

Gutenberg School of Management and Economics

& Research Unit “Interdisciplinary Public Policy”

Discussion Paper Series

Branch-and-Cut for the Active-Passive Vehicle

Routing Problem

Christian Tilk, Michael Forbes

December 09, 2019

Discussion paper number 1915

Johannes Gutenberg University Mainz
Gutenberg School of Management and Economics

Jakob-Welder-Weg 9
55128 Mainz

Germany
https://wiwi.uni-mainz.de/

https://wiwi.uni-mainz.de/

Contact Details:

Christian Tilk

Chair of Logistics Management

Gutenberg School of Management and Economics

Johannes Gutenberg University

Jakob-Welder-Weg 9, D-55128 Mainz, Germany

tilk@uni-mainz.de

Michael Forbes

Chair of Mathematics and Physics

The University of Queensland St Lucia

Brisbane, Australia

m.forbes@uq.edu.au

All discussion papers can be downloaded from http://wiwi.uni-mainz.de/DP

mailto:tilk@uni-mainz.de
mailto:m.forbes@uq.edu.au
http://wiwi.uni-mainz.de/DP

Branch-and-Cut for the Active-Passive Vehicle Routing Problem

Christian Tilk∗,b, Michael Forbes∗,a

aSchool of Mathematics and Physics, Faculty of Science, The University of Queensland,
St Lucia, Brisbane, Australia

bChair of Logistics Management, Gutenberg School of Management and Economics,
Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

This paper studies the active-passive vehicle-routing problem (APVRP). The APVRP covers a range
of logistics applications where pickup-and-delivery requests necessitate a joint operation of active
vehicles (e.g., trucks) and passive vehicles (e.g., loading devices such as containers). It supports
a flexible coupling and decoupling of active and passive vehicles at customer locations in order
to achieve a high utilization of both resources. This flexibility raises the need to synchronize the
operations and the movements of active and passive vehicles in time and space. The contribution
of the paper is twofold. First, we present a branch-and-cut algorithm for the exact solution of
the APVRP that is based on Benders decomposition. Second, our approach can be generalized
to deal with other vehicle-routing problems with timing aspects and synchronization constraints.
Especially for the more complicated cases in which completion time or duration of routes is part
of the objective, we show how stronger optimality cuts can be defined by identifying minimal
responsible subset. Computational experiments show that the proposed algorithm outperforms the
previous state-of-the-art for the APVRP and compute optimal solutions for more than 70 previously
unsolved benchmark instances.

Key words: Routing, synchronization, branch-and-cut, Benders decomposition, truck and trailer

1. Introduction

Many applications in the area of transport logistics involve problems in which the execution of
transport requests calls for a joint operation of active vehicles such as trucks, tractors, and passive
vehicles, e.g., trailers, semitrailers, and containers. While active vehicles can move on their own
from one location to another, passive vehicles require an active vehicle for being repositioned. In
the literature on vehicle-routing problems (VRPs, see Irnich et al. (2014) for an overview), the
distinction of active and passive vehicles is usually ignored, and operations are planned for active
vehicles only (cf. the survey by Lahyani et al. (2015)). Active and passive vehicles are often paired
to fixed units when modeling real-world problems. While this fixed active-passive assignment eases
the solution of the VRP, it may hinder an effective utilization of the resources. If, for example,
a manned truck (active vehicle) and an empty container (passive vehicle) are considered a unit in
operations planning, the truck and its driver have to wait at a customer location while the container

∗Corresponding author.
Email addresses: tilk@uni-mainz.de (Christian Tilk), m.forbes@uq.edu.au (Michael Forbes)

Preprint submitted to LM-2019-04 December 9, 2019

is being loaded. To overcome this issue and to support a more flexible use of such resources, Meisel
and Kopfer (2014) introduced the active-passive vehicle routing problem (APVRP), in which an
explicit distinction between active and passive vehicles is made. Given a set of pickup-and-delivery
requests, the APVRP enables a flexible modeling of complex transport operations in which an active
vehicle carries a passive vehicle to some pickup location, drops it off there, and leaves this location
to transport other passive vehicles elsewhere. Later, when the passive vehicle has been loaded, the
same or some other active vehicle returns to the customer, picks up the container, and carries it
to its delivery location. This flexibility introduces multiple interdependencies between vehicles and
raises the need to synchronize the operations and the movements of active and passive vehicles in
time and space. According to the survey by Drexl (2012), such a combination of synchronization
requirements is rarely addressed in the VRP literature.

To solve the APVRP, we use a Benders decomposition approach. Benders decomposition (Ben-
ders, 1962) is a partitioning method applicable to mixed-integer programs. It decomposes the origi-
nal problem formulation into two simpler ones: an integer master problem and a linear subproblem.
Recently, Rahmaniani et al. (2017) present a state-of-the-art survey on Benders decomposition ap-
proaches, emphasizing its use in combinatorial optimization.

The advantage of using Benders decomposition for VRP variants with timing aspects relies on
the following observation: Formulations of VRP variants with timing aspects often utilizes arc-flow
variables xij and node-time variables Ti that are bounded by the time windows. Mostly, these
variable are coupled with the help of MTZ-constraints using a big-M Method. This usually results
in a large mixed-integer model with a weak LP-relaxation. Moreover, the MIP solver carries the
burden of all MTZ-constraints and bounded T variables at all branch-and-bound nodes, while
they become relevant only when the corresponding xij variable takes a value of 1 (cf. Codato and
Fischetti, 2006). Codato and Fischetti (2006) explained that you can get rid of the T variables
using Benders decomposition but also that the resulting cuts are very weak and still depending
on the Big-M values. To overcome this issue, they introduce combinatorial Benders cuts that are
modelled only on the set of xij variables that violates timing aspects.

The contribution of the paper at-hand is twofold. First, we present an exact solution approach
for the APVRP that is based on combinatorial Benders cuts and introduce a new compact for-
mulation that constitutes the basis for our decomposition approach. Second, our approach can be
generalized to deal with other VRP variants with timing aspect and synchronization constraints,
especially for the more complicated cases in which completion time or duration of routes is part
of the objective. For this purpose, we show how stronger optimality cuts can be derived from the
solution of Benders subproblem by identifying minimal responsible subsets and how heuristic cut
generation based on individual routes can be applied.

The remainder of this paper is structured as follows: Section 2 briefly reviews the literature on
the APVRP and related problems. The formal problem description and the definition of appro-
priate network structures are provided in Section 3. Based on the network representation, a new
compact formulation of the APVRP is presented in Section 4. Section 5 introduces our Benders
decomposition approach and a simple solution algorithm. In Section 6, improvements of the simple
algorithm are presented and the improved algorithm is computationally evaluated in Section 7.
Section 8 summarizes the paper and discusses potential avenues for further research.

2

2. APVRP-related Literature

There are manifold real-world logistics applications of vehicle routing problems with active and
passive vehicles that have attracted the attention of the research community. However, most of
them are modelled with a fixed assignment of active and passive vehicle. Typical applications are
found in routing problems where trucks pull trailers or swap bodies (see, e.g., Cheung et al., 2008;
Drexl, 2013). The most common problem in this area is the truck-and-trailer routing problem
(TTRP, Chao, 2002), in which the assignment of active and passive vehicles is fixed but the
passive vehicle can be decoupled for loading or because a street cannot be traversed by an active
and a passive vehicle together. There are several applications for the TTRP, e.g., distribution of
goods to grocery stores (Semet and Taillard, 1993), postal mail delivery (Bodin and Levy, 2000),
the movement of empty and loaded containers for a logistics company (Tan et al., 2006), and raw
milk collection (Rothenbächer et al., 2018). However, the features of the APVRP, which include
simultaneous operations planning of active and passive vehicles together with the possibility to
couple and decouple them flexibly on their routes, are not supported by the TTRP but could be
exploited in all mentioned applications.

Literature considering a flexible assignment of active and passive vehicles is scarce. Meisel
and Kopfer (2014) introduces the APVRP, provide mixed-integer programming (MIP) formula-
tions, a branch-and-cut algorithm, an adaptive large neighborhood search(ALNS) metaheuristic,
and benchmark instances. Recently, Tilk et al. (2018) presented a branch-and-price approach for
the resolution of the APVRP and reported optimal solutions for instances with up to 76 tasks.
There are some related problems that support a flexible coupling and decoupling of passive vehi-
cles. Smilowitz (2006) models drayage operations that require the movement of loaded and empty
equipment between rail yards, shippers, consignees and equipment yards. The problem is solved
with a branch-and-price algorithm. Drexl (2014) studies the VRP with trailers and transshipments
which supports, besides the flexible coupling, also load exchanges between all vehicles. Two branch-
and-cut algorithms are presented, but only very small instances can be solved. Soares et al. (2019)
introduce the full truck-load pickup and delivery problem with multiple vehicle synchronisation
that is motivated by a real-life application in the biomass supply chain where it is necessary to si-
multaneously perform chipping and transportation operations at the forest roadside. They present
a compact formulation of the problem that is used in a fix-and-optimise heuristic.

