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Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing
Problem

Timo Hintsch∗,a

aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

The soft-clustered vehicle-routing problem (SoftCluVRP) is a variant of the classical capacitated vehicle-
routing problem. Customers are partitioned into clusters and all customers of the same cluster must be served
by the same vehicle. In this paper, we present a large multiple neighborhood search for the SoftCluVRP. We
design and analyze multiple cluster destroy and repair operators as well as two post-optimization components,
which are both based on variable neighborhood descent. The first allows inter-route exchanges of complete
clusters, while the second searches for intra-route improvements by combining classical neighborhoods (2-
opt, Or-Opt, double-bridge) and the Balas-Simonetti neighborhood. Computational experiments show that
our algorithm clearly outperforms the only existing heuristic approach from the literature. By solving
benchmark instances, we provide 130 new best solutions for 220 medium-sized instances with up to 483
customers and prove 12 of them to be optimal.

Key words: Vehicle Routing, Clustered Vehicle Routing, Large neighborhood search

1. Introduction

The soft-clustered vehicle-routing problem (SoftCluVRP) is a variant of the well-known capacitated
vehicle-routing problem (CVRP, Toth and Vigo, 2014) and has been introduced by Defryn and Sörensen
(2017). It can be described as follows. The customers are grouped into disjoint clusters and all customers of
a cluster must be served by the same vehicle (soft-cluster constraints). Visits to customers of the same cluster
can be interrupted by visits to customers of other clusters. This is a relaxation of the clustered vehicle-routing
problem (CluVRP, Sevaux and Sörensen, 2008) in which interruption is not allowed, but all customers of a
cluster must be served contiguously (hard-cluster constraints). Hintsch and Irnich (2018a) have shown that
this relaxation can decrease the costs of optimal solutions by 6.21% on average for medium-sized instances,
but finding optimal solutions is very difficult.

Both the SoftCluVRP and the CluVRP arise in practical scenarios, e.g., in parcel/small-package de-
livery in courier companies (Sevaux and Sörensen, 2008): Typically, customers are grouped into regional
zones/districts (see Butsch et al., 2014, for districting) and parcels are sorted into containers according to
their corresponding district by ZIP codes. Note that the districting and thus the sorting policy are made
on the tactical planning level and altered only occasionally. They are fixed before the actual demand distri-
bution is known. Therefore, the clustering decision must be taken into account when the routing decision is
made on the operational planning level. In the CluVRP each parcel from one container is delivered before
delivering parcels from another container is allowed, while in the SoftCluVRP there are no such requirements.

The CluVRP is addressed by exact approaches (Pop et al., 2012; Battarra et al., 2014) and by several
metaheuristics (Barthélemy et al., 2010; Expósito Izquierdo et al., 2013; Vidal et al., 2015; Expósito-Izquierdo
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et al., 2016; Defryn and Sörensen, 2017; Hintsch and Irnich, 2018b; Pop et al., 2018). To the best of our
knowledge, only two approaches consider the SoftCluVRP. Hintsch and Irnich (2018a) presented an exact
branch-and-price algorithm, which provides optimal solutions for instances with up to 420 customers and up
to 52 clusters. Defryn and Sörensen (2017) suggested a two-level metaheuristics that originally was developed
for the CluVRP. In this case, the low-level routing problem only considers the routing of customers inside a
cluster (intra-cluster routing) and the high-level routing problem alters the position of clusters inside a route
or moves clusters to another route (inter-cluster routing). This approach was adapted to the SoftCluVRP
by allowing for customers to be moved to any position inside the current route at the lower level. Hence, the
low-level routing considers intra-route moves of customers and the high-level routing considers inter-route
moves of complete clusters. Both levels are solved by variable neighborhood search (VNS, Mladenović and
Hansen, 1997).

The main contribution of the paper at hand is the design and computational analysis of a large multiple
neighborhood search (LMNS, Pisinger and Ropke, 2007) for the SoftCluVRP. We will show that our new
LMNS is able to improve the best known solutions for more than half of the considered medium-sized
benchmark instances. In addition, we provide solutions for large-sized benchmarks that were not considered
for the SoftCluVRP in the literature before.

Large neighborhood search (LNS, Shaw, 1998; Ropke and Pisinger, 2006b) has been shown to solve a
wide range of routing problems successfully (see the survey by Pisinger and Ropke, 2010). Our approach
combines the usage of multiple destroy and repair operators with two variable neighborhood descents (VNDs,
Hansen and Mladenović, 2001) for post-optimization. The first VND allows for swapping and relocating
complete clusters between routes, while the second VND improves single routes by classical neighborhoods
(2-opt, Or-Opt, double-bridge) for the asymmetric traveling salesman problem (ATSP) as well as the Balas-
Simonetti neighborhood (Balas, 1999; Balas and Simonetti, 2001). Although it is of exponential size, the
Balas-Simonetti neighborhood can be searched in polynomial time.

The general design of our approach is adapted from the LMNS for the CluVRP presented by Hintsch
and Irnich (2018b). However, important components of their approach are based on the exploitation of the
hard-cluster constraints, for example the preprocessing of intra-cluster routes, a meta-representation with
meta-nodes for the clusters, and a generalization of the Balas-Simonetti neighborhood. Since we consider
soft-cluster constraints, major modifications are required for the destroy and repair operators as well as the
post-optimization, resulting in a clearly differing algorithm (see Section 2).

We use the following notation: Let V = {0, . . . , n} be the node set with the depot node 0 and the
customer nodes V \ {0} = {1, . . . , n} and let E be the edge set. Then, the SoftCluVRP can be defined on
a complete undirected graph G = (V,E). A fleet of m homogeneous vehicles with capacity Q is located at
the depot 0. The nodes are partitioned into N +1 clusters V0, V1, V2, . . . , VN , where V0 = {0} represents the
depot cluster for convenience. A positive demand dh > 0 is associated with every customer cluster indexed
by h ∈ H = {1, 2, . . . , N}. The depot cluster V0 has zero demand d0 = 0. We define nh = |Vh| as the
cardinality of cluster h ∈ H ∪ 0. A non-negative routing cost cij is associated with each edge {i, j} ∈ E.

The task is to find m feasible routes visiting each customer exactly once and minimizing the total routing
costs. According to the literature, each vehicle has to serve at least one cluster. Hence, a route r is feasible
if

(i) it starts and ends at the depot node 0 and serves at least one cluster h ∈ H,
(ii) it visits each customer i ∈ Vh exactly once if any customer j ∈ Vh is visited by r, and
(iii) the demand of the visited clusters respects the vehicle capacity Q.

The remainder of this paper is structured as follows. In Section 2, the overall LMNS algorithm and all
its components are described in detail. Comprehensive computational studies are summarized in Section 3.
We analyze the effects of the destroy and repair operators as well as both post-optimization components.
Moreover, we compare the results of the LMNS to the results generated by Defryn and Sörensen (2017).
Final conclusions are drawn in Section 4.
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2. LMNS for the SoftCluVRP

The general LNS procedure (for VRPs) works as follows: A feasible starting solution has to be given or
created. Then, a destroy operator removes a subset of the customers from the current solution. Afterwards,
these customers are reinserted by a repair operator, possibly at different positions or in different routes. The
destroy and repair operators are applied repeatedly until a stopping criterion is met, while keeping track of
the best solution found.

The number of customers to be removed can vary from iteration to iteration. In the basic version, it is
increased if no improvement can be found for a specified number of iterations (Shaw, 1998), while Ropke
and Pisinger (2006a) randomly choose the number of customers out of a given range in each iteration. After
restoring the solution with the repair operator, it is accepted as the current solution based on an acceptance
criterion. Shaw (1998) only accepts improving solutions, while Ropke and Pisinger (2006a,b) suggest to use
a simulated annealing acceptance criterion.

As an extension, Ropke and Pisinger (2006a) introduced the adaptive LNS (ALNS) for the pickup and
delivery problem with time windows. In each iteration, the destroy and the repair operator are selected
randomly out of a set of multiple destroy and repair operators depending on a given weight per operator.
The weights are updated according to the success of the respective operators in former iterations. LMNS
(Pisinger and Ropke, 2007) also uses different destroy and repair operators, but in contrast to ALNS their
given weights remain unchanged. Our approach is an adaptation of the LMNS for the CluVRP developed
by Hintsch and Irnich (2018b). We adopt the record-to-record acceptance criterion and the idea of post-
optimizing the repaired solution (which was first suggested by Ropke, 2009). However, due to the soft-cluster
constraints, customers of clusters that are served by the same route can be visited in arbitrary order and a
meta-representation of routes on a cluster level is not applicable. The meta-representation was an essential
property of the LMNS by Hintsch and Irnich (2018b). Hence, we have to implement four major modifications:

(i) We cannot exploit the pre-computation of intra-cluster routes. Instead, we calculate feasible routes
that include the depot and serve one cluster or a pair of clusters. These routes are used during the
construction phase and possibly during the repair and the post-optimization phase.

(ii) The destroy and repair operators have to be tailored to the SoftCluVRP.
(iii) Similarly, new variants of the cluster neighborhoods are presented and combined in a VND for post-

optimization (called Clu-VND in the following).
(iv) The generalized version of the Balas-Simonetti neighborhood, used during and after the VND, cannot

be employed. Instead, we extend the post-optimization phase by a second VND which combines
classical neighborhoods with the basic Balas-Simonetti neighborhood. This VND searches for intra-
route improvements and is called ATSP-VND in the following.

In the following, we describe all our LMNS components. Section 2.1 presents improvement strategies for
single routes, including the ATSP-VND, and Section 2.2 combines two neighborhoods that exchange clusters
between different routes to another VND, called Clu-VND. In Section 2.3, we introduce our destroy and
repair operators. Subsequently, the overall LMNS is summarized in Section 2.4.

2.1. ATSP Heuristics
In the SoftCluVRP, customers of a cluster h ∈ H that are visited by the same route can be visited

in an arbitrary order. Hence, the construction or improvement of a single route r can be considered as a
traveling salesman problem (TSP, Gutin and Punnen, 2007), where the task is to find a cost-minimizing
route, starting and ending in the depot, and visiting all customers in between. In the following, n̄ denotes
the number of customer nodes visited by a single route r.

