Gutenberg School of Management and Economics

 \& Research Unit "Interdisciplinary Public Policy" Discussion Paper Series
A Branch-and-Cut Algorithm for the SoftClustered Vehicle-Routing Problem

Katrin Heßler, Stefan Irnich
January 8, 2020

Discussion paper number 2001

Johannes Gutenberg University Mainz
Gutenberg School of Management and Economics Jakob-Welder-Weg 9

55128 Mainz
Germany
wiwi.uni-mainz.de

Contact Details:
Katrin Heßler
Logistikmanagement
Johannes Gutenberg University Mainz
Jakob-Welder-Weg 9
55128 Mainz
Germany
khessler@uni-mainz.de

Stefan Irnich
Logistikmanagement
Johannes Gutenberg University Mainz
Jakob-Welder-Weg 9
55128 Mainz
Germany
irnich@uni-mainz.de

All discussion papers can be downloaded from http://wiwi.uni-mainz.de/DP

A Branch-and-Cut Algorithm for the Soft-Clustered Vehicle-Routing Problem

Katrin Heßler ${ }^{*, \mathrm{a}}$, Stefan Irnich ${ }^{\text {a }}$
${ }^{a}$ Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

The soft-clustered vehicle-routing problem is a variant of the classical capacitated vehicle-routing problem (CVRP) in which customers are partitioned into clusters and all customers of the same cluster must be served by the same vehicle. We introduce a novel symmetric formulation of the problem in which the clustering part is modeled with an asymmetric sub-model. We solve the new model with a branch-and-cut algorithm exploiting some known valid inequalities for the CVRP that can be adapted. In addition, we derive problem-specific cutting planes and new heuristic and exact separation procedures. For square grid instances in the Euclidean plane, we provide lower-bounding techniques and a reduction scheme that is also applicable to the respective traveling salesman problem. In comprehensive computational test on standard benchmark instances, we compare the different formulations and separation strategies in order to determine a best performing algorithmic setup. The computational results with this branch-and-cut algorithm show that several previously open instances can now be solved to proven optimality.

Key words: vehicle routing, clustered customers, branch-and-cut

1. Introduction

The soft-clustered vehicle-routing problem (SoftCluVRP) is a variant of the classical capacitated vehiclerouting problem (CVRP, Toth and Vigo 2014) in which customers are partitioned into clusters, and all customers of the same cluster must be served by the same vehicle. In contrast to the hard-clustered variant, where a cluster must be served completely before the next cluster is served, we consider the variant in which visits to customers of the same cluster can be interrupted by visits to customers of another cluster.

Both the CVRP and SoftCluVRP are defined over a complete undirected graph $G=(V, E)$ with the vertex set $V=\{0,1,2, \ldots, n\}$ and the edge set E. The vertex 0 denotes the depot and the other vertices $C=\{1,2, \ldots, n\}$ denote the customers. A homogeneous fleet of m vehicles with capacity Q is hosted at the depot 0 . For each edge $\{i, j\} \in E$, non-negative routing costs $c_{i j}$ are given. A route $r=\left(i_{0}, i_{1}, \ldots, i_{s}, i_{s+1}\right)$ is a cycle in G passing through the depot, i.e., $i_{0}=i_{s+1}=0$ and i_{1}, \ldots, i_{s} are customers $(s \geq 1)$. In the CVRP, a route is feasible if (i) all customers i_{1}, \ldots, i_{s} are different and (ii) capacity constraints $\sum_{j=1}^{s} d_{i_{j}} \leq Q$ hold for given positive customer-specific demands d_{i} for $i \in C$.

The clustered variants require the definition of a partitioning of the vertex set: Let $V=V_{0} \cup V_{1} \cup V_{2} \cup$ $\ldots \cup V_{N}$ be such a partitioning, where $V_{0}=\{0\}$ denotes the depot cluster. The customer clusters $V_{h} \subset C$ are index by $h \in H=\{1,2, \ldots, N\}$ and are disjoint, i.e., $V_{h} \cap V_{h^{\prime}}=\varnothing$ for all $h \neq h^{\prime} \in H$. For any customer $i \in C$, the associated cluster is denoted by $h(i) \in H$, i.e., $i \in V_{h(i)}$. Each cluster V_{h} has an associated positive demand d_{h} and we define $d_{0}=0$ for the depot cluster V_{0}. For a route $r=\left(i_{0}, i_{1}, \ldots, i_{s}, i_{s+1}\right)$, it is convenient to define $H(r)$ as the customer clusters touched by the route r, i.e., $H(r)=\left\{h \in H: V_{h} \cap\left\{i_{1}, \ldots, i_{s}\right\} \neq \varnothing\right\}$.

[^0]In the SoftCluVRP, a route is feasible if (i) all customers i_{1}, \ldots, i_{s} are different and (ii) capacity constraints $\sum_{h \in H(r)} d_{h} \leq Q$ hold (summing of the customer clusters touched by the route), and (iii) the softcluster constraints are fulfilled, i.e.,

$$
V_{h} \subseteq\left\{i_{1}, \ldots, i_{s}\right\} \quad \forall h \in H(r) .
$$

Note that the clustered vehicle-routing problem (CluVRP, Battarra et al. 2014) requires that the hard-cluster constraints hold, i.e., for each $h \in H(r)$ there must exist an index $k \in\left\{1,2, \ldots, s-\left|V_{h}\right|+1\right\}$ such that $V_{h}=\left\{i_{k}, i_{k+1}, \ldots, i_{k+\left|V_{h}\right|-1}\right\}$.

In all cases (CVRP, CluVRP, SoftCluVRP), the task is to determine a cost-minimal set of m routes that together serve all customers, and herewith also all clusters, exactly once.

The very recent paper by Hintsch and Irnich (2020) surveys the pertinent literature. Therefore, we omit a comprehensive survey on clustered VRPs but briefly mention the most important findings: For the exact solution of the CluVRP, Battarra et al. (2014) developed a very competitive two-level exact algorithm computing optimal Hamiltonian paths through clusters for several entry and exit points in the subproblem level and combining them to route plans in the master level. The most powerful metaheuristics for the CluVRP are those of Vidal et al. (2015) and Hintsch and Irnich (2018) and they follow a similar two-level principle. For the problem considered in the paper at hand, the SoftCluVRP, the only tailored exact solution approach is the branch-and-price algorithm of Hintsch and Irnich (2020) using a MIP-based approach in the pricing subproblem instead of a shortest-path dynamic programming labeling algorithm. These results will serve as a benchmark for the newly developed branch-and-cut algorithm.