3. Problem Description and Network Definition

The APVRP can be formally described as follows: Let A be a set of classes of active vehicles
and let Ka be the number of vehicles of class a ∈ A. All active vehicles are initially based at the
same start depot o and end their routes at the same end depot d. Let P be a set of passive vehicles,
each passive vehicle p ∈ P is initially located at a specific start position op and must be brought
to a specific end position dp. Let R be a set of pickup-and-delivery requests, each request r ∈ R
consists of transporting a loading unit from a pickup location `+r to a delivery location `−r . To fulfill
a request r, an active vehicle must carry a passive vehicle to `+r for loading. Each passive vehicle
can load only one request at a time, and each active vehicle can transport only one passive vehicle
at a time. Hence, the loaded passive vehicle must then be transported directly to `−r for unloading.
Afterwards, the empty passive vehicle must be carried away from `−r .

The set of locations is defined as L := {o, d} ∪ {op, dp : p ∈ P} ∪ {`+r , `−r : r ∈ R}. The travel
time between two location i, j ∈ L is given by tij and the travel distance by cij . Moreover, s+

r

3

indicates the time necessary to load an empty passive vehicle with request r and s−r indicate the
time to unload r. Times for coupling and decoupling of passive vehicles to or from active vehicles are
assumed to be zero (but could easily be incorporated into the model). Picking up a loaded request
r at its pickup location can be finished no earlier than at time ar. Waiting is allowed. Unloading
a request r at its delivery location must be finished no later than br. The overall planning horizon
is [0, tmax]. Requests that cannot be fulfilled imply a penalty.

Additionally, there exists compatibility relationships between the requests and the active and
the passive vehicles. P r denotes the set of passive vehicles that can be used to perform request r.
Likewise, Rp denotes the set of requests that can be performed with passive vehicle p. P a indicates
the set of passive vehicles that can be coupled with active vehicles of class a, and Ap is the set of
classes of active vehicles compatible with passive vehicle p. The objective is to minimize a weighted
sum of the total distance traveled, the total completion time of the routes, and the number of
unserved requests. The respective weights are α, β, γ ∈ R+.

op l+r l−r dp

l+q l−q q 6= r

Figure 1: Passive Network - A passive vehicle moves between physical location

We model the APVRP as an optimization problem over two sets of graphs. The first set
contains one graph for each passive vehicle modelling the movement of passive vehicles between
physical locations. The route of a passive vehicle p ∈ P can be described as an op-dp-path in the
graph Gp = (V p, Ep) with node set V p := {op, dp} ∪ {l+r , l−r : r ∈ Rp} and arc set Ep := {(op, dp)}
∪{(op, l+r), (l+r , l

−
r), (l−r , l

+
q), (l−r , dp) : ∀ r, q ∈ Rp with r 6= q} as depicted in Figure 1. The travel

distances and travel times for an arc (i, j) ∈ Ep are then given by the distance and time between
the physical locations i and j, namely cij and tij . A passive vehicle fulfills a request if its route
contains the visit of locations `+r and `−r .

The second set of graphs contains one graph for each class of active vehicles a ∈ A modelling
the movement of active vehicles carrying a passive vehicle from one physical location to another.
From the point of view of an active vehicle, the fulfillment of a request r comprises three transport
tasks for the same passive vehicle p:
(i) carry an empty passive vehicle from its current location i to the pickup location of request r,
(ii) direct transport of a loaded passive vehicle from the pickup to the delivery location of r, and
(iii) carrying away the emptied passive vehicle from the delivery location to its next destination j.
Note that these three tasks for a request can be performed by up to three different active vehicles. In
addition, there are two additional tasks for each passive vehicle p that need to be fulfilled, namely,

4

(p′, i, j)

i, j /∈ {l+r , l−r }
p′ 6= p

(p, op, dp) (p′, i, j)

p′ 6= p

(p, op, l
+
r) (p, l+r , l

−
r) (p, l−r , dp)

(p, l−r , l
+
q) (p′, i, j)

i, j /∈ {l+r , l−r , l+q , l−q }
p′ 6= p

(p, l−q , l
+
r)

(p, op, l
+
q) (p, l+q , l

−
q) (p, l−q , dp)

(p′, i, j)

i, j /∈ {l+q , l−q }
p′ 6= p

(−, o, o) (−, d, d)

Arcs between tasks of same passive vehicle

Arcs between tasks of different passive vehicles p′ 6= p

Arcs from o to all tasks of all passive vehicles

and arcs from all tasks of all passive vehicles to d

Figure 2: Active Network: An active vehicle moves between tasks to carry passive vehicles

carry the passive vehicle from op to the first location in its route and deliver it to dp at the end of
its route. Now, the route of an active vehicle a ∈ A can be described as a sequence of tasks. Let
Γ := ∪a∈AΓa be the set of all possible tasks, where Γa := {(p, i, j) : p ∈ P a, (i, j) ∈ Ep} ∪ {τo, τd}
is the set of all possible tasks for a class of active vehicles a with τo := (−, o, o) and τd := (−, d, d)
modelling the start and end of routes. For the remainder of this paper, we define τ, τ ′ ∈ Γ as
τ := (p, i, j) and τ ′ := (p′, i′, j′). Moreover, i is called the start location of task τ and j is called
the end location of task τ . Hence, the journey of an active vehicle a ∈ A can be defined as an
τo-τd-path in the graph Ga = (Γa, Ea) with node set Γa and arc set Ea as depicted in Figure 2.
With this network definition, the active vehicles move in the line of tasks defined by the routes of
passive vehicles, e.g., an active vehicle using an arc from (i, j, p) to (i′, j′, p′) picks up the passive
vehicle p from i, delivers it to j, then travels to i′ to pick up the passive vehicle p′ and delivers it
to j′. (Note that p = p′ if and only if j = i′.) The travel distances and times of an arc (τ, τ ′) ∈ Ea
are given by the travel distance and time between the end location of task τ and the start location
of task τ ′, namely cji′ and tji′ , respectively. Moreover, each task has a time window as described
in Table 1 according to the specifications given by (Meisel and Kopfer, 2014).

A feasible solution to the APVRP is a set of routes for the passive and a set of scheduled routes
for the active vehicles that fulfills the following properties:

1. Each passive vehicle starts its journey at op and ends it at dp.
2. For all r ∈ R the arc (`+r , `

−
r) is used by at most one passive vehicle. Together with the

structure of the passive network, this implies for all r ∈ R that if arc (`+r , `
−
r) is used by a

5

Task τ Earliest time aτ Latest time bτ

(p, op, dp) to,op tmax − tdp,p
(p, op, `

+
r) to,op br − s+

r − s−r − t`+r ,`−r
(p, `−r , dp) apr + s−r + t`+r ,`−r tmax − tdp,p
(p, `+r , `

−
r) apr br − s−r

(p, `−r , `
+
q) apr + s− + t`+r ,`−r bq − s+

q − s−q − t`+q ,`−q

Table 1: Time Windows of Tasks with apr := max{ar, toop + t
op`

+
r

+ s+}

specific passive vehicle p then (i) the passive vehicle p must also use exactly one arc from the
set {(i, `+r) : i ∈ V p} and exactly one arc from the set {(`−r , j) : j ∈ V p} and (ii) all other
passive vehicle p′ 6= p can not use any arc from the set {(i, `+r) : i ∈ V p′}∪{(`−r , j) : j ∈ V p′}.

3. Each route of an active vehicle a starts at τo and ends at τd.
4. For each a ∈ A there are at most Ka routes of active vehicles a.
5. All tasks that are present in the route of the passive vehicles are operated exactly once by

one active vehicle.
6. The operation of all tasks in the route of an active vehicle are started in their time window.
7. For all r ∈ R, it holds Ti`+r + ti`+r + s+

r ≤ T`+r `−r and T`+r `−r + t`+r `−r + s−r ≤ T`−r j , where
Ti`+r , T`+r `−r , and T`−r ,j are the start times of the single tasks possible selected from the sets
{(p, i, `+r) : p ∈ P r, (i, `+r) ∈ Ep}, {(p, `+r , `−r) : p ∈ P r, (`+r , `

−
r) ∈ Ep}, and {(p, `−r , j) : p ∈

P r, (`−r , j) ∈ Ep} (see point 2 above). These inequalities ensure the temporal synchronization
of tasks within and between the routes of active vehicles.