In this section, we present a simple VND for the ATSP, which is used in our LMNS as a post-optimization
component. It is based on three classical edge-exchange neighborhoods (2-opt, Or-opt, and double-bridge,
see, e.g., Funke et al., 2005) and the Balas-Simonetti neighborhood. Furthermore, we embed the VND in
an iterated local search (ILS, Johnson et al., 2007), which results in a combined ILS/VND similar to the
algorithm presented by Irnich (2008). This procedure is used during the construction phase (see Section 2.4).
Before explaining the ATSP-VND and the Combined-ILS/VND, we give a short description on the Balas-
Simonetti neighborhood.
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Balas-Simonetti neighborhood. The Balas-Simonetti neighborhood NBS
k was introduced by Balas (1999)

and is defined for a given integer parameter k ≥ 2. Let r = (r0 = 0, r1, . . . , rn̄, rn̄+1 = 0) be a feasible
route. Then, if ri precedes rj in r by at least k positions, node ri must also precede node rj in a neighbor
route r′ ∈ NBS

k (r). Hence, the Balas-Simonetti neighborhood NBS
k (r) comprises all routes r′ in which

(i) r′0 = r0 and r′n̄+1 = rn̄+1, and (ii) for all i, j ∈ {1, . . . , n̄} with i + k ≤ j, node ri precedes node rj also
in r′. A layered auxiliary network is constructed to find the best neighbor route, where each network node
represents a combination of a node ri of the current route r and a (possibly new) position i′ in route r′, for
which i− k < i′ < i+ k holds. Each source-sink path in the auxiliary network represents a feasible neighbor
route r′ ∈ NBS

k (r).
We use Neil Simonetti’s code (written in C and available online at http://www.andrew.cmu.edu/user/

neils/) to construct the auxiliary network (for details, we refer to Balas and Simonetti, 2001; Simonetti
and Balas, 1996). Next, we briefly summarize the most important properties: The auxiliary network is
independent of the current route r and needs to be constructed only once beforehand. Only the costs of
the arcs in the auxiliary network have to be updated for a given input route. Although the neighborhood
is of exponential size (for details see Gutin et al., 2007, p. 233), the shortest source-sink path, representing
the best neighbor route r′ ∈ NBS

k (r), can be found in O (n̄k22k) time by dynamic programming. Thus, the
computational effort is linear w.r.t. the route size n̄. Moreover, if k ≥ n̄, the best neighbor represents the
optimal solution of the ATSP route. However, the computational effort grows exponentially with k.

ATSP-VND. We combine the Balas-Simonetti neighborhood NBS
k with three classical edge-exchange neigh-

borhoods in a simple VND and search them in the order 2-opt, Or-opt, double-bridge, and Balas-Simonetti.
All three classical edge-exchange neighborhoods can be searched in O (n̄2) time (see Glover, 1996). The re-
sult is a local optimum w.r.t. all four neighborhoods. Note that the SoftCluVRP is defined as a symmetric
problem, but all four neighborhoods, and hence the VND, are applicable to the asymmetric case as well.

Combined-ILS/VND. Our Combined-ILS/VND uses the parameters nsmall for the maximum number of cus-
tomer nodes in a small route, ItILS as the number of ILS iterations for improving larger routes, and k for
the Balas-Simonetti neighborhood used during the VND. Depending on the number of customer nodes n̄
the algorithm distinguishes three cases:

n̄ ≤ 2: There is nothing to do. The resulting route is a pendulum tour including the depot and the
only customer node (or two customer nodes); note that we consider symmetric instances.

3 ≤ n̄ ≤ nsmall: We construct an arbitrary starting route r and search for the best neighbor route r′ ∈
NBS

n̄ (r) only once. Since we set k = n̄ for the Balas-Simonetti neighborhood, the resulting
route is already optimal.

n̄ > nsmall: The actual combination of ILS and VND similar to the procedure by Irnich (2008) is
applied: First, a starting route is constructed by the nearest neighbor heuristic. Second,
we iteratively call ATSP-VND(k) and permute the derived local optimum by two random
double-bridge moves. The result of the permutation is used as the new starting solution
for the next iteration. Overall, ItILS iterations are executed, while keeping track of the
best solution found.

2.2. Cluster Neighborhoods and VND
The goal of this section is to present a simple combination of two cluster neighborhoods, Relocate and

Swap, within a VND. Both cluster neighborhoods are adapted from the CVRP, but always move complete
clusters. They both remove and reinsert a single (Relocate) or two different (Swap) cluster(s).

To remove a cluster h ∈ H, all customers i ∈ Vh have to be removed from their current route. After
removing a customer, the preceding and succeeding customers are connected. Note that the route remains
feasible if all customers i ∈ Vh are removed.

The reinsertion of cluster h into a given route r is feasible if dh, the demand of cluster h, does not
exceed the residual capacity of r. Only feasible insertions are considered. To reinsert the cluster h, all
customers i ∈ Vh are sorted randomly. Then, they are inserted one after another by the Procedure Best
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Insert. A single customer is inserted into the current route by minimizing the insertion cost. Note that
the computational effort is bounded by O (nmaxn), where nmax is the size of the largest cluster.

Procedure Best Insert(V ran
h , r)

Input: Randomly sorted customers V ran
h of cluster h ∈ H,

a route r.
Output: Insertion costs and new route r including all customers in Vh

1 for i ∈ V ran
h do

2 cmin = ∞
3 pos = −1
4 for j = 0, . . . , size(r)− 2 do
5 cost = crj ,i + ci,rj+1

− crj ,rj+1

6 if cost < cmin then
7 cmin = cost
8 pos = j

9 r = (r0, . . . , rpos, i, rpos+1, . . . , rn̄, rn̄+1)

In the following we describe the Relocate and the Swap neighborhoods:

Relocate Neighborhood. The neighborhood N reloc comprises all SoftCluVRP solutions that result from the
removal of a cluster from its current route and the insertion of the same cluster into the same or another
route by the Procedure Best Insert. The size of N reloc is Nm, which is bounded by N2 in the extreme
case. Therefore, the complexity to search it is O (nmaxnN

2), when using Best Insert.

Swap Neighborhood. The neighborhood N swap contains all SoftCluVRP solutions that result from the swap-
ping of two clusters from two different routes. A swap of cluster g, currently visited by route r, and cluster
h, currently visited by route s, is performed as follows: First, we remove all nodes i ∈ Vg∪Vh from their cur-
rent route. Second, we perform Best Insert(V ran

g , s) and Best Insert(V ran
h , r). The size of N swap grows

quadratically with the number of clusters N and the computational effort is limited to O (2nmaxnN
2).

Both neighborhoods are combined within a VND, called Clu-VND in the following. As it is common
practice, we start with the neighborhood that can be searched faster, the Relocate neighborhood N reloc. For
both neighborhoods, we use a first improvement pivoting strategy.

2.3. LNS Operators
Here, we describe the different destroy (Section 2.3.1) and repair operators (Section 2.3.2) employed in

our LMNS.

2.3.1. Destroy Operators
The destroy operators always remove complete clusters, which means that each customer i ∈ Vh is

removed if cluster h is removed. Removing a cluster is performed as described in the previous section. The
percentage of clusters to be removed is defined by a parameter τ and we use four different destroy operators,
similar to the operators applied by Hintsch and Irnich (2018b):

1. Random destroy removes τN clusters at random (Ropke and Pisinger, 2006a). (Note that τN is always
rounded to the next integer. Here, we omit the corresponding formular for simplicity.)

2. Related destroy was introduced by Shaw (1998) and we adapt it to the presence of clusters: First, one
cluster h is removed at random. Then, τN − 1 clusters closest to h are removed, too. The distance
between two clusters Vg and Vh is defined as min(i,j)∈Vg×Vh

cij .
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3. Worst destroy was introduced by Ropke and Pisinger (2006a) and is adapted for clusters: First, the
improvement that would be realized if a cluster is removed from the current solution is calculated for
each cluster h ∈ H and sorted by decreasing improvement in a list L. Furthermore, we define the
parameter ρworst ≥ 1 to randomize the operator. Then, for τN iterations, we determine a uniformly
distributed random number y ∈ [0, 1), pick the cluster at position �yρworst |L|� in L, and remove it
from L and the current solution.

4. Route destroy removes one entire route at random. Note that the parameter τ is not used by this
operator.

2.3.2. Repair Operators
Analogous to the destroy operators, the repair operators reinsert complete clusters. All operators use the

same procedure to insert a given cluster h: If the destroy operator has reduced the number of routes and not
every vehicle serves at least one cluster in the current solution, the given cluster is used to start a new route.
Otherwise, for each route where h could be inserted w.r.t. the capacity, we evaluate the insertion costs for
cluster h by the Procedure Best Insert as described in Section 2.2. Afterwards, the route with smallest
insertion cost is chosen and cluster h is inserted as determined before. If cluster h cannot be inserted into
any route because of the capacity constraint, the repair operator is stopped and the current solution remains
infeasible. The operators only differ in the order the clusters are inserted:

1. Random repair reinserts all removed clusters in random order.

2. Demand repair reinserts all removed clusters in descending order of their demand.

3. Randomized Demand repair is a mixture of both other repair operators and all removed clusters are
sorted according to their demand in descending order. Let L′ be the list of sorted clusters. The
following procedure is repeated until all clusters are reinserted: Similar to the worst destroy operator,
we pick the cluster at position �yρdemand |L′|� from L′, where the parameter ρdemand ≥ 1 is used to
randomize the operator and y ∈ [0, 1) is a uniformly distributed random number. The chosen cluster
is reinserted to the current solution and removed from L′.

2.4. Overall LMNS Algorithm
Our overall LMNS approach combines all components described in Sections 2.1–2.3. Next, we describe

the pseudo-code that is given in Algorithm 1:
In Step 1, we employ a savings algorithm, tailored to the SoftCluVRP, to construct a starting solution

x. In contrast to the classical savings algorithm, a pendulum tour is defined as a route visiting all customers
of one cluster, instead of visiting only one customer. For each cluster h ∈ H, we calculate a route, starting
and ending in the depot, and visiting all customers i ∈ Vh by applying the Combined-ILS/VND (Section 2.1)
with the given input parameters. Moreover, the same is done for each pair of clusters (g, h) ∈ H ×H. Such
a route visits all customers i ∈ Vg ∪ Vh of both clusters. The costs of the resulting routes are defined as ĉh
and ĉg,h, respectively, and savings values are calculated for each pair (g, h) as savg,h = ĉg + ĉh − ĉg,h.

Now, we construct routes as follows. As in the classical savings algorithm, the largest savings value savg,h
is chosen first. Instead of constructing real routes already at this stage, we only consider the corresponding
clusters g and h to be part of the same route. A saving becomes infeasible if both clusters are already part
of the same route or if the total demand of both routes exceeds the vehicle capacity Q. If the resulting
number of routes exceeds the number of vehicles m, we compute a bin-packing solution based on the clusters
(Valério de Carvalho, 1999). Finally, for each set of clusters that are considered to be part of the same route,
either generated by the savings algorithm or by the bin-packing approach, we construct a route with the
Combined-ILS/VND. Such a route visits all customers belonging to clusters that were assigned to that route.

