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Branch-Price-and-Cut for the Soft-Clustered Capacitated Arc-Routing
Problem
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aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

bDepartment of Economics and Business Economics, School of Business and Social Sciences, Aarhus University, Fuglesangs
Allé 4, 8210 Aarhus V, Denmark.

Abstract

The soft-clustered capacitated arc-routing problem (SoftCluCARP) is a restricted variant of the classical
capacitated arc-routing problem. The only additional constraint is that the set of required edges, i.e., the
streets to be serviced, is partitioned into clusters and feasible routes must respect the soft-cluster constraint,
that is, all required edges of the same cluster must be served by the same vehicle. In this article, we design an
effective branch-price-and-cut algorithm for the exact solution of the SoftCluCARP. Its new components are a
metaheuristic and branch-and-cut-based solvers for the solution of the column-generation subproblem, which
is a profitable rural clustered postman tour problem. Although postman problems with these characteristics
have been studied before, there is one fundamental difference here: clusters are not necessarily vertex-
disjoint, which prohibits many preprocessing and modeling approaches for clustered postman problems from
the literature. We present an undirected and a windy formulation for the pricing subproblem and develop
and computationally compare two corresponding branch-and-cut algorithms. Cutting is also performed at
the master-program level using subset-row inequalities for subsets of size up to five. For the first time, these
non-robust cuts are incorporated into MIP-based routing subproblem solvers using two different modeling
approaches. In several computational studies, we calibrate the individual algorithmic components. The final
computational experiments prove that the branch-price-and-cut algorithm equipped with these problem-
tailored components is effective: The largest SoftCluCARP instances solved to optimality have more than
150 required edges or more than 50 clusters.

Key words: Arc routing, branch-price-and-cut, branch-and-cut, districting

1. Introduction

The capacitated arc-routing problem (CARP, Belenguer et al., 2014) is the basic multiple-vehicle arc-
routing problem. For solving the CARP, the task is to determine a set of cost-minimal capacity feasible
routes so that a given set of required edges demanding service is covered. Golden andWong (1981) introduced
the CARP into the scientific literature. Postman problems, the CARP, and its various extensions have been
discussed and surveyed by Dror (2000); Corberán and Prins (2010); Corberán and Laporte (2014); Mourão
and Pinto (2017). Practical applications of these arc-routing problems are, for example, waste collection,
postal delivery, winter services (snow plowing, winter gritting, and salt spreading), meter reading, and school
bus routing.

In the paper at hand, we focus on an extension of the basic CARP in which the required edges are
clustered. Each given cluster can be understood as a micro district. The task is now to group together the
given micro districts into complete (or final) districts that are served by a single vehicle.
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For a comprehensive overview of districting for arc routing, we refer to the work of Butsch et al. (2014).
The authors discuss applications as for the CARP in postal delivery, winter services, municipal solid waste
collection, and meter reading. The districting approach of Butsch et al. starts from required edges as the
basic units and builds a given number of districts. Each district comprises a set of basic units that are later
on served by a single tour. Each basic unit is exclusively and completely assigned to one district.

In a districting improvement procedure, the initially computed set of districts are then optimized with
regard to several criteria: among them, balancedness, connectivity, and compactness are the most important.
Balancedness refers to the distribution of workload (the service time) that should be as equally split as
possible (this is typically a soft criterion). Compactness refers to the shape of the districts that should be
squared or rounded. Finally, connectivity is desirable, probably because connected basic units principally
reduce extra deadheading times. The final districts computed are then later served by a vehicle that performs
a postman tour over it. This districting-first postman-tour-second approach however does not exploit the full
optimization potential that an integrated approach offers: An optimal CARP solution is (by definition) the
best solution from a routing point of view, compare Figures 1(a) and (b). However, typical CARP solutions
have undesirable resulting districts that are neither compact nor connected. On the positive side, CARP
solutions tend to be balanced, in particular when the fleet size and vehicle capacity are chosen accordingly.

CARP

Required edges

Final districts + Routes

Districting

Postman problems

Required edges

Final districts

Routes

Micro Districting

SoftCluCARP

Required edges

Micro districts

Final districts + Routes

(a) (b) (c)

Figure 1: Possible planning steps (a) CARP (fully integrated, lower-quality districts, optimal routes), (b) 2-stage planning
with districting first and solving multiple independent postman problems second (optimal districts, lower-quality routes), and
(c) 2-stage planning with micro districting first and SoftCluCARP second.

We see the new planning problem, below defined as the soft-clustered capacitated arc-routing problem
(SoftCluCARP), as a planning problem that allows shifting the traditional 2-stage hierarchical planning
approach that follows the districting first-routing second paradigm towards better routing as well as better
clustering decisions, see Figure 1(c). Indeed, with not too large micro districts (the input clusters to the
SoftCluCARP), one can expect SoftCluCARP solutions that are close to the CARP routing optimum.
Similarly, not too small micro districts can be constructed so that they are compact and connected. The
expectation is that with such an input, the SoftCluCARP solution comprises “nicer” final districts that are
more compact and connected.

For the family of vehicle-routing problems (VRPs, Irnich et al., 2014), variants with clusters of customers
can be characterized as either hard-clustered or soft-clustered. The former variant, known as the clustered
VRP (CluVRP, Sevaux and Sörensen, 2008), imposes that all customers belonging to the same cluster
are visited consecutively: only if a cluster is completely served, visits to customers of another cluster are
allowed. The CluVRP has been approached by exact optimization algorithms (Battarra et al., 2014) as well
as metaheuristics (Barthélemy et al., 2010; Expósito Izquierdo et al., 2013; Vidal et al., 2015; Expósito-
Izquierdo et al., 2016; Defryn and Sörensen, 2017; Hintsch and Irnich, 2018; Pop et al., 2018). The latter
problem is the soft-clustered VRP (SoftCluVRP). The SoftCluVRP is a restriction of the capacitated VRP
(CVRP, Pecin et al., 2017) and a relaxation of the clustered VRP, because visits to customers of the same
cluster may or may not be interrupted by visits to other customers. It was recently introduced by Defryn
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and Sörensen (2017) where it is heuristically solved with a fast two-level variable neighborhood search. Two
newer works solve the SoftCluVRP exactly (Hintsch and Irnich, 2019) and heuristically (Hintsch, 2019).

We follow the same taxonomy regarding hard and soft clustering here: The SoftCluCARP is defined on
an undirected graph G = (V,E) with vertex set V and edge set E. One of the vertices is the unique depot
vertex 0 ∈ V representing the location where a fleet of m homogeneous vehicles, all with capacity Q, is
housed. The edges are partitioned into required edges ER and deadheading edges E \ER, where the former
must be traversed at least once in a feasible solution and the latter can be traversed if convenient. Let ce > 0
be the cost for traversing an edge e ∈ E; note that we do not distinguish between service and deadheading
costs, because any possible difference just leads to a fixed overall cost offset. Specific for the SoftCluCARP
is that the required edges are again partitioned into clusters with ER =

⋃
h∈H Eh and Eh ∩ Eh′ = ∅ for

h 6= h′ (H is the index set of the clusters). Each cluster Eh for h ∈ H has a positive demand dh.
The SoftCluCARP is the problem of finding a least-cost set of feasible routes serving all clusters. Let w

be a closed walk in G traversing the depot 0. We define a route as a combination of such a walk w and a
subset H ′ ⊂ H served by the walk, meaning that all edges

⋃
h∈H′ Eh are traversed at least once. Clearly, a

route (w,H ′) is feasible if
∑
h∈H′ dh ≤ Q, and in this case the walk w also feasibly serves all subsets of H ′.

Let the (routing) cost of w be cw, i.e., the sum of the edge costs of the walk (edges traversed more than once
are counted according to their frequency). Then, (wp, H

′
p)
m′

p=1 is a feasible solution to the SoftCluCARP, if
all walks wp feasibly serve H ′p, respectively, m′ ≤ m, and H =

⋃m′
p=1H

′
p holds. A feasible solution is optimal

if it minimizes
∑m′

p=1 cwp .
The focus of this paper is on the exact solution of the SoftCluCARP by means of a branch-price-and-cut

(BPC) solution approach. Following the recent survey of Costa et al. (2019), BPC is the leading exact
methodology for solving many types of VRPs. A BPC algorithm is a branch-and-bound algorithm in which
the lower bounds are computed by column generation and cuts are added dynamically to strengthen the
linear relaxations. Column generation is iterative and solves, at each iteration, a restricted master problem
(RMP) and one or several pricing problems. For most VRPs, the pricing problem is an elementary shortest
path problem with resource constraints (SPPRC), which can be solved by a labeling algorithm (see Irnich and
Desaulniers, 2005). When trying to solve the SoftCluVRP with a column-generation algorithm, Hintsch and
Irnich (2019) observed that classical labeling-based solution approaches for the SPPRC subproblem work
rather poorly, even if the algorithm was featured with otherwise very potent labeling acceleration techniques.
Surprisingly, a direct MIP-based approach for the pricing subproblem performed significantly better, solving
instances with 400+ customers and 50+ clusters. Since labeling-based approaches for the CARP (Bartolini
et al., 2011; Bode and Irnich, 2012, 2014, 2015) are certainly more difficult and less effective compared to
those for the CVRP (Pecin et al., 2017), trying a labeling-based approach for the SoftCluCARP subproblem
seems very unpromising.

Accordingly, our main contributions are the following:
• We develop new integer programming (IP)-based pricing algorithms for SoftCluCARP-tailored BPC

algorithms: The first one is based on an undirected formulation inspired by a model of Aráoz
et al. (2009a) for the clustered prize-collecting arc routing problem. The formulation comprises two
exponentially-sized families of constraints for ensuring connectivity and even vertex degrees. A ma-
jor difference to our subproblem is, however, that our clusters are typically not disjoint connected
components of the graph spanned by the required edges.
The second one uses a windy type of formulation as used by Corberán et al. (2011) for the windy
clustered prize-collecting arc-routing problem. Also their work assumes disjoint clusters. A windy
model has the advantage of avoiding an exponentially-sized family of constraints ensuring even vertex
degrees, but the disadvantage of having double the number of arc-flow variables. We prove that when
this type of model is used for symmetric instances, the arc-flow variables can be restricted to binary
values.
For both formulations, we develop branch-and-cut (B&C) algorithms to be used for pricing and rigor-
ously compare both types of subproblem algorithms.

• Subset-row inequalities (SRIs, Jepsen et al., 2008) have been identified as essential for strengthening the
linear relaxation of the master problem for many types of set-partitioning and set-packing problems.
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We show that there are at least two fundamentally different ways to incorporate the dual prices of
SRIs in the two IPs used for solving the pricing subproblem. In contrast to many other works, we do
not only consider SRIs for three rows but also for four and five rows.

• In comprehensive computational tests, we parameterize the branch-and-cut algorithms as well as a
tailored heuristic pricing algorithm for the subproblem. Moreover, we show that the overall BPC
algorithms for the SoftCluCARP are highly competitive: some large-sized and almost all medium-
sized SoftCluCARP instances can be solved to optimality within relatively short time.

The remainder of this work is structured as follows: In Section 2, we present a two-index formulation
and a straightforward set-partitioning formulation for the SoftCluCARP as well as the undirected and
windy formulations of the column-generation subproblem. B&C-based solution algorithms for the two latter
formulations are developed in Section 3. This section also discusses heuristic pricing techniques used to
accelerate the column-generation process. Section 4 focusses on providing integer solutions by incorporating
SRIs and by branching. The generation of SoftCluCARP benchmark instances, results of the computational
studies analyzing the components of the BPC algorithm separately, and the overall performance of the fine-
tuned BPC algorithms are presented and discussed in Section 5. Conclusions close the paper in Section 6.

2. Two-Index, Extensive, and Subproblem Formulations

In this section, the SoftCluCARP is formally defined by a two-index formulation. Moreover, an extended
set-partitioning formulation is given and later used as the master program of the BPC algorithm. Finally,
the two new subproblem formulations are presented.

In the four different models we use the following standard notation: For a vertex i ∈ V , the set δ(i)
comprises the edges having vertex i as an endpoint. Further, for a subset S ⊆ V , the set δ(S) contains all
edges with one endpoint in S and the other one in V \ S, and the set E(S) contains all edges with both
endpoints in S. For all clusters h ∈ H, let Vh be the set of vertices that are endpoints of edges e ∈ Eh.
Note that we do not assume that the subgraphs (Vh, Eh) for h ∈ H are connected. Note also that the sets
(Vh)h∈H are typically not disjoint.

Finally, to simplify formulas, an expression q(I) abbreviates the term
∑
i∈I qi using the implicit assump-

tion that q is a vector with entries for a superset of the indices i ∈ I.

2.1. Two-Index Formulation
In the arc-routing context, two-index formulations refer to models in which the edge/arc-flow variables

have one index for the edge/arc and a second index for the vehicle that they refer to. Let the m available
vehicles form a fleet K = {1, 2, . . . ,m}. Our two-index formulation for the SoftCluCARP has non-negative
integer variables yke indexed by (e, k) ∈ E × K indicating the number of times that vehicle k deadheads
edge e. In addition, the binary variables zkh signal whether (or not) vehicle k serves all required edges of
cluster Eh. Auxiliary non-negative integer variables pki , one for each pair (i, k) ∈ V ×K, are used to enforce
an even vertex degree at vertex i in the walk performed by vehicle k. Note that the following two-index
formulation can be derived from the two-index formulation of Belenguer and Benavent (1998) for the CARP
by replacing all of their vehicle-specific service indicator variables xke by our binary indicator zkh for all
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e ∈ Eh, h ∈ H, and k ∈ K:

min
∑
k∈K

∑
h∈H

c(Eh)zkh +
∑
k∈K

∑
e∈E

cey
k
e (1a)

subject to
∑
k∈K

zkh = 1 ∀h ∈ H (1b)∑
h∈H

|δ(S) ∩ Eh|zkh +
∑
e∈δ(S)

yke ≥ 2zkh ∀S ⊆ V \ {0}, h ∈ H : E(S) ∩ Eh 6= ∅, k ∈ K (1c)

∑
h∈H

|δ(i) ∩ Eh|zkh +
∑
e∈δ(i)

yke = 2pki ∀i ∈ V, k ∈ K (1d)

∑
h∈H

dhz
k
h ≤ Q ∀k ∈ K (1e)

pki ∈ Z+ ∀i ∈ V, k ∈ K (1f)

yke ∈ Z+ ∀e ∈ E, k ∈ K (1g)

zkh ∈ {0, 1} ∀h ∈ H, k ∈ K (1h)

The objective (1a) minimizes the overall traversal cost, where the first term is constant and describes the
service cost while the second term describes the deadheading cost. That every cluster is serviced by exactly
one of the vehicles is ensured by equations (1b). The connectivity of all walks performed by the vehicles is
guaranteed by constraints (1c) and the even vertex degree by constraints (1d). Inequalities (1e) are vehicle
capacity constraints. The domains of all decision variables are given by (1f)–(1h).

With this formulation, it is possible to find solutions that use less thanm routes/vehicles. Indeed, setting
to zero all decision variables pki , yke , and zkh for a fixed k ∈ K is admissible if a bin-packing solution exists to
the instance (Q, (dh)h∈H) that uses less than m bins.

The two-index model has two weaknesses. First, the number of variables grows in |K|. Second, and more
seriously, the inherent symmetry with respect to the numbering of the vehicles makes a branch-and-bound-
based approach as used in MIP solvers ineffective (Bode and Irnich, 2012, p. 1169): Note that for a given
solution, any permutation of the vehicle indices k ∈ K leads to one of |K|! equivalent solutions. Even adding
symmetry breaking constraints can only very partially eliminate the ineffectiveness in branching (Adulyasak
et al., 2014).

2.2. Extensive Route-Based Formulation
The following route-based formulation completely eliminates symmetry with respect to the vehicle in-

dices. Let Ω be the set of all routes that feasibly serve some clusters. Recall that we can represent each
element r ∈ Ω as a pair r = (w,H ′) where w is a closed walk traversing the depot and H ′ ⊂ H indicates
which clusters are served. The following extensive path-based formulation uses binary variables λr ∈ {0, 1}
to indicate whether route r = (w,H ′) ∈ Ω is selected.

min
∑

r=(w,H′)∈Ω

cwλr duals: (2a)

subject to
∑

r=(w,H′)∈Ω:
h∈H′

λr = 1 ∀h ∈ H [πh] (2b)

∑
r∈Ω

λr ≤ m [µ] (2c)

λr ∈ {0, 1} ∀r ∈ Ω (2d)

This model is an extended set-partitioning model. The overall routing cost are minimized by (2a). Con-
straints (2b) are the partitioning constraints stating that every cluster has to be served exactly once. The
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fleet-size constraint (2c) requires that exactly m routes are selected. The domain constraints of the binary
route variables are stated in (2d).

Note that the partitioning constraints (2b) can be replaced by covering constraints using inequalities
with ≥ 1, because for any feasible r = (w,H ′) ∈ Ω, all routes r′ = (w,H ′′) serving a subset H ′′ ( H ′ are
also feasible and have identical cost. Therefore, we assume covering constraints in the following.

