][h− ind]
26 offset=OffsetOfNextCoupling[h+1]
27 MinLoadAtDecouple=
28 max(MinLoadAtDecouple, (−1)·MostNegativeLoadBalanceOnSubrouteFromTo[h+1][offset]−qp)
29 MinLoadAtDecouple=max(MinLoadAtDecouple,MaxTotalLoadOfSegment[ind][0]−Qt)
30 LoadAfterPickup=MinLoadAtDecouple+LoadBalanceFromStartOfSubroute[h]+ qp
31 offset=OffsetOfNextCoupling[h+1]
32 if h+OffsetOfNextCoupling[h]≥ i
33 offset= i−h
34 if LoadAfterPickup+MaxLoadBalanceFromStartOfSubroute[h+1][max(0,offset−1)]>Ql

35 return false
36 // Evaluate feasibility of insertion of delivery
37 if qd < 0 and TrailerAttached[i] == false
38 ind = IndexOfLastPrecedingDecouple[i]
39 if (−1) ·MostNegativeLoadBalanceOnSubrouteFromAnyVertexBeforeUntilPos[i]+ (−1) · qd >Ql

40 return false
41 MaxAdditionalLoadThatCanBePickedUpAtDepot= 0
42 if Loading at start depot is allowed
43 MaxAdditionalLoadThatCanBePickedUpAtDepot=Ql +Qt −MaxTotalLoadOfSegment[0][ind]
44 PossibleLorryLoadAtDecouple=
45 MaxTotalLoadOfSegment[ind][0]+MaxAdditionalLoadThatCanBePickedUpAtDepot
46 LoadAtPredOfDelivery=
47 min(Ql ,PossibleLorryLoadAtDecouple+MaxLoadBalanceFromStartOfSubroute[ind][i− ind])
48 +MostNegativeLoadBalanceOnSubrouteFromAnyVertexBeforeUntilPos[i]
49 LoadAfterDelivery= LoadAtPredOfDelivery+ qd
50 if LoadAfterDelivery<max(0,(−1) ·MostNegativeLoadBalanceFromIUntilEndOfSubroute[i+1])
51 return false
52 return true
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5 Conclusion and Outlook

This paper has studied several variants of the PDPT, a routing problem where transport tasks
between pickup and delivery locations must be fulfilled by a fleet of capacity-constrained single
lorries and lorry-trailer combinations subject to accessibility restrictions at locations. Procedures
to test the capacitive feasibility of inserting a task into an existing route have been presented.
The procedures run in constant time, given appropriate auxiliary data that can be computed in a
preprocessing step.
In their survey, Battarra et al. [1] write (p. 181): ‘When looking at the pickup and delivery literat-
ure as a whole, one cannot fail to notice that there exists a very large number of problem variants
which differ in their structure but nevertheless share many similarities. One can thus hope to
see the development of general modelling and solution techniques capable of handling multiple
variants with a unified framework.’ The author hopes that the present paper constitutes a step in
this direction.
In any case, there is ample opportunity for further research: throughout the paper at hand, it
was assumed that the goods to be transported are homogeneous and load can be split arbitrarily
between a lorry and its trailer. This is true for many practical situations, most notably, for the
transport of liquids, bulk cargo, and palleted goods. However, in all problem variants, the trans-
ported goods might just as well consist of a number of distinct items with different sizes, so that
load splitting between lorry and trailer is possible only in discrete amounts. The transfer of load
between a lorry and its trailer can even be completely forbidden or impossible for technical reas-
ons. Taking this into account would require major changes to the procedures described above. It
is thus beyond the scope of the present work and left for future research.
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