Afterwards, the main loop (Steps 2–14) runs for ItLMNS iterations. Note that infeasible solutions can
occur after the destroy/repair phase, but we only consider feasible solutions (Step 3). Furthermore, given
a parameter εpost, we only consider promising solutions that fulfill the record-to-record criterion c(x) <

6



Algorithm 1: LMNS algorithm for the SoftCluVRP
Input: Iterations ItILS and ItLMNS

Parameters ksav and kpost of Balas-Simonetti neighborhoods
Weights (ψrandom, ψrelated, ψworst, ψroute) and (ωrandom, ωdemand, ωranDem) of destroy and
repair operators
Parameters nsmall, εLMNS, εpost, τmin, τmax, ρworst, and ρdemand

1 x := xaccepted := xbest :=Savings Algorithm(nsmall, ItILS, ksav)
2 for iter := 1, . . . , ItLMNS do
3 if x is feasible then
4 if AcceptanceCriterion1(εpost, x, xbest) then
5 x := Clu-VND(x)
6 x := ATSP-VND(kpost, x)

7 if c(x) < c(xbest) then
8 xbest := x

9 if AcceptanceCriterion2(εLMNS, x, xbest) then
10 xaccepted := x

11 Randomly choose τ ∈ {τmin, . . . , τmax}
12 Randomly choose Opdestroy according to weights (ψrandom, ψrelated, ψworst, ψroute)

13 Randomly choose Oprepair according to weights (ωrandom, ωdemand, ωranDem)

14 x := Oprepair(ρdemand,Opdestroy(τ, ρworst, xaccepted))

(1 + εpost) c(x
best) for post-optimization, see Step 4. The post-optimization is performed in Steps 5 and 6

with the Clu-VND from Section 2.2 followed by the ATSP-VND from Section 2.1. The latter is called for each
route of the current solution x and with k = kpost.

In Steps 7–10, we possibly update the best solution found and/or the accepted solution depending on the
second acceptance criterion. Again, we use a record-to-record acceptance criterion and the current solution
is accepted if c(x) < (1 + εLMNS) c(x

best) is fulfilled for a given parameter εLMNS. Note that we always set
εpost ≥ εLMNS. Steps 11–13 randomly choose the percentage τ of clusters to be removed as well as one
destroy and one repair operator out of the seven operators presented in Section 2.3. Afterwards, the chosen
operators are applied in Step 14, resulting in the new solution for the next iteration.

In both the Clu-VND as well as the repair operators, we deviate from the described procedure if cluster
g is inserted into a route which currently serves no other or only one other cluster h. In such a case, our
algorithm uses the route that was already derived by the Combined-ILS/VND during the savings algorithm,
according to cluster g or the pair of clusters (g, h), respectively.

Furthermore, we enable our algorithm to stop prematurely if a time limit is given.

3. Computational Results

All computational results are obtained using a standard PC equipped with MS Windows 7, an Intel(R)
Core(TM) i7-5930K CPU processor clocked at 3.5 GHz, and with 64GB of main memory. Our algorithm
is implemented in C++ and compiled in 64-bit single-thread code with MS Visual Studio 2015 in release
mode. If necessary, CPLEX 12.8 is used to compute bin-packing solutions.

In Section 3.1, we introduce the considered benchmark instances and in Section 3.2, the parameters of
our LMNS are tuned. Afterwards, the calibrated LMNS is analyzed and compared to the two-level VNS
by Defryn and Sörensen (2017) on different instance sets (Sections 3.3 and 3.4). Results for large-sized
instances that were not considered for the SoftCluVRP in the literature before are presented in Section 3.5.
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3.1. SoftCluVRP Benchmark Instances
We test our LMNS algorithm on three benchmark sets that were used in previous studies in the literature.

All SoftCluVRP benchmark sets were derived from CVRP benchmarks by defining θ as the desired average
number of customers per customer cluster and building N = �(n + 1)/θ� customer clusters (for details,
see Fischetti et al., 1997; Bektaş et al., 2011). The first benchmark set was proposed by Bektaş et al.
(2011). They adapted the CVRP benchmarks called A, B, P, and GC by choosing θ ∈ {2, 3}, resulting in
the two subsets GVRP-2 and GVRP-3. Overall, 158 small- and medium-sized instances (available online at
http://www.personal.soton.ac.uk/tb12v07/gvrp.html) with 16 to 262 nodes and 6 to 131 clusters were
generated. The second benchmark set Golden is based on the well-known CVRP instances by Golden et al.
(1998) and was generated by choosing θ = {5, . . . , 15} for each of the 20 original instances Golden1 to
Golden20. It was provided by Battarra et al. (2014) and consists of 220 large-scale instances with 201 to
484 nodes and 14 to 97 clusters. The third set Li was generated by Vidal et al. (2015) using the CVRP
instances of Li et al. (2005) and θ = 5. It comprises 12 large-scale instances with 561 to 1201 nodes and
113 to 241 clusters. The number of vehicles m is given for each instance and it is not allowed to use less
vehicles.

For each instance, our LMNS is run with ten different random seeds. The computation time is measured
as the average over the ten runs. In the following, all computation times T are given in seconds. Furthermore,
we define the gap in percentage between the solution value z and the best known solution BKS as gap =
100(z −BKS)/BKS. The smallest gap found in the ten runs is given by Gap Best, while Gap Avg. refers to
the average gap over the ten runs.

3.2. Parameter studies
In this section, we determine reasonable parameter settings for our LMNS algorithm to obtain high-

quality solutions in fast computation times. As suggested by Ropke and Pisinger (2006a), we start with a
setting found during pretests and then analyze the different components. First, we configure the SoftClu-
VRP tailored savings algorithm in Section 3.2.1. Afterwards, we determine the basic LMNS parameters,
including the weights for the destroy and repair operators, and assess the usefulness of our post-optimization
components in Sections 3.2.2 and 3.2.3. If not stated otherwise, we refer to a setting of our algorithm as
LMNSkpost

ItLMNS
or, if a time limit is given, as LMNSkpost

ItLMNS
(maxTime), where maxTime is the time limit in

seconds.

3.2.1. Parameters for the Savings Algorithm
The only parameters that need to be set for the savings algorithm are those of the Combined-ILS/VND:

nsmall, ItILS, ksav. We simply adopt the parameter settings chosen by Hintsch and Irnich (2018b), which
turned out to be a good tradeoff between solution quality and computational effort. In their approach,
the Combined-ILS/VND was used to compute the shortest Hamiltonian path for each pair of nodes inside
a cluster, which played an important role for the overall algorithm. In the paper at hand, it is only used
during the construction phase. Although the derived routes might be used during the overall algorithm (see
Section 2.4), the results are not crucial for our LMNS. In contrast to the approach by Hintsch and Irnich
(2018b), they can be corrected by later steps.

Therefore, we do not invest much effort in adjusting these parameters and set (nsmall, ItILS, ksav) =
(8, 50, 3). Hence, routes with up to nsmall = 8 customer nodes are solved exactly by applying the Balas-
Simonetti neighborhood only once. Otherwise, the ILS runs for ItILS = 50 iterations using ksav = 3
for the Balas-Simonetti neighborhood. This decision is supported by experiments conducted a posteri-
ori: For the chosen parameters, the setup LMNS3

10 000, e.g., generates an average Gap Best of 0.029 %
(Gap Avg. = 0.136%) over all GVRP and Golden instances, while the geometric mean of the computation
times is Geo. T = 17.0. Increasing the number of iterations ItILS from 50 to 100 even leads to an inferior
solution quality with Gap Best = 0.039% and Gap Avg. = 0.138% with the same computational effort
(Geo. T = 17.0).
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3.2.2. Parameters for the basic LMNS
In this section, we analyze the basic parameters of our LMNS, focusing on the destroy and repair

operators. Pretests have shown that (εpost, εLMNS, τmin, τmax, ρ
worst, ρdemand) = (0.1, 0.005, 10, 40, 3, 50)

represent a good basic setting. It means that the current solution x is post-optimized by the Clu-VND and
the ATSP-VND only if c(x) ≤ 1.1c(xbest) and accepted as new current solution only if c(x) ≤ 1.005c(xbest).
The destroy operator removes between τmin = 10% and τmax = 40% of the clusters from the current
solution, and ρworst = 3 and ρdemand = 50 are chosen as the randomization values for the Worst destroy
and the Randomized Demand repair operators, respectively.

To configure the weights (ψrandom, ψrelated, ψworst, ψroute, ωrandom, ωdemand, ωranDem) of all destroy and
repair operators, we set kpost = 3 (see Section 3.2.3 for analyses on kpost) and run our LMNS with 10 000
iterations and for several different setups. To limit the computational effort, we only consider the 158 GVRP
instances for this series of experiments. The most important finding concerning the destroy operators is that
the operator Route destroy is clearly inferior compared to all three other destroy operators. For example, if
only one destroy operator is used (together with equally weighted repair operators), the average Gap Best
is 0.939 % for Route destroy. Using Random (Related, Worst) destroy instead, the average Gap Best is
reduced to 0.013 % (0.032%, 0.020 %). On the basis of these results and further pretests we decide to use
the Route destroy less often than the other three operators. Comparing only these three operators, they
perform comparable. Hence, we choose (ψrandom, ψrelated, ψworst, ψroute) = (0.3, 0.3, 0.3, 0.1). Similarly,
for the repair operators, we find that choosing equal weights turns out to be a good setup. The resulting
average Gap Best is smaller than 0.001 % and the best out of ten runs finds the BKS for all but one instance.
By using only one repair operator (together with the weights previously chosen for the destroy operators),
Gap Best ranges from 0.004 % to 0.009%.

Subsequently, we systematically test for the usefulness of each and every operator. We compare the chosen
setup (called All Operators) to setups where one of the operators is disabled, but the ratio of the remaining
operators is kept fixed. For example, if the Worst destroy is disabled, the weights for the destroy operators
change to (ψrandom, ψrelated, ψroute) = (0.3, 0.3, 0.1)/0.7. Again, we set kpost = 3 and ItLMNS = 10 000. The
results are summarized in Table 1. Avg. T refers to the arithmetic mean of the average computation time
over ten runs for all 158 instances and Geo. T gives the geometric mean.

w/o destroy operator w/o repair operator All

Random Related Worst Route Random Demand Ran.Dem. Operators

Avg. T 3.1 3.1 3.1 3.0 3.1 3.1 3.0 3.2
Geo. T 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.1
Gap Best [%] 0.004 0.014 0.004 0.014 0.014 0.026 0.003 <0.001
Gap Avg. [%] 0.093 0.111 0.100 0.081 0.123 0.090 0.092 0.086
# BKS (158) 156 154 156 155 154 155 156 157

Table 1: Comparison of LMNS using different destroy and repair operators and 158 GVRP benchmark in-
stances.

The computational effort is nearly the same for all settings. For example, Avg. T ranges from 3.0 to 3.2
seconds. All Operators produces an average Gap Best smaller than 0.001 %, while the other seven settings
result in a Gap Best between 0.003% and 0.026%. Comparing for the average Gap Avg., All Operators is
inferior to the setting without Route destroy (0.086 % vs. 0.081 %), while the remaining six gaps are not
smaller than 0.090 %. Nevertheless, due to the smaller Gap Best, we still keep the Route destroy operator.
Furthermore, it is the only setting that finds the BKS in 157 out of the 158 GVRP instances. Hence, we fix
the chosen weights for all remaining studies.