The linear relaxation of the model (2) over a subset Ω′ ⊂ Ω of the routes is the RMP of the BPC
algorithms that we use to solve the SoftCluCARP. Note that the set of routes Ω can be drastically reduced
without sacrificing optimality. For a given subset H ′ ⊂ H, one can determine a least cost-walk w = w(H ′).
Finding this walk is the well-known undirected rural postman problem (URPP, Ghiani and Laporte, 2014)
over the graph G = (V,E) with required edges

⋃
h∈H′ Eh. In Section 3, we discuss in more detail how to

exactly solve URPPs to only have routes performing least-cost walks in the RMP.

2.3. Subproblem Formulations
In the iterative column-generation process, the subproblem must identify negative reduced-cost variables

(=routes) or prove that there exists none. Let (πh)h∈H be the dual prices of the covering constraints (2b)
and let µ be the dual price of the fleet-size constraint (2c). The reduced cost of a route r = (w,H ′) ∈ Ω is
then

c̃r = cw −
∑
h∈H′

πh − µ, (3)

with the feasibility condition that
∑
h∈H′ dh ≤ Q must hold.

We can analyze the structure of the subproblem now: First, following the taxonomy introduced by Feillet
et al. (2005), the subproblem can be characterized as a profitable postman tour problem: Reduced-cost
minimization requires routing cost minimization in combination with profit maximization in the objective.
Due to the valid replacement of partitioning by covering constraints dual values πh are non-negative for all
h ∈ H. Undirected and windy profitable postman problems are covered by works of Aráoz et al. (2006);
Ávila et al. (2016); the more general class of postman problems with profits is an active research field
and is comprehensively surveyed in Archetti and Speranza (2014); Mourão and Pinto (2017). Second, the
selected clusters described by H ′ do not necessarily form a connected graph, i.e., (

⋃
h∈H′ Vh,

⋃
h∈H′ Eh) may

be disconnected. Therefore, the subproblem is clearly a rural postman problem (see, Eiselt et al., 1995a;
Ghiani and Laporte, 2014). Third, the clustering aspect makes the subproblem a clustered postman problem
as described and analyzed in Franquesa (2008); Aráoz et al. (2009a); Corberán et al. (2011); Aráoz et al.
(2013). Recall that the VRP literature would characterize these problems as soft-cluster constrained.

Even if earlier works cover the individual aspects, none of these works covers exactly the subproblem to
solve for the SoftCluCARP. One major difference is that the earlier works on clustered postman problems
assume disjoint clusters, i.e., the sets Vh for h ∈ H have pairwise empty intersection. This is certainly not
fulfilled in the SoftCluCARP context.

2.3.1. Undirected Formulation
Our first formulation of the subproblem is undirected using the graph G = (V,E) directly and exploiting

the fact that a least-cost walk in G traverses each edge at most twice. Therefore, binary variables xe and ye
indicate the first and second traversal for all edges e ∈ E, respectively. Note that the first traversal can
either be a service or deadheading, while the second traversal is always deadheading. In order to select
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clusters to be serviced, a third set of binary variables zh with h ∈ H is needed. The model reads as follows:

c̃(πh, µ) = min
∑
e∈E

cexe +
∑
e∈E

ceye −
∑
h∈H

πhzh − µ (4a)

subject to xe ≥ ye ∀e ∈ E (4b)
zh ≤ xe ∀e ∈ Eh, h ∈ H (4c)
x(δ(S) \ F ) + y(F \ L) ≥ x(F ) + y(L) + 1− |F | − |L| ∀S ⊆ V \ {0}, (4d)

∅ ⊆ L ⊆ F ⊆ δ(S) with |L|+ |F | odd
x(δ(S)) + y(δ(S)) ≥ 2xe ∀S ⊆ V \ {0}, e ∈ ER(S) (4e)∑
h∈H

dhzh ≤ Q (4f)

xe ∈ {0, 1} ∀e ∈ E (4g)
ye ∈ {0, 1} ∀e ∈ E (4h)
zh ∈ {0, 1} ∀h ∈ H (4i)

The profitable tour objective (4a) minimizes the difference between the cost of the walk (first two terms)
and the profit resulting from the clusters that are served (third term). The last constant term µ is added to
correctly describe the reduced cost c̃(πh, µ) for the route r = (w,H ′), where the walk w results from selecting
each edge xe + ye times and the subset is H ′ = {h ∈ H : zh = 1}. The coupling constraints (4b) state
that a second traversal is only possible after a first traversal. The second class of coupling constraints (4c)
guarantees that a profit for cluster Eh is only collected if all edges are traversed. The generalized cocircuit
inequalities (4d) (a.k.a. odd cut inequalities) are inspired by the models of Aráoz et al. (2009a,b). They
ensure an even vertex degree in the graph imposed by x + y: If the number of traversals over the cut set
δ(S) is odd, one can define F as the set of edges traversed at least once and L as the set of edges traversed
a second time. Then |F | + |L| is odd and the inequality imposes that at least one more edge of the cut
set needs to be chosen. The connectivity of the imposed walk results from inequalities (4e). The capacity
constraint is (4f) and the domains of all decision variables are given by (4g)–(4i).

The cocircuit inequalities (4d) and connectivity constraints (4e) are two classes of mandatory inequalities
of exponential size. Hence, the formulation (4) is typically not applicable out-of-the-box. Instead, cutting-
plane procedures to identify violated inequalities are used to add them dynamically to the respective relaxed
formulation. We describe the B&C algorithms including details of the separation algorithms in Section 3.2.

2.3.2. Windy Formulation
Our motivation to develop an alternative formulation for the subproblem is threefold. First, windy

formulations can be stated without using cocircuit inequalities so that the only exponentially sized class
of constraints are connectivity constraints. This makes the formulation somewhat more elegant. Second,
we suspect that modern MIP solvers can exploit the network-flow nature of windy models so that they
can be solved faster than undirected models (like model (4)) which do not comprise any flow-conservation
constraints. Third, we found a property of optimal solutions to undirected postman problems that can be
exploited when a windy formulation is used for its solution. We present this property in the following:

Proposition 1. Let P be an instance of an undirected postman problem that can be solved by determining
a cost-minimal Eulerian extension. We assume that all edge costs are non-negative. Then, there exists an
optimal postman tour (a walk) w for P such that no edge is traversed in the same direction more than once.

Proof. Every optimal solution to P imposes a Eulerian extension (i.e., a multi-graph) denoted by Gext =
(V,Eext). For an optimal solution, we can assume that no edge is traversed more than two times (there are
not more than two parallel edges in Gext), because otherwise the removal of two parallel copies of such an
edge from the Eulerian extension would create another Eulerian extension covering the same set of edges
but with smaller or equal cost.
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We can now build a mixed graph Gmix from Gext in which all edges traversed twice are replaced by two
anti-parallel arcs, i.e., two parallel edges {i, j} are replaced by arcs (i, j) and (j, i). All edges traversed only
once remain undirected. This graph Gmix is a Eulerian mixed graph, because it fulfills the balanced-set
conditions (see Eiselt et al., 1995a, p. 232). Hence, a walk through Gmix provides another solution to the
original problem with the required property.

As a consequence of Proposition 1, our new windy formulation of the subproblem contains one binary
variable xij and one binary variable xji for each e = {i, j} ∈ E to show whether the edge is traversed in the
indicated direction (from i to j and/or from j to i). As before, the set of binary variables zh with h ∈ H
indicates service to the respective cluster.

c̃(πh, µ) = min
∑
{i,j}∈E

(cijxij + cjixji)−
∑
h∈H

πhzh − µ (5a)

subject to xij + xji ≥ zh ∀{i, j} ∈ Eh, h ∈ H (5b)∑
{i,j}∈δ(i)

(xij − xji) = 0 ∀i ∈ V (5c)

x(δA(S)) ≥ 2zh ∀h ∈ H,S ⊆ V \ {0} with Eh ∩ E(S) 6= ∅ (5d)∑
h∈H

dhzh ≤ Q (5e)

xij , xji ∈ {0, 1} ∀{i, j} ∈ E (5f)
zh ∈ {0, 1} ∀h ∈ H (5g)

The profitable tour objective (5a) minimizes the reduced cost of the resulting route, with the first term
for the routing cost, the second for the collected profit, and the last term with the constant µ. The
coupling constraints (5b) ensure that selected clusters are completely traversed. Equations (5c) are the
flow-conservation constraints which actually ensure an even vertex degree at all vertices. The connectivity
of the imposed postman tour results from inequalities (5d), where

δA(S) = {(i, j), (j, i) : {i, j} ∈ E with i ∈ S, j /∈ S or i /∈ S, j ∈ S}.

Inequality (5e) is the capacity constraint. The domains of the variables are stated in (5f) and (5g).
The model (5) is an adaptation of the model presented by Corberán et al. (2011). However, Corberán

et al. (2011) systematically exploited that their clusters are vertex-disjoint, which is not fulfilled in our case.

3. Solution of the Subproblem

In many BPC algorithms for routing applications, more than 99 percent of the time is spent with solving
the pricing subproblems and separating violated valid inequalities for the master program. This is also true
for our SoftCluCARP-tailored BPC algorithm. We now focus on the fast heuristic and exact solution of the
subproblem (Sections 3.1 and 3.2), while subset-row inequalities are discussed in the next Section 4.

3.1. Primal Heuristics
The main idea of the primal heuristics is to start from a basic solution of the RMP with columns and

associated routes of reduced cost zero. For such a route r = (w,H ′) ∈ Ω with walk w and served subset
H ′ ⊂ H, we systematically alter the subset H ′ into H ′′, compute a new cost-minimal walk w′ traversing H ′′
and the depot 0, and compute the reduced cost of the new route r′ = (w′, H ′′). An important observation
is that the reduced cost c̃r′ decomposes into two parts cw′ and −

∑
h∈H′′ πh − µ, where the first part is the

routing cost cw′ of the walk w′ independent of the actual dual solution, while the second is fully determined
by H ′′ and independent of the walk.

Regarding the modification of H ′, we use add and drop operators, where the add operator adds one
element h ∈ H \ H ′ to H ′ resulting in the new subset H ′′ = H ′ ∪ {h}. We only allow feasible additions,
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i.e., require d(H ′′) ≤ Q. For the drop, any h ∈ H ′ can be removed resulting in H ′′ = H ′ \ {h}. Both
neighborhoods are of linear size O(|H|).

The computation of a cost-minimal walk w′ for the subset H ′′, denoted by w(H ′′) in the following,
requires the solution of an URPP on a modified graph. In order to ensure that feasible routes traverse the
depot 0, we introduce the additional edge e0 = {0, 0} (this is a loop) and the additional depot cluster E0

containing only the edge e0. The cost of e0 is defined as ce0 = 0 and the demand of cluster E0 is defined
as d0 = 0. Moreover, let H0 = H ∪ {0}, E00 = E ∪ {{0, 0}}, and G00 = (V,E00). We define a new set of
required edges as R = {e0} ∪

⋃
h∈H′′ Eh. Now, the solution of an URPP on G00 = (V,E00) with required

edges R provides the walk w′ and its routing cost cw′ .
We now discuss the three basic components of the primal heuristics which are the exact solution algorithm

for URPPs, the use of a hash table, and the metaheuristic that controls how add and drop operators are
applied.

3.1.1. Solution of URPPs
Although the URPP is an NP-hard problem, rather large instances of the URPP can nowadays be

routinely solved with the approach proposed by Ghiani and Laporte (2014). In a first step, the instance
given by G00 = (V,E00) with required edges R can be preprocessed and reduced so that all remaining vertices
of the equivalent transformed graph are incident to at least one edge of R. Let G(R) = (V (R), E(R)) be
this transformed graph (depending on the set of required edges). Note that all edges R remain unchanged
so that R ⊂ E(R) holds true.

In a second step, a minimum spanning tree (MST) is computed on the component graph, i.e., the graph
resulting from contracting all edges R in G(R) = (V (R), E(R)). Ghiani and Laporte (2014) have shown
that there always exists an optimal URPP solution in G(R) where all edges are deadheaded at most once
except for those edges that belong to the MST solution. These edges must be allowed to be traversed
(=deadheaded) twice. It should be noted that in our application, the number of components is typically
very small, because the clusters often overlap in some vertices.

In the last step, a binary formulation for the URPP on G(R) = (V (R), E(R)) is constructed and solved
with B&C. The binary variables xe of this formulation indicate deadheadings. For those edges that may be
deadheaded twice, two binary variables are present. The formulation has only two types of constraints, one
set to ensure connectivity of the components and a second set of cocircuit constraints to guarantee that all
vertices have an even degree in the solution (for further details we refer to Ghiani and Laporte, 2014):∑

e∈δG(R)(S)

xe ≥ 2 ∀S ⊂ non-empty union of components of G(R) = (V (R), R) (6a)

∑
e∈δG(R)(S)\F

xe −
∑
e∈F

xe ≥ 1− |F | ∀S ⊂ V (R), F ⊆ δ(S) with |F |+ |R ∩ δG(R)(S)| is odd (6b)

where δG(R)(S) is the cut set of S in the transformed graph G(R). Since (6a) and (6b) are simpler versions of
the connectivity constraints (4e) and (5d) and cocircuit inequalities (4d), respectively, we do not discuss their
separation in length but refer to Section 3.2 where we present the B&C algorithms for the subproblems (4)
and (5). We only mention here that compared to the work of Ghiani and Laporte (2014), we use more
efficient algorithms of Letchford et al. (2004, 2008) for the exact separation of violated cocircuit inequalities.

3.1.2. Hash Table of URPP Results
Note that the solution of the URPP only depends on the required edges R that are in turn determined

by the given cluster subset H ′′. After solving the URPP for the subset H ′′, we store the corresponding
routing cost cw(H′′) of the optimal walk w(H ′′) in a hash table (Cormen et al., 2009, chapter 11). The hash
table is exploited in two ways:
(i) If the URPP for a given subset H ′′ has already been solved, there exists an entry in the hash table

and we simply use the already computed cost cw(H′′) instead of solving the URPP again.
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(ii) Before starting the add-drop-based metaheuristic (Section 3.1.3), we search for negative reduced-cost
routes by iterating over the hash table. As the reduced cost c̃r′ of a route r′ = (w(H ′′), H ′′) decomposes
into cw(H′′) and −

∑
h∈H′′ πh − µ, each hash table entry provides the first term while the second term

can be quickly computed in O(|H ′′|) time. All routes r′ with negative reduced-cost c̃r′ < 0 are added to
the RMP, which is then re-optimized. We refer to this pricing strategy as hash-table inspection. Overall,
pricing is then performed in a three-level hierarchy with hash-table inspection first, add-drop-based
metaheuristic second, and B&C third.

3.1.3. Add-Drop-based Metaheuristic
If no negative reduced-cost route was found by searching the hash table (Section 3.1.2), we apply an

add-drop-based metaheuristic. Starting from the primal solution (λ̄r)r∈Ω′ of the RMP, we loop over all
routes r ∈ Ω′ with λ̄r > 0. For each of these routes, we apply the primal heuristic Add-Drop-based
Metaheuristic(rinit) given by Algorithm 1 and described in the following.

The main loop of the primal heuristic (Steps 2–16) runs for MaxIter iterations. Steps 3–8 comprise a
variable neighborhood descent (VND, Hansen and Mladenović, 2001) including a drop and an add operator:
First, we search for the best cluster h ∈ H ′ to drop from the current route r = (w,H ′). If the dropping
results in an improvement in reduced cost c̃r, cluster h is removed from r and the procedure is repeated.
Second, if no improvement was found, we search for the best cluster h ∈ H \ H ′ that is currently not
served by r but can be added as it respects the capacity constraint. If this results in an improvement, we
repeat the procedure starting with the drop operator. Otherwise, the VND is terminated. Afterwards, in
Steps 9–14 the best derived route r∗ is updated or the current route is reset to r∗. Possibly, r∗ is returned
as a negative reduced-cost route, if c̃r∗ is negative. Otherwise, a random cluster is dropped from the current
route (Steps 15–16), resulting in the starting solution for the next iteration.