4. Compact Formulation

In order to employ Benders decomposition, we introduce a new compact formulation for the
APVRP based on the networks presented in the previous section. The formulation uses the following
types of variables:
• Binary variables Ur indicating whether or not request r ∈ R remains unfulfilled,
• binary variables Xp

ij measuring the flow of passive vehicle p ∈ P along arc (i, j) ∈ Ep,
• binary variables Y a

ττ ′ measuring the flow of active vehicles of class a ∈ A along arc (τ, τ ′) ∈ Ea,
• and continuous variables Tτ indicating the start time of task τ .

The formulation reads as follows:

zCM = min α(
∑
p∈P

∑
(i,j)∈Ep

cijX
p
ij +

∑
a∈A

∑
(τ,τ ′)∈Ea

cji′Y
a
ττ ′) + β

∑
a∈A

∑
τ∈Γa

(Tτ + tij + tjd)Y
a
ττd + γ

∑
r∈R

Ur (1a)

s.t. Ur +
∑
p∈Pr

Xp

l+r l
−
r

= 1 r ∈ R (1b)

∑
r∈Rp

Xp

opl
+
r

+Xp
opdp

= 1 p ∈ P (1c)

∑
(i,j)∈Ep

Xp
ij =

∑
(h,i)∈Ep

Xp
hi p ∈ P i ∈ L \ {op, dp} (1d)

∑
τ∈Γa

Y aτoτ ≤ Ka a ∈ A (1e)

6

∑
τ ′∈Γa

Y aττ ′ =
∑
τ ′∈Γa

Y aτ ′τ a ∈ A τ ∈ Γa \ {τo, τd} (1f)

∑
a∈A

∑
τ ′∈Γa

Y aτ ′τ = Xp
ij p ∈ P (i, j) ∈ Ep (1g)

Tτ + tij + tji′ ≤ Tτ ′ + tmax(1−
∑

a∈Ap∩Ap′
Y aττ ′) (τ, τ ′) ∈

⋃
a∈A

Ea τ ′ 6= τd (1h)

T
(p,i,`+r)

+ t
i,`+r

+ s+
r ≤ T(p,`+r ,`

−
r)

+ tmax(1−Xp

i`+r
) r ∈ R p ∈ P r (i, `+r) ∈ Ep (1i)

T
(p,`+r ,`

−
r)

+ t
`+r ,`

−
r

+ s−r ≤ T(p,`−r ,j)
+ tmax(1−Xp

`−r j
) r ∈ R p ∈ P r (`−r , j) ∈ Ep (1j)

eτX
p
ij ≤ Tτ ≤ (lτ − tij)Xp

ij τ ∈
⋃
a∈A

Γa (1k)

Xp
ij ∈ {0, 1} p ∈ P (i, j) ∈ Ep (1l)

Y aττ ′ ∈ {0, 1} a ∈ A (τ, τ ′) ∈ Ea (1m)
Ur ∈ {0, 1} r ∈ R (1n)

(1a) is the objective function minimizing the weighted sum of the travel costs and completion times
of the routes as well as the penalties paid for unfulfilled requests. Constraints (1b) ensures that
each request is either performed exactly once or the penalty has to be paid for leaving the request
unfulfilled. Constraints (1c) guarantees that each passive vehicle is used. It ensures that the journey
of each passive vehicle either starts with a request or that it is directly carried to its destination
location. Constraints (1d) are flow conservation constraints for the journey of passive vehicles. The
number of active vehicles of each class is limited by (1e). Flow conservation for each class of active
vehicles is ensured by constraints (1f). Constraints (1g) couples the flow of the active and passive
vehicles. It ensures that if a passive vehicle serves task τ = (p, i, j), an active vehicle must carry it.
Constraints (1h) ensure time feasibility regarding the sequence of tasks in the routes of all active
vehicles. The time synchronization of the passive vehicles’ flow regarding the order of fulfilling a
request is ensured by Constraints (1i) and (1j). The variable domains are given by (1k) – (1n).
Note that the objective is non-linear since a product of variables is used to compute the completion
time. On the one hand, linearizing is possible, e.g., by considering each active vehicle individually.
On the other hand, it is not necessary for our Benders decomposition approach since the non-linear
part vanishes in the Benders subproblem (see Section 5).

5. Benders Decomposition

To solve the APVRP with Benders decomposition, we use combinatorial Benders cuts (see,
Codato and Fischetti (2006)). Benders decomposition is a partitioning method applicable to mixed-
integer programs (Benders, 1962). It separates the original problem into two simpler ones: an integer
master problem and a linear subproblem. A simple algorithm using combinatorial Benders cuts can
be constructed as follows: The algorithm starts with solving the master problem via branch-and-
bound. During the solution process, each integer solution found in the branch-and-bound tree is
sent to the subproblem for examination. The subproblem decides first, if the solution is feasible and
second, if the objective value of the master problem takes the appropriate value. If the solution is
infeasible, a feasibility cut is generated and passed to the master to cut the solution off. Similarly,
if the objective value is incorrect an optimality cut is generated and passed to the master to cut
the solution off. Otherwise, the solution is identified as feasible and branch-and-bound continues.
The interaction between master and subproblem is depicted in Figure 3.

7

Benders Masterproblem Benders Subproblem
integer solutions

valid solution or cuts?

Figure 3: Interaction between Benders master and subproblem

Formulation 1 is decomposed such that the routing part is handled in the master problem and
the timing aspects are managed in the subproblem. Since the end times of the routes of active
vehicles are important for computing the objective value, we introduce new variables θaτ for each
class of active vehicles a and each task τ modelling the arrival time at the end depot d for an active
vehicle of class a if this active vehicle performs task τ directly before going to the end depot, i.e.,
Y a
ττd

= 1. Note that there must be exactly one variable Y a
ττd

with value 1 for each active vehicle
used since each task τ can be performed at most once. Hence, the master problem reads as follows:

zBM = min α(
∑
p∈P

∑
(i,j)∈Ep

cijX
p
ij +

∑
a∈A

∑
(τ,τ ′)∈Ea

cji′Y
a
ττ ′) + β

∑
a∈A

∑
τ∈Γa

θaτ + γ
∑
r∈R

Ur (2a)

s.t.(1b)–(1g) and (1l)–(1n)

(2a) is the objective function formulated in the new variables θaτ . Note that this reformulation
implies that time infeasible or non-elementary routes of passive and active vehicles become possible.
Moreover, the timing component in the objective function is currently zero. To tackle these two
aspects, we introduce our Benders subproblem and show how optimality and feasibility cuts can be
generated.

Note first that if Formulation 2 turns out to be infeasible for a specific instance then also
Formulation 1 is infeasible for that instance. Otherwise, let (S̄, θ̄) with S̄ = (X̄, Ȳ , Ū) be the
optimal solution of Formulation 2 with solution value z̄BM . Now, we have to check if there exists
an assignment T̄ of the T variables such that (S̄, T̄) satisfy Constraints (1h)-(1k) and z̄BM =
zCM (S̄, T̄). Since Constraints (1k) enforce that Tτ = 0 for all τ ∈ Γ with X̄p

ij = 0, the Benders
subproblem decomposes to:

zBS = min
∑

τ :Yττd∈Ȳ

Tτ + tij + tjd (3a)

Tτ + tij + tji′ ≤ Tτ ′
∑

a∈Ap∩Ap′
Ȳ aττ ′ = 1 τ ′ 6= τd (3b)

T(p,i,`+r) + ti`+r + s+
r ≤ T(p,`+r ,`

−
r) X̄p

i,`+r
= 1 (3c)

T(p,`+r ,`
−
r) + t`+r `−r + s−r ≤ T(p,`−r ,j)

X̄p

`−r ,j
= 1 (3d)

a′τ ≤ Tτ ≤ b′τ − tij X̄p
ij = 1 (3e)

The objective (3a) minimizes the sum of the completion time of all routes. Constraints (3b)
ensure time feasibility regarding the sequence of tasks in the routes of all active vehicles. Time
synchronization of the passive vehicles’ flow is ensured by constraints (3c) and (3d). The variable
domains are given by (3e).

8

On the one hand, if the linear system 3 is infeasible then there does not exist any combination T̄
of the T variables such that (S̄, T̄) is a feasible solution to the APVRP. Hence, we need to generate a
feasibility cut to exclude solution S̄ from the feasible region of Formulation 2. Let EX̄ := {(p, i, j) :

X̄p
ij = 1} be the set of all executed tasks in S̄ and let EȲ := {(τ, τ ′) :

∑
a∈Ap∩Ap′ Ȳ

a
ττ ′ = 1} be

the set of all tasks that are consecutively served by an active vehicle. The general form of Benders
feasibility cut is given by:∑

(p,i,j)∈EX̄
Xp
ij +

∑
(τ,τ ′)∈EȲ

∑
a∈Ap∩Ap′

Y aττ ′ ≤ |EX̄ |+ |EȲ | − 1 (4)

However, this cut can be strengthened since the infeasibility may rely only on some of the Xp
ij

and Y a
ττ ′ variables that occur in constraint (4). As explained in Codato and Fischetti (2006), a

stronger cut can be derived by computing a minimal (or irreducible) infeasible subsystem (MIS)
(EX

∗ ∪ EY ∗) ⊂ (EX̄ ∪ EȲ) and defining the cut on that subset. The MIS can be any inclusion-
minimal set of row indices of Formulation 3 such that the resulting linear subsystem is infeasible.