The only newer results not surveyed in (Hintsch and Irnich 2020) are the following: Hintsch et al. (2019) have developed a branch-price-and-cut for the soft-clustered variant of the capacitated arc-routing problem. Again, the pricing subproblem is solved by branch-and-cut as well as metaheuristics. Additional cutting planes on the route-based master formulation help to strengthen the linear relaxation. Hintsch (2019) has developed a large-neighborhood search (LNS) metaheuristic, which is the currently best-performing heuristic approach for the SoftCluVRP. We later compare against these results.
The contributions of the paper at hand are the following:

1. We introduce the first two-index formulation for the exact solution of the SoftCluVRP. The formulation decomposes into a standard routing part, a novel part ensuring vehicle-capacity and soft-cluster feasible solutions using a directed cluster graph, and a simple coupling between the two parts.
2. We analyze the impact of the fleet-size constraint on the validity of the formulation. Some additional constraints are mandatory to cope with non-minimal fleets. In addition, we exploit some non-trivial redundancies of the basic formulation.
3. The soft-cluster requirement leads to a new type of capacity cuts. These cuts are known for the CVRP and we derive a variant of the capacity cuts valid for the SoftCluVRP that are stronger than the straightforward adaptation of the capacity cuts for the CVRP.
4. Some SoftCluVRP instances from the benchmark of Golden et al. (1998) (adopted by Battarra et al. (2014)) are constructed on a square grid network. We provide lower-bounding techniques for SoftCluVRP instances that are especially strong for grid-based instances. For square grid instances in the Euclidean plane, we develop preprocessing techniques that allow to substantially reduce the edge set and the corresponding routing variables of the formulation.
5. With comprehensive computational test, we determine a competitive setup combining the multiple branch-and-cut components. The computational results on benchmark instances using SoftCluVRP benchmark instances from the literature show that the resulting branch-and-cut algorithm is competitive.
The remainder of this paper is structured as follows. In the next section, we present the new formulation for the SoftCluVRP. The components of the branch-and-cut algorithm including the families of valid inequalities and their heuristic and exact separation are detailed in Section 3. Lower-bounding and reduction techniques for the grid-based instances are presented in Section 4. In Section 5, we present the computational experiments, in which we configure the final branch-and-cut algorithm, analyze the influence of reduction
for the grid instances on computational performance, and compare the results on all benchmark instances against those from the literature. Final conclusions are drawn in Section 6.

2. Two-Index Formulation

Since the SoftCluVRP is a relatively new problem, only a few models can be found in the scientific literature. A three-index formulation for the symmetric SoftCluVRP was recently presented by Hintsch and Irnich (2020), while another three-index formulation was presented by Defryn and Sörensen (2017) for the asymmetric version of the SoftCluVRP. These formulations use routing variables with a third index, say $k \in K=\{1,2, \ldots, m\}$, to refer to a specific vehicle (the first two indices describe the endpoints of a direct connection). The major drawback of three-index formulations is that they grow linearly with the fleet size and, more severely, they are inherently symmetric with respect to the numbering of the vehicles. Indeed, for a given solution, any permutation of the vehicle indices $k \in K$ produces one of $|K|$! equivalent solutions. This makes a branch-and-bound-based approach as used in MIP solvers ineffective (Fischetti et al. 1995). The addition of symmetry-breaking constraints can only very partially mitigate the ineffectiveness of the MIP solver's branching decisions (Adulyasak et al. 2014).

Hintsch and Irnich (2020) also derive an extensive route-based formulation (a set-partitioning type of model) from the aforementioned three-index formulation via Dantzig-Wolfe decomposition and subsequent aggregation over vehicles. The drawback of this type of formulation is that a sophisticated branch-and-price algorithm is needed to cope with the huge number of route variables.

The idea of the new formulation we present in the following is to exploit that already well-performing standard models for the CVRP are known. We use the symmetric formulation of Laporte et al. (1985) that has non-negative integer routing variables $x_{i j}$ for all edges $\{i, j\} \in E$. Note that all benchmark sets for the SoftCluVRP comprise symmetric instances.

To enforce the clustering constraints, we assume that the elements of the cluster index set H are completely ordered, which holds true if, e.g., $H \subset \mathbb{N}$. We introduce the directed acyclic cluster graph $D=(H, A)$ with the arc set $A=\left\{\left(h, h^{\prime}\right): h, h^{\prime} \in H, h<h^{\prime}\right\}$. The new formulation uses additional binary variables y_{a} for each $a=\left(h, h^{\prime}\right) \in A$ that indicates whether clusters V_{h} and $V_{h^{\prime}}$ are served by the same vehicle $\left(y_{a}=1\right)$, or not ($y_{a}=0$). While routing variables are symmetric, we intentionally model with asymmetric y-variables. Each component in the subgraph of D spanned by the positive y-variables, i.e., by $A_{y=1}=\left\{a \in A: y_{a}=1\right\}$, represents a subset of clusters served by one vehicle.

The orientation in the cluster graph enables an Miller-Tucker-Zemlin (MTZ)-based (Miller et al. 1960) modeling approach with continuous resource variables u_{h} for $h \in H$ that accumulate the demand served by each route. The new formulation is:

$$
\begin{array}{rlr}
\min & \sum_{\{i, j\} \in E} c_{i j} x_{i j} & \\
\text { subject to } & \sum_{\{i, j\} \in \delta(i)} x_{i j}=2 & \forall i \in C \\
& \sum_{\{0, j\} \in \delta(0)} x_{0 j}=2 m & \\
& \sum_{\{i, j\} \in \delta(S)} x_{i j} \geq 2 r(S) & \forall S \subseteq C, S \neq \varnothing \\
& x_{i j} \in\{0,1\} & \forall\{i, j\} \in E \backslash \delta^{*}(0) \\
& x_{0 j} \in\{0,1,2\} & \forall\{0, j\} \in \delta^{*}(0) \\
& x_{i j} \leq y_{h(i), h(j)} & \forall\{i, j\} \in E \backslash \delta(0): h(i)<h(j) \\
& u_{h}-u_{h^{\prime}}+Q y_{h h^{\prime}} \leq Q-d_{h^{\prime}} & \forall\left(h, h^{\prime}\right) \in A \\
d_{h} \leq u_{h} \leq Q & \forall h \in H \\
& y_{h h^{\prime}} \geq y_{h h^{\prime \prime}}+y_{h^{\prime} h^{\prime \prime}}-1 & \forall\left(h, h^{\prime}\right),\left(h^{\prime}, h^{\prime \prime}\right) \in A \tag{1j}
\end{array}
$$

$$
\begin{align*}
& y_{h^{\prime} h^{\prime \prime}} \geq y_{h h^{\prime}}+y_{h h^{\prime \prime}}-1 \tag{1k}\\
& y_{h h^{\prime \prime}} \geq y_{h h^{\prime}}+y_{h^{\prime} h^{\prime \prime}}-1 \tag{11}\\
& y_{a} \in\{0,1\} \tag{1m}
\end{align*}
$$

$$
\begin{array}{r}
\forall\left(h, h^{\prime}\right),\left(h^{\prime}, h^{\prime \prime}\right) \in A \\
\forall\left(h, h^{\prime}\right),\left(h^{\prime}, h^{\prime \prime}\right) \in A \\
\forall a \in A
\end{array}
$$