Algorithm 1: Add-Drop-based Metaheuristic(rinit)

Input: A feasible route rinit = (w,H ′)
Output: A negative reduced-cost route r∗ or FAILED if none is found

1 r∗ := r := rinit = (w,H ′)
2 for Iter = 1, 2 . . . ,MaxIter do
3 do
4 do
5 BestImprovementMove(r, DropCluster, h ∈ H ′)
6 while improvement found
7 BestImprovementMove(r, AddCluster, h ∈ H \H ′ with dh + d(H ′) < Q)
8 while improvement found
9 if c̃r < c̃r∗ then

10 r∗ := r
11 if c̃r∗ < 0 then
12 return r∗

13 else
14 r := r∗

15 Randomly choose h ∈ H ′
16 Move(r, DropCluster, h)

17 return FAILED

3.2. Branch-and-Cut
To solve the pricing subproblem exactly, we use a B&C algorithm for either of the two formulations (4)

and (5) presented in Section 2.3. Both models include connectivity constraints in the form of (4e) and (5d),
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respectively. While cocircuit constraints (4d) are needed for the validity of the first formulation, they are not
mandatory for the second. However, it is straightforward to show that the following cocircuit inequalities
are valid for windy formulations like (5) in which all routing variables are binary. For any S ⊂ V and
F ⊆ δA(S) with |F | odd, the cocircuit inequalities are

x(δA(S) \ F ) + x(F ) ≥ 1 + |F |. (7)

3.2.1. Separation of violated Connectivity Constraints
The algorithms used for separating violated connectivity constraints (4e) and (5d) are based on proce-

dures described in several works on rural postman problems (see Ghiani and Laporte, 2014, and the various
references given there). Let (x̄, ȳ, z̄) (or (x̄, z̄)) be the possibly fractional solution of a relaxation of (4) (or
(5)), i.e., we want to separate the respective vector from the feasible integer solutions. Separation is done
by constructing an undirected weighted graph and solving min-cut problems in it: For each e ∈ E, define
the weight we = x̄e + ȳe in the undirected case and we = x̄ij + x̄ji for e = {i, j} in the windy case. Let
the weighted graph Gw = (Vw, Ew) be the edge-induced subgraph of G induced by the edges with positive
weight, i.e., by Ew = {e ∈ E : we > 0} (note that in general only a proper subset Vw ⊆ V of the vertices is
present).

We compute the connected components of Gw using a union-find algorithm (Cormen et al., 2009, chap-
ter 21). Any component S ⊂ Vw of Gw not containing the depot 0 provides a potential set S for a violated
connectivity constraint. In the undirected case, we next determine an edge e ∈ ER(S) having maximum
value x̄e > 0. In the windy case, we determine a cluster h ∈ H with Eh ∩ E(S) 6= ∅ and maximum value
z̄h > 0. Then, (4e) is violated for (S, e) (or (5d) for (S, h)). We refer to this componentwise test as the
level-1 separation.

If the graph Gw is connected, we calculate a minimum-cut tree for it (Gomory and Hu, 1961). For an
edge of the cut tree, let S be the cut set that separates the two end-vertices of the edge. In the undirected
case, for each such set S, we first find an edge e ∈ ER(S) with maximum weight x̄e. If w(δ(S)) < 2x̄e, the
connectivity constraint (4e) for the pair (S, e) is violated. The windy case works analogously considering
clusters h ∈ H with Eh ∩ E(S) 6= ∅ and their values z̄h > 0. We refer to this procedure as the level-2
separation.

3.2.2. Separation of violated Cocircuit Constraints
We separate violated cocircuit constraints again with a 2-level algorithm. For the cocircuit constraints of

the form (7), the algorithm of Letchford et al. (2004, 2008) is directly applicable. The algorithm constructs
another weighted multi-graph in which the flow values x̄ produce weights min{x̄, 1− x̄}.

We first sketch the algorithm for the windy model (5): Each pair x̄ij and x̄ji produces two parallel edges
e = {i, j} and e′ = {i, j} with weights w̃e = min{x̄ij , 1 − x̄ij} and w̃′

e
= min{x̄ji, 1 − x̄ji}, respectively.

Let the undirected multi-graph Gw̃ = (Vw̃, Ew̃) be the edge-induced subgraph of G induced by the edges
with positive weight. The level-1 separation checks whether Gw̃ is disconnected, and if so, it considers the
connected components. For each connected component S ⊆ V , the arc set F = {(i, j) ∈ δA(S) : 1 − x̄ij <
x̄ij} ∪ {(j, i) ∈ δA(S) : 1 − x̄ji < x̄ji} is determined. If |F | is even, then either one arc is removed from F
or one arc from δ(S) \ F is added to F , in order to make F odd. The arc with smallest value |1 − 2x̄ij |
(or |1 − 2x̄ji|) is chosen. If x̄(δ(S) \ F ) + x̄(F ) < 1 + |F | the cocircuit constraint (7) for this pair (S, F ) is
violated.

The level-2 separation continues the algorithm of Letchford et al. (2004, 2008) by computing a cut tree
for each component of Gw̃. An edge in the cut tree further decomposes the component S into S = S′ ∪ S̄′
with S′ 6= ∅ and S̄′ = S \ S′ 6= ∅. The above computation of the set F (now a subset of δA(S′)) including
the parity check and the subsequent check of the violation is done analogously as described above. As proven
by Letchford et al., the level-1 and level-2 procedures together yield an exact cocircuit-separation algorithm.

For the separation of violated cocircuit constraints (6b) in the URPP model (see Section 3.1.1), the
exactly same two-level separation is applicable.

Finally, Aráoz et al. (2009b) have shown how the above procedure has to be modified in order to
separate violated cocircuit inequalities of the form (4d), where L ⊆ F ⊆ δ(S) and |L| + |F | needs to be
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odd. Similar to the original procedure, one first defines tentative sets L = {e ∈ δ(S) : 1 − ȳe < ȳe} and
F = {e ∈ δ(S) : 1 − x̄e < x̄e}. Note that constraints (4b), i.e., xe ≥ ye for all e ∈ E, ensure L ⊆ F . If
|L| + |F | is even, the consideration of four different cases, described in (Aráoz et al., 2009b, Remark 5.3),
adds one edge to or removes one edge from one of the two sets so that finally |L|+ |F | becomes odd.

4. Branch-Price-and-Cut

The remaining components of the BPC algorithm are presented in this section. We first elaborate on
the cutting strategies and afterwards the branching strategies.

4.1. Cutting
Subset-row inequalities (SRIs, Jepsen et al., 2008) are valid inequalities for set-packing formulations. As

these inequalities are directly formulated on the master-program variables and cannot be directly formulated
on an original compact model (a model from which the master program can be derived via Dantzig-Wolfe
decomposition, see Lübbecke and Desrosiers, 2005), SRIs are considered non-robust. The consequence is
that additional attributes need to be integrated in the subproblems. Despite the resulting additional effort,
later works building on the results of Jepsen et al. (2008) have confirmed that the success of many BPC
approaches can be attributed to the use of SRIs.

A SRI can be described by a subset S ⊂ H and weights uh > 0 for all h ∈ S. As separation of violated
SRIs is hard, practical approaches typically rely on enumeration and heuristics for sets S of restricted
size. Table 1 shows the non-dominated combinations of weights for all SRIs defined over sets S of size
|S| ∈ {3, 4, 5}, taken from Pecin et al. (2017). In all cases, the SRI associated with (S, (uh)h∈H) is of the
form

∑
r=(w,H′)∈Ω

⌊ ∑
h∈S∩H′

uh

⌋
λr ≤

⌊∑
h∈S

uh

⌋
. [σS,u] (8)

Let the dual price of the SRI defined by (S, u) be σS,u. The consequence is that the reduced-cost formula (3)
of a route r = (w,H ′) must be extended and becomes

c̃r = cw −
∑
h∈H′

πh − µ−
∑
(S,u)

⌊ ∑
h∈S∩H′

uh

⌋
σS,u, (9)

where the last sum is taken over all active SRIs defined by (S, u).
We next show how to handle the dual prices σS,u in the subproblem: For each active SRI defined by

(S, u), a non-negative integer variable sS,u ∈ Z+ must be added to formulation (4) or (5), respectively. The
variable sS,u describes the coefficient

⌊∑
h∈S∩H′ uh

⌋
of the route (w,H ′) computed by the subproblem, see

equation (8). Hence, this variable is added with the coefficient −σS,u to the objectives (4a) and (5a).
Moreover, there are at least two possibilities to couple the new variable sS,u with the decisions zh for

h ∈ H. The first possibility is a single constraint of the form∑
h∈S

phzh − q sS,u ≤ q − 1 (10)

where the weights uh are written as fractions uh = ph/q with nominators ph ∈ Z>0 and unique denominator
q ∈ Z>0. For example, |S| = 3 and (uh1 , uh2 , uh3) = (1/2, 1/2, 1/2) produces the inequality zh1 + zh2 + zh3 −
2sS,u ≤ 2−1 = 1 (forcing sS,u to become one when two or three of the z-variables are one). Another example
is |S| = 5 and (uh1

, uh2
, uh3

, uh4
, uh5

) = (2/3, 2/3, 2/3, 1/3, 1/3) for which the inequality 2zh1
+ 2zh2

+ 2zh3
+

zh4
+ zh5

− 3sS,u ≤ 3− 1 = 2 results (here sS,u can be forced to become one or two). It is straightforward to
prove the validity of (10) by simple term manipulations. We refer to subproblem formulations supplemented
with constraints of type (10) as single SRI-enforcing formulations.
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Size Weights u = Minimal subsets of S
|S| (uh1 , . . . , uh|S|) M ∈M(S, u)

3 ( 1
2
, 1
2
, 1
2
) {h1, h2}, {h1, h3}, {h2, h3}

4 ( 2
3
, 1
3
, 1
3
, 1
3
) {h1, h2}, {h1, h3}, {h1, h4}, {h2, h3, h4}

5 ( 1
3
, 1
3
, 1
3
, 1
3
, 1
3
) {h1, h2, h3}, {h1, h2, h4}, {h1, h2, h5}, {h1, h3, h4}, {h1, h3, h5},

{h1, h4, h5}, {h2, h3, h4}, {h2, h3, h5}, {h2, h4, h5}, {h3, h4, h5}
( 2
4
, 2
4
, 1
4
, 1
4
, 1
4
) {h1, h2}, {h1, h3, h4}, {h1, h3, h5}, {h1, h4, h5}, {h2, h3, h4}, {h2, h3, h5}, {h2, h4, h5}

( 3
4
, 1
4
, 1
4
, 1
4
, 1
4
) {h1, h2}, {h1, h3}, {h1, h4}, {h1, h5}, {h2, h3, h4, h5}

( 3
5
, 2
5
, 2
5
, 1
5
, 1
5
) {h1, h2}, {h1, h3}, {h1, h4, h5}, {h2, h3, h4}, {h2, h3, h5}

( 1
2
, 1
2
, 1
2
, 1
2
, 1
2
) {h1, h2}, {h1, h3}, {h1, h4}, {h1, h5}, {h2, h3}, {h2, h4}, {h2, h5},

{h3, h4}, {h3, h5}, {h4, h5}, (with
∑

uh ≥ 1)
{h1, h2, h3, h4}, {h1, h3, h4, h5}, {h1, h2, h4, h5},
{h1, h2, h3, h5}, {h2, h3, h4, h5} (with

∑
uh ≥ 2)

( 2
3
, 2
3
, 2
3
, 1
3
, 1
3
) {h1, h2}, {h1, h3}, {h1, h4}, {h1, h5}, {h2, h3}, {h2, h4},

{h2, h5}, {h3, h4}, {h3, h5}, (with
∑

uh ≥ 1)
{h1, h2, h3}, {h1, h2, h4, h5}, {h1, h3, h4, h5}, {h2, h3, h4, h5} (with

∑
uh ≥ 2)

( 3
4
, 3
4
, 2
4
, 2
4
, 1
4
) {h1, h2}, {h1, h3}, {h1, h4}, {h1, h5}, {h2, h3},

{h2, h4}, {h2, h5}, {h3, h4}, (with
∑

uh ≥ 1)
{h1, h2, h3}, {h1, h2, h4}, {h1, h3, h4, h5}, {h2, h3, h4, h5} (with

∑
uh ≥ 2)

Table 1: Sets S, non-dominated weights u, and minimal subsets for SRIs associated with S and u.

The second possibility is to add several inequalities per SRI to the model of the subproblems, where each
inequality refers to a so-called minimal subset, i.e., a subset of S where the coefficient

⌊∑
h∈S∩H′ uh

⌋
in the

SRI (8) increases. We define that a subset M ⊆ S is a minimal subset for S and weights u if there exists an
integer m ≥ 1 with ∑

h∈M

uh ≥ m and
∑
h∈M ′

uh < m ∀M ′ (M.

LetM(S, u) be the set of all minimal subsets of S and u. The following system of inequalities, one for each
M ∈M(S, u) is added to formulation (4) or (5):

∑
h∈M

zh − sS,u ≤ |M | −

⌊∑
h∈M

uh

⌋
∀M ∈M(S, u) (11)

For the same example as above, i.e., |S| = 3 and (uh1
, uh2

, uh3
) = (1/2, 1/2, 1/2), the result is three inequalities

zh1
+zh2

−sS,u ≤ 1, zh1
+zh3

−sS,u ≤ 1, and zh2
+zh3

−sS,u ≤ 1. For |S| = 5 and (uh1
, uh2

, uh3
, uh4

, uh5
) =

(2/3, 2/3, 2/3, 1/3, 1/3) there are 13 inequalities, where the first is zh1 + zh2 − sS,u ≤ 1 and the last is zh2 + zh3 +
zh4 + zh5 − sS,u ≤ 4 − 2 = 2. We refer to subproblem formulations supplemented with constraints of type
(11) as multiple SRI-enforcing formulations.

The following proposition highlights that there is no “better” subproblem formulation comparing the two.

Proposition 2. Single SRI-enforcing formulations do not dominate multiple SRI-enforcing formulations,
nor vice versa.

Proof. We consider S = {h1, h2, h3} and (uh1 , uh1 , uh1) = (1/2, 1/2, 1/2) again to show that there is no
dominance between the two possibilities.

On the one hand, consider the fractional point (zh1
, zh2

, zh3
, sS,u) = (1, 1, 0, 1/2). This point is feasible

for zh1
+zh2

+zh3
−2sS,u ≤ 1 but cut off by zh1

+zh2
−sS,u ≤ 1. Hence, the single SRI-enforcing formulation

does not dominate the multiple SRI-enforcing formulation.
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On the other hand, consider the fractional point (zh1 , zh2 , zh3 , sS,u) = (2/3, 2/3, 2/3, 1/3). This point is cut
off by zh1 + zh2 + zh3 − 2sS,u ≤ 1 but fulfills all three inequalities zh1 + zh2 − sS,u ≤ 1, zh1 + zh3 − sS,u ≤ 1,
and zh2

+ zh3
− sS,u ≤ 1. Hence, the multiple SRI-enforcing formulation does not dominate the single

SRI-enforcing formulation, which completes the proof.

The consequence is that three computational setups should be tested: using the single SRI-enforcing
formulation, the multiple SRI-enforcing formulation, or a combination of the two. Section 5.5 provides
empirical evidence that on average the combination works best.

Since the number of clusters (=rows) is relatively small in the SoftCluCARP instances that we consider
in the computational study (see Section 5.1), we use an exact enumeration procedure to detect the most
violated SRIs with |S| = 3. For larger subsets with |S| > 3, we use a straightforward heuristic separation
algorithm comparable to the one presented by Pecin et al. (2017). Also, the general strategy for selecting
violated SRIs is adopted from the work of Pecin et al.. Only SRIs violated by a minimum violation value
εSRI = 0.1 are considered. Moreover, in each round of separation, a maximum of 30 SRIs can be added (the
most violated ones), but not more than three SRIs that refer to the same cluster.

Impact of SRIs on Primal Heuristics. Note that the additional terms for the dual prices σS,u of the active
SRIs (S, u) must also be considered in the primal heuristics of Section 3.1 to correctly compute the reduced
cost (9). This is however straightforward because the coefficients

⌊∑
h∈S∩H′ uh

⌋
directly depend on the

chosen subset H ′. Add- and drop-steps that modify the subset H ′ can directly compute the resulting
difference in the SRI-specific terms.

4.2. Branching
Let (λ̄r)r∈Ω be a fractional solution of the master program (2). As in the benchmark problems the

number of vehicles is always restricted to the minimum number needed (found by solving a bin-packing
problem), the branching for the SoftCluCARP is based solely on Ryan-Foster branching for pairs of clusters.
Formally, the values

Bh,h′ =
∑

r=(w,H′)∈Ω:
{h,h′}⊆H′

λ̄r

are computed first for all pairs h, h′ ∈ H with h 6= h′. If several branching values Bh,h′ are fractional, one
where the fractional value is closest to 0.5 is selected. Then, two branches are created.

The first one is the separate branch in which all routes (w,H ′) ∈ Ω with {h, h′} ⊆ H ′ are fixed to zero
in the RMP. Moreover, in the subproblems the additional constraint

zh + zh′ ≤ 1

must be added.
The second one is the together branch in which all routes (w,H ′) with h ∈ H ′, h′ /∈ H ′ or h /∈ H ′, h′ ∈ H ′

are fixed to zero. In addition, the two clusters Eh and Eh′ must be merged into one new cluster. For the
sake of simplicity, in formulations (4) and (5) we implement this merge with the additional constraint

zh = zh′

but use the merged cluster in the metaheuristic. Ryan-Foster branching guarantees that branching finally
produces integer solutions.