On the other hand, if the linear system 3 has a feasible solution T̄ with solution value z̄BS ,
then (S̄, T̄) is a feasible solution to Formulation 1 with solution value zUB := z̄BM + β(z̄BS −∑

a∈A
∑

τ∈Γa θ̄
a
τ). If z̄BS =

∑
a∈A

∑
τ∈Γa θ̄

a
τ , the solution S̄ has the correct objective value and

no cut is passed to the Benders master problem. Otherwise, zUB is an valid upper and we need
to generate an optimality cut forcing the solution S̄ to take the value zUB in the Benders master
problem. The general form of Benders optimality cut is given by:

∑
a∈A

∑
τ :(τ,τd)∈EȲ

θaτ ≥ z̄BS(1− |Ȳ |+
∑

(τ,τ ′)∈EȲ

∑
a∈Ap∩Ap′

Y aττ ′). (5)

Similarly to the MIS for feasibility cuts, we can strengthen optimality cuts by defining a minimal
responsible subset (MRS) EY ∗ ⊂ EȲ and define the cut on that subset. The idea to use MIS and
MRS is based on the seminal work of Hooker (2000) who derives Benders cuts from minimal sets
of inconsistencies which are heuristically computed using greedy algorithms. However, a MRS can
also be computed exactly. Any optimal solution of Formulation 3 defines a MRS which contains
only those pairs of tasks that corresponds to a non-zero dual variable plus the set {(τ, τd) : (τ, τd) ∈
EȲ }. Note that the approach of using a MRS will work in general for all combinatorial Benders
decomposition algorithms. The proof is simple: If we remove the constraints in the subproblem
corresponding to dual variables which are zero, then the original primal and dual solutions are still
primal and dual feasible for the new problem. Moreover, the solution value for the reduced primal
and dual problems remains the same and thus the solutions are still optimal. Hence, the cut is
valid with just the corresponding reduced set of binary variables.

Note that, instead of adding only one inequality per solution of the Benders subproblem, we can
compute several in the following manner: If the Benders subproblem is feasible, we can generate
at most one optimality cut. Otherwise, we generate a MIS and the corresponding feasibility cut,
remove all constraints corresponding to this MIS from the Benders subproblem and solve it again.
This procedure is iteratively repeated until the Benders subproblem is feasible, then we may generate
an optimality cut as a last step.

6. Improved Algorithm

In this section, we introduce two techniques that can be used to improve the simple algorithm
introduced in the previous section. First, we describe several inequalities based on the feasibility

9

and ending time of individual routes of active and passive vehicle in Section 6.1. Second, we show
how the active vehicle index can be eliminated from tasks to significantly reduce the number of
variables in Section 6.2. Last, we summarize the overall solution algorithm in Section 6.3.

6.1. Valid Inequalities
To speed-up the solution procedure, we use several heuristic procedures to check for individual

routes of passive and active vehicles of a solution S̄ if they are infeasible or should enforce larger
θ-values. Only if all heuristics fail to find a feasibility cut, we solve Formulation 3. Note that testing
the route of passive vehicle p for feasibility corresponds to checking constraints (1i), (1j), and (1k)
for p. Similarly, testing the route of an active vehicle a1 for feasibility corresponds to checking
constraints (1h) and (1k) for that specific vehicle a1 (after decomposing the variables for classes of
active vehicles in routes for individual vehicles). On the one hand, there are two types of infeasible
routes: A route may be a cycle (not starting at the depot) or a route may be infeasible due to
the time window constraints of the involved requests. Both kinds of infeasibility can be cut off by
inequalities of type (4). On the other hand, if a single route of an active vehicle is feasible, we can
check if its individual ending time (without possibly required synchronization between routes) is
smaller or equal to the value of the corresponding θ-variable and generate an optimality cut if it is
larger. Next, we give a more detailed description of the different kinds of single route inequalities
that we use and how they are separated.

Cycle Inequalities. Checking a solution (S̄, θ̄) of Formulation 2 for cycles on the X variables or
Y variables can be done by inspection. Cycle inequalities are strengthened using the tournament
constraints (Ascheuer et al., 2000). Let C := (l1, l2, . . . , ln, l1) be the sequence of locations forming
a cycle on the X variables, the corresponding feasibility cut is given by:

n∑
i=1

n∑
j=1

∑
p:

(li,lj)∈Ep

Xp
lilj
≤ n− 1 (6)

Likewise, let C := (τ1, τ2, . . . , τn, τ1) be the sequence of tasks forming a cycle on the Y variables,
the corresponding cut is given by:

n∑
i=1

n∑
j=1

∑
a:

(τi,τj)∈Ea

Y aτiτj ≤ n− 1 (7)

Infeasible Chain Inequalities. To check if an active or passive route respects the time windows of
the involved requests, we compute the earliest arrival time at each vertex in the route using resource
extension functions (REFs, see Irnich, 2008) and check if time windows are violated. If the route is
infeasible, we can try to shorten it by removing arcs at the start and the end of the route as long
as the infeasibility remains. More precisely, we use forward labeling to identify the first infeasible
position i and cut all nodes after that position off. Then, we start backward labeling from node
i to identify the first infeasible position backwards and cut all nodes ahead of this position off.
The remaining chain is the smallest with respect to that infeasibility. Certainly, a route may have
several chains that causes infeasibility, another chain, if one exists, can be found by inverting the
order of forward and backward labeling.

For the identified chains, we construct tournament simple fork inequalities (Ropke et al., 2007)
by adding all other arcs to the chain that can replace the first or last arc while infeasibility is kept.

10

Let P := (l1, l2, . . . , ln, ln+1) be the sequence of locations forming an infeasible chain on the X
variables and let S := {j ∈ L : (j, l2, . . . , ln, ln+1) is an infeasible chain} be the set of locations that
can replace the first location in the chain while infeasibility is kept. The tournament simple infork
inequality for infeasible chains of passive vehicles is given by:

n∑
i=2

n+1∑
j=i+1

∑
p:

(li,lj)∈Ep

Xp
lilj

+
∑
k∈S

∑
p:

(k,l2)∈Ep

Xp
kl2
≤ n− 1 (8)

Analogous, we can define tournament simple outfork inequalities by replacing the last location in
the chain while infeasibility is kept. Let T := {j ∈ L : (l1, l2, . . . , ln, j) is an infeasible chain} be
the set of locations that can replace the last location in the chain while infeasibility is kept. The
tournament simple outfork inequality for infeasible chains of passive vehicles is given by:

n−1∑
i=1

n∑
j=i+1

∑
p:

(li,lj)∈Ep

Xp
lilj

+
∑
k∈T

∑
p:

(ln,k)∈Ep

Xp
lnk
≤ n− 1 (9)

Additionally, if there does not exist any permutation Π such that the chain (l1,Π(l2), . . . ,Π(ln), ln+1)
is feasible, we can use a lifted version of the tournament inequalities (Ascheuer et al., 2000):

n∑
i=1

n+1∑
j=i+1

∑
p:

(li,lj)∈Ep

Xp
lilj

+

n−1∑
j=2

n∑
i=j+1

∑
p:

(li,lj)∈Ep

Xp
lilj
≤ n− 1 (10)

Moreover, we can further lift these inequalities if there exists no permutation including l1 or ln+1

or both such that the permuted chain is feasible.
In the same manner, we can check if the individual routes of active vehicles respect the time

windows of the involved tasks. The tournament simple infork inequality for a sequence of tasks
P := (τ1, τ2, . . . , τn, τn+1) forming an infeasible chain on the Y variables and the set S := {j ∈ L :
(j, τ2, . . . , τn, τn+1) is an infeasible chain} is given by:

n∑
i=2

n+1∑
j=i+1

∑
a:

(τi,τj)∈Ea

Y aτiτj +
∑
k∈S

∑
a:

(k,τ2)∈Ea

Y akτ2 ≤ n− 1 (11)

The tournament simple outfork inequalities for active vehicles can be constructed in the same
manner. Similarly, the lifted tournament inequalities, if there does not exist any permutation Π
such that the chain (τ1,Π(τ2), . . . , Π(τn), τn+1) is feasible, is given by:

n∑
i=1

n+1∑
j=i+1

∑
p:

(τi,τj)∈Ea

Y aτiτj +

n−1∑
j=2

n∑
i=j+1

∑
a:

(τi,τj)∈Ea

Y aτiτj ≤ n− 1 (12)

Endtime Inequalities. For each feasible route of an active vehicle, we can check if the corresponding
θ variable is greater than or equal to the completion time of that route and if not, we generate a feasi-
bility cut to force the θ variables to take the appropriate value. Let R := (τo, τ1, . . . , τn, τd) be a fea-
sible route of an active vehicle and let TR(i,n) be the completion time of route (τo, τi, τi+1, . . . , τn, τd).
TR(i,n) can be computed using a labeling algorithm. The endtime inequality for route R is given by:

θaτn ≥ T
R
(1,n)Y

a
τn,τd

+

n−1∑
i=1

(Y aτi,τi+1
− 1)(TR(1,n) − T

R
(i+1,n)) (13)

11

This inequality forces θaτn to take a value at least as large as the completion time of Route R if
all Y variables in route R are used. Moreover, for each route that results from removing tasks from
R (except τn), θaτn is forced to take a value at least as large as a lower bound for the completion
time of this route.