3.2.3. Usefulness of the post-optimization
In our LMNS, the post-optimization of repaired solutions comprises two components: The Clu-VND,

which relocates and swaps complete clusters, and the ATSP-VND, which improves single routes and consists
of four neighborhoods (2-opt, Or-opt, double-bridge, Balas-Simonetti). In addition to the GVRP instances, we
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Avg. T from 31.9 to 55.2 seconds. As before, reducing the number of iterations for Full-3 helps to show the
usefulness of Clu-VND by producing a Gap Best of 0.047% in 27.9 seconds average computation time. Third,
we observe the expected tradeoff between solution quality and computation time for the kpost of the Balas-
Simonetti neighborhood used in the ATSP-VND. Higher values for kpost help to find better solutions, while
the computational effort only raises reasonably for kpost ≤ 5. However, for kpost > 5, computation times
increase drastically with only little improvement in the solution quality. We omit settings with kpost = 9 in
Figure 1 due to very high running times. For example, Full-9 gives the smallest Gap Best of only 0.018%
but runs for 276.3 seconds on average.

Very similar results are observed by comparing Gap Avg. instead of Gap Best. Overall, both VND
components used for post-optimization contribute to the quality of our LMNS. Furthermore, setting kpost
to 3 or 5 yields the most favorable results and we report more details on both settings in the next sections.
This result is very similar to observations from the literature (see, e.g., Gschwind and Drexl, 2018; Hintsch
and Irnich, 2018b).

3.3. Results for the GVRP Instances
In this section, we give more detailed results of our LMNS for the small-sized GVRP instance set and

compare them to the results of the two-level VNS proposed by Defryn and Sörensen (2017). Our LMNS is
run with both chosen settings, kpost = 3 as well as kpost = 5, and again for ItLMNS = 10 000 iterations.

LMNS3
10 000 LMNS5

10 000 DS (2017)

T Gap # T Gap # T Gap #

Set (# inst.) Avg. Geo. Best Avg. BKS Avg. Geo. Best Avg. BKS Avg. Best Avg. BKS

GVRP-2
A-2 (27) 1.87 1.71 0.00 0.11 27 2.78 2.54 0.00 0.10 27 n.a. n.a. n.a. n.a.
B-2 (23) 2.19 2.05 0.00 0.01 23 2.91 2.76 0.00 0.01 23 n.a. n.a. n.a. n.a.
P-2 (24) 2.42 2.42 0.00 0.14 24 3.18 2.06 0.00 0.12 24 n.a. n.a. n.a. n.a.
GC-2 (5) 12.74 11.79 0.01 0.60 4 14.54 13.77 0.16 0.61 3 n.a. n.a. n.a. n.a.

GVRP-3
A-3 (27) 1.97 1.84 0.00 0.03 27 2.79 2.64 0.00 0.03 27 0.28 0.07 0.14 26
B-3 (23) 2.25 2.25 0.00 0.02 23 3.08 2.92 0.00 0.02 23 0.06 0.00 0.00 23
P-3 (24) 2.48 1.64 0.00 0.02 24 3.28 2.31 0.00 0.02 24 0.52 0.10 0.16 19
GC-3 (5) 22.71 17.98 0.00 0.49 5 24.95 20.22 0.00 0.44 5 13.46 0.43 0.91 1

Total (158) 3.17 2.06 <0.01 0.09 157 4.06 2.84 <0.01 0.08 156 n.a. n.a. n.a. n.a.

Table 2: Aggregated results for the 158 GVRP instances.

The results are summarized in Table 2, where ’DS (2017)’ refers to the two-level VNS by Defryn and
Sörensen (2017). Our two LMNS settings perform very similar on these instances. In total, the compu-
tation time is smaller for LMNS3

10 000, but it differs less than one second on average. Overall, LMNS3
10 000

(LMNS5
10 000) finds the BKS for all but one (two) instance(s), resulting in an average Gap Best of <0.01%

(<0.01 %). For the GC-2 instances, we obtain an average Gap Best of 0.01 % (0.16 %). Considering Gap Avg.,
LMNS5

10 000 performs slightly better (0.08% vs. 0.09 % overall).
Comparing with the two-level VNS, note that Defryn and Sörensen (2017) run their algorithm for 20

different random seeds, but did not consider the GVRP-2 instances. Furthermore, they reported computation
times only by arithmetic means for subsets. For the GVRP-3 instances, they can find the BKS for 69
instances, whereas both LMNS settings find each and every BKS, resulting in smaller or equal Gap Best
values. The Gap Avg. values are smaller for the LMNS, too, except for the B-3 instances (0.02 % vs.
0.00 %). Computation times are clearly smaller for the two-level VNS, but also reasonably small for both
LMNS settings and all subsets A-3, B-3, P-3 (at most 3.28 seconds on average). Moreover, reducing the
number of iterations to 1 000 and applying additional tests, for example with LMNS3

1 000, leads to average
computation times that are smaller for our LMNS for each of the subsets except B-3 (0.27 vs. 0.06 seconds),
and we can still find every BKS.
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Furthermore, our LMNS finds every solution that is known to be optimal (for optimal solutions, see
Hintsch and Irnich, 2018a) and improves the BKS from the literature for 10 (LMNS3

10 000) and 11 (LMNS5
10 000)

of the remaining 13 instances (where the exact approach was prematurely terminated after 3 600 seconds).
One of the new BKS can even be proven to be the optimal solution, since the calculated costs equal the
corresponding lower bound reported for this instance by Hintsch and Irnich (2018a). Detailed instance-by-
instance results are given in Tables 5–8 of the Online Supplement.

3.4. Results for the Golden Instances
Analogous to the previous section, we analyze our LMNS for the medium-sized Golden instances. Results

are given in Tables 3 (for kpost = 3) and 4 (kpost = 5), where the instances are grouped by average cluster
size θ ∈ {5, . . . , 15}. Instances are easier to solve for larger average cluster sizes θ, which implies a decreasing
number of clusters N . This leads to strictly decreasing computation times for both LMNS settings. The gaps
also tend to decrease with an increasing θ, but this observation is ambiguous, in particular for Gap Best.

Over all 220 instances, the average Gap Best of 0.05% produced by LMNS3
10 000 can be reduced to 0.04 %

by LMNS5
10 000, accepting a slightly higher computation time (92.6 vs. 98.8 seconds on average and 77.6 vs.

84.6 geometrical mean). Simultaneously, Gap Avg. reduces from 0.18 % to 0.15%. We observe smaller gaps
for LMNS5

10 000 compared to LMNS3
10 000 for all average cluster sizes, except θ = 5, where LMNS5

10 000 gener-
ates Gap Best = 0.05% compared to 0.04 %. Overall, 147 (162) BKS are found by LMNS3

10 000 (LMNS5
10 000).

LMNS3
10 000 LMNS3

10 000(10) DS (2017)

Gap T # Gap T # Gap T #

θ Best Avg. Avg. Geo BKS Best Avg. Avg. BKS Best Avg. Avg. BKS

5 0.04 0.18 126.5 105.3 14 0.30 0.71 10.0 6 3.84 5.02 10.0 0
6 0.08 0.24 113.2 94.9 10 0.35 0.64 10.0 4 3.58 4.65 10.0 0
7 0.03 0.19 105.1 89.5 14 0.29 0.58 10.0 5 3.31 4.24 10.0 0
8 0.07 0.18 98.5 84.1 14 0.22 0.45 10.0 9 3.01 3.97 10.0 0
9 0.04 0.16 92.5 79.0 14 0.22 0.51 10.0 8 2.66 3.65 10.0 0
10 0.04 0.16 88.5 76.0 14 0.17 0.44 10.0 9 2.77 3.51 10.0 0
11 0.09 0.17 84.7 72.4 10 0.18 0.44 10.0 9 2.60 3.38 10.0 0
12 0.08 0.17 82.0 70.3 12 0.20 0.40 10.0 9 2.45 3.20 10.0 0
13 0.07 0.24 79.3 67.7 14 0.16 0.44 10.0 7 2.42 3.26 10.0 0
14 0.03 0.12 75.0 64.2 15 0.16 0.34 10.0 8 2.28 3.10 10.0 0
15 0.02 0.10 72.9 61.8 16 0.12 0.31 10.0 8 2.27 3.11 10.0 0

Total 0.05 0.18 92.6 77.6 147 0.22 0.48 10.0 82 2.84 3.74 10.0 0

Table 3: Aggregated results for kpost = 3 and benchmark set Golden, sorted by the average number of nodes
per cluster θ (220 instances divided into 11 groups of 20 instances each).

Since Defryn and Sörensen (2017) set a time limit of 10 seconds, we also run our LMNS with the
same time limit. The results clearly show the superiority of our LMNS over the two-level VNS. For all
groups of instances, the gaps obtained by the LMNS do not exceed 0.35% for Gap Best and 0.73% for
Gap Avg.. On the contrary, Defryn and Sörensen (2017) report gaps between 2.27 % and 3.84% (Gap Best),
and from 3.10 % to 5.02% (Gap Avg.). Moreover, LMNS3

10 000(10) and LMNS5
10 000(10) find 82 and 89 BKS,

respectively, while the two-level VNS cannot find any BKS. Comparing the two LMNS settings with the
time limit of ten seconds, kpost = 5 also performs slightly better w.r.t. both Gap Best and Gap Avg. (0.20 %
and 0.45 % over all 220 Golden instances compared to 0.22% and 0.48 %). However, comparing for different
average cluster sizes, there is more volatility than for the case without a time limit.