The first part (1a)-(1f) is the CVRP formulation of Laporte et al. (1985): The objective (1a) minimizes the routing costs. Constraints (1b) ensure that each customer is visited once, and constraints (1c) ensure that exactly m vehicles leave and return to the depot. In the capacity cuts (1d), the set $\delta(S)$ is the set of edges with exactly one endpoint in S, and the number $r(S)$ describes the minimum number of vehicles needed to feasibly serve the customer subset S. In the CVRP, it suffices to bound $r(S)$ from below by computing $\lceil d(S) / Q\rceil$, where $d(S)$ is the sum of the demands of all customers in S. Since in the SoftCluVRP the demand is associated with clusters, we can arbitrarily distribute the demand d_{h} of every cluster V_{h} onto its customers, e.g., defining $d_{i}=d_{h} /\left|V_{h}\right|$ for all $i \in V_{h}$ and $h \in H$. We discuss the role of the capacity cuts in more detail in Section 3.1. The capacity cuts prohibit subtours not including the depot as well as subtours that serve more customers than possible when respecting vehicle capacity. The domains of the routing variables are given by (1e) and (1f). Note that a back-and-forth route $(0, j, 0)$ is only feasible if $j \in C$ is a customer that forms a singleton cluster, i.e., $H_{h(j)}=\{j\}$. Therefore, we define $\delta^{*}(0)=\left\{\{0, j\} \in \delta(0): H_{h(j)}=\{j\}\right\}$, where $\delta(0)$ is the set of all edges incident to the depot 0 .

The last part (1 h)-(1m) of the model provides a description of feasible combinations of clusters to be served by the same vehicle. The MTZ-like constraints (1h) impose $u_{h^{\prime}} \geq u_{h}+d_{h^{\prime}}$ for $y_{h h^{\prime}}=1$. It is crucial here that the set H is ordered and that (1h) is imposed only for one direction, i.e., for $\left(h, h^{\prime}\right) \in A$ and not for $\left(h^{\prime}, h\right) \notin A$, because otherwise the two constraints and $y_{h h^{\prime}}=y_{h^{\prime} h}=1$ would directly imply the contraction $u_{h^{\prime}}>u_{h^{\prime}}$ and $u_{h^{\prime}}<u_{h^{\prime}}$. The constraints (1i) describe the domain of the u-variables and guarantee that the capacity Q is not exceeded. The constraints (1j)-(1l) are transitivity-enforcing constraints for the y-variables.

The coupling between the x - and y-variables is established via constraints $(1 \mathrm{~g})$.
Proposition 1. If m is the minimum number of vehicles needed to serve all customers C, then every feasible solution to formulation (1) is a feasible solution to the given SoftCluVRP instance.
Proof. Note first that the minimum number of vehicles needed to serve C can be obtained as the solution value $m_{\min }$ of a bin-packing instance with bins of capacity Q and items with weights $\left(d_{h}\right)_{h \in H}$.

A feasible solution to model (1) may have the following defect: The y-variables can impose a connected component $O \subset H$ of the cluster graph D that is served by more than one vehicle, i.e., the x-variables impose more than one route in $\{0\} \cup \bigcup_{h \in O} V_{h}$. However, the connected component O respects the capacity constraint, i.e., $d(O) \leq Q$ holds true due to (1h)-(1m). As all components of D imposed by the y-variables together partition the set H into a feasible bin-packing solution, the number of connected components cannot be smaller than $m_{\text {min }}$. If $m=m_{\min }$, the pigeonhole principle tells us that only one vehicle can serve each connected component. Therefore, a feasible SoftCluVRP solution results.

A trivial improvement to formulation (1) is to add

$$
\begin{equation*}
y_{h h^{\prime}}=0 \quad \forall\left(h, h^{\prime}\right) \in A: d_{h}+d_{h^{\prime}}>Q . \tag{1n}
\end{equation*}
$$

This can also be established by eliminating the y-variable that are set to zero from formulation (1), modifying the affected constraints (1 g) and (1 j) $-(11)$, and eliminating redundant constraints (1h).

Non-minimal Fleet. In many vehicle-routing problems, the primary objective is to minimize the number of vehicles. Therefore, Proposition 1 shows that formulation (1) is valid and relevant for the standard application, i.e., when $m=m_{\text {min }}$.

Minimizing the number of vehicles and minimizing routing costs are in general conflicting objectives. With the focus on the second objective (routing costs), a relaxed version of the SoftCluVRP is one in which the minimum fleet-size constraint $\sum_{\{0, j\} \in \delta(0)} x_{0 j}=2 m_{\text {min }}$ is replaced by $\sum_{\{0, j\} \in \delta(0)} x_{0 j} \leq 2 m$ with a fleetsize limit $m>m_{\text {min }}$. We denote this relaxation by SoftCluVRP ${ }^{\leq m}$. The following proposition states that formulation (1) is also valid for the SoftCluVRP ${ }^{\leq m}$ under some mild assumptions.

Proposition 2. If the depot-triangle inequality holds for the routing costs of a given SoftCluVRP ${ }^{\leq m}$ instance, i.e., $c_{i j} \leq c_{0 i}+c_{0 j}$ for all $i, j \in C$, then there exists, for every feasible solution to formulation (1), a feasible solution to the SoftCluVRP ${ }^{\leq m}$ with identical or lower cost.

Proof. As shown in the proof of Proposition 1, a feasible solution to formulation (1) may only have the defect that more than one route/vehicle serves a connected component O in the subgraph of D spanned by the positive y-variables. In this case, a pair of edges $\{0, i\}$ and $\{0, j\}$ belonging to two different routes can be replaced by the edges $\{i, j\}$ so that the two routes are merged into one. This route is feasible, because constraints $(1 \mathrm{~h})-(1 \mathrm{~m})$ ensure $d(O) \leq Q$. Moreover, the depot-triangle inequality implies that after the replacement the new route is never more costly than the two merged routes. Iterative replacements finally lead to a single feasible route per component. The constructed new solution is then feasible for the SoftCluVRP ${ }^{\leq m}$.