6.2. Passive Vehicle Index Reduction
The large number of Y variables in Benders master problem slows down the solution of the

Benders master problem. We can reduce the number of Y variables and the number of constraints
by removing the index p of the passive vehicle from all tasks τ ∈ Γ and defining constraints that
ensure that only compatible active vehicle can fulfil a task. More precisely, we define Γa := {(i, j) :
∃p ∈ P a with (i, j) ∈ Ep} ∪ {τo, τd} and replace Constraints (1g) by:∑

a∈A

∑
τ ′∈Γa

Y a
τ ′τ =

∑
p∈P

∑
(i,j)∈EP

Xp
ij (i, j) ∈

⋃
p∈P

Ep (14a)

∑
a∈Ap

∑
τ ′∈Γa

Y a
τ ′τ ≥ X

p
ij p ∈ P (i, j) ∈ Ep (14b)

Constraints (14a) enforce that an active vehicle fulfils the transport task if it is assigned to
any passive vehicle. With the help of Constraints (14b), it is ensured that only compatible active
vehicles can fulfil the transport task.

6.3. Algorithm
This section gives a more detailed description of our solution algorithm. We embedded the

combinatorial Benders cuts in a branch-and-cut algorithm in Python 3.6 using Gurobi 8.5 to solve
the Benders master and subproblem. Combinatorial Benders cuts are embedded in the algorithm
using the “MipNode-Callback” function of Gurobi to separate them at each integer node of the
branch-and-bound tree. The corresponding cut callback is given in pseudo-code in Algorithm 1.
Note first that the algorithm has two phases: In Phase 1, the Benders master problem is solved
without the θ-variables, i.e., disregarding the time-component of the objective function. All opti-
mality cuts that could be generated in the first phase of the algorithm are instead stored in a list.
Furthermore, the best solution found with respect to the full objective is also recorded and used
as a starting solution in phase 2. After an optimal solution regarding the objective of phase 1 is
found, phase 2 is initialized by adding the θ-variables and the problem is solved again regarding the
complete objective function. Moreover, to obtain a good starting lower bound for the θ-variables,
we generate optimality cuts for all active routes of length three and four and add them together
with the optimality cuts stored in phase 1 as lazy constraints. The reason for using two phases
is that the first phase is usually solved very quickly and gives an good upper bound for phase 2.
Fischetti et al. (2016) pointed out that it is very important to start with a good upper bound and
with a rich family of Benders cuts, to intensify root-node variable fixing and generation of internal
cuts.

We comment on Algorithm 1 in more detail: The input data of the cut callback algorithm
are the Benders master problem (BM), the (integer) solution of the current node (S̄, θ̄) and the
corresponding solution value zBM , the current phase (phase) and the best known upper bound for
the second phase (UB2). The return value is a boolean indicating if the solution (S̄, θ̄) is valid or

12

Algorithm 1: Cut Callback Routine(BM,S̄, θ̄, zBM ,phase,UB2)
1 if HeuristicCutSeparation(BM,S̄, θ̄,phase) > 0 then
2 return false

3 else
4 Construct and Solve BS(S̄, θ̄) → (feasible,MS,zBS)
5 if !feasible then
6 Add Feasibility cut(MS) to BM
7 return false

8 else
9 if (UB2 > (zBM −

∑
a∈A

∑
τ∈Γa θ̄

a
τ) + zBS then

10 Set UB2 := (zBM −
∑
a∈A

∑
τ∈Γa θ̄

a
τ) + zBS

11 if phase==1 then
12 return true

13 else
14 if zBS ==

∑
a∈A

∑
τ∈Γa θ̄

a
τ then

15 return true

16 else
17 Add Optimality cut(MS) to BM
18 return false

not. In Step 1, the algorithm first checks if violated inequalities for individual routes of passive and
active vehicles in (S̄, θ̄) can be generated (see Section 6.1). The corresponding separating procedure
is given in pseudo-code in Algorithm 2 and will be discussed later on. If no violated feasibility cut
for individual routes of passive and active vehicles can be found, the Benders subproblem (BS) for
solution (S̄, θ̄) is constructed and solved. Note that the algorithm proceeds to solve BS even if
the heuristic has found violated optimality cuts. Thus, the algorithm can compute an valid upper
bound for phase 2 for every feasible solution (S̄, θ̄). The output of BS is a boolean indicating if
BS is feasible (feasible), a minimal subset (MS) that is either a MIS or a MRS (see Section 5),
and the solution value (zBS) which is infinity if BS is infeasible. The MIS can be obtained using
the “IISCONSTR”-function of Gurobi, the MRS can be obtained as explained in Section 5. If the
solution procedure returns infeasible, a feasibility cut (4) is added to BM and the algorithm returns
false. Otherwise, the algorithm computes a valid upper bound for phase 2 and checks if it improves
the old one. Then, it is examined if solution (S̄, θ̄) takes the correct objective value: In phase 1,
the algorithm returns directly true since the time component of the objective is missing. In phase
2, the algorithm checks if the value of the θ-variables equals the objective value of BS and if so,
(S̄, θ̄) is a feasible solution with correct objective value. Otherwise, an optimality cut (5) is added
to BM and the algorithm returns false.

Next, we comment on Algorithm 2 in more detail. The inputs of the algorithm are the Benders
master problem (BM), the (integer) solution of the current node (S̄, θ̄), and the current phase
(phase). The return value gives the number of added feasibility cuts (numAdded). First, the
algorithm decomposes the X-variables into individual routes and cycles. For each time-infeasible
passive route, an infeasible chain is constructed and two inequalities (infork and outfork) of type (8)
and (9) are generated and added to BM. If possible, a lifted tournament inequality of type (10) is
also added to BM. For each passive cycle, an inequality of type (6) is generated and added to BM. If
any violated inequality was detected, the algorithm terminates since it is not necessary to examine

13

Algorithm 2: HeuristicCutSeparation(BM,(S̄, θ̄),phase)
1 Init: numAdded=0
2 Decompose X̄ into single routes Rp1 . . . R

p
k and cycles Cp1 . . . C

p
l

3 for i = 1 to k do
4 if Rpi is time-feasible then
5 continue

6 else
7 Add chain inequality(Rpi) to BM
8 numAdded++

9 for i = 1 to l do
10 Add cycle inequality(Cpi) to BM
11 numAdded++

12 if numAdded>0 then
13 return numAdded

14 Decompose Ȳ into single routes Ra1 . . . Ran and cycles Ca1 . . . Cam
15 for i = 1 to n do
16 if Rai is time-feasible then
17 if θ(Rai) < End(Rai) then
18 if phase==1 then
19 Store endtime inequality(Rai)

20 else
21 Add endtime inequality(Rai) to BM

22 else
23 Add chain inequality(Rai) to BM
24 numAdded++

25 for i = 1 to m do
26 numAdded++
27 if Cai is time-feasible then
28 Add cycle inequality(Cai) to BM

29 else
30 Add chain inequality(Cai) to BM

31 return numAdded

the active routes because they will change anyway if some chains of passive variables are excluded
from the feasible region. Otherwise, the algorithm proceeds to decompose the Y -variables into
individual routes and cycle. Afterwards, each individual active route is checked for time-feasibility:
For time-feasible active routes, the algorithm checks if the corresponding θ-variable takes at least
the value of the completion time of that route. If not, an optimality cut of type (13) is generated and
either stored or directly added to BM depending on the phase the algorithm is currently in. Note
that the algorithm does not increase the parameter numAdded here since only feasibility cuts are
counted. Thus, the correct objective value of solution (S̄, θ̄) can be computed to potential improve
the overall upper bound UB2 in Algorithm 1. If the route turns out to be time-infeasible, an
infeasible chain is constructed and two inequalities (infork and outfork) of type (11) are generated
and added to BM. If possible, we also add a lifted tournament inequality of type (12). Finally, the
algorithm deals with active cycles. For cycles containing an time-infeasible chain, two infeasible
chain inequalities (infork and outfork) of type (11) and, if possible, an inequality of type (12) are

14

generated and added to BM. Cycle inequalities of type (7) are only generated for time-feasible
cycles. The reason for generating infeasible chain inequalities rather than cycle inequalities is that
they are stronger in the sense that more routes are affected by them since chains are usually smaller
than cycles regarding the number of involved variables.