Finally, both our LMNS settings produce 130 new BKS for the Golden instance set. Out of them,
7 solutions can be proven to be optimal because they hit the corresponding lower bound generated by
the branch-and-price algorithm of Hintsch and Irnich (2018a). In addition, 5 solutions that were generated
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LMNS5
10 000 LMNS5

10 000(10) DS (2017)

Gap T # Gap T # Gap T #

θ Best Avg. Avg. Geo BKS Best Avg. Avg. BKS Best Avg. Avg. BKS

5 0.05 0.19 130.7 111.4 13 0.33 0.73 10.0 5 3.84 5.02 10.0 0
6 0.02 0.19 119.7 101.9 15 0.31 0.64 10.0 4 3.58 4.65 10.0 0
7 0.03 0.16 112.2 97.3 15 0.25 0.50 10.0 6 3.31 4.24 10.0 0
8 0.07 0.16 104.5 90.7 15 0.23 0.41 10.0 8 3.01 3.97 10.0 0
9 0.01 0.15 98.5 85.5 19 0.16 0.47 10.0 11 2.66 3.65 10.0 0
10 0.04 0.13 95.3 83.2 14 0.16 0.38 10.0 9 2.77 3.51 10.0 0
11 0.05 0.15 91.0 79.2 14 0.21 0.40 10.0 9 2.60 3.38 10.0 0
12 0.07 0.15 88.7 77.4 12 0.22 0.37 10.0 10 2.45 3.20 10.0 0
13 0.05 0.20 85.7 74.8 14 0.12 0.41 10.0 10 2.42 3.26 10.0 0
14 0.03 0.10 81.1 70.6 13 0.13 0.30 10.0 9 2.28 3.10 10.0 0
15 0.01 0.09 79.1 68.7 18 0.11 0.29 10.0 8 2.27 3.11 10.0 0

Total 0.04 0.15 98.8 84.6 162 0.20 0.45 10.0 89 2.84 3.74 10.0 0

Table 4: Aggregated results for kpost = 5 and benchmark set Golden, sorted by the average number of nodes
per cluster θ (220 instances divided into 11 groups of 20 instances each).

during the computational experiments and further improved the BKS are also proven to be optimal. Overall,
our LMNS with setting LMNS3

10 000 (LMNS5
10 000) finds 81 (82) out of the 99 solutions for Golden instances

that are now known to be optimal. Detailed results for each instance are given in the Online Supplement
(Tables 9–12).

Further note that, compared to the BKS reported for the CluVRP in the literature, heuristic solutions
generated with our LMNS for the SoftCluVRP (e.g. with setting LMNS5

10 000) reduce the costs by 6.19 %
on average over all Golden instances. If we only consider instances that are solved exactly for both problem
variants, the cost reduction is 6.10 % on average. We refer to Hintsch and Irnich (2018a) for a more detailed
comparison of hard- and soft-cluster constraints on exactly solved instances.

3.5. Results for the Li instances
In a subsequent study, we run our LMNS with both settings, LMNS3

10 000 and LMNS5
10 000, on the 12

large-sized Li instances (see Table 13 of the Online Supplement for detailed instance-by-instance results).
These were not solved for the SoftCluVRP before. LMNS3

10 000 finds the better result for 7 instances,
while LMNS5

10 000 finds better solutions for the remaining 5 instances. The resulting gaps are Gap Best =
0.02% (Gap Avg. = 0.36%) within 658 seconds of average runtime for LMNS3

10 000 and Gap Best = 0.03%
(Gap Avg. = 0.31%) within 680 seconds for LMNS5

10 000. Hence, LMNS3
10 000 performs slightly better on

these instances, but note that they were all generated by choosing θ = 5 and LMNS3
10 000 also performed

better on this group of the Golden instances.
Compared to the BKS for the CluVRP (see Vidal et al., 2015; Hintsch and Irnich, 2018b), costs for

the Li instances are reduced by up to 7.38 % (4.75% on average) due to the relaxation of only including
soft-cluster constraints.

4. Conclusions

In this article, we designed and analyzed a new and well-structured LMNS for the SoftCluVRP. For our
new LMNS we presented four destroy and three repair operators, all tailored to the SoftCluVRP. These are
used to remove and reinsert complete clusters during the destroy and repair phase. Furthermore, we added
two post-optimization components to improve restored solutions after the repair step by local search. Both
components are based on VND. The first VND uses new variants of cluster neighborhoods that allow the
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exchange of clusters between routes, while the second VND improves single routes with the help of classical
edge-exchange neighborhoods and the Balas-Simonetti neighborhood.

We have carefully tested our algorithm on benchmark instances from the literature, showing that all
components, in particular both the Clu-VND and the ATSP-VND, help to increase the quality of our LMNS.
Our algorithm clearly outperforms the two-level VNS by Defryn and Sörensen (2017), the only existing
metaheuristic from the literature. For the medium-sized Golden instances, e.g., our algorithm produces
an average gap of 0.45 % (best gap of 0.20 %) compared to 3.74 % (2.84 %) within the same time limit of
ten seconds. Moreover, for more than half of these instances we generated new best known solutions. In
addition, we could prove 13 new best solutions for small- and medium-sized benchmark instances to be
optimal and our LMNS found 228 of 255 solutions that are known to be optimal. Furthermore, we provided
solutions for large-sized instances with up to 1 200 customers and 241 clusters. These were not considered
for the SoftCluVRP by the literature before, but comparing to best known solutions for the CluVRP (with
hard-cluster constraints), costs were reduced by 4.75 % on average if only soft-cluster constraints have to be
respected.
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Battarra, M., Erdoǧan, G., and Vigo, D. (2014). Exact algorithms for the clustered vehicle routing problem. Operations
Research, 62(1), 58–71.
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Appendix

I. Detailed Results

I.1. Detailed Results for the GVRP Instances
Detailed instance-by-instance results for the GVRP instance set are provided in Tables 5–8.

The instance is described by the number of customers n, the number of vehicles k in the original
CVRP instance, the number of clusters N , and the number of vehicles m. In addition, BKS gives
the best known solution (written in bold if proven optimal) and First found by refers to the article
(or our LMNS) that has found this solution first. For our LMNS, we show the best solution out
of ten runs (Best), the average solution over ten runs (Avg.), and the average total time over
ten runs T derived by setting LMNS5

10 000 (which means the LMNS is run for 10 000 iterations
and with kpost = 5). If the BKS was first found by our LMNS, we omit the number of iterations
in the column First found by for simplicity. For example, we refer to setting LMNS5

10 000 by
LMNS5. If it was found with both kpost = 3 and kpost = 5 we state LMNS3/5. Furthermore,
LMNS* declares a solution found during computational experiments.
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Instance LMNS5
10 000

n k N m BKS First found by Best Avg. T

A 31 5 16 2 595 Hintsch and Irnich (2018a) 595 606.1 1.2
A 32 5 17 3 528 Hintsch and Irnich (2018a) 528 528 1.7
A 32 6 17 3 561 Hintsch and Irnich (2018a) 561 563.1 1.6
A 33 5 17 3 568 Hintsch and Irnich (2018a) 568 568 1.8
A 35 5 18 2 596 Hintsch and Irnich (2018a) 596 596 1.6
A 36 5 19 3 573 Hintsch and Irnich (2018a) 573 573 2.1
A 36 6 19 3 660 Hintsch and Irnich (2018a) 660 660 1.4
A 37 5 19 3 547 Hintsch and Irnich (2018a) 547 547 2.2
A 38 5 20 3 659 Hintsch and Irnich (2018a) 659 659 2.1
A 38 6 20 3 676 Hintsch and Irnich (2018a) 676 676.7 2.1
A 43 6 22 3 723 Hintsch and Irnich (2018a) 723 723 2.3
A 44 6 23 4 679 Hintsch and Irnich (2018a) 679 679 2.5
A 44 7 23 4 774 Hintsch and Irnich (2018a) 774 774 1.7
A 45 7 23 4 708 Hintsch and Irnich (2018a) 708 709.5 2.5
A 47 7 24 4 784 Hintsch and Irnich (2018a) 784 784 2.1
A 52 7 27 4 732 Hintsch and Irnich (2018a) 732 732.6 2.8
A 53 7 27 4 806 Hintsch and Irnich (2018a) 806 806 3.0
A 54 9 28 5 778 Hintsch and Irnich (2018a) 778 778 2.2
A 59 9 30 5 877 Hintsch and Irnich (2018a) 877 877 2.7
A 60 9 31 5 749 Hintsch and Irnich (2018a) 749 749 3.7
A 61 8 31 4 849 Hintsch and Irnich (2018a) 849 849 4.4
A 62 9 32 5 1043 Hintsch and Irnich (2018a) 1043 1043 4.1
A 62 10 32 5 895 Hintsch and Irnich (2018a) 895 895 4.1
A 63 9 32 5 895 Hintsch and Irnich (2018a) 895 895.1 3.0
A 64 9 33 5 825 Hintsch and Irnich (2018a) 825 825.8 5.6
A 68 9 35 5 857 Hintsch and Irnich (2018a) 857 857 6.3
A 79 10 40 5 1115 Hintsch and Irnich (2018a) 1115 1115 4.4

B 30 5 16 3 451 Hintsch and Irnich (2018a) 451 451 1.4
B 33 5 17 3 495 Hintsch and Irnich (2018a) 495 495 2.1
B 34 5 18 3 654 Hintsch and Irnich (2018a) 654 654 1.9
B 37 6 19 3 479 Hintsch and Irnich (2018a) 479 479 2.0
B 38 5 20 3 378 Hintsch and Irnich (2018a) 378 378 1.7
B 40 6 21 3 514 Hintsch and Irnich (2018a) 514 514 1.9
B 42 6 22 3 522 Hintsch and Irnich (2018a) 522 522 2.4
B 43 7 22 4 562 Hintsch and Irnich (2018a) 562 562 1.8
B 44 5 23 3 542 Hintsch and Irnich (2018a) 542 542 2.8
B 44 6 23 4 506 Hintsch and Irnich (2018a) 506 506 2.5
B 49 7 25 4 495 Hintsch and Irnich (2018a) 495 495 3.3
B 49 8 25 5 954 Hintsch and Irnich (2018a) 954 954 2.6
B 50 7 26 4 672 Hintsch and Irnich (2018a) 672 672 2.9
B 51 7 26 4 485 Hintsch and Irnich (2018a) 485 485 3.3
B 55 7 28 4 520 Hintsch and Irnich (2018a) 520 520 3.6
B 56 7 29 4 776 LMNS3/5 776 776 3.9
B 56 9 29 5 983 Hintsch and Irnich (2018a) 983 983 2.8
B 62 10 32 5 865 Hintsch and Irnich (2018a) 865 865 3.5
B 63 9 32 5 550 Hintsch and Irnich (2018a) 550 550 4.8
B 65 9 33 5 849 LMNS3/5 849 849 3.5
B 66 10 34 5 721 LMNS3/5 721 721 4.7
B 67 9 34 5 745 Hintsch and Irnich (2018a) 745 745 3.9
B 77 10 39 5 842 Hintsch and Irnich (2018a) 842 843.4 3.9