Globally, in the BPC algorithm, we explore the branch-and-bound search tree with a mixture of a best
bound-first and a depth-first node-selection strategy: If a branch-and-bound node is bounded, a next node
is chosen with the best-bound first rule, while otherwise the tree search is continued with depth-first search
(ties are broken choosing the together branch first). The intention of this mixed strategy is to find integer
solutions quickly while keeping the search trees small.
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Impact of Branching on Primal Heuristics. Branching affects the primal heuristic in two ways: (i) during
the hash-table inspection (Section 3.1.2), we only consider entries in the hash-table that fulfill all active
branching decisions; (ii) for our add-drop-based metaheuristic (Section 3.1.3), we only need to modify the
add operator for the case of separate constraints. If a separate constraint is active for clusters h and h′ and
we add cluster h to a route r = (w,H ′) that serves cluster h′ ∈ H ′, then we have to remove h′ from H ′ so
that the new subset becomes (H ′ ∪ {h}) \ {h′}.

5. Computational Results

We implemented the BPC algorithm in C++ and compiled the code in release mode under MS Visual
Studio 2015 (64-bit version). CPLEX 12.8.0 was used to re-optimize the RMP, to solve the pricing subprob-
lems as well as the URPPs via B&C. The experiments were carried out on a standard PC with an Intel(R)
Core(TM) i7-5930k CPU, clocked at 3.5 GHz, and 64 GB of RAM, by allowing a single thread for each run.
The time limit for each run was set to one hour.

5.1. Instances
In all previous works on clustered arc routing or postman problems, the clusters have been defined such

that they are the connected components of the graph induced by required edges (Franquesa, 2008; Aráoz
et al., 2009a; Aráoz et al., 2013; Corberán et al., 2011). In real-world applications, however, clusters may be
small city districts so that their induced graphs are not necessarily vertex-disjoint. As no such benchmark
instances for the SoftCluCARP are available, we generated new instances starting from the widely-used
traditional CARP benchmarks KSHS (Kiuchi et al., 1995), GDB (Golden et al., 1983), VAL (Benavent et al.,
1992), BMCV (Beullens et al., 2003), and EGL (Li and Eglese, 1996). The only necessary information to add
is the clustering information for the required edges ER.

We applied a hierarchical agglomerative approach (Ward Jr., 1963) that works as follows: Initially, each
required edge e ∈ ER forms a separate cluster leading to the singleton set Ee = {e}, i.e., H = ER. Then,
iteratively, two clusters are selected and merged into one, following the idea that two clusters that are
the “most similar” should be merged first. Therefore, a similarity measure (to be maximized) or distance
measure (to be minimized) for pairs of clusters must be defined. For h, h′ ∈ H with h 6= h′, we use:
(i) Vertices in intersection: |Vh ∩ Vh′ |;
(ii) Total demand: d(Eh) + d(Eh′);
(iii) Required edges in union: |Eh|+ |Eh′ |;
(iv) Minimum distance: min(i,j)∈Vh×Vh′

Dij ,
where Dij denotes the shortest-path distance in G between vertices i and j;

(v) Average distance:
∑

(i,j)∈Vh×Vh′
Dij/ (|Vh| · |Vh′ |);

The first is a similarity measure and the latter four are distance measures. The purpose of the two mea-
sures (ii) and (iii) is to generate clusters that are equally sized. We combine these five measures using
weighted sums. For the measures that are to be minimized the reciprocal number related to the measure is
used.

In order to create feasible SoftCluCARP instances, the total demand of a newly built cluster must not
exceed a given value M , where we use M = 4/5Q. Hence, in each iteration, two clusters for Eh and Eh′

maximizing the weighted sum and not violating the total demand constraint are selected and merged into
the new cluster Eh ∪ Eh′ . The iterative merging continues until either no more cluster can be merged or a
wanted number Hmax of clusters is obtained.

In order to create a diverse set of instances, four different sets of weights were used. The weights were
chosen such that a reasonable balance between the measures was obtained. The priorities (1/c, 0, 0, 1, 2),
(c/2, 0, 0, 1, 3), (1/c, 2 maxe∈ER

de/c, 0, 1, 2), and (1/c, 0, 7/c, 1, 2) were used in the four sets, where c = mine∈ER
ce

is the minimum cost of a required edge. In the first two sets of weights, only the closeness of clusters is
considered. In the remaining two sets, clusters of smaller size measured by total demand or the num-
ber of edges are favored compared to clusters that are larger. For each original CARP instance, several
clustered versions were created, where the number of wanted clusters and the set of weights were chosen
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differently. The resulting benchmark comprises 8 KSHS, 54 GDB, 119 VAL, 348 BMCV, and 82 EGL instances
available at https://logistik.bwl.uni-mainz.de/forschung/benchmarks/. The interested reader finds
a characterization of each instance in the Appendix.

5.2. Parameter Study for B&C
We use the following general setup and acceleration strategies in the three B&C algorithms (to solve

URPPs and pricing subproblems (4) and (5)). In order to keep the setup reproducible and simple, the
parameters are chosen identically in the three B&C algorithms: First, we set the threshold for the minimum
cut violation to εcut = 0.01.

Second, when solving pricing problems (4) and (5), we set the upper bound for the reduced-cost objective
to zero, which cuts off feasible but not improving integer solutions.

Third, we allow heuristic (a.k.a. partial) pricing and let the B&C terminate with a negative reduced-cost
integer solution when at least 100,000 simplex iterations have been performed. If such a feasible integer
solution is found after 100,000 simplex iterations, B&C is terminated immediately (the value of 100,000
iterations has been found in pretests). Moreover, we exploit the solution pool of CPLEX and add all
negative reduced-cost routes stored there. In particular, every non-optimal route r = (w,H ′) of the solution
pool is first checked using the hash-table with the key H ′ to find the cost-minimal walk w(H ′). If no entry
is found, we run the exact URPP algorithm to compute the walk with minimal cost cw(H′).

Fourth, pretests have also revealed that the more time consuming level-2 separation for connectivity and
cocircuit constraints is only effective at the beginning of the B&C. We tested multiple different criteria and
found that a reasonable strategy is to switch off level-2 separation when 50 branch-and-bound nodes have
been solved.

Fifth, the sequence of separation procedures is level-1 separation for connectivity constraints, level-1
separation for cocircuit constraints, level-2 separation for connectivity constraints, and level-2 separation
for cocircuit constraints. If one of the four procedures finds at least one violated constraint, separation is
immediately terminated and the LP is re-optimized.

Finally, for all other B&C strategies, like branching-variable selection, tree search strategy, use of primal
LP-based heuristics etc., we rely on the default settings of the callable library of CPLEX.

In the following experiment, we analyze for both the undirected and the windy subproblems, whether
level-1 and level-2 separation for connectivity and cocircuit constraints is effective for cutting off fractional
solutions. Note that checking connectivity constraints (4e) and (5d) and cocircuit constraints (4d) is in-
dispensable for integer solutions. For the comparison, we restricted the test to the solution of the linear
relaxation of the master problem (2). Moreover, we have selected a subset of 113 SoftCluCARP instances
for this parameter study in order to keep the computational effort lower. These 113 instances are the result
of running a preliminary column-generation implementation and selecting those instances with a run time
between 10 seconds and 1 minute for the linear relaxation. Some less time-consuming but also more time-
consuming instances were additionally selected so that all five benchmarks (KSHS, GDB, VAL, BMCV, and EGL)
contribute with at least some instances.

The results of experiments comparing nine different cut strategies are summarized in Table 2. These cut
strategies include no separation on fractional solutions (S00), separating either only connectivity constraints
(S10 or S20)) or only cocircuit constraint (S01 or S02), using the level-1 separation only (S11), and the
use of all available separation algorithms (S22). The mixed strategies S12 and S21 use different levels for
connectivity and cocircuit constraints. The table entries are average computation times (arithmetic mean
Avg. T and geometric mean Geo. T in seconds) over the 113 instances, and how often the linear relaxation
was solved within the time limit of TL = 3600 seconds (#Solved).

For the undirected formulation (4), the two cut strategies S21 and S22 outperform all others (they
are Pareto-optimal regarding the average times and solved instances). For the windy formulation (5), the
strategy S21 is Pareto-optimal. Thus, all subsequent computational experiments are performed with cut
strategy S21. The strategy S21 is also used when solving URPPs with B&C (see Section 3.1.1).
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Cut Strategies S00 S10 S20 S01 S02 S11 S21 S12 S22

Connectivity: level-1 separation × × × × × ×
level-2 separation × × ×

Cocircuit: level-1 separation × × × × × ×
level-2 separation × × ×

Undirected formulation (4)

Avg. T 757.1 395.8 25.2 698.3 699.9 207.4 14.6 209.6 14.6
Geo. T 144.9 96.9 15.7 98.7 98.7 46.6 11.6 46.6 11.6

#Solved (of 113) 96 106 113 96 96 111 113 111 113

Windy formulation (5)

Avg. T 726.5 21.5 14.2 732.2 729.9 22.2 13.9 22.1 14.4
Geo. T 96.4 14.4 11.8 102.0 99.4 14.7 11.5 14.6 12.0

#Solved (of 113) 95 113 113 95 95 113 113 113 113

Table 2: Comparison of separation strategies for the undirected and windy formulations tested on 113 selected SoftCluCARP
instances.

5.3. Impact of Heuristic Pricing
In this second experiment, we analyze the performance of the heuristic pricing components, i.e., the hash-

table inspection on the very first level and the use of the add-drop-based metaheuristic at the second level,
before the exact pricing is done with the B&C algorithm (cut strategy S21 based on either formulation (4)
or (5)). Regarding the hash-table inspection, we either skip it (w/o) or use it (with). Regarding the add-
drop-based metaheuristic, we vary the number of iterations (MaxIter) of the main loop. The tested values
for MaxIter are 0 (do not use the metaheuristic), 5, 20, and 50.

Pricing Strategies P0 P5 P20 P50 PH
5 PH

20 PH
50

Use add-drop-based metaheuristic

w/o hash-table with hash-table
inspection inspection

Iterations MaxIter 0 5 20 50 5 20 50

Avg. T 14.2 26.1 9.9 10.0 9.2 9.5 20.5
Geo. T 11.5 7.7 7.3 7.3 7.0 7.1 7.4

#Solved (of 2× 113 = 226) 226 225 226 226 226 226 226

Table 3: Comparison of heuristic pricing strategies using 113 selected SoftCluCARP instances, solved with both formulations (4)
and (5).

Table 3 shows aggregated linear-relaxation results over the 226 runs for each of the seven pricing strategies
(two runs for each of the 113 instances using either the undirected or windy formulation in the B&C). The
table entries have the same meaning as in Table 2.

Also in this experiment, there is a winner among the seven strategies: it is the strategy PH5 using hash-
table inspection (superscript H ) in combination with only MaxIter = 5 iterations of the add-drop-based
metaheuristic. Even if PH5 is Pareto-optimal, also some other setups like P20, P50, and PH20 that also use the
metaheuristic are competitive. The results also show that arithmetic and geometric means provide different
recommendations (the reader may compare P0 with PH50). It should be noted that the run times of different
instances vary significantly so that arithmetic means are dominated by the run times of difficult instances.
Indeed, the rather bad Avg. T -value of 26.1 seconds for pricing strategy P5 largely results from reaching the
time limit in one of the 226 runs. Similarly, there is one very time-consuming instance for PH50 leading to a
comparably large Avg. T -value of 20.5 seconds.
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For the remaining experiments, all column-generation iterations are done with pricing strategy PH5 , i.e.,
with hast-table inspection and MaxIter = 5 iterations of the add-drop-based metaheuristic.

5.4. Comparison of B&C Algorithms using the Undirected and Windy Formulations
The next experiments were conducted with the goal to identify the better suited formulation for finally

solving the pricing subproblems to optimality. We consider the two B&C algorithms described in Section 3.2
for the undirected formulation (4) and the windy formulation (5). Since branching and cutting on the master-
program level may lead to very different trajectories of the overall BPC algorithms, we restrict the analysis
to the solution of the linear relaxation of (2). However, we use the complete new benchmark set with
611 SoftCluCARP instances.

The outcome of the computational comparison is summarized in Table 4, grouped by the five classes of
instances. The first three columns show the class with the number of instances (in brackets), the range of
the number |ER| of required edges, and the range of the number |H| of clusters. The two blocks with three
columns each show for both formulations the number of solved linear relaxations as well as arithmetic and
geometric means of the computation times (in seconds).

Benchmark set Undirected formulation (4) Windy formulation (5)

Time Time

|ER| |H| #Solved Avg. T Geo. T #Solved Avg. T Geo. T

KSHS (8) 15 5–7 8 0.1 0.1 8 0.1 0.1
GDB (54) 11–55 4–24 54 0.3 0.2 54 0.3 0.2
VAL (119) 34–97 4–41 114 211.6 5.9 118 122.8 6.9
BMCV (348) 28–121 2–53 342 106.2 8.6 348 55.4 8.2
EGL (82) 51–190 12–84 29 2360.5 710.3 50 1500.9 265.4

Total (611) 11–190 2–84 547 418.5 9.9 578 257.0 8.7

Table 4: Comparison of B&C algorithms using either the undirected formulation (4) or the windy formulation (5) grouped by
benchmark sets.

Overall, the column-generation algorithm using the windy formulation (5) outperforms the one using the
undirected formulation (4). The KSHS and GDB instances require only very small computation times making
a comparison redundant. The comparison on the classes VAL and BMCV reveals that the windy formulation
allows the column-generation algorithm to solve all but one linear relaxation (instance 10A_clustered38
of the VAL benchmark), while the column-generation algorithm with the undirected formulation fails in 11
of the 467 cases. For the 82 EGL instances, the linear relaxation is also solved more often by the windy
formulation (50 versus 29 instances). The only value in Table 4 that speaks for the undirected formulation
is the geometric mean time of 5.9 seconds spent for the VAL benchmark. The advantage over the geometric
mean time of 6.9 seconds for the windy formulation is however not striking.

These findings regrading the superiority of the windy formulation are also supported by the perfor-
mance profiles depicted in Figure 2. The performance profiles are computed as follows: For any set
A of algorithms applied to the same set of instances (here we have A = {column generation using (4),
column generation using (5)}), the function ρA(τ) of algorithm A ∈ A is the fraction of instances that algo-
rithm A can solve within a factor τ of the fastest algorithm, where unsolved instances are taken into account
with infinite run time. In particular, the value ρA(1) is the percentage of instances on which A is a fastest
algorithm and the value 1−ρA(∞) is the percentage of instances not solved by A. Note that τ in Figure 2 is
displayed in logarithmic scale and the percent-axis starts at 40% (cutting off the uninteresting part between
0% and 40%).

The two profiles show that the column-generation algorithm with the undirected formulation is the faster
variant in 49.6% of the cases, while the windy one is the fastest in 45.2% of the cases (the remaining cases
are unsolved instances). However, already for τ ≥ 1.1, i.e., accepting an up to 10% slower algorithm, the
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Figure 2: Performance profiles ρA(τ) for A ∈ A = {column generation using (4), column generation using (5)} comparing the
two resulting BPC algorithms using the undirected and windy formulations for the final pricing steps.

two curves overlap (until τ ≈ 1.6) and at the end the windy formulation enables solving significantly more
instances.

In all following experiments, we use the windy formulation (5) in the final pricing steps.

5.5. Parameter Study for Subset-Row Inequalities
The purpose of the following experiments is to properly calibrate the SRI strategy. We use the complete

benchmark of 611 SoftCluCARP instances again but now try to solve them to proven integer optimality.
We compare ten different separation strategies: no SRIs at all (denoted by SR−), only SRIs for subsets S

with |S| = 3 (SR3), with |S| ∈ {3, 4} (SR34), and with |S| ∈ {3, 4, 5} (SR345). For the three latter strategies,
we further distinguish between implementing the SRIs via single SRI-enforcing formulations (indicated by
the superscript “s”), multiple SRI-enforcing formulations (superscript “m”), and the combination of both
(superscript “sm”).

Subset-row strategies SR− SRs
3 SRm

3 SRsm
3 SRs

34 SRm
34 SRsm

34 SRs
345 SRm

345 SRsm
345 Overall

|S| = 3 |S| ∈ {3, 4} |S| ∈ {3, 4, 5}

single SRI-enforce. × × × × × ×
multiple SRI-enforce. × × × × × ×

Avg. T 711.6 656.6 616.7 623.2 675.6 625.7 613.7 695.2 658.2 653.3
Geo. T 24.0 20.3 19.5 19.4 20.5 19.6 19.4 21.2 20.3 20.2

#Int 565 537 548 550 528 540 544 522 531 530 570
#Opt 519 525 535 538 519 532 537 518 526 527 547

exclusive 0 0 0 1 0 0 0 0 0 1
exclusive per group 0 ————————– 2 ————————– 0 ————————– 2

best LBtree (of 64 unsolved) 3 10 15 18 8 9 14 6 10 11
exclusive per group 0 ————————– 4 ————————– 2 ————————– 9

Table 5: Comparison of subset-row separation strategies for all 611 instances.