If neither the assumptions of Proposition 1 nor of Proposition 2 are fulfilled, it is still possible to use formulation (1) for the SoftCluVRP ${ }^{\leq m}$. In this case, the following class of single-route inequalities must be added to model (1):

$$
\begin{equation*}
\sum_{\substack{\{0, i\} \in \delta(0), h(i) \in H(T)}} x_{0 i}+2 \sum_{a \in A(T)} y_{a} \leq 2|H(T)| \quad \forall T=(H(T), A(T)) \text { tree in } D \tag{2}
\end{equation*}
$$

Regarding the validity of (2), consider an integer feasible solution (\bar{x}, \bar{y}) to the SoftCluVRP or SoftCluVRP ${ }^{\leq m}$. For an arbitrary tree $T=(H(T), A(T))$ in D, the customers $\bigcup_{h \in H(T)} V_{h}$ are served by a certain number of vehicles, say $m(T)$ vehicles. This implies

$$
\sum_{\substack{\{0, i\} \in \delta(0), h(i) \in H(T)}} \bar{x}_{0 i} \leq 2 m(T) .
$$

Moreover, the subgraph $T_{\bar{y}}$ of the tree spanned by arcs a with $\bar{y}_{a}=1$ must decompose into $m(T)$ or more components. The latter implies that

$$
\begin{equation*}
\sum_{a \in A(T)} \bar{y}_{a} \leq|H(T)|-m(T) \tag{3}
\end{equation*}
$$

holds true. Adding the first and twice the second inequality yields the inequality (2) for (\bar{x}, \bar{y}).
Note that inequalities (3), for all trees $(H(T), A(T))$, can be used to ensure capacity-feasible solutions, i.e., they can replace the MTZ-part (1h)-(1i) of formulation (1). We denote (3) as tree-capacity constraints in the following.

Proposition 3. For every feasible solution to model (1)-(2) with a relaxed fleet-size constraint $\sum_{\{0, j\} \in \delta(0)} x_{0 j} \leq 2 m$ instead of (1c) defined by an arbitrary value $m \geq m_{\min }$, the solution is also feasible for the SoftCluVRP or SoftCluVRP ${ }^{\leq m}$.

Proof. Consider a feasible solution (\bar{x}, \bar{y}) to model (1)-(2) with a relaxed fleet-size constraint. The positive \bar{y} values decompose D into a number of components. Consider an arbitrary component $O=\left\{h_{1}, h_{2}, \ldots, h_{|O|}\right\} \subset$ H and its ordered elements $h_{1}<h_{2}<\cdots<h_{|O|}$. Since O is a single connected component, the transitivity constraints (1 j) and (1 k) impose $\bar{y}_{h_{1}, h_{2}}=\bar{y}_{h_{2}, h_{3}}=\cdots=\bar{y}_{h_{|O|-1}, h_{|O|}}=1$. The path $\left(h_{1}, h_{2}, \ldots, h_{|O|}\right)$ is also a tree T. For this tree $T=\left(O,\left\{\left(h_{k}, h_{k+1}\right): k=1, \ldots,|O|-1\right\}\right)$, inequality (2) imposes $\sum_{(0, i) \in \delta(0), h(i) \in O} \bar{x}_{0 i} \leq 2$ showing that the \bar{x}-values define only a single route serving component O.

Redundancy. Formulation (1) has some redundant transitivity constraints. We denote by (R) the model (1) without constraints (11). The relationship between the two formulations is characterized in the following two propositions:

Proposition 4. Formulations (1) and (R) have the same set of integer solutions regarding the projection onto the x-variables.

For the sake of clarity, all longer proofs (such as the one for Proposition 4) have been moved to the Appendix section.
Proposition 5. The linear relaxations of formulations (1) and (R) have the same set of solutions regarding the projection onto the x-variables.

3. Branch-and-Cut Algorithm

Formulations (1) and (1)-(2) are not directly solvable with a MIP solver, because they contain some large-sized families of constraints. This section describes how constraints of these families can be added dynamically using separation procedures. We distinguish between (possibly infeasible) integer solutions $(\bar{x}, \bar{y}) \in \mathbb{Z}^{|E|+|A|}$ and fractional solutions $(\bar{x}, \bar{y}) \in \mathbb{R}^{|E|+|A|}$ for

- capacity cuts (1d)
- single-route inequalities (2)
- tree-capacity constraints (3)
- transitivity constraints (1j) and (1k)
(exponential in $|V|$), (exponential in $|H|$), (exponential in $|H|$), (cubic in $|H|$).

In the branch-and-cut implementation, we consider an inequality as violated only if the degree of violation (difference between right-hand and left-hand side) exceeds $\varepsilon=10^{-4}$.

3.1. Capacity Cuts

For an integer solution $(\bar{x}, \bar{y}) \in \mathbb{Z}^{|E|+|A|}$, we determine the graph $G_{\bar{x}}$ spanned by the positive \bar{x}-variables. Subsequently, we remove the depot vertex 0 leading to the induced graph $G_{\bar{x}}[V \backslash\{0\}]=G_{\bar{x}}[C]$. The connected components of $G_{\bar{x}}[C]$ are subsets of customers served together. Each such subset $S \subset V \backslash\{0\}$ may violate the associated capacity constraint, i.e., if the component forms a cycle (=subtour not including the depot). Since the LHS of the capacity cut is equal to zero in this case, the capacity cut (1d) is violated independent of the value of $r(S)$.

However, we strive for a tight value $r(S)$ in order to add a strong valid inequality. It was already mentioned in Section 2 that different lower bounds on the minimum number of vehicles needed to serve some customers can be computed by arbitrarily distributing the cluster's demands onto the associated customers. For a given customer subset $S \subset V \backslash\{0\}$, we define the clusters touched as

$$
\begin{equation*}
H(S)=\left\{h \in H: S \cap V_{h} \neq \varnothing\right\} \tag{4}
\end{equation*}
$$

An optimal distribution of the demand is one that assigns the entire cluster demand for $h \in H(S)$ to only a single customer $i_{h} \in S \cap V_{h}$. This is summarized in the following proposition:

Proposition 6. For any $S \subset V \backslash\{0\}$ with $S \neq \varnothing$, a largest lower bound $r(S)$ on the minimum number of vehicles needed to serve the customers S results from considering the demands $\left(d_{h}\right)_{h \in H(S)}$:
(i) the exact value $r(S)$ results from solving a bin-packing problem with bins of capacity Q and weights $\left(d_{h}\right)_{h \in H(S)}$;
(ii) a valid lower bound for $r(S)$ sufficient for formulation (1) is given by $\left\lceil\sum_{h \in H(S)} d_{h} / Q\right\rceil$.