7. Computational Results

The results reported in this section were obtained using a high-performance computing system
running Linux. Each job was assigned a maximum of 4 cores running at 2.4GHz each, and 32GB
of RAM. The algorithm was implemented in Python 3.6 and Gurobi 8.5 was used to solve Benders
master and subproblem. For all experiments, we set a CPU time limit of two hours for each of the
two phases of our branch-and-cut algorithm.

We tested our algorithm on the 30 Benchmark instances of Meisel and Kopfer (2014) with 10
requests and the following characteristics: The instances have 2 identical active vehicles, 4 passive
vehicles, and a planning horizon of 2,500 time units. Locations are randomly placed in a 100 × 100
area, distances and travel times are set to the Euclidean distance, time windows are of width 1,000
with random start times, and service times for loading and unloading range between 50 and 100
time units. Each passive vehicle is compatible with two active vehicles; each request is compatible
with three passive vehicles. Because their huge planning horizon is difficult to handle with an exact
approach, Tilk et al. (2018) introduce a set of 160 new instances that feature a more coarse time
discretisation with a 1000 unit planning horizon. The set can be divided in the classes A and B.
Class A instances have ten requests, two identical active vehicles, and four passive vehicles while
class B instances have 20 requests, two classes of active vehicle with 2 identical vehicles each, and
eight passive vehicles. In both classes, service times vary between 25 and 50. Moreover, both
classes can be divided in 4 groups that feature time window widths of 25,50,100, and 200. All other
characteristics of the new instances are the same as in the one of Meisel and Kopfer (2014).

Table 2: Comparison with the branch-and-price approach by Tilk et al. (2018)

instance
class

Our Approach Branch-and-price

No.
solved

Time [s] Gap [%] No.
solved

Time [s] Gap [%]

Min Avg Max Avg Max Min Avg Max Avg Max

A25 20 1 4 7 0.0 0.0 20 36 191 931 0.0 0.0
A50 20 1 4 8 0.0 0.0 20 43 362 2485 0.0 0.0
A100 20 1 4 7 0.0 0.0 19 38 1076 7200 0.1 1.1
A200 20 2 16 72 0.0 0.0 14 109 3466 7200 0.4 2.7

B25 20 70 357 1378 0.0 0.0 17 131 3594 7200 0.2 0.9
B50 20 101 703 4633 0.0 0.0 8 282 5419 7200 0.6 1.6
B100 20 139 936 5033 0.0 0.0 2 2814 6882 7200 1.5 2.8
B200 9 294 5039 7282 1.3 5.2 0 7200 7200 7200 3.1 5.1

MeiselKopfer 26 12 1429 7211 0.6 5.3 1 1645 7002 7200 2.6* 5.8*
*: Two instances are excluded in the average and maximum gap since the LP-Relaxation was not solved

Table 2 compares our results with the branch-and-price of Tilk et al. (2018). For these compar-
ison, we use a hierarchical objective of first fulfilling as many requests as possible, then minimizing
traveled distance, and then minimizing route completion time, i.e., α = 10, β = 1, and γ = 10000.

15

The table contains, for both algorithms and each instance class, the number of instances solved to
proven optimality, the minimum, average, and maximum runtime in seconds as well as the average
and maximum gap between lower bound and best known solution at the end of the optimization.

The table shows that our algorithm outperforms the branch-and-price algorithm: 74 more in-
stances can be solved to proven optimality and the runtime decreases by more than 75% on average.
Moreover, for all but one of the instances not solved to optimality, we provide new best known so-
lution values that can be found in the detailed tables in the Appendix. Note that our approach
could have a runtime of 4 hours (2 hours for each of the two phases) but the detailed results show
that phase 1 takes 8 seconds on average with a maximum of 237 seconds. This also shows that the
APVRP is much easier to solve if completion time is not a part of the objective.

8. Conclusion

This paper has investigated the exact solution of the APVRP by means of a branch-and-cut
method based on Benders decomposition. The problem supports a flexible coupling for the oper-
ations and the movement of active and passive vehicles to achieve an efficient resource utilization
and high-quality transport solutions. We have introduced a new compact formulation that build
the basis for our Benders decomposition approach. Moreover, we showed how minimal responsible
subsets can be derived from the solution of Benders subproblem and then be used to derive stronger
optimality cuts. These lifted optimality cuts and the heuristic cut generation based on individual
routes can accelerate the solution process. Both techniques can be adapted for general VRP variants
that includes a timing component in the objective function. Computational experiments show that
our method outperforms the previous state-of-the-art and is even capable of solving to optimality
the original instances of Meisel and Kopfer (2014) that were designed for heuristics.

Due to the success of our approach, the next step will be adapting the algorithm to other VRP
variants to clarify which aspects of VRP variants make the algorithm work well and were are its
limitation. For the standard VRPTW, pretests have shown that the approach does not work quite
well. Our intuition is that the more restricted the routes are due to resource consumption and the
smaller the number of routes are, the better the approach will work in general.

Regarding algorithmic components, it could be of interest to solve Benders subproblem with a
more sophisticated approach than just using a MIP-solver since it can be formulated as a system
of differences for many VRP variants. This is of interest especially for those VRP variants with a
more difficult subproblem. However, for the APVRP Benchmark instances, Gurobi solves Benders
subproblem very quickly.

Acknowledgement

This research was partially supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant IR 122/9-2. This support is gratefully acknowledged.

References

Ascheuer, N., Fischetti, M., and Grötschel, M. (2000). A polyhedral study of the asymmetric traveling salesman
problem with time windows. Networks, 36(2), 69–79.

Benders, J. (1962). Partitioning procedures for solving mixed variables programming problems. Numerische Mathe-
matik, 4, 238–252.

16

Bodin, L. and Levy, L. (2000). Scheduling of local delivery carrier routes for the United States Postal Service. In
M. Dror, editor, Arc Routing: Theory, Solutions, and Applications, chapter 11, pages 419–442. Kluwer, Boston.

Chao, I. (2002). A tabu search method for the truck and trailer routing problem. Computers & Operations Research,
29, 33–51.

Cheung, R. K., Shi, N., Powell, W.-B., and Simao, H. P. (2008). An attribute-decision model for cross-border drayage
problem. Transportation Research Part E: Logistics and Transportation Review, 44(2), 217–234.

Codato, G. and Fischetti, M. (2006). Combinatorial benders’ cuts for mixed-integer linear programming. Operations
Research, 54(4), 756–766.

Drexl, M. (2012). Synchronization in vehicle routing-a survey of vrps with multiple synchronization constraints.
Transportation Science, 46(3), 297–316.

Drexl, M. (2013). Applications of the vehicle routing problem with trailers and transshipments. European Journal
of Operational Research, 227(2), 275–283.

Drexl, M. (2014). Branch-and-cut algorithms for the vehicle routing problem with trailers and transshipments.
Networks, 63(1), 119–133.

Fischetti, M., Ljubić, I., and Sinnl, M. (2016). Benders decomposition without separability: A computational study
for capacitated facility location problems. European Journal of Operational Research, 253(3), 557–569.

Hooker, J. (2000). Logic-based methods for optimization: combining optimization and constraint satisfaction. John
Wiley & Sons.

Irnich, S. (2008). Resource extension functions: Properties, inversion, and generalization to segments. OR Spectrum,
30(1), 113–148.

Irnich, S., Toth, P., and Vigo, D. (2014). The Family of Vehicle Routing Problems, chapter 1, pages 1–33. MOS-SIAM
Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Lahyani, R., Khemakhem, M., and Semet, F. (2015). Rich vehicle routing problems: From a taxonomy to a definition.
European Journal of Operational Research, 241(1), 1–14.

Meisel, F. and Kopfer, H. (2014). Synchronized routing of active and passive means of transport. OR Spectrum,
36(2), 297–322.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The benders decomposition algorithm: A
literature review. European Journal of Operational Research, 259(3), 801–817.

Ropke, S., Cordeau, J.-F., and Laporte, G. (2007). Models and branch-and-cut algorithms for pickup and delivery
problems with time windows. Networks, 49(4), 258–272.