Table 5 presents the aggregated results with arithmetic and geometric mean computation times. More-
over, the next two rows (“#Int” and “#Opt”) provide the number of instances for which an integer solution
and a proven optimal integer solution could be computed, respectively. The additional column (“Overall”)
shows the same numbers counting whether at least one of the ten SRI strategies was able to provide the
respective result.
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We can summarize that the results are not as clear cut as in the previous experiments. Overall, 547 of the
611 instances are solved to optimality and integer results are available for 570 instances. No SRI-separation
strategy outperforms all others. As we use a mixed node-selection strategy for the branch-and-bound, it
could be expected that SR− provides by far the most integer solutions (565 of 611), because nodes are
processed faster compared to the other SRI-separation strategies. Regarding the number of optimally solved
instances, the strategy SRsm3 is slightly better than SRsm34 (538 versus 537 optima), while the other strategies
perform worse. In all three blocks (for SR3, SR34, and SR345), the combination of single-SRI and multiple-
SRI enforcing constraints outperforms the solo strategies (the only exceptions are the Avg. T -value for SRsm3
and the #Int-value for SRsm345).

1 √
2 2 2

√
2 4 4

√
2 8

0%

20%

40%

60%

80%

100%

τ

BPC using SR−
BPC using SRsm3
BPC using SRsm34

BPC using SRsm345

Figure 3: Performance profiles of four selected BPC algorithms using the SRI-separation strategies SR−, SRsm
3 , SRsm

34 , and
SRsm

345 comparing among A = {BPC using one of the ten different SR strategies}.

The additional rows directly below “#Opt” show how often an optimal solution was determined by
exactly one of ten strategies only (“exclusive”). The same information is also displayed per group of strategies
(“exclusive per group”). Here, we find that SR3 as well as SR345 exclusively prove two optima each. A similar
information is provided in the last two rows where, for the 64 instances that remain open, the quality of
the tree lower bound LBtree is compared. All strategies provide several tightest tree lower bounds. The
group SR345 of the strategies exclusively contributes the most (9 compared to only 4 and 2 for the groups
SR3 and SR34, respectively).

Regarding computation times in Table 5, both strategies SRsm3 and SRsm34 seem to be very good, but
all geometric means are close to each other. We therefore compare the BPC algorithms also on the basis of
performance profiles depicted in Figure 3. Note that the performance profiles are computed comparing all
ten SRI-separation strategies. For the sake of clarity, however, we only show the three best strategies with
combined SRI-enforcing constraints and the strategy SR− in order to show the positive impact that the
SRIs have on the BPC performance. One can clearly see that the BPC algorithms with SRsm3 and SRsm34

lead to very similar results, while the BPC algorithm with SR− is inferior.
In summary, SRsm3 and SRsm34 are best regarding the overall number of optima as well as regarding

computation times. However, strategy SRsm345 is complementary and provides several best tree lower bounds
for several unsolved instances.

5.6. Overall Integer Results
For the experiment with complete benchmark, we have chosen two BPC algorithms. Both algorithms

share the separation strategy S21 (2-level separation for connectivity constraints and 1-level separation for
cocircuit constraints), the pricing strategy PH5 (five iterations of the add-drop-based metaheuristic including
hash-table inspection), and use the windy formulation (5) for the final pricing steps. The two BPC algorithms
only differ in their SRI strategy using either SRsm3 or SRsm34 .
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Benchmark set SRsm
3 SRsm

34

Time Time

|ER| |H| #Int #Opt Avg. Geo. #Int #Opt Avg. Geo.

KSHS (8) 15 5–7 8 8 0.1 0.1 8 8 0.1 0.1

GDB (54) 11–55 4–24 54 54 0.5 0.3 54 54 0.4 0.3

VAL (119) 34–97 4–41 106 102 715.0 19.7 103 100 723.2 20.7

BMCV
C (84) 32–121 7–53 79 76 492.5 27.4 79 78 424.6 26.4
D (86) 32–121 2–42 86 84 276.1 10.8 85 85 269.6 10.7
E (84) 28–107 7–41 78 75 650.2 27.6 78 76 580.4 26.6
F (94) 28–107 4–45 91 91 365.7 21.2 89 89 413.1 21.6

EGL
E (39) 51–98 12–44 39 39 351.3 73.9 38 38 373.5 75.7
S (43) 75–190 13–84 9 9 2973.6 2220.8 10 9 2973.7 2222.4

Total (611) 11–190 2–84 550 538 623.2 19.4 544 537 613.7 19.4

Table 6: Overall integer results using the windy formulation (5) and subset-row strategies SRsm
3 and SRsm

34 , grouped by
benchmark sets.

The results are summarized in Table 6, grouped by benchmark sets. For the large BMCV and EGL bench-
marks, results for the subsets C, D, E, and F and the subsets E and S are provided also. Over the different
benchmark sets, the two BPC algorithms with strategies SRsm3 and SRsm34 perform equally. There is no
clear pattern observable, neither in the number of integer and optimal solutions nor in computation times.

The Appendix contains further detailed per instance results (Tables 7–16). For these results, we have
selected the BPC algorithm with the SRI-separation strategy SRsm3 .

5.7. Systematic Agglomeration of the Clusters
We briefly analyze now the impact of the hierarchical agglomerative clustering approach that has been

used to create SoftCluCARP instances (see Section 5.1). Recall first that every SoftCluCARP instance is a
restriction of the corresponding CARP. We denote by IN the SoftCluCARP instance that has a predefined
number N of clusters. Using the same clustering algorithm, instances IN and IN+1 are restriction and
relaxation of another, respectively. This statement holds only true if the fleet size m is not constrained. In
the CARP and also in the previous experiments, the fleet size was always set to the minimum (resulting
from solving the bin-packing problem). In this case, instance IN is a restriction of IN+1 only if the fleet-size
limit m is identical.

As an example, we consider the CARP instance C12 from the BMCV benchmark. It has |ER| = 72 required
edges and its optimal solution value zCARP = 4,240 provides a valid lower bound for the restricted fleet-size
case. For the following experiment, we have generated 33 SoftCluCARP instances with between N = 16
and 48 clusters using the hierarchical agglomerative clustering approach. Each instance is then solved two
times, once with the minimum fleet-size limit and once with unrestricted fleet. The results are displayed in
Figure 4.

There are several things that stand out: On average, the larger number of clusters, the longer the
computation times. Instances with more than 36 clusters become very difficult, probably because the
average size of a cluster falls below two edges per cluster, so that the resulting problem is rather close to
the original CARP. For these instances, a labeling-based solution approach may become more appropriate
than the MIP-based solution approach used here.

Regarding routing costs, the curve for instances with unlimited fleet, i.e., m =∞, is non-increasing. In
contrast, for instances with limited fleet, i.e., m = min, the cost curve is non-monotone. For N between
16 and 19, the minimum fleet size is 10 vehicles, while for N between 20 and 48 the minimum fleet size is
9 vehicles. This explains the jump discontinuity.

21



15 20 25 30 35 40 45

zCARP

4500

5000

5500

6000

Number N = |H| of Clusters

C
os
t

600

1200

1800

2400

3000

TL

T
im

e
(i
n
se
co
nd

s)

Costm=min

Costm=∞
Timem=min

Timem=∞

Figure 4: Impact of the hierarchical agglomerative clustering on costs and computation times, using either a minimum (m =
min) or an unrestricted fleet of vehicles (m = ∞).

6. Conclusions

In this paper, we have introduced the SoftCluCARP as a planning problem that sits in the middle be-
tween districting for arc routing (Butsch et al., 2014) and the CARP-based route planning (Eiselt et al.,
1995b; Belenguer et al., 2014). We suggest solving moderately-sized instances of the SoftCluCARP via
branch-price-and-cut (BPC). For this purpose, we have developed a problem-tailored BPC algorithm with
some innovative components. Routing subproblems are not solved as shortest-path problems with resource
constraints via labeling algorithm but by using a MIP-based approach. Important insights from the compu-
tational analysis are the following: a windy formulation of the pricing subproblem is slightly better compared
to an undirected formulation when used as the underlying MIP model for a branch-and-cut. A favorable
separation strategy in the branch-and-cut algorithm applies a two-level separation algorithm to find violated
connectivity constraints, but only a less careful one-level separation algorithm for finding violated cocircuit
constraints. Results comparing subset-row separation strategies on the master-program level in the BPC
are not clear cut, but show that, depending on the individual SoftCluCARP instance, strategies are com-
plementary. For some hard instances, the use of subset-row inequalities referring to more than three rows
can be beneficial. Future research may try to automatically identify a good subset-row separation strategy
in the course of the column-generation process.

For future research, we think that the use of MIP-based approaches for clustered versions of the CARP
is helpful to directly integrate the additional requirements that play a key role in districting: balancedness,
connectivity, and compactness of the final districts covered by a vehicle. These requirements are very
hard to incorporate into shortest-path problems with resource constraints and we doubt that an effective
solution of such subproblems is possible with a labeling algorithm. Enforcing balancedness, connectivity,
and compactness is somewhat simpler in a MIP-based approach.
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This appendix is supposed to become online supplementary material.

Detailed Results

Tables 7–16 provide, on an instance basis, detailed results for the BPC algorithm with the
following settings:

1. Separation strategy S21, i.e., 2-level separation for connectivity constraints and 1-level
separation for cocircuit constraints, see Section 5.2;

2. Pricing strategy PH5 , i.e., with hast-table inspection and MaxIter = 5 iterations of the
add-drop-based metaheuristic, see Section 5.3;

3. Windy formulation (5) in the final pricing steps, see Section 5.4;
4. Subset-row strategy SRsm3 , i.e., using SRIs for subsets S with |S| = 3 and combined single

and multiple SRI-enforcing formulations, see Section 5.5.

The columns of the tables have the following meaning:
Name: name of the instance
BKS: best known solution, bold if proven optimal (marked with * if solution or proof of

optimality is derived by another than the default setting during computational studies)
Time: computation time in seconds (“TL” when prematurely terminated after 3600 seconds)
LBLP: linear relaxation lower bound
LBSRI: linear relaxation lower bound after adding SRIs
LBtree: lower bound at termination

UB: upper bound at termination
%Gap: percentage optimality gap when reaching the time limit of 1 hour (100·(UB-LBtree)/LBtree)
#SRIs: number of subset-row inequalities added
#B&B: number of solved branch-and-bound nodes
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BPC Statistics

Instance Bounds Cuts/Tree

Name |V | |E| |ER| |H| m BKS Time LBLP LBSRI LBtree UB %Gap #SRIs #B&B

kshs1_7 8 15 15 7 4 16171 0.1 16171 16171 16171 16171 0 1
kshs2_6 10 15 15 6 4 12121 0.1 12121 12121 12121 12121 0 1
kshs3_7 6 15 15 7 5 11424 0.1 11424 11424 11424 11424 0 1
kshs4_7 8 15 15 7 5 13090 0.1 13090 13090 13090 13090 0 1
kshs5_5 8 15 15 5 5 14461 0.1 14461 14461 14461 14461 0 1
kshs5_6 8 15 15 6 4 12473 0.1 12473 12473 12473 12473 0 1
kshs6_5 9 15 15 5 3 14762 0.1 14762 14762 14762 14762 0 1
kshs6_6 9 15 15 6 3 11977 0.1 11977 11977 11977 11977 0 1

Table 7: Detailed results for the KSHS instances.
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BPC Statistics

Instance Bounds Cuts/Tree

Name |V | |E| |ER| |H| m BKS Time LBLP LBSRI LBtree UB %Gap #SRIs #B&B

gdb1_8 12 22 22 8 6 406 0.1 406 406 406 406 0 1
gdb1_9 12 22 22 9 5 364 0.1 364 364 364 364 0 1
gdb2_10 12 26 26 10 6 396 0.1 396 396 396 396 0 1
gdb2_11 12 26 26 11 6 396 0.3 395 396 396 396 1 2
gdb3_8 12 22 22 8 7 430 0.2 430 430 430 430 0 1
gdb3_9 12 22 22 9 5 352 0.2 352 352 352 352 0 1
gdb4_8 11 19 19 8 5 384 0.2 382 384 384 384 1 2
gdb5_10 13 26 26 10 8 530 0.2 530 530 530 530 0 1
gdb5_11 13 26 26 11 7 502 0.2 502 502 502 502 0 1
gdb6_8 12 22 22 8 6 393 0.1 393 393 393 393 0 1
gdb6_9 12 22 22 9 6 387 0.1 387 387 387 387 0 1
gdb6_10 12 22 22 10 5 337 0.1 337 337 337 337 0 1
gdb7_8 12 22 22 8 6 419 0.1 419 419 419 419 0 1
gdb7_9 12 22 22 9 5 376 0.2 376 376 376 376 0 1
gdb8_19 27 46 46 19 10 464 0.6 464 464 464 464 0 1
gdb8_20 27 46 46 20 10 415 0.9 415 415 415 415 0 1
gdb9_18 27 51 51 18 12 429 0.6 429 429 429 429 0 1
gdb9_19 27 51 51 19 11 374 1.1 374 374 374 374 0 1
gdb9_22 27 51 51 22 10 373 1.0 373 373 373 373 0 1
gdb10_7 12 25 25 7 5 353 0.2 353 353 353 353 0 1
gdb10_9 12 25 25 9 4 314 0.2 314 314 314 314 0 1
gdb10_11 12 25 25 11 4 315 0.3 315 315 315 315 0 1
gdb11_8 22 45 45 8 6 511 0.2 511 511 511 511 0 1
gdb11_9 22 45 45 9 6 506 0.3 506 506 506 506 0 1
gdb11_12 22 45 45 12 5 476 1.4 476 476 476 476 0 1
gdb11_13 22 45 45 13 5 473 1.4 473 473 473 473 0 1
gdb12_11 13 23 23 11 8 574 0.3 574 574 574 574 0 1
gdb13_10 10 28 28 10 8 619 0.1 619 619 619 619 0 1
gdb13_11 10 28 28 11 8 619 0.2 616 619 619 619 2 2
gdb13_12 10 28 28 12 7 589 0.4 589 589 589 589 0 1
gdb14_8 7 21 21 8 5 118 0.1 118 118 118 118 0 1
gdb14_9 7 21 21 9 5 120 0.2 119 120 120 120 1 3
gdb15_6 7 21 21 6 4 68 0.1 68 68 68 68 0 1
gdb15_8 7 21 21 8 4 66 0.1 66 66 66 66 0 1
gdb16_9 8 28 28 9 6 143 0.2 142 143 143 143 1 2
gdb16_11 8 28 28 11 5 145 0.3 145 145 145 145 0 1
gdb16_12 8 28 28 12 5 137 0.3 137 137 137 137 0 1
gdb17_10 8 28 28 10 5 95 0.2 95 95 95 95 0 1
gdb17_12 8 28 28 12 5 95 0.5 95 95 95 95 4 4
gdb18_10 9 36 36 10 5 176 0.2 176 176 176 176 0 1
gdb18_12 9 36 36 12 5 176 0.4 176 176 176 176 0 1
gdb19_4 8 11 11 4 3 75 0.0 75 75 75 75 0 1
gdb20_6 11 22 22 6 5 149 0.1 149 149 149 149 0 1
gdb20_8 11 22 22 8 5 142 0.1 142 142 142 142 0 1
gdb20_9 11 22 22 9 5 148 0.5 147 147 148 148 1 4
gdb21_13 11 33 33 13 7 185 0.4 184 185 185 185 1 2
gdb21_14 11 33 33 14 6 192 0.5 192 192 192 192 0 1
gdb22_14 11 44 44 14 10 228 0.6 227 228 228 228 1 3
gdb22_17 11 44 44 17 9 220 1.9 219 220 220 220 4 5
gdb22_18 11 44 44 18 9 216 2.9 216 216 216 216 14 10
gdb23_17 11 55 55 17 12 264 0.3 264 264 264 264 0 1
gdb23_19 11 55 55 19 12 260 0.8 260 260 260 260 0 1
gdb23_20 11 55 55 20 11 258 0.5 258 258 258 258 0 1
gdb23_24 11 55 55 24 11 252 2.0 252 252 252 252 0 1

Table 8: Detailed results for the GDB instances.
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BPC Statistics