For a fractional solution $(\bar{x}, \bar{y}) \in \mathbb{R}^{|E|+|A|}$, we apply the following series of heuristic separation procedures. First, we again consider $G_{\bar{x}}[C]$ and its components again. For each component $S \subset C$, we test $\bar{x}(\delta(S))<$ $2\left\lceil\sum_{h \in H(S)} d_{h} / Q\right\rceil$ (and herewith $\left.\bar{x}(\delta(S))<2 r(S)\right)$ and, if true, a violated capacity cut (1d) is found.

Second, we apply two heuristic procedures that work according to the subset-first check-second principle, i.e., promising subsets S are computed first and the violation $\bar{x}(\delta(S))<2 r(S)$ is checked for each computed subset S. The first heuristic is the probabilistic graph contraction algorithm of Karger (1993), summarized in Algorithm 1. The idea is to iterative contract edges of G where edges $e \in E$ with a higher value \bar{x}_{e} are

```
Algorithm 1: Karger's contraction algorithm
    input : graph \(G=(V, E)\)
    output: sets to check \(S\)
    for \(e \in E\) do
        \(p_{e} \leftarrow \bar{x}_{e} / \sum_{f \in E} \bar{x}_{f} ;\)
    for \(|V|\) iterations do
        \(G^{\prime} \leftarrow G ;\)
        while \(G^{\prime}\) has more than two vertices do
            Choose an edge \(e \in E\left(G^{\prime}\right)\) with probability \(p_{e}\);
            Contract \(e\) into a single vertex, i.e., \(G^{\prime} \leftarrow G^{\prime} / e\);
        \((S, \bar{S}) \leftarrow\) subsets of vertices represented by the two remaining vertices of \(G^{\prime}, 0 \in \bar{S}\);
        Compute \(r(S)\);
        Check \(S\) regarding \(\bar{x}(\delta(S))<2 r(S)\);
```

chosen with a higher probability (proportional to \bar{x}_{e}). In the contraction step for an edge $\{i, j\}=e \in E$, the vertices i and j, and later subsets S_{i} and S_{j} containing i and j, respectively, are replaced by the union $S_{i} \cup S_{j}$. Edges $\left\{k, S_{i}\right\}$ and $\left\{k, S_{j}\right\}$ with $k \in V \backslash\left(S_{i} \cup S_{j}\right)$ are merged into a single edge with weight $\bar{x}_{k, S_{i}}+\bar{x}_{k, S_{j}}$. The graph contraction algorithm and the testing of violated SEC is repeated $|V|$ times, and a most-violated capacity cut is added.

The second heuristic uses the heuristic separation procedures for the CVRP publicly available in the library of Lysgaard et al. (2004). Potential subsets S result from the solution of some max-flow/min-cut problems. As the library is tailored to the CVRP, we distribute cluster demands d_{h} equally onto the customers $i \in V_{h}$. Both heuristic procedures (Karger, Lysgaard) are used independently.

If no violated capacity cut has been found with the heuristics, we apply the following exact MIP-based separation algorithm: the MIP simultaneously determines the subset $S \subset C$, computes the lower bound on $r(S)$ given by Proposition 6(ii), and maximizes the violation (if any) $2 r(S)-\bar{x}(\delta(S)$). The MIP generalizes ideas first presented by Ahr (2004) and later refined by Martinelli et al. (2013) for exactly separating capacity cuts for the capacitated arc-routing problem. The formulation of the separation problem uses five types of variables: Binary variables s_{i} for $i \in V$ are indicator variables describing whether the vertex i belongs to the unknown set S. Similarly, binary variables y_{h} describe the clusters $H(S)$ touched by S, i.e., $H(S)=\left\{h \in H: y_{h}=1\right\}$. Variables z_{e} for $e \in E$ are indicators for the cut set, i.e., $z_{e}=1$ iff $e \in \delta(S)$. Moreover, the integer variable r describes (the lower bound on) $r(S)$ and the non-negative continuous variable $f<1$ describes the fractional difference between $\lceil d(S) / Q\rceil$ and $d(S) / Q$.

$$
\begin{array}{rlr}
\max & 2 r-\sum_{e \in E} \bar{x}_{e} z_{e} & \\
\text { subject to } & s_{0}=0 & \\
& z_{e}-s_{i}+s_{j} \geq 0 & \forall e=\{i, j\} \in E, i \neq 0 \\
& z_{e}-s_{j}+s_{i} \geq 0 & \forall e=\{i, j\} \in E, j \neq 0 \\
s_{i}+s_{j}-z_{e} \geq 0 & \forall e=\{i, j\} \in E \\
s_{i}+s_{j}+z_{e} \leq 2 & \forall e=\{i, j\} \in E \backslash \delta(0) \\
& \sum_{i \in V_{h}} s_{i}-y_{h} \geq 0 & \\
& r=\sum_{h \in H}\left(d_{h} / Q\right) y_{h}+f & \forall h \in H \\
& s_{i} \in\{0,1\} & \forall i \in V \backslash\{0\} \tag{5i}
\end{array}
$$

$$
\begin{array}{lr}
0 \leq z_{e} \leq 1 & \forall e \in E \\
y_{h} \in\{0,1\} & \forall h \in H \\
r \geq 0, \text { integer } & \\
0 \leq f \leq 1-1 / Q &
\end{array}
$$

The objective (5a) minimizes the violation of a capacity cut described by $S=\left\{i \in V: s_{i}=1\right\}$. Forcing $s_{0}=0$ ensures that $S \subset V \backslash\{0\}=C$ holds. The coupling of the z-variables with the s-variables is established via (5c)-(5f), where (5c) and (5d) force z_{e} to one if $s_{i} \neq s_{j}$, i.e., $e=\{i, j\} \in \delta(S)$, while (5e) and (5f) force z_{e} to zero if $s_{i}=s_{j}$. To correctly consider that a cluster V_{h} for some $h \in H$ is touched, constraints (5 g) couple the vertex and cluster indicator variables. The correct value of r is guaranteed with constraint (5h). The domains of the variables are described by $(5 \mathrm{i})-(5 \mathrm{~m})$.

Repeatedly solving the exact separation formulation (5) with a MIP solver consumes considerable computation time. Therefore, the exact separation is only used at the root node of the branch-and-cut algorithm. Moreover, we do not call the exact separation routine if the lower bound is not improved by more than 0.01% within the last ten iterations.

3.2. Single-Route Inequalities

Recall that single-route inequalities (2) are mandatory only if the fleet is larger than needed and the depot-triangle inequality does not hold (cf. Propositions 1 and 2). As we found them violated only rarely, we inspect only integer solution $(\bar{x}, \bar{y}) \in \mathbb{Z}^{|E|+|A|}$. For every connected component O of the digraph $D_{\bar{y}}$ spanned by the arcs a with $\bar{y}_{a}=1$, let $H(O)$ be the vertex set of the component O. We can take any spanning tree $T=(H(O), A(O))$ spanning $H(O)$ in $D_{\bar{y}}$ and check whether (2) is violated which is the case if more than two edges $\{0, i\} \in \delta(0)$ are chosen.