Table 5: Detailed results for the GVRP-2 instances, subsets A and B.
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Instance LMNS5
10 000

n k N m BKS First found by Best Avg. T

P 15 8 8 5 299 Hintsch and Irnich (2018a) 299 299 0.2
P 18 2 10 2 195 Hintsch and Irnich (2018a) 195 195 0.7
P 19 2 10 2 208 Hintsch and Irnich (2018a) 208 208 0.8
P 20 2 11 2 208 Hintsch and Irnich (2018a) 208 208 1.0
P 21 2 11 2 209 Hintsch and Irnich (2018a) 209 209 1.0
P 21 8 11 5 397 Hintsch and Irnich (2018a) 397 397 0.4
P 22 8 12 5 369 Hintsch and Irnich (2018a) 369 369 0.5
P 39 5 20 3 401 Hintsch and Irnich (2018a) 401 401 2.5
P 44 5 23 3 443 Hintsch and Irnich (2018a) 443 443 2.9
P 49 7 25 4 464 Hintsch and Irnich (2018a) 464 464.4 3.4
P 49 8 25 4 501 Hintsch and Irnich (2018a) 501 504 1.5
P 49 10 25 5 512 Hintsch and Irnich (2018a) 512 517 2.1
P 50 10 26 6 548 Hintsch and Irnich (2018a) 548 548 2.3
P 54 7 28 4 477 Hintsch and Irnich (2018a) 477 477 3.6
P 54 8 28 4 484 Hintsch and Irnich (2018a) 484 484.5 3.8
P 54 10 28 5 514 Hintsch and Irnich (2018a) 514 514 2.7
P 54 15 28 8 684 Hintsch and Irnich (2018a) 684 684 1.8
P 59 10 30 5 575 Hintsch and Irnich (2018a) 575 577 2.9
P 59 15 30 8 700 Hintsch and Irnich (2018a) 700 700 3.0
P 64 10 33 5 616 Hintsch and Irnich (2018a) 616 616 4.0
P 69 10 35 5 643 Hintsch and Irnich (2018a) 643 643 4.5
P 75 4 38 2 557 Hintsch and Irnich (2018a) 557 561.6 6.8
P 75 5 38 3 571 Hintsch and Irnich (2018a) 571 571 7.1
P 100 4 51 2 645 LMNS3/5 645 645 16.5

G 261 25 131 12 3655 LMNS* 3668 3692.3 19.6
C 100 10 51 5 628 Hintsch and Irnich (2018a) 628 628 7.9
C 120 7 61 4 799 LMNS3/5 799 806 11.9
C 150 12 76 6 805 LMNS3/5 805 805.9 19.4
C 199 16 100 8 944 LMNS3 948 953.7 13.8

Table 6: Detailed results for the GVRP-2 instances, subsets P and GC.
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Instance LMNS5
10 000

n k N m BKS First found by Best Avg. T

A 31 5 11 2 515 Defryn and Sörensen (2017) 515 515 1.5
A 32 5 11 2 461 Defryn and Sörensen (2017) 461 461 1.7
A 32 6 11 2 554 Defryn and Sörensen (2017) 554 554 1.7
A 33 5 12 2 538 Defryn and Sörensen (2017) 538 538 1.9
A 35 5 12 2 543 Defryn and Sörensen (2017) 543 543 1.5
A 36 5 13 2 545 Hintsch and Irnich (2018a) 545 545 2.1
A 36 6 13 2 605 Defryn and Sörensen (2017) 605 605 1.8
A 37 5 13 2 507 Battarra et al. (2014) 507 507 2.2
A 38 5 13 2 588 Defryn and Sörensen (2017) 588 588 2.4
A 38 6 13 2 603 Defryn and Sörensen (2017) 603 603 2.1
A 43 6 15 2 691 Defryn and Sörensen (2017) 691 691.8 2.0
A 44 6 15 3 652 Defryn and Sörensen (2017) 652 652 2.6
A 44 7 15 3 661 Defryn and Sörensen (2017) 661 661 2.1
A 45 7 16 3 642 Defryn and Sörensen (2017) 642 642 2.7
A 47 7 16 3 680 Defryn and Sörensen (2017) 680 680 2.5
A 52 7 18 3 627 Defryn and Sörensen (2017) 627 627 3.3
A 53 7 18 3 699 Defryn and Sörensen (2017) 699 699 3.5
A 54 9 19 3 645 Defryn and Sörensen (2017) 645 645 3.3
A 59 9 20 3 762 Defryn and Sörensen (2017) 762 762 3.5
A 60 9 21 4 671 Defryn and Sörensen (2017) 671 672.6 3.4
A 61 8 21 3 771 Defryn and Sörensen (2017) 771 771 4.2
A 62 10 21 4 779 Defryn and Sörensen (2017) 779 779 3.5
A 62 9 21 3 837 Defryn and Sörensen (2017) 837 837 3.3
A 63 9 22 3 767 Defryn and Sörensen (2017) 767 767 3.8
A 64 9 22 3 693 Defryn and Sörensen (2017) 693 693 3.7
A 68 9 23 3 794 Defryn and Sörensen (2017) 794 798 3.8
A 79 10 27 4 944 Defryn and Sörensen (2017) 944 944 5.1

B 30 5 11 2 375 Battarra et al. (2014) 375 375 1.6
B 33 5 12 2 415 Defryn and Sörensen (2017) 415 415 2.0
B 34 5 12 2 557 Defryn and Sörensen (2017) 557 557.3 2.1
B 37 6 13 2 427 Defryn and Sörensen (2017) 427 427 1.8
B 38 5 13 2 317 Defryn and Sörensen (2017) 317 317 2.3
B 40 6 14 2 469 Defryn and Sörensen (2017) 469 469 2.3
B 42 6 15 2 405 Defryn and Sörensen (2017) 405 405 2.6
B 43 7 15 3 443 Defryn and Sörensen (2017) 443 443 1.8
B 44 5 15 2 489 Defryn and Sörensen (2017) 489 489 2.8
B 44 6 15 2 386 Defryn and Sörensen (2017) 386 386 2.5
B 49 7 17 3 464 Defryn and Sörensen (2017) 464 464 2.9
B 49 8 17 3 661 Defryn and Sörensen (2017) 661 661 2.7
B 50 7 17 3 578 Defryn and Sörensen (2017) 578 578 3.3
B 51 7 18 3 427 Battarra et al. (2014) 427 427 3.6
B 55 7 19 3 420 Defryn and Sörensen (2017) 420 420 3.8
B 56 7 19 3 622 Defryn and Sörensen (2017) 622 622 3.5
B 56 9 19 3 746 Defryn and Sörensen (2017) 746 746 3.6
B 62 10 21 3 685 Battarra et al. (2014) 685 685 3.2
B 63 9 22 4 524 Defryn and Sörensen (2017) 524 524 4.6
B 65 9 22 3 683 Defryn and Sörensen (2017) 683 685.5 4.2
B 66 10 23 4 619 Defryn and Sörensen (2017) 619 619 4.8
B 67 9 23 3 582 Defryn and Sörensen (2017) 582 582 3.6
B 77 10 26 4 704 Defryn and Sörensen (2017) 704 704 5.4

Table 7: Detailed results for the GVRP-3 instances, subsets A and B.
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Instance LMNS5
10 000

n k N m BKS First found by Best Avg. T

P 15 8 6 4 251 Defryn and Sörensen (2017) 251 251 0.4
P 18 2 7 1 170 Defryn and Sörensen (2017) 170 170 0.8
P 19 2 7 1 177 Defryn and Sörensen (2017) 177 177 0.8
P 20 2 7 1 179 Defryn and Sörensen (2017) 179 179 0.9
P 21 2 8 1 183 Defryn and Sörensen (2017) 183 183 1.0
P 21 8 8 4 365 Battarra et al. (2014) 365 365 0.5
P 22 8 8 3 270 Defryn and Sörensen (2017) 270 270 0.7
P 39 5 14 2 381 Defryn and Sörensen (2017) 381 381 2.5
P 44 5 15 2 422 Defryn and Sörensen (2017) 422 422 2.8
P 49 7 17 3 430 Defryn and Sörensen (2017) 430 430 3.1
P 49 8 17 3 441 Defryn and Sörensen (2017) 441 441.3 2.8
P 49 10 17 4 471 Defryn and Sörensen (2017) 471 471 2.8
P 50 10 17 4 493 Defryn and Sörensen (2017) 493 493 2.6
P 54 7 19 3 454 Hintsch and Irnich (2018a) 454 454.2 3.6
P 54 8 19 3 454 Hintsch and Irnich (2018a) 454 454.8 3.8
P 54 10 19 4 481 Defryn and Sörensen (2017) 481 481.4 3.1
P 54 15 19 6 572 Defryn and Sörensen (2017) 572 572 2.4
P 59 10 20 4 534 Hintsch and Irnich (2018a) 534 534.1 4.0
P 59 15 20 5 591 Defryn and Sörensen (2017) 591 591 2.5
P 64 10 22 4 575 Hintsch and Irnich (2018a) 575 575 4.7
P 69 10 24 4 602 Defryn and Sörensen (2017) 602 602 5.1
P 75 4 26 2 556 Hintsch and Irnich (2018a) 556 556 7.5
P 75 5 26 2 556 Defryn and Sörensen (2017) 556 556.6 7.5
P 100 4 34 2 649 Defryn and Sörensen (2017) 649 649 12.9

G 261 25 88 9 3178 LMNS3/5 3178 3178 50.3
C 100 10 34 4 598 Defryn and Sörensen (2017) 598 599.5 9.5
C 120 7 41 3 680 LMNS3/5 680 693.2 10.4
C 150 12 51 4 756 Hintsch and Irnich (2018a) 756 756 19.3
C 199 16 67 6 865 LMNS3/5 865 865 35.3

Table 8: Detailed results for the GVRP-3 instances, subsets P and GC.
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I.2. Detailed Results for the Golden Instances
Analogous to Section I.1, detailed results for the Golden instances are given in Tables 9 to 12

(without the number of vehicles k in the original CVRP instance). In addition, we give the best
and average solution over ten runs for setting LMNS5

10 000(10s), where the LMNS is stopped after
the time limit of 10 seconds.
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Instance LMNS5
10 000 LMNS5

10 000(10s)

n N m BKS First found by Best Avg. T Best Avg.