Instance Bounds Cuts/Tree

Name |V | |E| |ER| |H| m BKS Time LBLP LBSRI LBtree UB %Gap #SRIs #B&B

1A_5 24 39 39 5 2 181 0.1 181 181 181 181 0 1
1A_8 24 39 39 8 2 186 0.2 186 186 186 186 0 1
1A_12 24 39 39 12 2 181 2.5 175 181 181 181 15 4
1A_13 24 39 39 13 2 181 2.0 175 181 181 181 9 3
1B_7 24 39 39 7 4 210 0.1 210 210 210 210 0 1
1B_13 24 39 39 13 3 221 2.6 221 221 221 221 0 1
1B_16 24 39 39 16 3 204 7.6 204 204 204 204 0 1
1C_16 24 39 39 16 11 298 0.4 298 298 298 298 0 1
1C_17 24 39 39 17 10 286 0.4 286 286 286 286 0 1
2A_4 24 34 34 4 2 248 0.1 248 248 248 248 0 1
2A_6 24 34 34 6 2 247 0.2 247 247 247 247 0 1
2A_9 24 34 34 9 2 243 0.9 243 243 243 243 0 1
2A_11 24 34 34 11 2 247 0.7 247 247 247 247 0 1
2B_5 24 34 34 5 3 322 0.1 322 322 322 322 0 1
2B_10 24 34 34 10 3 296 0.8 296 296 296 296 0 1
2B_12 24 34 34 12 3 296 8.2 292 294 296 296 29 12
2C_15 24 34 34 15 10 581 0.3 581 581 581 581 0 1
3A_6 24 35 35 6 2 88 0.1 88 88 88 88 0 1
3A_11 24 35 35 11 2 86 2.7 85 86 86 86 8 2
3A_12 24 35 35 12 2 86 3.5 85 86 86 86 8 2
3B_6 24 35 35 6 3 122 0.2 122 122 122 122 0 1
3B_9 24 35 35 9 3 100 0.4 100 100 100 100 0 1
3B_11 24 35 35 11 3 99 3.6 96 98 99 99 24 8
3B_12 24 35 35 12 3 99 3.8 96 98 99 99 24 7
3C_11 24 35 35 11 11 203 0.3 203 203 203 203 0 1
3C_12 24 35 35 12 9 184 0.3 184 184 184 184 0 1
3C_13 24 35 35 13 8 165 0.2 165 165 165 165 0 1
4A_14 41 69 69 14 3 441 2.8 441 441 441 441 0 1
4A_21 41 69 69 21 3 434 41.3 431 434 434 434 15 2
4A_22 41 69 69 22 3 436 372.7 422 435 436 436 96 22
4A_28 41 69 69 28 3 430 3577.6 410 425 430 430 262 37
4B_19 41 69 69 19 4 456 61.9 452 456 456 456 11 2
4B_20 41 69 69 20 4 457 65.3 451 457 457 457 26 3
4B_24 41 69 69 24 4 445 735.7 436 444 445 445 92 11
4B_27 41 69 69 27 4 *455 TL 433 447 447 456 2.01 143 29
4C_14 41 69 69 14 5 497 2.8 496 497 497 497 3 2
4C_19 41 69 69 19 5 491 12.7 491 491 491 491 0 1
4C_24 41 69 69 24 5 493 30.1 493 493 493 493 0 1
4D_19 41 69 69 19 9 659 7.0 657 659 659 659 4 2
4D_20 41 69 69 20 9 656 9.4 653 656 656 656 4 3
4D_25 41 69 69 25 9 665 114.9 660 665 665 665 26 8
4D_26 41 69 69 26 9 627 49.4 625 627 627 627 13 3
5A_23 34 65 65 23 3 453 350.5 443 453 453 453 74 8
5A_25 34 65 65 25 3 453 3513.7 442 452 453 453 143 34
5B_9 34 65 65 9 4 524 0.9 524 524 524 524 0 1
5B_12 34 65 65 12 4 518 2.1 516 518 518 518 4 2
5B_13 34 65 65 13 4 518 8.4 516 518 518 518 10 3
5B_28 34 65 65 28 4 *469 TL 457 467 467 475 1.71 126 30
5C_16 34 65 65 16 5 543 7.0 540 543 543 543 2 2
5C_17 34 65 65 17 5 536 29.5 533 536 536 536 17 4
5C_21 34 65 65 21 5 531 134.5 523 528 531 531 48 16
5C_22 34 65 65 22 5 531 232.5 522 528 531 531 44 14
5D_16 34 65 65 16 10 753 10.4 745 748 753 753 3 7
5D_17 34 65 65 17 9 729 1.2 729 729 729 729 0 1
5D_18 34 65 65 18 9 725 3.4 725 725 725 725 0 1
5D_20 34 65 65 20 9 709 10.8 709 709 709 709 5 2

Table 9: Detailed results for the VAL instances (1A–5D).
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BPC Statistics

Instance Bounds Cuts/Tree

Name |V | |E| |ER| |H| m BKS Time LBLP LBSRI LBtree UB %Gap #SRIs #B&B

6A_5 31 50 50 5 4 269 0.2 269 269 269 269 0 1
6A_11 31 50 50 11 3 241 1.2 238 241 241 241 2 2
6A_18 31 50 50 18 3 253 89.9 248 252 253 253 42 12
6A_22 31 50 50 22 3 245 174.5 241 244 245 245 83 17
6B_19 31 50 50 19 4 259 5.2 259 259 259 259 13 2
6B_20 31 50 50 20 4 253 8.4 253 253 253 253 6 2
6B_21 31 50 50 21 4 253 12.0 253 253 253 253 17 2
6C_18 31 50 50 18 11 397 0.6 397 397 397 397 0 1
6C_20 31 50 50 20 10 385 2.4 385 385 385 385 1 2
6C_21 31 50 50 21 10 384 31.0 379 380 384 384 28 46
6C_22 31 50 50 22 10 384 31.2 379 380 384 384 20 43
7A_10 40 66 66 10 3 347 0.9 347 347 347 347 0 1
7A_12 40 66 66 12 3 347 3.7 341 347 347 347 8 2
7A_21 40 66 66 21 3 337 137.7 327 337 337 337 61 9
7A_29 40 66 66 29 3 *337 TL 321 336 336 — n.a. 164 20
7B_7 40 66 66 7 5 352 0.3 352 352 352 352 0 1
7B_8 40 66 66 8 4 332 0.3 332 332 332 332 0 1
7B_14 40 66 66 14 4 332 1.4 332 332 332 332 0 1
7B_28 40 66 66 28 4 319 53.5 319 319 319 319 12 2
7C_16 40 66 66 16 10 456 0.6 456 456 456 456 0 1
7C_22 40 66 66 22 9 431 7.2 428 431 431 431 6 3
7C_25 40 66 66 25 9 422 4.8 422 422 422 422 0 1
7C_28 40 66 66 28 9 401 14.3 396 401 401 401 16 4
8A_8 30 63 63 8 3 444 0.6 444 444 444 444 0 1
8A_10 30 63 63 10 3 448 1.4 448 448 448 448 3 2
8A_19 30 63 63 19 3 429 425.0 424 428 429 429 75 19
8A_21 30 63 63 21 3 425 576.1 417 424 425 425 104 13
8B_6 30 63 63 6 5 508 0.5 508 508 508 508 0 1
8B_24 30 63 63 24 4 427 184.7 424 427 427 427 42 6
8C_16 30 63 63 16 11 678 0.9 678 678 678 678 0 1
8C_20 30 63 63 20 9 642 3.9 642 642 642 642 0 1
8C_22 30 63 63 22 9 619 7.0 619 619 619 619 0 1
8C_28 30 63 63 28 9 589 34.2 587 588 589 589 14 6
9A_26 50 92 92 26 3 346 1225.6 339 346 346 346 74 5
9A_28 50 92 92 28 3 *355 TL 345 353 353 — n.a. 99 9
9A_38 50 92 92 38 3 — TL 328 339 339 — n.a. 67 4
9A_39 50 92 92 39 3 — TL 321 329 329 — n.a. 29 1
9B_11 50 92 92 11 4 368 1.1 368 368 368 368 0 1
9B_28 50 92 92 28 4 369 TL 359 368 368 369 0.27 88 13
9B_31 50 92 92 31 4 353 2593.7 347 353 353 353 73 7
9B_36 50 92 92 36 4 *366 TL 340 346 346 — n.a. 74 3
9C_17 50 92 92 17 5 382 5.3 382 382 382 382 0 1
9C_24 50 92 92 24 5 379 74.0 377 379 379 379 16 4
9C_28 50 92 92 28 5 368 2064.7 363 368 368 368 57 8
9C_37 50 92 92 37 5 *358 TL 351 357 357 — n.a. 83 4
9D_25 50 92 92 25 10 471 10.3 471 471 471 471 0 1
9D_32 50 92 92 32 10 455 108.0 451 455 455 455 21 3
9D_39 50 92 92 39 10 437 1818.3 432 436 437 437 72 16
9D_41 50 92 92 41 10 *444 TL 434 442 443 444 0.23 88 23
10A_22 50 97 97 22 3 451 206.4 449 451 451 451 15 2
10A_25 50 97 97 25 3 452 3390.0 445 452 452 452 60 5
10A_32 50 97 97 32 3 — TL 433 440 440 — n.a. 55 2
10A_38 50 97 97 38 3 — TL 386 386 386 — n.a. 0 0
10B_36 50 97 97 36 4 *476 TL 446 451 451 — n.a. 59 2
10B_37 50 97 97 37 4 — TL 446 450 450 — n.a. 56 2
10B_41 50 97 97 41 4 — TL 441 441 441 — n.a. 29 1
10C_11 50 97 97 11 5 512 3.3 512 512 512 512 0 1
10C_14 50 97 97 14 5 523 25.0 522 523 523 523 2 4
10C_31 50 97 97 31 5 *490 TL 480 487 487 — n.a. 54 3
10C_32 50 97 97 32 5 *485 TL 462 477 477 — n.a. 76 4
10D_24 50 97 97 24 10 641 37.1 641 641 641 641 0 1
10D_28 50 97 97 28 10 591 216.7 586 591 591 591 16 9
10D_36 50 97 97 36 10 597 855.5 594 597 597 597 28 3

Table 10: Detailed results for the VAL instances (6A–10D).
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BPC Statistics

Instance Bounds Cuts/Tree

Name |V | |E| |ER| |H| m BKS Time LBLP LBSRI LBtree UB %Gap #SRIs #B&B

C01_18 69 98 79 18 9 5305 4.5 5305 5305 5305 5305 0 1
C01_24 69 98 79 24 9 *4840 TL 4771 4834 4834 — n.a. 8 4
C01_29 69 98 79 29 9 4685 405.4 4563 4657 4685 4685 43 18
C02_18 48 66 53 18 7 3685 4.6 3685 3685 3685 3685 0 1
C02_20 48 66 53 20 7 3375 5.0 3375 3375 3375 3375 0 1
C02_22 48 66 53 22 7 3375 6.3 3375 3375 3375 3375 0 1
C03_15 46 64 51 15 6 3030 5.5 3007 3030 3030 3030 5 2
C03_20 46 64 51 20 6 2735 7.0 2702 2735 2735 2735 16 3
C03_21 46 64 51 21 6 2675 14.4 2597 2675 2675 2675 24 4
C04_16 60 84 72 16 8 4745 2.8 4745 4745 4745 4745 0 1
C04_17 60 84 72 17 8 3920 1.2 3920 3920 3920 3920 0 1
C04_26 60 84 72 26 8 4195 19.8 4185 4195 4195 4195 5 2
C05_20 56 79 65 20 11 7105 3.2 7105 7105 7105 7105 0 1
C05_22 56 79 65 22 10 6540 5.4 6540 6540 6540 6540 0 1
C05_23 56 79 65 23 10 6290 3.3 6290 6290 6290 6290 0 1
C05_25 56 79 65 25 10 6830 65.2 6770 6830 6830 6830 10 5
C06_12 38 55 51 12 6 3210 0.8 3210 3210 3210 3210 0 1
C06_17 38 55 51 17 6 3170 59.5 3085 3130 3170 3170 36 44
C06_18 38 55 51 18 6 3000 4.4 2985 3000 3000 3000 10 3
C06_20 38 55 51 20 6 2980 8.3 2937 2980 2980 2980 21 3
C07_16 54 70 52 16 9 4560 0.9 4560 4560 4560 4560 0 1
C07_17 54 70 52 17 9 4560 0.8 4560 4560 4560 4560 0 1
C07_18 54 70 52 18 8 5725 16.2 5597 5705 5725 5725 11 9
C08_15 66 88 63 15 10 4915 1.0 4915 4915 4915 4915 0 1
C08_17 66 88 63 17 10 5005 2.7 5005 5005 5005 5005 0 1
C08_22 66 88 63 22 9 5015 131.4 4943 4972 5015 5015 18 25
C08_24 66 88 63 24 8 4960 53.7 4929 4960 4960 4960 10 2
C09_22 76 117 97 22 15 6560 12.4 6560 6560 6560 6560 0 1
C09_37 76 117 97 37 12 6270 582.4 6202 6270 6270 6270 19 3
C09_39 76 117 97 39 12 *5990 TL 5908 5943 5972 6005 0.55 75 28
C10_17 60 82 55 17 9 5445 1.9 5445 5445 5445 5445 0 1
C10_22 60 82 55 22 9 5055 9.4 4981 5055 5055 5055 10 2
C11_23 83 118 94 23 10 5670 37.3 5668 5670 5670 5670 3 2
C11_24 83 118 94 24 10 5710 34.7 5710 5710 5710 5710 0 1
C11_30 83 118 94 30 10 5225 241.9 5202 5225 5225 5225 17 4
C11_35 83 118 94 35 10 5240 2824.0 5160 5218 5240 5240 69 43
C12_22 62 88 72 22 9 5695 45.4 5687 5695 5695 5695 5 2
C12_28 62 88 72 28 9 4975 59.8 4975 4975 4975 4975 0 1
C12_31 62 88 72 31 9 *5150 TL 5015 5071 5105 5175 1.37 129 86
C13_18 40 60 52 18 7 3520 6.2 3515 3520 3520 3520 3 2
C13_21 40 60 52 21 7 3290 6.9 3250 3275 3290 3290 5 5
C13_22 40 60 52 22 7 3285 14.9 3248 3273 3285 3285 8 6
C14_15 58 79 57 15 10 5195 2.1 5195 5195 5195 5195 0 1
C14_18 58 79 57 18 9 5100 2.7 5068 5100 5100 5100 1 2
C14_19 58 79 57 19 8 5495 3.2 5495 5495 5495 5495 0 1
C14_21 58 79 57 21 8 4565 7.0 4565 4565 4565 4565 0 1
C15_24 97 140 107 24 11 6185 87.1 6143 6185 6185 6185 2 2
C15_35 97 140 107 35 11 5625 497.1 5432 5625 5625 5625 28 4
C15_43 97 140 107 43 11 *5475 TL 5399 5458 5458 — n.a. 37 7
C15_45 97 140 107 45 11 5410 TL 5337 5383 5408 5410 0.04 69 13
C16_7 32 42 32 7 3 1935 0.3 1935 1935 1935 1935 0 1
C16_13 32 42 32 13 3 1520 2.6 1520 1520 1520 1520 0 1
C17_15 43 56 42 15 7 4135 3.8 4064 4124 4135 4135 3 4
C17_16 43 56 42 16 7 4140 2.4 4140 4140 4140 4140 0 1
C18_31 93 133 121 31 11 7130 1156.1 7033 7055 7130 7130 16 9
C18_36 93 133 121 36 11 *6480 TL 6284 6431 6431 — n.a. 38 7
C18_39 93 133 121 39 11 *6450 TL 6278 6395 6395 — n.a. 53 10
C18_53 93 133 121 53 11 *6465 TL 5876 5996 5996 — n.a. 92 6
C19_24 62 84 61 24 6 3470 237.2 3368 3456 3470 3470 60 13
C19_25 62 84 61 25 6 3400 325.0 3280 3385 3400 3400 72 13
C19_26 62 84 61 26 6 3340 321.9 3235 3339 3340 3340 70 11
C19_27 62 84 61 27 6 3340 379.8 3235 3335 3340 3340 64 11
C20_11 45 64 53 11 5 2660 1.1 2660 2660 2660 2660 0 1
C20_12 45 64 53 12 5 2600 0.9 2600 2600 2600 2600 0 1
C20_21 45 64 53 21 5 2415 21.1 2355 2415 2415 2415 24 3
C21_23 60 84 76 23 8 4535 26.7 4528 4535 4535 4535 3 2
C21_27 60 84 76 27 8 4270 35.8 4236 4255 4270 4270 9 5
C21_30 60 84 76 30 8 4260 251.2 4215 4239 4260 4260 48 25
C21_33 60 84 76 33 8 4225 904.1 4145 4190 4225 4225 92 45
C22_8 56 76 43 8 4 2935 0.8 2935 2935 2935 2935 0 1
C22_10 56 76 43 10 5 2945 22.5 2828 2850 2945 2945 3 32
C22_16 56 76 43 16 4 2665 17.7 2648 2665 2665 2665 9 2
C22_17 56 76 43 17 4 2425 9.6 2425 2425 2425 2425 10 2
C23_27 78 109 92 27 8 5030 669.9 4899 5009 5030 5030 34 8
C23_31 78 109 92 31 8 5190 2118.8 5123 5188 5190 5190 29 8
C23_38 78 109 92 38 8 4465 443.6 4415 4465 4465 4465 15 2
C24_14 77 115 84 14 8 4370 2.9 4370 4370 4370 4370 0 1
C24_18 77 115 84 18 7 4750 22.6 4750 4750 4750 4750 0 1
C24_22 77 115 84 22 7 4435 170.1 4373 4429 4435 4435 23 8
C24_31 77 115 84 31 7 3695 100.4 3695 3695 3695 3695 0 1
C25_11 37 50 38 11 6 2945 1.0 2933 2945 2945 2945 1 2
C25_13 37 50 38 13 5 2710 1.1 2710 2710 2710 2710 0 1
C25_15 37 50 38 15 5 2805 4.2 2738 2805 2805 2805 8 2
C25_16 37 50 38 16 5 2640 4.2 2600 2640 2640 2640 8 3

Table 11: Detailed results for the BMCV instances, subset C.