3.3. Tree-Capacity Constraints

The tree-capacity constraints (3) can replace the MTZ constraints (1h)-(1i). Note that there are a quadratic number of MTZ constraints, while the number of tree-capacity constraints is exponential in $|H|$. Therefore, the latter family of constraints must be added dynamically.

For an integer solution $(\bar{x}, \bar{y}) \in \mathbb{Z}^{|E|+|A|}$, we consider all connected components O of $D_{\bar{y}}$ spanned by the $\operatorname{arcs} a$ with $\bar{y}_{a}=1$ and spanning trees $T=(H(O), A(O))$ (as in the previous Section 3.2). For the sake of acceleration, the value $m(T)$ is approximated by $\lceil d(O) / Q\rceil$ instead of solving a bin-packing problem. As the number of components is small, all violated tree-capacity constraints (3) are added at the same time.

For fractional solutions $(\bar{x}, \bar{y}) \in \mathbb{R}^{|E|+|A|}$, we use a heuristic inspired by the procedure for integer solutions. Also here we consider all connected components O of $D_{\bar{y}}$. Within each component O, the tree T maximizing the left-hand-side of constraints (3) is computed as a maximum spanning tree using Kruskal's algorithm.

A special case of the tree-capacity constraints are constraints

$$
\sum_{h^{\prime} \in H: h<h^{\prime}} y_{h h^{\prime}}+\sum_{h^{\prime} \in H: h^{\prime}<h} y_{h^{\prime} h} \leq N-1 \quad \text { for all } h \in H
$$

because all ingoing and outgoing arcs of h form a spanning tree in D. We add these $N=|H|$ constraints at initialization to accelerate the solution process.

Overall, later computational experiments will compare three setups: (1) only MTZ constraints statically added at the beginning, (2) only tree-capacity constraints added dynamically, and (3) the combination of static MTZ and dynamic tree-capacity constraints. The last strategy may lead to a faster branch-and-cut algorithm as neither MTZ dominate tree-capacity constraints on fractional solutions, nor vice versa.

3.4. Transitivity Constraints

Propositions 4 and 5 have proven that the transitivity constraints (1l) are completely redundant. However, the two groups (1 j) and (1 k) of transitivity constraints are each of cubic size in $|H|$. Therefore, one may either add transitivity constraints to the model right from the beginning or add them only when violated. In the later computational experiments, we test the following two strategies: Either, all transitivity constraints $(1 \mathrm{j})$ and $(1 \mathrm{k})$ are present in formulation (1). This is the static case.

Alternatively, formulation (1) is initialized without constraints (1 j) and (1 k), and only violated constraints are separated and added dynamically. The identification of violated transitivity constraints can be done by straightforward direct inspection consuming $|H|^{3}$ time.

In pretests we found that many transitivity constraints are violated at the same time. In order to not add too many constraints simultaneously, we separate them in batches. In every round, only those violated transitivity constraints (1j) and (1k) defined by $h<h^{\prime}<h^{\prime \prime}$ are added for which the distance in D between h and $h^{\prime \prime}$ is minimal (counting the number of arcs). We use this selection rule for integer as well as fractional solutions, where in the latter case the distance-based rule does not at all consider the degree of violation (except for the cut tolerance ε).

4. Square Grid Instances

In the VRP benchmark set of Golden et al. (1998) that is also used for the SoftCluVRP, the instances have a specific structure. The customer vertices are located in a systematic and non-random fashion (see also Section 5). In the groups Golden1 to Golden8, customers are located on concentric circles. In the groups Golden9 to Golden16, customers are located on a square grid. Finally, in the groups Golden17 to Golden20, the customers form a star.

For grid-based instances, we prove in Section 4.1 some properties of optimal solutions that allow the reduction of the edge set E without loosing optimality. Moreover, we derive in Section 4.2 simple-to-compute lower bounds that are especially effective for the grid-based instances.

4.1. Reduction of the Edge Set

The set of edges E of the grid-based instances can be reduced using the following theorem.
Theorem 1. Let an instance of a Euclidean traveling salesman problem (EucTSP) be given, where all vertices are points of a square grid.

If there exists a (3×3)-vertex block, see Figure 1, then the vertex in the middle of the block (depicted as a diamond \diamond in Figure 2) is connected to two block neighbors in every optimal Euclidean EucTSP tour. Therefore, in any optimal solution, two of the eight blue edges in Figure 2 are selected.

Figure 1: A (3×3)-vertex block.

Figure 2: Edges of $\delta(\diamond)$ of an optimal TSP tour.

In the following, a vertex in a Euclidean SoftCluVRP defined over a square grid is denoted as a middle vertex if there exists a (3×3)-vertex block that is completely contained in one of the clusters. All edges $\{i, j\} \in E$ that connect a middle vertex i with a non-neighboring vertex j (different from one of the eight neighbors depicted in Figure 2) are denoted as long edges.

Corollary 1. An optimal solution of a Euclidean SoftCluVRP defined over a square grid does not contain long edges.

Proof. Follows directly from Theorem 1.

The instances with vertices located on a circle (classes 1-8 of the benchmark of Golden et al. (1998)) cannot be reduced as suggested in Corollary 1. A counterexample is given in Figure 3.

Figure 3: Instance with an optimal EucTSP tour with vertices on a concentric circles. The black vertices form a 3×3-vertex block. The vertex in the middle of the (3×3)-vertex block is connected to the red vertex - that is not part of the block.

4.2. Lower Bounds

We present two different lower-bounding techniques for grid-based instances constructed as those of classes 9-16 of the benchmark set of Golden et al. (1998).

First, we exploit that any cluster is connected to the depot with not more than two edges. Therefore, connecting the depot to the closest customer vertices (allowing double connections for edges in $\delta^{*}(0)$) with the additional restriction that no cluster is connected more than two times yields a lower bound on the cost of depot-edges. Moreover, each customer vertex is connected to other vertices with distance of at least 1. Hence, the sum of connections to the depot plus the sum of distance 1 connections provides a valid lower bound, in the following referred to as the grid lower bound.

Second, we reuse the same idea that every cluster is connected to the depot with not more than two edges to formulate a relaxed model. The model relaxes formulation (1) and adds the condition on the depot connections. It reads as follows:

$$
\begin{equation*}
\min \sum_{\{i, j\} \in E} c_{i j} x_{i j} \tag{6a}
\end{equation*}
$$

subject to (1b)-(1f)

$$
\begin{equation*}
\sum_{i \in V_{h}} x_{0 i} \leq 2 \quad \forall h \in H \tag{6b}
\end{equation*}
$$

For the grid instances, formulation (6) provides the same or a better lower bound as the simple grid lower bound explained first, but the computational effort is higher. We refer to the second bound as the relax lower bound. Note that this latter bound is generally applicable to all SoftCluVRP instances.