Rothenbächer, A.-K., Drexl, M., and Irnich, S. (2018). Branch-and-price-and-cut for the truck-and-trailer routing
problem with time windows. Transportation Science. Forthcoming.

Semet, F. and Taillard, E. (1993). Solving real-life vehicle routing problems efficiently using tabu search. Annals of
Operations Research, 41(4), 469–488.

Smilowitz, K. (2006). Multi-resource routing with flexible tasks: An application in drayage operations. IIE Trans-
actions, 38(7), 555–568.

Soares, R., Marques, A., Amorim, P., and Rasinmäki, J. (2019). Multiple vehicle synchronisation in a full truck-
load pickup and delivery problem: A case-study in the biomass supply chain. European Journal of Operational
Research, 277(1), 174 – 194.

Tan, K., Chew, Y., and Lee, L. (2006). A hybrid multi-objective evolutionary algorithm for solving truck and trailer
vehicle routing problems. European Journal of Operational Research, 172(3), 855–885.

Tilk, C., Bianchessi, N., Drexl, M., Irnich, S., and Meisel, F. (2018). Branch-and-price-and-cut for the active-passive
vehicle-routing problem. Transportation Science, 52(2), 300–319. DOI: 10.1287/trsc.2016.0730.

Appendix

This section contains detailed computational results for all instances. For all experiments,a hier-
archical objective of first fulfilling as many requests as possible, then minimizing traveled distance,
and then minimizing route completion time was used (i.e., α = 10, β = 1, and γ = 10, 000). A
hard CPU time limit of 2 hours for each phase of the algorithm was set. Tables 3 - 11 present the
results obtained. The first column indicates the name of the instances, the second gives the value of
the best known feasible solution computed by any of the various settings used in preliminary tests.
The subsequent two columns show the value of the lower bound at the end of the optimization
and the corresponding optimality gap in percent. Columns five and six indicate the CPU time

17

used in Phase 1 and the overall CPU time, respectively. The next two columns give the number
of feasibility and optimality cuts generated during the course of the algorithm and the last column
indicates the number of branch-and-bound nodes solved.

Table 3: Results on MeiselKopfer Instances

instance UB LB Gap [%] Time [s] No. cuts No.
nodesPhase 1 Total Feas Opt

A01 13098 13098 0 11.3 207.8 3257 630 25581
A02 13067 13067 0 14.3 223.9 3319 1533 28059
A03 15383 14790 3.9 1.3 7201.3 11111 2428 289729
A04 14115 14115 0 20 143.4 2242 1014 14168
A05 16030 16030 0 3.3 664.3 7043 1282 109697
A06 10358 10358 0 2.5 11.8 233 86 783
A07 13848 13125 5.2 11.3 7211.4 15986 2924 236660
A08 15705 15705 0 0.6 268.7 3865 279 63081
A09 14430 13934 3.4 4.8 7205.1 18632 2629 217391
A10 16030 16030 0 5.5 319.7 4251 762 52493
A11 16132 16132 0 4 415 6809 601 54435
A12 14463 14463 0 3 32.4 931 128 8572
A13 15443 15443 0 32.9 462.6 5620 959 65222
A14 15057 15057 0 32.6 2982.8 20843 3837 248499
A15 12199 12199 0 25.9 139.5 2064 671 11702
A16 15983 15134 5.3 5.5 7205.6 18238 2709 150675
A17 15104 15104 0 3.1 36 932 180 7049
A18 11857 11857 0 1.2 32.4 846 100 4548
A19 15210 15210 0 5.5 197.1 4492 813 29604
A20 15023 15023 0 4.5 154.9 2551 350 25547
A21 14300 14300 0 7.2 241.8 4289 432 40048
A22 14302 14302 0 6.7 462.8 5499 1077 50483
A23 16121 16121 0 2.2 248.4 4463 482 47322
A24 15999 15999 0 15.5 470.7 4845 1114 58078
A25 18671 18671 0 12.4 2428.9 20101 1234 220014
A26 14344 14344 0 10.2 675.2 7623 1419 87184
A27 14170 14170 0 6.7 1941 14143 2017 145574
A28 13752 13752 0 17.2 316.5 4966 476 63026
A29 14246 14246 0 236.5 867.2 4623 4814 29055
A30 14876 14876 0 15.8 93.2 2629 1306 10133

18

Table 4: Results on 10-Request Instances with Time Window Flexibility 25

instance UB LB Gap [%] Time [s] No. cuts No.
nodesPhase 1 Total Feas Opt

A01TW25 7721 7721 0 1.7 3.5 36 24 198
A02TW25 7577 7577 0 0.5 2.2 20 9 206
A03TW25 8198 8198 0 0.5 1.5 9 12 1
A04TW25 8114 8114 0 2.3 5.5 119 135 308
A05TW25 8861 8861 0 2.5 3.8 23 40 60
A06TW25 7233 7233 0 0.3 2.1 5 9 1
A07TW25 7767 7767 0 0.6 1.2 13 19 1
A08TW25 8168 8168 0 1.3 1.9 28 35 1
A09TW25 7653 7653 0 1.8 4.6 28 32 299
A10TW25 9583 9583 0 2.4 3.8 26 35 99
A11TW25 9237 9237 0 1.4 3.3 48 62 52
A12TW25 7720 7720 0 0.7 1.6 1 5 1
A13TW25 8791 8791 0 1.9 4.1 33 44 54
A14TW25 7632 7632 0 2.8 7.1 60 30 489
A15TW25 7539 7539 0 2.3 7.3 75 71 2125
A16TW25 7814 7814 0 1.8 4.7 53 45 389
A17TW25 8603 8603 0 1.5 5.2 46 48 342
A18TW25 6943 6943 0 0.3 1.4 6 3 22
A19TW25 9231 9231 0 3 5 102 81 262
A20TW25 8665 8665 0 3.2 4.1 90 95 1

Table 5: Results on 10-Request Instances with Time Window Flexibility 50

instance UB LB Gap [%] Time [s] No. cuts No.
nodesPhase 1 Total Feas Opt

A01TW50 7671 7671 0 2.2 5 74 79 147
A02TW50 7527 7527 0 1.8 3.7 41 14 333
A03TW50 8165 8165 0 1.8 2.5 12 20 1
A04TW50 7972 7972 0 1.4 3.2 62 70 135
A05TW50 8662 8662 0 0.6 1.4 11 10 1
A06TW50 7183 7183 0 0.3 1.6 4 8 23
A07TW50 7742 7742 0 0.7 1.4 17 26 1
A08TW50 8131 8131 0 1.8 2.4 17 19 1
A09TW50 7448 7448 0 1.4 3.1 10 19 27
A10TW50 9489 9489 0 1.7 4.8 133 149 242
A11TW50 9124 9124 0 1.2 3.4 42 30 149
A12TW50 7670 7670 0 1.3 2.9 18 25 67
A13TW50 8741 8741 0 1.6 4.1 74 79 170
A14TW50 7453 7453 0 2.7 5.4 39 45 156
A15TW50 7454 7454 0 1.6 5.4 63 64 1567
A16TW50 7520 7520 0 1.4 2.3 18 26 1
A17TW50 8499 8499 0 1.8 3.9 25 32 89
A18TW50 6898 6898 0 0.3 1 5 3 1
A19TW50 9119 9119 0 3.8 7.2 256 269 809
A20TW50 8633 8633 0 4.7 7.5 98 96 36

19

Table 6: Results on 10-Request Instances with Time Window Flexibility 100

instance UB LB Gap [%] Time [s] No. cuts No.
nodesPhase 1 Total Feas Opt

A01TW100 7562 7562 0 3.2 6.3 75 66 529
A02TW100 7477 7477 0 2.3 5.4 94 62 673
A03TW100 8140 8140 0 1 2.2 17 15 22
A04TW100 7852 7852 0 1.9 5 72 89 352
A05TW100 8537 8537 0 2 3.6 38 64 47
A06TW100 7122 7122 0 0.4 1.6 20 14 105
A07TW100 7448 7448 0 1 2.4 22 29 84
A08TW100 8050 8050 0 0.5 1 2 6 1
A09TW100 7287 7287 0 0.3 2 9 12 17
A10TW100 9054 9054 0 2.5 5.1 40 44 146
A11TW100 8993 8993 0 1.4 4.3 65 63 314
A12TW100 7626 7626 0 2 3.5 35 54 133
A13TW100 8533 8533 0 3 7.3 95 119 108
A14TW100 7400 7400 0 2.6 5.1 57 65 415
A15TW100 7368 7368 0 1.7 5 99 93 2131
A16TW100 7354 7354 0 2 3.6 23 32 49
A17TW100 8335 8335 0 1.2 4.1 22 19 113
A18TW100 6812 6812 0 0.7 2.2 14 15 58
A19TW100 8418 8418 0 3.1 7.4 131 95 305
A20TW100 8490 8490 0 2.8 5.6 102 85 337