30



BPC Statistics

Instance Bounds Cuts/Tree

Name |V | |E| |ER| |H| m BKS Time LBLP LBSRI LBtree UB %Gap #SRIs #B&B

D01_14 69 98 79 14 5 4045 1.9 4045 4045 4045 4045 0 1
D01_17 69 98 79 17 5 3985 12.5 3965 3985 3985 3985 5 3
D01_26 69 98 79 26 5 3740 183.5 3684 3740 3740 3740 42 6
D01_27 69 98 79 27 5 3490 104.7 3463 3490 3490 3490 9 2
D02_6 48 66 53 6 4 2960 0.3 2960 2960 2960 2960 0 1
D02_12 48 66 53 12 4 2885 2.8 2885 2885 2885 2885 0 1
D02_16 48 66 53 16 4 2745 3.0 2745 2745 2745 2745 0 1
D02_23 48 66 53 23 4 2645 40.2 2620 2633 2645 2645 12 6
D03_8 46 64 51 8 3 2540 0.7 2540 2540 2540 2540 0 1
D03_12 46 64 51 12 3 2370 5.9 2368 2370 2370 2370 4 2
D03_16 46 64 51 16 3 2500 20.4 2462 2500 2500 2500 17 3
D04_7 60 84 72 7 5 3315 0.8 3315 3315 3315 3315 0 1
D04_12 60 84 72 12 4 3375 12.9 3305 3353 3375 3375 13 6
D04_14 60 84 72 14 4 3375 36.7 3301 3323 3375 3375 12 8
D05_11 56 79 65 11 6 4715 0.9 4715 4715 4715 4715 0 1
D05_16 56 79 65 16 5 4605 8.7 4605 4605 4605 4605 0 1
D05_19 56 79 65 19 5 4605 182.8 4412 4589 4605 4605 28 9
D05_22 56 79 65 22 5 5165 225.0 5085 5150 5165 5165 38 9
D06_5 38 55 51 5 4 2570 0.3 2570 2570 2570 2570 0 1
D06_8 38 55 51 8 3 2450 0.6 2450 2450 2450 2450 0 1
D07_7 54 70 52 7 5 4495 0.6 4495 4495 4495 4495 0 1
D07_10 54 70 52 10 4 4075 0.8 4075 4075 4075 4075 0 1
D07_11 54 70 52 11 4 3815 1.9 3815 3815 3815 3815 0 1
D07_22 54 70 52 22 4 3575 61.5 3500 3575 3575 3575 26 3
D08_21 66 88 63 21 4 3615 52.3 3610 3615 3615 3615 7 2
D08_24 66 88 63 24 4 3615 52.9 3593 3615 3615 3615 13 2
D08_25 66 88 63 25 4 3575 735.7 3430 3575 3575 3575 53 5
D08_26 66 88 63 26 4 3615 570.2 3536 3615 3615 3615 62 7
D09_11 76 117 97 11 7 5095 5.2 5095 5095 5095 5095 0 1
D09_14 76 117 97 14 6 5090 10.5 5090 5090 5090 5090 0 1
D09_37 76 117 97 37 6 4275 278.1 4268 4275 4275 4275 9 2
D09_42 76 117 97 42 6 4270 TL 4207 4263 4266 4270 0.09 93 12
D10_15 60 82 55 15 5 3650 0.9 3650 3650 3650 3650 0 1
D10_16 60 82 55 16 5 3815 5.7 3810 3815 3815 3815 1 2
D10_17 60 82 55 17 5 3550 2.4 3550 3550 3550 3550 0 1
D11_10 83 118 94 10 6 4775 2.6 4775 4775 4775 4775 0 1
D11_34 83 118 94 34 5 4075 386.5 4064 4075 4075 4075 12 2
D11_35 83 118 94 35 5 3935 793.2 3863 3935 3935 3935 41 4
D11_41 83 118 94 41 5 3900 2599.2 3859 3900 3900 3900 60 6
D12_9 62 88 72 9 5 4345 2.1 4345 4345 4345 4345 0 1
D12_14 62 88 72 14 5 4100 5.3 4100 4100 4100 4100 0 1
D12_18 62 88 72 18 5 3660 18.9 3655 3660 3660 3660 2 2
D12_32 62 88 72 32 5 3740 364.0 3605 3740 3740 3740 98 7
D13_6 40 60 52 6 4 2785 0.3 2785 2785 2785 2785 0 1
D13_11 40 60 52 11 4 2710 0.9 2710 2710 2710 2710 0 1
D13_15 40 60 52 15 4 2755 2.3 2755 2755 2755 2755 0 1
D14_8 58 79 57 8 5 3875 0.4 3875 3875 3875 3875 0 1
D14_12 58 79 57 12 4 4480 1.6 4480 4480 4480 4480 0 1
D14_13 58 79 57 13 4 4080 5.3 4025 4080 4080 4080 5 2
D14_24 58 79 57 24 4 3665 1051.8 3599 3641 3665 3665 109 25
D15_26 97 140 107 26 6 4395 151.5 4345 4395 4395 4395 6 2
D15_39 97 140 107 39 6 4270 1120.4 4221 4270 4270 4270 35 4
D15_40 97 140 107 40 6 4850 3515.4 4662 4850 4850 4850 72 7
D16_2 32 42 32 2 2 1600 0.1 1600 1600 1600 1600 0 1
D16_5 32 42 32 5 2 1520 0.2 1465 1520 1520 1520 1 2
D16_9 32 42 32 9 2 1470 1.7 1358 1470 1470 1470 12 3
D17_10 43 56 42 10 4 2965 1.5 2942 2965 2965 2965 4 2
D17_17 43 56 42 17 4 2750 6.6 2627 2750 2750 2750 10 2
D18_13 93 133 121 13 6 5525 13.6 5525 5525 5525 5525 0 1
D18_23 93 133 121 23 6 4770 98.3 4757 4770 4770 4770 4 2
D18_34 93 133 121 34 6 *4625 TL 4563 4601 4623 4625 0.04 63 19
D19_11 62 84 61 11 3 2920 2.7 2920 2920 2920 2920 0 1
D19_12 62 84 61 12 3 2580 1.8 2580 2580 2580 2580 0 1
D19_17 62 84 61 17 3 2580 4.9 2580 2580 2580 2580 0 1
D20_4 45 64 53 4 3 2035 0.2 2035 2035 2035 2035 0 1
D20_6 45 64 53 6 3 1935 0.2 1935 1935 1935 1935 0 1
D20_10 45 64 53 10 3 2035 0.7 2035 2035 2035 2035 0 1
D20_18 45 64 53 18 3 1960 38.3 1905 1960 1960 1960 25 4
D21_10 60 84 76 10 4 3580 2.1 3575 3580 3580 3580 1 2
D21_12 60 84 76 12 4 3505 4.8 3493 3505 3505 3505 4 2
D21_13 60 84 76 13 4 3450 5.7 3425 3450 3450 3450 3 2
D21_28 60 84 76 28 4 3145 2734.3 3055 3116 3145 3145 166 72
D22_4 56 76 43 4 3 2285 0.4 2285 2285 2285 2285 0 1
D22_9 56 76 43 9 2 2115 2.0 2115 2115 2115 2115 0 1
D22_15 56 76 43 15 2 1915 6.3 1915 1915 1915 1915 0 1
D23_7 78 109 92 7 5 4400 2.1 4400 4400 4400 4400 0 1
D23_19 78 109 92 19 4 3810 107.6 3810 3810 3810 3810 0 1
D23_20 78 109 92 20 4 3635 31.2 3635 3635 3635 3635 0 1
D23_31 78 109 92 31 4 3285 349.4 3269 3285 3285 3285 18 2
D24_12 77 115 84 12 4 3480 5.9 3480 3480 3480 3480 0 1
D24_14 77 115 84 14 4 3235 11.0 3235 3235 3235 3235 0 1
D24_24 77 115 84 24 4 3265 253.0 3160 3265 3265 3265 33 5
D24_32 77 115 84 32 4 2885 197.5 2860 2885 2885 2885 9 3
D25_4 37 50 38 4 3 2280 0.2 2280 2280 2280 2280 0 1
D25_5 37 50 38 5 3 2155 0.3 2155 2155 2155 2155 0 1
D25_16 37 50 38 16 3 1915 14.2 1860 1910 1915 1915 20 8

Table 12: Detailed results for the BMCV instances, subset D.
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Instance Bounds Cuts/Tree

Name |V | |E| |ER| |H| m BKS Time LBLP LBSRI LBtree UB %Gap #SRIs #B&B

E01_24 73 105 85 24 11 6165 33.3 6165 6165 6165 6165 0 1
E01_26 73 105 85 26 11 5775 19.9 5775 5775 5775 5775 0 1
E01_37 73 105 85 37 10 5580 1421.6 5486 5575 5580 5580 33 6
E02_17 58 81 58 17 9 4730 3.3 4730 4730 4730 4730 0 1
E02_20 58 81 58 20 8 5305 7.9 5305 5305 5305 5305 0 1
E02_25 58 81 58 25 8 4715 60.9 4715 4715 4715 4715 0 1
E02_26 58 81 58 26 8 4635 396.4 4541 4599 4635 4635 26 17
E03_8 46 61 47 8 6 2475 0.3 2475 2475 2475 2475 0 1
E03_18 46 61 47 18 5 2110 3.9 2083 2110 2110 2110 13 3
E04_18 70 99 77 18 10 5225 2.0 5225 5225 5225 5225 0 1
E04_25 70 99 77 25 9 4930 113.1 4890 4913 4930 4930 14 10
E05_15 68 94 61 15 10 5725 4.6 5635 5725 5725 5725 1 2
E05_16 68 94 61 16 9 5830 3.2 5830 5830 5830 5830 0 1
E05_18 68 94 61 18 9 5715 4.2 5715 5715 5715 5715 0 1
E05_20 68 94 61 20 9 5395 6.1 5395 5395 5395 5395 2 2
E06_9 49 66 43 9 6 2720 0.4 2720 2720 2720 2720 0 1
E06_11 49 66 43 11 5 2815 2.4 2815 2815 2815 2815 0 1
E06_12 49 66 43 12 5 2205 0.8 2205 2205 2205 2205 0 1
E06_14 49 66 43 14 5 2595 5.2 2595 2595 2595 2595 0 1
E07_15 73 94 50 15 9 5045 2.9 5045 5045 5045 5045 0 1
E07_18 73 94 50 18 8 5085 11.7 5085 5085 5085 5085 0 1
E08_17 74 98 59 17 9 6350 5.3 6350 6350 6350 6350 0 1
E08_19 74 98 59 19 9 6220 6.1 6220 6220 6220 6220 0 1
E08_23 74 98 59 23 9 5550 37.0 5550 5550 5550 5550 0 1
E09_32 93 141 103 32 12 8120 889.9 8089 8120 8120 8120 7 2
E09_36 93 141 103 36 12 *6945 TL 6839 6931 6931 — n.a. 34 6
E09_37 93 141 103 37 12 7205 1090.8 7180 7205 7205 7205 12 2
E09_38 93 141 103 38 12 — TL 7025 7070 7070 — n.a. 39 6
E10_14 56 76 49 14 7 4190 2.0 4190 4190 4190 4190 0 1
E10_15 56 76 49 15 7 4100 1.7 4100 4100 4100 4100 0 1
E10_17 56 76 49 17 7 4040 2.7 4040 4040 4040 4040 0 1
E10_19 56 76 49 19 7 4155 5.7 4115 4155 4155 4155 3 2
E11_29 80 113 94 29 10 5160 161.4 5102 5151 5160 5160 24 6
E11_39 80 113 94 39 10 4960 3197.2 4904 4927 4960 4960 73 38
E11_41 80 113 94 41 10 5220 3117.7 5107 5199 5220 5220 73 25
E12_19 74 103 67 19 9 5410 6.0 5410 5410 5410 5410 0 1
E12_21 74 103 67 21 9 5080 24.9 5065 5080 5080 5080 3 2
E12_24 74 103 67 24 9 4745 14.5 4745 4745 4745 4745 0 1
E13_13 49 73 52 13 8 4065 1.0 4065 4065 4065 4065 0 1
E13_21 49 73 52 21 7 3840 16.0 3840 3840 3840 3840 3 2
E14_18 53 72 55 18 8 4680 2.6 4680 4680 4680 4680 0 1
E14_21 53 72 55 21 8 4990 4.1 4990 4990 4990 4990 0 1
E14_24 53 72 55 24 8 4500 13.1 4478 4500 4500 4500 10 2
E15_19 85 126 107 19 9 6000 7.3 6000 6000 6000 6000 0 1
E15_28 85 126 107 28 9 4940 227.9 4842 4940 4940 4940 14 3
E15_35 85 126 107 35 9 4830 572.6 4668 4825 4830 4830 47 10
E15_36 85 126 107 36 9 4815 2992.9 4650 4809 4815 4815 73 17
E16_15 60 80 54 15 7 4610 1.9 4610 4610 4610 4610 0 1
E16_20 60 80 54 20 7 4170 10.0 4155 4170 4170 4170 4 2
E16_22 60 80 54 22 7 4120 15.8 4114 4120 4120 4120 8 2
E16_24 60 80 54 24 7 3955 18.0 3915 3955 3955 3955 7 2
E17_9 38 50 36 9 6 3080 0.3 3080 3080 3080 3080 0 1
E17_11 38 50 36 11 6 3045 0.8 3045 3045 3045 3045 0 1
E17_14 38 50 36 14 5 3215 2.0 3210 3215 3215 3215 8 2
E17_16 38 50 36 16 5 3135 19.2 3078 3109 3135 3135 25 16
E18_16 78 110 88 16 8 4930 13.3 4930 4930 4930 4930 0 1
E18_26 78 110 88 26 8 4020 2236.2 3915 3988 4020 4020 79 54
E18_38 78 110 88 38 8 *4150 TL 3991 4054 4054 — n.a. 69 10
E19_17 77 103 66 17 6 4520 9.3 4520 4520 4520 4520 0 1
E19_20 77 103 66 20 6 4500 21.8 4500 4500 4500 4500 0 1
E19_22 77 103 66 22 6 3920 115.3 3920 3920 3920 3920 0 1
E19_29 77 103 66 29 6 *3920 TL 3698 3774 3796 3995 5.24 102 30
E20_12 56 80 63 12 7 3510 0.9 3510 3510 3510 3510 0 1
E20_14 56 80 63 14 7 3495 6.0 3493 3493 3495 3495 0 3
E20_17 56 80 63 17 7 3385 3.7 3385 3385 3385 3385 0 1
E20_28 56 80 63 28 7 *3205 TL 3099 3172 3194 3210 0.50 123 88
E21_16 57 82 72 16 7 4455 2.0 4455 4455 4455 4455 0 1
E21_26 57 82 72 26 7 4090 292.5 4015 4071 4090 4090 40 15
E21_27 57 82 72 27 7 3995 87.2 3958 3995 3995 3995 33 7
E22_12 54 73 44 12 5 2825 38.3 2740 2773 2825 2825 18 31
E22_14 54 73 44 14 5 2695 23.3 2653 2680 2695 2695 24 13
E22_16 54 73 44 16 5 2585 56.1 2534 2567 2585 2585 26 20
E22_17 54 73 44 17 5 2650 2564.4 2484 2514 2650 2650 227 490
E23_16 93 130 89 16 9 4545 3.7 4545 4545 4545 4545 0 1
E23_28 93 130 89 28 8 *4260 TL 4243 4243 4243 — n.a. 15 1
E23_35 93 130 89 35 8 4110 386.3 4099 4110 4110 4110 25 2
E23_40 93 130 89 40 8 3840 1769.0 3731 3833 3840 3840 74 12
E24_15 97 142 86 15 9 4795 14.4 4795 4795 4795 4795 0 1
E24_23 97 142 86 23 8 *4645 TL 4597 4642 4645 4650 0.11 14 9
E24_31 97 142 86 31 8 *4450 TL 4360 4360 4360 — n.a. 14 1
E24_37 97 142 86 37 8 *4530 TL 4208 4314 4314 — n.a. 74 10
E25_7 26 35 28 7 4 2045 0.3 2033 2045 2045 2045 1 2
E25_10 26 35 28 10 4 1725 0.5 1725 1725 1725 1725 0 1
E25_11 26 35 28 11 4 1685 0.6 1685 1685 1685 1685 0 1