5. Computational Results

The computational experiments are based on the same benchmark instances as considered by Hintsch and Irnich (2020). All benchmarks use CVRP instances and define an additional parameter θ that specifies the average cluster size. Clusters are then constructed in various way (for details see Fischetti et al. 1997; Bektaş et al. 2011).

The first set of 158 small- and medium-sized instances is based on the GVRP benchmarks A, B, P, and GC with $\theta \in\{2,3\}$. The instances with 16 to 262 vertices and 6 to 131 clusters were generated by Bektaş et al. (2011). The second set of 220 large-scale instances is based on the Golden instances of Golden et al. (1998) with $\theta \in\{5, \ldots, 15\}$ and were generated by Battarra et al. (2014). The instances are divided into 20 groups denoted by Golden 1 to Golden 20 with 201 to 484 vertices and 14 to 97 clusters.

Unfortunately, the distances in the grid-based instances (groups Golden9 to Golden16) are computed as Euclidean distances rounded to the next integer value. As a consequence, neither distances fulfill the triangle inequality nor Corollary 1 is directly applicable. To anyway test the reduction techniques described in Section 4.1, we generated 90 additional but smaller Grid instances as follows: Six instances were generated for each combination of grid size $d \times d$ with $d \in\{10,12,14\}$ and number $N \in\{6,8,10,12,14\}$ of clusters. In all instances, the minimal distance between vertices is 1 . The depot is either in the middle or at the corner of the grid. To define the clusters, one vertex is randomly assigned to each cluster at initialization. As long as vertices are unassigned, such a vertex with at least one already assigned vertex in the neighborhood is chosen at random. This vertex is then assigned to a randomly chosen cluster of its neighborhood (see vertex \diamond with neighbors • in Figure 2 for the definition of the neighborhood). Demands of the clusters are equally distributed on the interval $[10,50]$ and the vehicle capacity is set to $Q=100$. The number of vehicles is defined as $m=\left\lceil\sum_{h} d_{h} / Q\right\rceil$. All distances are computed as nontruncated Euclidean distances. The instances are online available at https://logistik.bwl.uni-mainz.de/benchmarks/.

The branch-and-cut algorithm was implemented in C++ using CPLEX 12.8.0 with Concert Technology and compiled into 64 -bit single-thread code with Microsoft Visual Studio 2015. Experiments are carried out on a 64 -bit Microsoft Windows 7 personal computer with an Intel ${ }^{\circledR}$ Core $^{\text {TM }}$ i7-5930k CPU clocked at 3.5 GHz and 64 GB of RAM. CPLEX's default values are kept for all parameters. Unless stated otherwise, computation times are limited to a maximum of 3600 seconds (1 hour).

5.1. Comparison of Cutting Strategies

In a first experiment, we try to find a reasonable cutting strategy for the final branch-and-cut algorithm. In Section 3, we discussed possible separation strategies for capacity cuts, single-route inequalities, treecapacity constraints, and transitivity constraints. A synopsis of the strategies is presented in Table 1. We distinguish between constraints for model (1) (first section of the table) and the mandatory single-route inequalities for model (1)-(2) needed for fixed non-minimal fleets and when the depot-triangle inequality is not satisfied (second section). Note that in several instances of the Golden benchmark the fleet is larger than the minimum fleet size.

Table 1: Summary of Cutting Strategies

Constraint type	Abbrev.	Separation strategies	Remark
Transitivity constraints (1j)-(1k)	Trans	(2): static, dyn	int: mandatory
MTZ constraints (1h)-(1i)	MTZ	(2): none, static	int: mandatory, redundant if Tree:dyn
Capacity cuts (1d) separated with Lysgaard library	LysCC	(3): none, root only, dyn	int: mandatory fract: optional
with Karger's contr. alg.	ProbCC	(3): none, root only, dyn	fract: optional
with MIP (5)	MIP CC	(3): none, root only, dyn	fract: optional
Tree-capacity constraints (3)	Tree	(2): none, dyn	int: mandatory, redundant if MTZ:static
Single-route inequalities (2)	Single	(1): dyn	int: mandatory only for SoftCluVRP ${ }^{\leq m}$ w/o depottriangle inequality

Note: Default strategies are underlined.

Table 1 offers $2^{3} \cdot 3^{3}=216$ possible configurations by combining separation strategies that either completely switch off a separation procedure (denoted by "none"), add all inequalities at initialization ("static"), or add inequalities dynamically using separation procedures. In the latter case, we compare dynamic separation at the root node of the branch-and-bound tree only ("root only") and separation at all tree nodes ("dyn"). There are some invalid configurations, e.g., combining MTZ:none and Tree:none, that cannot ensure capacity feasible solutions. We omit all invalid configurations.

Empirically testing all possible configurations is hardly possible given that the benchmark sets are large and the previous literature allowed one hour of computation time per instance. We address this issue in the following way: First, we define some default separation strategies (denoted by "default") that worked well in pretests. We did however not find good default strategies for the transitivity constraints and MTZ constraints, but default strategies for the remaining inequalities (those underlined in Table 1). As a consequence, we compare separation strategies that consider:

- all four combinations of either Trans:static or Trans:dyn and MTZ:none or MTZ:static; (4 strategies)
- use all default strategies (default) or vary exactly one of the default parameters for all other valid inequalities and their separation.
(8 strategies)
In the latter case, the parameter altered is either LysCC:none, LysCC:root only, ProbCC:none, ProbCC:root only, MIP CC:none, MIP CC:dyn, or Tree:none. Overall, there remain $4 \cdot 8-1=31$ separation strategies to compare (one strategy is invalid). Second, we restrict the instance set to GVRP instances of the groups A, B, P, the GC instances with $n=100$ customers, and the two smallest Golden instances of each group Golden1 to Golden20. The selection comprises 190 instances for this experiment.