Table 7: Results on 10-Request Instances with Time Window Flexibility 200

instance UB LB Gap [%] Time [s] No. cuts No.
nodesPhase 1 Total Feas Opt

A01TW200 7081 7081 0 6.9 72.1 992 302 19763
A02TW200 7063 7063 0 6.9 24.4 435 301 2777
A03TW200 7565 7565 0 2.5 4.6 47 33 138
A04TW200 7534 7534 0 5.4 22.1 368 272 4086
A05TW200 7851 7851 0 2 3.8 33 12 86
A06TW200 6389 6389 0 0.6 4.3 63 16 356
A07TW200 7067 7067 0 3.4 14.7 177 118 1175
A08TW200 7759 7759 0 0.4 1.6 12 4 1
A09TW200 7158 7158 0 0.6 1.7 8 10 1
A10TW200 8141 8141 0 3.2 5.6 118 126 74
A11TW200 8472 8472 0 2.2 11.6 142 60 1236
A12TW200 7495 7495 0 0.4 2.4 47 49 295
A13TW200 8114 8114 0 5.3 26.3 281 224 1525
A14TW200 7154 7154 0 3.6 10.6 118 92 824
A15TW200 6804 6804 0 1 5.7 43 50 447
A16TW200 7109 7109 0 5.7 25.8 224 205 1559
A17TW200 7829 7829 0 6.5 12.2 120 106 508
A18TW200 6582 6582 0 3.7 10.8 167 70 870
A19TW200 8072 8072 0 8.5 49 796 456 12111
A20TW200 7842 7842 0 2.3 5.1 42 34 114

20

Table 8: Results on 20-Request Instances with Time Window Flexibility 25

instance UB LB Gap [%] Time [s] No. cuts No.
nodesPhase 1 Total Feas Opt

B01TW25 16106 16106 0 3.2 428.5 268 136 222667
B02TW25 17617 17617 0 4.4 342.6 271 207 188612
B03TW25 15170 15170 0 5.6 694.6 250 106 370035
B04TW25 18085 18085 0 8.6 106.7 178 336 38015
B05TW25 17816 17816 0 4.2 583.1 564 309 263107
B06TW25 16743 16743 0 4.3 268.5 249 106 117072
B07TW25 16921 16921 0 1.2 96 192 33 27819
B08TW25 18508 18508 0 5.2 279.1 337 137 125787
B09TW25 18933 18933 0 3.4 69.9 97 169 20109
B10TW25 16382 16382 0 2.1 239.4 282 66 110168
B11TW25 17014 17014 0 6.3 92.1 134 169 28649
B12TW25 18028 18028 0 7.1 620.8 383 251 331890
B13TW25 16332 16332 0 2 162.3 183 67 72791
B14TW25 16721 16721 0 3.6 163.8 162 79 72053
B15TW25 18031 18031 0 7.1 1378.4 492 214 740603
B16TW25 16596 16596 0 3.8 124.8 198 153 45917
B17TW25 15587 15587 0 5.3 225.1 207 170 100635
B18TW25 17685 17685 0 4.2 92.8 140 59 33686
B19TW25 15804 15804 0 4 1050.6 461 175 517716
B20TW25 19398 19398 0 4 113.7 146 202 45723

Table 9: Results on 20-Request Instances with Time Window Flexibility 50

instance UB LB Gap [%] Time [s] No. cuts No.
nodesPhase 1 Total Feas Opt

B01TW50 16004 16004 0 5.8 1250.5 482 232 618087
B02TW50 16838 16838 0 4.7 251.8 224 209 133413
B03TW50 15031 15031 0 6.7 838.5 276 119 462515
B04TW50 17564 17564 0 7.6 119.9 187 238 40467
B05TW50 17548 17548 0 7.1 573.1 725 426 219528
B06TW50 16691 16691 0 5.8 692.7 401 243 326707
B07TW50 16596 16596 0 1.3 126.7 187 33 36496
B08TW50 18139 18139 0 4.8 195.3 342 189 64313
B09TW50 18667 18667 0 3.8 100.8 113 141 39159
B10TW50 16330 16330 0 4.8 352.7 300 87 169241
B11TW50 16963 16963 0 4.4 198.9 200 109 100330
B12TW50 17952 17952 0 22 968.1 462 166 562948
B13TW50 16112 16112 0 2 140.9 215 96 57634
B14TW50 16519 16519 0 4.5 153.3 188 83 63918
B15TW50 17881 17881 0 17.2 4632.5 739 600 2160127
B16TW50 16318 16318 0 2.3 202 205 66 105139
B17TW50 15326 15326 0 6 573.4 284 162 272352
B18TW50 17509 17509 0 6.6 140.4 184 77 53605
B19TW50 15752 15752 0 7.3 2345.8 486 194 1385673
B20TW50 19169 19169 0 7.1 200 155 175 90348

21

Table 10: Results on 20-Request Instances with Time Window Flexibility 100

instance UB LB Gap [%] Time [s] No. cuts No.
nodesPhase 1 Total Feas Opt

B01TW100 15792 15792 0 6.5 1089.4 545 347 593383
B02TW100 16591 16591 0 7.7 901.6 397 377 514036
B03TW100 14744 14744 0 2.2 551.3 382 128 290225
B04TW100 17372 17372 0 5.9 449.5 307 162 253978
B05TW100 17311 17311 0 7.3 914 794 360 450810
B06TW100 16545 16545 0 4.8 1264.1 552 166 614396
B07TW100 16496 16496 0 2.9 196.6 389 62 77417
B08TW100 17842 17842 0 10.3 942.9 733 395 405175
B09TW100 18546 18546 0 5 362.5 225 283 195958
B10TW100 16135 16135 0 5.9 2079.3 515 178 971398
B11TW100 16848 16848 0 4.6 278 240 137 142904
B12TW100 17339 17339 0 7.8 384.4 528 359 168671
B13TW100 15970 15970 0 5.5 357.4 376 168 188896
B14TW100 16250 16250 0 2.4 175.8 275 148 65110
B15TW100 17466 17466 0 10.9 5033.4 1024 346 2395957
B16TW100 15866 15866 0 3.1 138.6 199 129 63047
B17TW100 15228 15228 0 5.9 660.8 446 264 329397
B18TW100 17366 17366 0 5.1 248.6 324 126 120352
B19TW100 15626 15626 0 7.5 2218.7 575 258 1259231
B20TW100 18809 18809 0 5.9 468 273 212 224925

Table 11: Results on 20-Request Instances with Time Window Flexibility 200

instance UB LB Gap [%] Time [s] No. cuts No.
nodesPhase 1 Total Feas Opt

B01TW200 15145 15145 0.0 11.2 3257.3 937 481 1260260
B02TW200 16169 15856 1.9 25.6 7225.6 1597 959 1716160
B03TW200 14338 13946 2.7 7.2 7207.2 2073 505 1914973
B04TW200 16409 16409 0.0 3.9 1129.8 704 150 477937
B05TW200 16352 15793 3.4 81.6 7281.6 2502 1048 929236
B06TW200 16160 16160 0.0 11.5 6994.4 2329 932 2032689
B07TW200 15857 15857 0.0 4.8 1789.3 2874 339 490138
B08TW200 17508 17077 2.5 63.1 7263.1 3030 788 1571662
B09TW200 17586 17586 0.0 6.3 1662.1 539 282 769010
B10TW200 15354 14557 5.2 30 7230 4067 1096 1114467
B11TW200 16116 16031 0.5 12.6 7212.6 2009 1106 1902322
B12TW200 16649 16186 2.8 51.8 7251.8 2209 862 1519020
B13TW200 15631 15351 1.8 15 7215 2323 802 1836481
B14TW200 15605 15605 0.0 10.6 1998.5 932 483 757903
B15TW200 16439 15939 3.0 33.1 7233.1 2452 1003 1595776
B16TW200 15283 15164 0.8 12.3 7212.3 1200 908 2341372
B17TW200 14487 14487 0.0 6.9 294.3 718 167 99966
B18TW200 16771 16771 0.0 10.6 3090.8 796 277 1315616
B19TW200 15120 14842 1.8 7.3 7207.3 1560 393 2374325
B20TW200 17639 17639 0.0 7.7 1024.3 534 380 391013

22

	Introduction
	APVRP-related Literature
	Problem Description and Network Definition
	Compact Formulation
	Benders Decomposition
	Improved Algorithm
	Valid Inequalities
	Passive Vehicle Index Reduction
	Algorithm

	Computational Results
	Conclusion