Table 13: Detailed results for the BMCV instances, subset E.
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F01_11 73 105 85 11 6 4785 2.0 4785 4785 4785 4785 0 1
F01_15 73 105 85 15 5 5210 35.5 5190 5210 5210 5210 11 3
F01_18 73 105 85 18 5 4790 69.4 4790 4790 4790 4790 0 1
F02_13 58 81 58 13 4 4265 4.2 4265 4265 4265 4265 0 1
F02_18 58 81 58 18 4 3740 59.3 3740 3740 3740 3740 0 1
F02_19 58 81 58 19 4 3740 102.0 3740 3740 3740 3740 0 1
F02_23 58 81 58 23 4 3750 253.0 3708 3750 3750 3750 25 3
F03_9 46 61 47 9 3 1915 1.2 1890 1915 1915 1915 6 3
F03_11 46 61 47 11 3 1845 0.9 1845 1845 1845 1845 0 1
F03_16 46 61 47 16 3 1685 2.7 1685 1685 1685 1685 0 1
F03_21 46 61 47 21 3 1685 7.6 1685 1685 1685 1685 0 1
F04_14 70 99 77 14 5 3805 7.2 3765 3805 3805 3805 5 3
F04_16 70 99 77 16 5 3925 2.6 3925 3925 3925 3925 0 1
F04_17 70 99 77 17 5 3675 3.4 3675 3675 3675 3675 0 1
F04_28 70 99 77 28 5 3890 580.6 3792 3884 3890 3890 75 16
F05_13 68 94 61 13 5 4100 5.5 4084 4100 4100 4100 5 2
F05_24 68 94 61 24 5 3750 649.2 3707 3735 3750 3750 97 24
F05_26 68 94 61 26 5 3725 566.3 3684 3712 3725 3725 71 11
F06_8 49 66 43 8 3 1990 1.6 1977 1990 1990 1990 10 3
F06_9 49 66 43 9 3 2075 0.5 2075 2075 2075 2075 0 1
F06_10 49 66 43 10 3 2120 1.7 2118 2120 2120 2120 3 2
F06_12 49 66 43 12 3 2050 1.8 2050 2050 2050 2050 0 1
F07_11 73 94 50 11 4 3780 1.1 3780 3780 3780 3780 0 1
F07_15 73 94 50 15 4 3780 3.6 3780 3780 3780 3780 0 1
F07_21 73 94 50 21 4 3610 221.6 3511 3610 3610 3610 45 5
F07_22 73 94 50 22 4 3750 77.0 3632 3750 3750 3750 26 3
F08_12 74 98 59 12 5 4250 2.3 4250 4250 4250 4250 0 1
F08_14 74 98 59 14 5 4250 8.2 4238 4250 4250 4250 4 2
F08_15 74 98 59 15 5 3995 5.7 3995 3995 3995 3995 0 1
F08_22 74 98 59 22 5 3995 39.4 3965 3995 3995 3995 11 2
F09_15 93 141 103 15 7 5865 82.1 5800 5865 5865 5865 5 3
F09_16 93 141 103 16 7 5625 30.6 5613 5625 5625 5625 1 2
F09_18 93 141 103 18 6 6605 50.2 6605 6605 6605 6605 0 1
F09_42 93 141 103 42 6 — TL 5021 5021 5021 — n.a. 30 1
F10_13 56 76 49 13 4 3325 4.0 3269 3325 3325 3325 10 3
F10_15 56 76 49 15 4 3230 30.8 3152 3230 3230 3230 36 8
F10_16 56 76 49 16 4 3125 2.6 3125 3125 3125 3125 0 1
F10_18 56 76 49 18 4 3145 9.1 3089 3145 3145 3145 17 3
F11_15 80 113 94 15 5 4160 7.6 4160 4160 4160 4160 0 1
F11_20 80 113 94 20 5 4365 14.4 4365 4365 4365 4365 0 1
F11_29 80 113 94 29 5 4180 1241.0 4105 4170 4180 4180 68 14
F11_42 80 113 94 42 5 4070 1466.4 3917 4070 4070 4070 93 5
F12_10 74 103 67 10 5 4125 4.4 4093 4125 4125 4125 1 2
F12_14 74 103 67 14 5 4070 15.7 4070 4070 4070 4070 0 1
F12_28 74 103 67 28 5 3780 329.2 3607 3780 3780 3780 44 5
F13_11 49 73 52 11 4 3315 3.8 3305 3315 3315 3315 5 3
F13_15 49 73 52 15 4 3140 5.0 3118 3140 3140 3140 11 2
F13_17 49 73 52 17 4 3140 8.8 3118 3140 3140 3140 12 2
F13_23 49 73 52 23 4 2990 42.2 2960 2990 2990 2990 24 3
F14_7 53 72 55 7 5 3850 0.4 3850 3850 3850 3850 0 1
F14_17 53 72 55 17 4 3745 22.6 3740 3745 3745 3745 5 2
F14_19 53 72 55 19 4 3670 11.9 3670 3670 3670 3670 0 1
F14_22 53 72 55 22 4 3590 51.6 3568 3590 3590 3590 23 4
F15_21 85 126 107 21 5 4145 36.0 4138 4145 4145 4145 6 2
F15_36 85 126 107 36 5 3985 2634.5 3819 3985 3985 3985 133 9
F15_37 85 126 107 37 5 3985 2380.3 3819 3985 3985 3985 126 9
F15_45 85 126 107 45 5 3925 1351.0 3829 3925 3925 3925 40 3
F16_7 60 80 54 7 4 3935 0.8 3935 3935 3935 3935 0 1
F16_15 60 80 54 15 4 3345 5.5 3345 3345 3345 3345 0 1
F16_18 60 80 54 18 4 3345 5.0 3345 3345 3345 3345 0 1
F17_4 38 50 36 4 3 2680 0.2 2680 2680 2680 2680 0 1
F17_8 38 50 36 8 3 2500 1.0 2475 2500 2500 2500 3 2
F17_11 38 50 36 11 3 2295 0.8 2295 2295 2295 2295 0 1
F17_13 38 50 36 13 3 2115 1.4 2115 2115 2115 2115 0 1
F18_19 78 110 88 19 4 3290 79.4 3289 3290 3290 3290 9 2
F18_20 78 110 88 20 4 3300 63.2 3295 3300 3300 3300 3 2
F18_27 78 110 88 27 4 3240 277.1 3234 3240 3240 3240 15 2
F18_37 78 110 88 37 4 *3275 TL 3172 3247 3247 — n.a. 71 4
F19_12 77 103 66 12 4 2880 8.3 2870 2880 2880 2880 1 2
F19_26 77 103 66 26 3 2575 304.3 2575 2575 2575 2575 0 1
F19_28 77 103 66 28 3 2830 1823.5 2771 2830 2830 2830 40 3
F19_29 77 103 66 29 3 2830 3300.3 2765 2830 2830 2830 56 4
F20_9 56 80 63 9 4 2620 0.7 2620 2620 2620 2620 0 1
F20_23 56 80 63 23 4 2570 201.0 2498 2538 2570 2570 60 15
F20_24 56 80 63 24 4 2510 267.3 2456 2484 2510 2510 78 18
F20_28 56 80 63 28 4 2500 1900.4 2423 2455 2500 2500 154 59
F21_8 57 82 72 8 5 3485 0.9 3485 3485 3485 3485 0 1
F21_19 57 82 72 19 4 3130 54.0 3083 3130 3130 3130 21 3
F21_28 57 82 72 28 4 3045 1159.8 2954 3045 3045 3045 95 7
F22_7 54 73 44 7 3 2310 2.6 2252 2310 2310 2310 6 3
F22_9 54 73 44 9 3 2305 12.3 2218 2258 2305 2305 26 13
F22_14 54 73 44 14 3 2130 14.2 2099 2130 2130 2130 23 3
F23_11 93 130 89 11 4 3520 10.8 3450 3520 3520 3520 2 2
F23_14 93 130 89 14 4 3585 31.7 3510 3585 3585 3585 5 2
F23_28 93 130 89 28 4 3395 1275.3 3308 3388 3395 3395 65 12
F23_31 93 130 89 31 4 3245 160.6 3245 3245 3245 3245 0 1
F24_7 97 142 86 7 5 4040 4.0 4040 4040 4040 4040 0 1
F24_9 97 142 86 9 4 3895 15.3 3895 3895 3895 3895 0 1
F24_18 97 142 86 18 4 3585 42.2 3585 3585 3585 3585 0 1
F24_28 97 142 86 28 4 *3745 TL 3605 3727 3727 — n.a. 72 10
F25_4 26 35 28 4 2 1535 0.1 1535 1535 1535 1535 0 1
F25_7 26 35 28 7 2 1410 0.2 1410 1410 1410 1410 0 1
F25_10 26 35 28 10 2 1410 1.1 1410 1410 1410 1410 0 1
F25_11 26 35 28 11 2 1390 1.7 1390 1390 1390 1390 0 1

Table 14: Detailed results for the BMCV instances, subset F.
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BPC Statistics

Instance Bounds Cuts/Tree

Name |V | |E| |ER| |H| m BKS Time LBLP LBSRI LBtree UB %Gap #SRIs #B&B

egl-e1-A_12 77 98 51 12 6 4197 3.5 4197 4197 4197 4197 0 1
egl-e1-A_14 77 98 51 14 5 3786 12.7 3786 3786 3786 3786 0 1
egl-e1-A_20 77 98 51 20 5 3954 307.7 3904 3941 3954 3954 30 11
egl-e1-B_12 77 98 51 12 8 5481 3.4 5481 5481 5481 5481 0 1
egl-e1-B_20 77 98 51 20 7 4905 148.4 4805 4901 4905 4905 22 7
egl-e1-B_22 77 98 51 22 7 4831 24.1 4786 4831 4831 4831 8 2
egl-e1-C_17 77 98 51 17 11 6727 6.0 6727 6727 6727 6727 0 1
egl-e1-C_18 77 98 51 18 12 6898 10.6 6898 6898 6898 6898 0 1
egl-e1-C_20 77 98 51 20 11 6259 5.3 6259 6259 6259 6259 0 1
egl-e1-C_22 77 98 51 22 10 6324 41.1 6305 6324 6324 6324 9 3
egl-e2-A_20 77 98 72 20 7 5554 12.2 5554 5554 5554 5554 0 1
egl-e2-A_26 77 98 72 26 7 5813 163.0 5765 5813 5813 5813 17 3
egl-e2-A_31 77 98 72 31 7 5349 894.3 5245 5334 5349 5349 94 22
egl-e2-B_18 77 98 72 18 11 7461 7.6 7461 7461 7461 7461 0 1
egl-e2-B_22 77 98 72 22 11 7220 50.7 7195 7220 7220 7220 3 2
egl-e2-B_23 77 98 72 23 10 7770 35.5 7770 7770 7770 7770 0 1
egl-e2-B_25 77 98 72 25 10 7037 36.2 6962 7037 7037 7037 1 2
egl-e2-C_29 77 98 72 29 15 9430 11.1 9430 9430 9430 9430 0 1
egl-e2-C_32 77 98 72 32 14 9292 156.7 9290 9290 9292 9292 0 3
egl-e3-A_24 77 98 87 24 8 6597 531.9 6516 6568 6597 6597 40 20
egl-e3-A_31 77 98 87 31 8 6775 308.5 6764 6775 6775 6775 10 2
egl-e3-A_37 77 98 87 37 8 6207 556.0 6174 6204 6207 6207 60 8
egl-e3-B_22 77 98 87 22 14 9183 29.3 9111 9183 9183 9183 1 2
egl-e3-B_23 77 98 87 23 13 9898 14.1 9898 9898 9898 9898 0 1
egl-e3-B_32 77 98 87 32 12 8299 181.4 8286 8299 8299 8299 6 2
egl-e3-B_37 77 98 87 37 12 8256 3404.6 8147 8210 8256 8256 99 58
egl-e3-C_32 77 98 87 32 20 12206 9.4 12206 12206 12206 12206 0 1
egl-e3-C_36 77 98 87 36 17 11380 615.7 11310 11364 11380 11380 13 15
egl-e3-C_38 77 98 87 38 17 11318 137.0 11260 11318 11318 11318 7 3
egl-e4-A_22 77 98 98 22 9 7298 29.8 7268 7298 7298 7298 2 2
egl-e4-A_28 77 98 98 28 9 6892 59.2 6892 6892 6892 6892 0 1
egl-e4-A_34 77 98 98 34 9 6892 3471.9 6832 6855 6892 6892 113 61
egl-e4-B_30 77 98 98 30 14 10800 20.6 10800 10800 10800 10800 0 1
egl-e4-B_38 77 98 98 38 14 10043 473.6 10019 10043 10043 10043 10 3
egl-e4-B_43 77 98 98 43 14 9524 335.0 9504 9524 9524 9524 13 2
egl-e4-B_44 77 98 98 44 14 9470 407.6 9442 9470 9470 9470 18 3
egl-e4-C_41 77 98 98 41 20 13518 938.7 13437 13445 13518 13518 8 20
egl-e4-C_42 77 98 98 42 20 12624 131.4 12624 12624 12624 12624 0 1
egl-e4-C_43 77 98 98 43 20 12590 115.6 12590 12590 12590 12590 0 1

Table 15: Detailed results for the EGL instances, subset E.
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BPC Statistics

Instance Bounds Cuts/Tree

Name |V | |E| |ER| |H| m BKS Time LBLP LBSRI LBtree UB %Gap #SRIs #B&B

egl-s1-A_13 140 190 75 13 8 6253 33.9 6253 6253 6253 6253 0 1
egl-s1-A_17 140 190 75 17 7 6224 378.1 6224 6224 6224 6224 0 1
egl-s1-B_22 140 190 75 22 10 7005 135.6 7005 7005 7005 7005 0 1
egl-s1-B_23 140 190 75 23 10 *6994 TL 6966 6966 6966 — n.a. 2 1
egl-s1-B_24 140 190 75 24 10 — TL 6953 6953 6953 — n.a. 0 1
egl-s1-B_26 140 190 75 26 10 6930 295.9 6930 6930 6930 6930 0 1
egl-s1-C_26 140 190 75 26 16 *9591 TL 9591 9591 9591 — n.a. 0 0
egl-s1-C_27 140 190 75 27 15 9881 871.7 9783 9881 9881 9881 2 2
egl-s1-C_29 140 190 75 29 14 — TL 9486 9486 9486 — n.a. 0 0
egl-s2-A_42 140 190 147 42 14 — TL 11020 11020 11020 — n.a. 0 0
egl-s2-A_44 140 190 147 44 14 — TL 10750 10750 10750 — n.a. 0 0
egl-s2-A_48 140 190 147 48 14 — TL 10715 10715 10715 — n.a. 0 0
egl-s2-A_50 140 190 147 50 14 — TL 11000 11000 11000 — n.a. 0 0
egl-s2-B_39 140 190 147 39 23 14903 228.7 14903 14903 14903 14903 0 1
egl-s2-B_53 140 190 147 53 21 — TL 14506 14506 14506 — n.a. 0 0
egl-s2-B_56 140 190 147 56 20 — TL 14701 14701 14701 — n.a. 0 0
egl-s2-B_60 140 190 147 60 20 — TL 14935 14935 14935 — n.a. 0 0
egl-s2-C_57 140 190 147 57 28 18292 2197.5 18292 18292 18292 18292 0 1
egl-s2-C_61 140 190 147 61 27 — TL 18475 18475 18475 — n.a. 0 0
egl-s3-A_42 140 190 159 42 15 11420 759.1 11420 11420 11420 11420 0 1
egl-s3-A_45 140 190 159 45 15 — TL 10923 10923 10923 — n.a. 0 0
egl-s3-A_62 140 190 159 62 15 — TL 10822 10822 10822 — n.a. 0 0
egl-s3-A_64 140 190 159 64 15 — TL 10813 10813 10813 — n.a. 0 0
egl-s3-B_41 140 190 159 41 23 16593 565.6 16593 16593 16593 16593 0 1
egl-s3-B_57 140 190 159 57 22 — TL 14610 14610 14610 — n.a. 0 0
egl-s3-B_58 140 190 159 58 22 — TL 14829 14829 14829 — n.a. 0 0
egl-s3-B_70 140 190 159 70 22 — TL 14367 14367 14367 — n.a. 0 0
egl-s3-C_61 140 190 159 61 29 — TL 20135 20135 20135 — n.a. 0 0
egl-s3-C_65 140 190 159 65 29 — TL 19450 19450 19450 — n.a. 0 0
egl-s3-C_69 140 190 159 69 29 — TL 18995 18995 18995 — n.a. 0 0
egl-s3-C_71 140 190 159 71 29 — TL 19905 19905 19905 — n.a. 0 0
egl-s4-A_48 140 190 190 48 19 — TL 13901 13901 13901 — n.a. 0 0
egl-s4-A_51 140 190 190 51 19 — TL 13732 13732 13732 — n.a. 0 0
egl-s4-A_68 140 190 190 68 19 — TL 13057 13057 13057 — n.a. 0 0
egl-s4-A_74 140 190 190 74 19 — TL 13044 13044 13044 — n.a. 0 0
egl-s4-B_55 140 190 190 55 28 — TL 19829 19829 19829 — n.a. 0 0
egl-s4-B_69 140 190 190 69 27 — TL 17928 17928 17928 — n.a. 0 0
egl-s4-B_70 140 190 190 70 27 — TL 18552 18552 18552 — n.a. 0 0
egl-s4-B_72 140 190 190 72 27 — TL 17573 17573 17573 — n.a. 0 0
egl-s4-C_70 140 190 190 70 38 — TL 24687 24687 24687 — n.a. 0 0
egl-s4-C_73 140 190 190 73 37 — TL 23052 23052 23052 — n.a. 0 0
egl-s4-C_78 140 190 190 78 36 — TL 23012 23012 23012 — n.a. 0 0
egl-s4-C_84 140 190 190 84 35 — TL 54933 54933 54933 — n.a. 0 0

Table 16: Detailed results for the EGL instances, subset S.
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