Golden1 240 17 4 4640 Hintsch and Irnich (2018a) 4640 4640 30 4640 4640.6
Golden1 240 18 4 4645 Hintsch and Irnich (2018a) 4645 4645 31 4645 4645.0
Golden1 240 19 4 4650 Hintsch and Irnich (2018a) 4650 4650 33 4650 4650.0
Golden1 240 21 4 4650 Hintsch and Irnich (2018a) 4650 4650 33 4650 4650.0
Golden1 240 22 4 4650 LMNS3/5 4650 4650 33 4650 4650.0
Golden1 240 25 4 4650 LMNS3/5 4650 4651.2 35 4650 4653.0
Golden1 240 27 4 4652 LMNS3/5 4652 4652 35 4652 4652.6
Golden1 240 31 4 4665 LMNS3/5 4665 4665 44 4665 4665.0
Golden1 240 35 4 4619 LMNS3/5 4619 4619.8 46 4619 4620.8
Golden1 240 41 4 4619 LMNS3/5 4619 4621.3 44 4619 4628.3
Golden1 240 49 4 4607 LMNS* 4619 4625.5 47 4619 4629.6

Golden2 320 22 4 7394 LMNS5 7394 7395.9 66 7395 7400.4
Golden2 320 23 4 7369 Hintsch and Irnich (2018a) 7372 7381.2 66 7386 7398.8
Golden2 320 25 4 7367 LMNS3/5 7367 7370.4 69 7367 7380.9
Golden2 320 27 4 7333 LMNS3/5 7333 7334.3 72 7333 7343.1
Golden2 320 30 4 7329 LMNS3/5 7329 7329 78 7329 7336.5
Golden2 320 33 4 7311 LMNS3/5 7311 7314.1 80 7312 7320.3
Golden2 320 36 4 7293 LMNS3/5 7293 7293.2 84 7293 7304.1
Golden2 320 41 4 7283 LMNS5 7283 7286.2 88 7288 7296.7
Golden2 320 46 4 7284 LMNS5 7284 7290.7 95 7291 7303.1
Golden2 320 54 4 7274 LMNS* 7277 7278.7 101 7282 7285.9
Golden2 320 65 4 7261 LMNS* 7264 7272.4 104 7281 7286.6

Golden3 400 27 4 10077 LMNS3/5 10077 10078.5 107 10077 10105.6
Golden3 400 29 4 10018 LMNS3/5 10018 10020.6 113 10023 10035.9
Golden3 400 31 4 10002 LMNS* 10003 10012.7 126 10026 10046.6
Golden3 400 34 4 9995 LMNS* 9999 10004 131 10007 10020.1
Golden3 400 37 4 9986 LMNS5 9986 9999.4 131 10018 10032.3
Golden3 400 41 4 9926 LMNS3/5 9926 9932.9 135 9938 9976.5
Golden3 400 45 4 9936 LMNS* 9946 9953.9 143 9965 9984.5
Golden3 400 51 4 9916 LMNS* 9921 9932.1 152 9936 9945.8
Golden3 400 58 4 9910 LMNS* 9926 9931 169 9930 9951.7
Golden3 400 67 4 9901 LMNS* 9903 9907.9 174 9941 10007.4
Golden3 400 81 4 9868 LMNS* 9871 9875.7 185 9884 9927.5

Golden4 480 33 4 12741 LMNS3/5 12741 12749.5 179 12756 12827.7
Golden4 480 35 4 12740 LMNS3 12741 12748.3 182 12754 12840.2
Golden4 480 37 4 12645 LMNS3/5 12645 12645.8 191 12651 12715.3
Golden4 480 41 4 12568 LMNS3/5 12568 12568 190 12568 12649.8
Golden4 480 44 4 12566 LMNS5 12566 12599.4 190 12605 12687.2
Golden4 480 49 4 12566 LMNS* 12568 12597.4 196 12582 12702.5
Golden4 480 54 4 12525 LMNS5 12525 12609.5 191 12583 12750.1
Golden4 480 61 4 12558 LMNS3/5 12558 12558 207 12562 12585.3
Golden4 480 69 4 12573 LMNS* 12575 12581.1 225 12600 12655.0
Golden4 480 81 4 12555 LMNS* 12557 12580.6 270 12601 12641.5
Golden4 480 97 4 12528 LMNS3/5 12528 12567.5 269 12637 12727.1

Golden5 200 14 4 6970 Hintsch and Irnich (2018a) 6970 6970 22 6970 6970.0
Golden5 200 15 3 6742 Hintsch and Irnich (2018a) 6742 6752 26 6742 6752.0
Golden5 200 16 3 6742 Hintsch and Irnich (2018a) 6742 6849.1 26 6742 6849.1
Golden5 200 17 3 6862 Hintsch and Irnich (2018a) 6862 6868 26 6862 6872.3
Golden5 200 19 4 6874 Hintsch and Irnich (2018a) 6874 6874 25 6874 6874.0
Golden5 200 21 4 6816 Hintsch and Irnich (2018a) 6816 6817.4 26 6816 6825.9
Golden5 200 23 4 6750 Hintsch and Irnich (2018a) 6750 6750 25 6750 6750.0
Golden5 200 26 4 6704 Hintsch and Irnich (2018a) 6704 6704 27 6704 6704.0
Golden5 200 29 4 6704 Hintsch and Irnich (2018a) 6704 6704 28 6704 6704.0
Golden5 200 34 4 6684 Hintsch and Irnich (2018a) 6684 6692.4 29 6684 6692.4
Golden5 200 41 4 6557 Hintsch and Irnich (2018a) 6557 6578.2 32 6557 6578.4

Table 9: Detailed results for the Golden instances 1-5.
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Instance LMNS5
10 000 LMNS5

10 000(10s)

n N m BKS First found by Best Avg. T Best Avg.

Golden6 280 19 3 8115 Hintsch and Irnich (2018a) 8115 8115.3 54 8115 8116.8
Golden6 280 21 3 8119 Hintsch and Irnich (2018a) 8119 8125.5 52 8119 8131.7
Golden6 280 22 3 8107 Hintsch and Irnich (2018a) 8107 8113.7 52 8107 8122.0
Golden6 280 24 4 8316 Hintsch and Irnich (2018a) 8316 8318.8 52 8316 8320.5
Golden6 280 26 4 8249 Hintsch and Irnich (2018a) 8249 8256.4 54 8249 8288.2
Golden6 280 29 4 8244 LMNS3/5 8244 8251.4 60 8244 8254.0
Golden6 280 32 4 8179 LMNS3/5 8179 8197.3 59 8179 8215.4
Golden6 280 36 4 8179 LMNS3/5 8179 8180.9 59 8179 8199.1
Golden6 280 41 4 8204 LMNS3/5 8204 8206.5 66 8204 8219.1
Golden6 280 47 4 8179 LMNS3/5 8179 8192.6 65 8181 8200.3
Golden6 280 57 4 8204 LMNS3/5 8204 8205.6 75 8205 8225.0

Golden7 360 25 3 9318 Hintsch and Irnich (2018a) 9318 9321.5 99 9321 9341.4
Golden7 360 26 3 9295 Hintsch and Irnich (2018a) 9307 9314.1 101 9313 9330.0
Golden7 360 28 3 9271 LMNS3 9272 9282.7 109 9274 9299.3
Golden7 360 31 4 9418 Hintsch and Irnich (2018a) 9418 9442.6 101 9451 9458.5
Golden7 360 33 4 9395 LMNS* 9401 9401.8 103 9401 9404.4
Golden7 360 37 4 9395 Hintsch and Irnich (2018a) 9395 9403.7 104 9395 9427.1
Golden7 360 41 4 9386 LMNS5 9386 9400.3 108 9386 9414.5
Golden7 360 46 4 9368 LMNS3/5 9368 9376.7 102 9383 9391.0
Golden7 360 52 4 9365 LMNS3/5 9365 9373.1 114 9375 9411.4
Golden7 360 61 4 9316 LMNS3/5 9316 9343.6 128 9343 9369.4
Golden7 360 73 4 9302 LMNS5 9302 9314.9 145 9325 9368.8

Golden8 440 30 4 10409 LMNS5 10409 10417.1 133 10415 10464.8
Golden8 440 32 4 10409 LMNS* 10411 10422.3 134 10420 10442.9
Golden8 440 34 4 10409 LMNS* 10411 10418.3 139 10424 10451.7
Golden8 440 37 4 10360 LMNS* 10368 10378.9 146 10386 10410.1
Golden8 440 41 4 10360 LMNS* 10368 10371.2 152 10379 10424.9
Golden8 440 45 4 10385 LMNS* 10387 10392.4 152 10393 10438.7
Golden8 440 49 4 10399 LMNS5 10399 10413.2 165 10425 10454.0
Golden8 440 56 4 10371 LMNS3/5 10371 10393.8 180 10412 10443.7
Golden8 440 63 4 10361 LMNS* 10365 10391 184 10413 10451.3
Golden8 440 74 4 10356 LMNS* 10363 10368.6 201 10397 10455.3
Golden8 440 89 4 10281 LMNS3 10282 10292.1 217 10352 10419.1

Golden9 255 18 4 281 Hintsch and Irnich (2018a) 281 281 39 281 282.1
Golden9 255 19 4 279 Hintsch and Irnich (2018a) 279 279.2 38 279 280.2
Golden9 255 20 4 276 Hintsch and Irnich (2018a) 276 276.6 40 276 277.4
Golden9 255 22 4 276 Hintsch and Irnich (2018a) 276 276.7 44 277 277.1
Golden9 255 24 4 276 Hintsch and Irnich (2018a) 276 276.9 44 277 277.3
Golden9 255 26 4 273 Hintsch and Irnich (2018a) 273 273.9 46 274 274.3
Golden9 255 29 4 273 Hintsch and Irnich (2018a) 273 273.6 45 273 274.2
Golden9 255 32 4 273 Hintsch and Irnich (2018a) 273 273.9 48 274 274.3
Golden9 255 37 4 273 Hintsch and Irnich (2018a) 273 273.9 50 274 274.6
Golden9 255 43 4 270 LMNS3/5 270 270.8 53 271 272.0
Golden9 255 52 4 269 LMNS3/5 269 269 57 269 269.7

Golden10 323 22 4 346 Hintsch and Irnich (2018a) 346 347 63 347 347.6
Golden10 323 24 4 346 Hintsch and Irnich (2018a) 346 346.2 65 346 346.9
Golden10 323 25 4 346 Hintsch and Irnich (2018a) 346 346.2 65 346 347.0
Golden10 323 27 4 346 Hintsch and Irnich (2018a) 346 346.2 68 346 346.7
Golden10 323 30 4 347 Hintsch and Irnich (2018a) 347 348 71 348 349.0
Golden10 323 33 4 344 Hintsch and Irnich (2018a) 344 344.1 73 344 345.0
Golden10 323 36 4 344 Hintsch and Irnich (2018a) 344 344.1 72 344 345.7
Golden10 323 41 4 346 LMNS3/5 346 346 79 346 346.9
Golden10 323 47 4 344 LMNS3/5 344 345.1 83 346 346.7
Golden10 323 54 4 340 LMNS5 340 341.1 82 341 343.4
Golden10 323 65 4 335 LMNS3/5 335 337.1 87 338 339.8

Table 10: Detailed results for the Golden instances 6-10.
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Instance LMNS5
10 000 LMNS5

10 000(10s)

n N m BKS First found by Best Avg. T Best Avg.

Golden11 399 27 5 434 Hintsch and Irnich (2018a) 434 434.7 90 435 436.3
Golden11 399 29 5 434 Hintsch and Irnich (2018a) 434 434.4 97 436 436.6
Golden11 399 31 5 433 Hintsch and Irnich (2018a) 435 435.6 95 436 437.3
Golden11 399 34 5 427 Hintsch and Irnich (2018a) 428 429.2 101 430 431.0
Golden11 399 37 5 427 LMNS* 428 429.1 99 429 430.5
Golden11 399 40 5 425 LMNS* 426 427.1 108 428 428.8
Golden11 399 45 5 425 LMNS3/5 425 425.3 112 426 427.8
Golden11 399 50 5 423 LMNS* 424 425.8 109 427 428.3
Golden11 399 58 5 422 LMNS3/5 422 423.6 123 425 426.3
Golden11 399 67 5 422 LMNS5 422 423.6 130 425 426.3
Golden11 399 80 5 417 LMNS3/5 417 417.6 138 420 421.5

Golden12 483 33 5 512 LMNS3/5 512 513.1 138 514 515.9
Golden12 483 35 5 512 LMNS3/5 512 512.2 139 513 515.3
Golden12 483 38 5 511 LMNS* 513 513 146 513 514.3
Golden12 483 41 5 512 LMNS* 513 513.4 145 515 516.2
Golden12 483 44 5 511 LMNS* 512 512.8 151 516 516.8
Golden12 483 49 5 511 LMNS* 512 513.2 163 515 516.5
Golden12 483 54 5 510 LMNS5 510 513.1 164 514 517.6
Golden12 483 61 5 510 LMNS* 512 512.6 181 514 516.4
Golden12 483 70 5 509 LMNS3/5 509 509.8 185 511 515.8
Golden12 483 81 5 502 LMNS5 502 504.1 209 508 510.6
Golden12 483 97 5 502 LMNS* 504 505 235 505 513.1

Golden13 252 17 4 530 Hintsch and Irnich (2018a) 530 530.4 40 530 530.7
Golden13 252 19 4 521 Hintsch and Irnich (2018a) 521 521.8 40 521 521.8
Golden13 252 20 4 521 Hintsch and Irnich (2018a) 521 521.5 42 521 521.8
Golden13 252 22 4 523 Hintsch and Irnich (2018a) 523 523.2 42 523 523.9
Golden13 252 23 4 523 Hintsch and Irnich (2018a) 523 523.2 43 523 523.5
Golden13 252 26 4 523 Hintsch and Irnich (2018a) 523 523 46 523 523.2
Golden13 252 29 4 522 Hintsch and Irnich (2018a) 522 522 48 522 522.8
Golden13 252 32 4 521 Hintsch and Irnich (2018a) 521 521.2 49 521 522.1
Golden13 252 37 4 521 Hintsch and Irnich (2018a) 521 521.9 53 522 522.5
Golden13 252 43 4 521 Hintsch and Irnich (2018a) 521 521 54 521 521.3
Golden13 252 51 4 521 LMNS3/5 521 521 58 521 521.3

Golden14 320 22 4 665 Hintsch and Irnich (2018a) 666 666 62 666 666.9
Golden14 320 23 4 662 Hintsch and Irnich (2018a) 662 662 64 662 662.2
Golden14 320 25 4 660 Hintsch and Irnich (2018a) 660 660 66 660 660.7
Golden14 320 27 4 660 Hintsch and Irnich (2018a) 660 660 67 660 660.2
Golden14 320 30 4 660 Hintsch and Irnich (2018a) 660 660 69 660 660.1
Golden14 320 33 4 660 LMNS3/5 660 660 71 660 660.3
Golden14 320 36 4 658 LMNS3/5 658 658.9 75 658 660.2
Golden14 320 41 4 658 Hintsch and Irnich (2018a) 658 658 82 658 658.6
Golden14 320 46 4 658 LMNS3/5 658 659.4 87 658 659.8
Golden14 320 54 4 658 LMNS3/5 658 659 93 659 660.4
Golden14 320 65 4 658 LMNS3/5 658 658.2 99 658 660.2

Golden15 396 27 4 815 LMNS3/5 815 816.6 94 816 817.9
Golden15 396 29 4 815 LMNS* 816 817.6 100 819 819.5
Golden15 396 31 4 813 Hintsch and Irnich (2018a) 813 814.4 101 815 817.1
Golden15 396 34 4 813 LMNS* 815 815.2 102 817 817.2
Golden15 396 37 4 815 LMNS3/5 815 815.2 102 815 816.6
Golden15 396 40 4 815 LMNS3/5 815 815.8 109 817 818.0
Golden15 396 45 5 817 LMNS3/5 817 818.6 115 819 821.6
Golden15 396 50 5 815 LMNS* 819 819.2 123 821 822.2
Golden15 396 57 5 815 LMNS* 817 817.8 131 819 821.5
Golden15 396 67 5 815 LMNS* 817 817.2 142 819 820.6
Golden15 396 80 5 815 LMNS* 817 817.8 157 819 821.2

Table 11: Detailed results for the Golden instances 11-15.
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Instance LMNS5
10 000 LMNS5

10 000(10s)

n N m BKS First found by Best Avg. T Best Avg.

Golden16 480 33 5 993 LMNS5 993 995 141 997 998.7
Golden16 480 35 5 993 LMNS3/5 993 994.6 144 997 997.9
Golden16 480 37 5 993 LMNS3/5 993 994.6 150 997 999.3
Golden16 480 41 5 993 LMNS* 995 996.2 158 997 999.9
Golden16 480 44 5 993 LMNS* 995 996.2 164 998 999.7
Golden16 480 49 5 989 LMNS* 991 992.1 171 993 995.1
Golden16 480 54 5 985 LMNS3/5 985 986 179 990 991.6
Golden16 480 61 5 985 LMNS* 987 988 193 990 991.5
Golden16 480 69 5 984 LMNS* 985 986.3 214 990 992.2
Golden16 480 81 5 984 LMNS5 984 986.4 230 987 990.9
Golden16 480 97 5 984 LMNS3 985 985.6 247 990 992.0

Golden17 240 17 3 386 Hintsch and Irnich (2018a) 386 386 44 386 386.0
Golden17 240 18 3 385 Hintsch and Irnich (2018a) 385 385 45 385 385.0
Golden17 240 19 3 385 Hintsch and Irnich (2018a) 385 385 46 385 385.1
Golden17 240 21 3 385 Hintsch and Irnich (2018a) 385 385 47 385 385.0
Golden17 240 22 3 385 Hintsch and Irnich (2018a) 385 385 47 385 385.0
Golden17 240 25 3 382 Hintsch and Irnich (2018a) 382 382.2 47 382 382.3
Golden17 240 27 3 382 Hintsch and Irnich (2018a) 382 382 49 382 382.1
Golden17 240 31 4 390 Hintsch and Irnich (2018a) 390 390 51 390 390.3
Golden17 240 35 4 390 LMNS3/5 390 390 57 390 390.3
Golden17 240 41 4 388 Hintsch and Irnich (2018a) 388 388.4 59 388 389.3
Golden17 240 49 4 387 LMNS3/5 387 387.2 60 387 387.9

Golden18 300 21 4 558 Hintsch and Irnich (2018a) 558 558 58 558 558.2
Golden18 300 22 4 558 Hintsch and Irnich (2018a) 558 558 59 558 558.2
Golden18 300 24 4 558 Hintsch and Irnich (2018a) 558 558 64 558 558.1
Golden18 300 26 4 562 Hintsch and Irnich (2018a) 562 562 63 562 562.6
Golden18 300 28 4 558 Hintsch and Irnich (2018a) 558 558 66 558 558.0
Golden18 300 31 4 554 Hintsch and Irnich (2018a) 554 554 71 554 554.5
Golden18 300 34 4 554 Hintsch and Irnich (2018a) 554 554.1 70 554 555.2
Golden18 300 38 4 555 Hintsch and Irnich (2018a) 555 555.1 74 555 556.2
Golden18 300 43 4 558 LMNS3/5 558 558 83 558 559.2
Golden18 300 51 4 555 LMNS5 555 555.9 83 558 559.5
Golden18 300 61 4 556 LMNS3/5 556 556.6 92 557 558.4

Golden19 360 25 10 886 Hintsch and Irnich (2018a) 887 887.9 50 888 888.6
Golden19 360 26 10 888 Hintsch and Irnich (2018a) 889 889 51 889 889.6
Golden19 360 28 4 741 Hintsch and Irnich (2018a) 741 742 77 742 743.3
Golden19 360 31 4 735 Hintsch and Irnich (2018a) 737 737.5 84 739 739.2
Golden19 360 33 4 727 Hintsch and Irnich (2018a) 728 729.1 89 730 731.0
Golden19 360 37 5 732 Hintsch and Irnich (2018a) 733 733.5 100 734 735.1
Golden19 360 41 5 730 Hintsch and Irnich (2018a) 730 730.7 109 731 732.2
Golden19 360 46 5 730 LMNS3/5 730 730.7 115 731 732.5
Golden19 360 52 5 730 Hintsch and Irnich (2018a) 730 730.8 120 731 733.0
Golden19 360 61 5 737 LMNS3/5 737 738.5 120 740 742.4
Golden19 360 73 5 736 LMNS3/5 736 736.9 135 739 740.4

Golden20 420 29 11 1170 Hintsch and Irnich (2018a) 1170 1170.9 75 1171 1171.8
Golden20 420 31 12 1183 Hintsch and Irnich (2018a) 1184 1184.2 74 1185 1185.9
Golden20 420 33 12 1175 Hintsch and Irnich (2018a) 1176 1177.1 78 1176 1178.2
Golden20 420 36 5 1005 LMNS* 1006 1007.2 102 1010 1012.4
Golden20 420 39 5 991 LMNS5 991 992.5 110 994 998.7
Golden20 420 43 5 990 LMNS3/5 990 990.4 115 991 993.7
Golden20 420 47 5 988 LMNS3/5 988 989.2 121 990 991.8
Golden20 420 53 5 988 LMNS3/5 988 988.9 125 990 993.2
Golden20 420 61 5 987 LMNS3/5 987 988.8 133 990 992.0
Golden20 420 71 5 986 LMNS3/5 986 987.4 126 988 991.7
Golden20 420 85 5 980 LMNS3/5 980 981.2 175 982 986.8

Table 12: Detailed results for the Golden instances 16-20.
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I.3. Detailed Results for the Li Instances
Analogous to Section I.1, detailed results for the Li instances are given in Table 13 (without

the number of vehicles k in the original CVRP instance).

Instance LMNS5
10 000

n N m BKS First found by Best Avg. T

Li 560 113 39 27225 LMNS5 27225 27274.9 188
Li 600 121 62 28759 LMNS3 28804 28821.5 211
Li 640 129 10 19797 LMNS3 19802 19832.9 208
Li 720 145 11 22879 LMNS5 22879 22908.1 309
Li 760 153 78 35048 LMNS3 35078 35111.6 337
Li 800 161 11 25423 LMNS5 25423 25453.2 552
Li 840 169 86 37775 LMNS3 37789 37825.2 413
Li 880 177 11 28232 LMNS3 28240 28356.3 559
Li 960 193 11 30607 LMNS3 30611 30808.2 976
Li 1040 209 11 33506 LMNS3 33518 33580 1077
Li 1120 225 11 36219 LMNS5 36219 36510.2 1410
Li 1200 241 11 38785 LMNS5 38785 38961.4 1915

Table 13: Detailed results for the Li instances.
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