We compare the different $\mathrm{B} \& \mathrm{C}$ algorithms resulting from the 31 different separation strategies with the help of performance profiles as suggested by Dolan and Moré (2002). For a set of algorithms \mathcal{A} (the 31 B\&C algorithms in our case), the performance profile $\rho_{A}(\tau)$ of an algorithm $A \in \mathcal{A}$ describes the ratio of instances that can be solved by A within a factor τ compared to the fastest algorithm, i.e.

$$
\rho_{A}(\tau)=\frac{\left|\left\{I \in \mathcal{I}: t_{I}^{A} / t_{I}^{*} \leq \tau\right\}\right|}{|\mathcal{I}|}
$$

in which \mathcal{I} is the set of instances, t_{I}^{A} is the computation time of algorithm A when applied to instance $I \in \mathcal{I}$, and t_{I}^{*} is the smallest computation time among all algorithms of set \mathcal{A} for instance I. Unsolved instances are taken into account with $t_{I}^{A}=\infty$ (assuming also that $t_{I}^{*}=\infty$ gives $t_{I}^{A} / t_{I}^{*}=\infty$). Note that $\rho_{A}(1)$ is the percentage of instances for which algorithm A is the fastest, and $\rho_{A}(\infty)$ is the percentage of instances that are solved by algorithm A within the time limit.

Figure 4 displays the performance profiles of the $\mathrm{B} \& \mathrm{C}$ algorithms using the 31 different cutting strategies. For the sake of clarity, we have decided to group the profiles in different way. In the upper part, the four Subfigures $4 \mathrm{a}-4 \mathrm{~d}$ group by values of Trans and MTZ, i.e., Trans:static or Trans:dyn and MTZ:none or MTZ:static. Within each of these subfigures, the compared eight (seven in Subfigure 4b) strategies that result from the default (default) and the variation of exactly one of the default parameters.

The result from each subfigure is simple to summarize. In all four subfigures, the strategy $A=$ MIP CC:none is the one that is the fastest for the highest number of instances (compare the values $\rho_{\text {MIP CC:none }}(1)$ and $\left.\rho_{A}(1)\right)$. The reason is that completely switching off the MIP-based separation of the capacity cuts accelerates the $\mathrm{B} \& \mathrm{C}$ substantially, but it comes at the cost of providing also less optimality proofs (compare the values $\rho_{\text {MIP CC:none }}(\tau)$ and $\rho_{A}(\tau)$ for $\tau \approx 15$). Therefore, the strategy MIP CC:none is not always the winning strategy. Having said this, we can identify the strategy ProbCC:none as the best one in Subfigure 4a, ProbCC:root only in Subfigure 4b, Tree:none in Subfigure 4c, and MIP CC:none in Subfigure 4d.

These four strategies are finally compared in Subfigure 4e: There is no strategy that dominates all other strategies. The strategy Trans:dyn, MTZ:static, Tree:none solves the largest number of instances (within the time limit). This strategy is (compare the figures) not the fastest algorithm most of the time. Analyzing results in more detail, we find that the strategy Trans:dyn, MTZ:none, MIP CC:none is the fastest variant most of the time for small-sized. It is however inferior for larger-sized instances. Therefore, we have decided to choose the strategy

$$
\text { with default values } \quad \text { LysCC:dyn, ProbCC:dyn, and Tree:none. }
$$

as the one that we use as the reference $B \mathcal{E} C$ algorithm in the following computational experiments. This is the algorithm that we refer to as $B \mathcal{G} C$.

Figure 4: Performance profiles for different settings. default is defined as the version in which MIP CC:root only, LysCC:dyn, Tree:dyn, ProbCCidyn. The legend specifies which parameter of the default-version is changed.

5.2. Savings-based Upper Bounds

Pretests have shown that tight upper bounds are very helpful for initializing the B\&C algorithm. We employ the savings-based algorithm of Hintsch (2019; p. 6), which is tailored to the SoftCluVRP. It works as follows: In contrast to the classical savings algorithm, there is one initial route for each cluster visiting all its customers. For each $h \in H$, this route is a TSP tour over the vertex set $V_{h} \cup\{0\}$ computed with the help of a combined iterated local search and variable neighborhood decent (ILS/VND) (Hintsch 2019; Section 2.1). Additionally, the same is done for each pair $(g, h) \in H \times H$. Such a route visits all customers $V_{g} \cup V_{h}$ and the depot 0 . Let the cost of the resulting routes be \hat{c}_{h} and $\hat{c}_{g, h}$, respectively. Savings values are calculated for each pair $(g, h) \in H \times H$ as $s a v_{g, h}=\hat{c}_{g}+\hat{c}_{h}-\hat{c}_{g, h}$. Subsets of clusters to be served by one route are constructed now as in the classical savings algorithm: the largest (feasible) savings value $s a v_{g, h}$ is chosen first. The two clusters are then merged, i.e., their demand is added. A saving becomes infeasible if either the vehicle capacity Q is exceeded by the total demand of both routes or both clusters are already part of the same route. The savings algorithm repeats these steps until the number of routes matches the number of vehicles or all remaining savings become infeasible.

In case the number of routes exceeds the number of vehicles m, we compute alternative subsets of clusters to be served by one route as a bin-packing solution with items of weight $d_{h}, h \in H$, and capacity Q. We use the arc-flow model of Valério de Carvalho (1999) for this purpuse.

Finally, for each set of clusters served by a route, we construct a route with the combined ILS/VND. Such a route visits all customers belonging to the given clusters and the depot 0 .

5.3. Results for the GVRP Instances

In this section, we compare the new B\&C algorithm against the branch-and-price algorithm of Hintsch and Irnich (2020) using the GVRP benchmark. As mentioned before, the B\&C algorithm benefits from tight upper bounds available at initialization. To highlight this effect, we used the reference B\&C initialized with the savings-based upper bound of Section 5.2 and the same B\&C algorithm but with the best known solution (BKS) as upper bound.

The results are summarized in Table 2, where the table entries have the following meaning:
\#opt: number of instances solved to proven optimality within 1 hour (3600 seconds);
time \bar{T} : average computation time in seconds; unsolved instances are taken into account with the time limit $T L$ of 1 hour (3600 seconds);
gap: gap $100 \cdot(U B-L B) / L B$, i.e., gap in percent;
Total: Aggregated result of Hintsch and Irnich (2020) and our default B\&C algorithm (see B\&C below);
Total*: Best known results (including other algorithms and higher computation times);
HI20: branch-and-price of Hintsch and Irnich (2020);
$\mathrm{B} \& \mathrm{C}$: reference $\mathrm{B} \& \mathrm{C}$ with upper bound of the savings-based heuristic (see Section 5.2);
$\diamond \mathrm{B} \& \mathrm{C}$: reference $\mathrm{B} \& \mathrm{C}$, but with BKS provided as upper bound $U B$;
simple $L B \quad$ grid or relax lower bound; the latter with model (6) run for a maximum of 600 seconds (see Section 4.2); BKS provided as $U B$.

Overall, the branch-and-price of Hintsch and Irnich (2020) computes the largest number of proven optima and it is slightly faster than the B\&C algorithm. However, results are clearly mixed over the different groups of benchmark instances. Both versions of the $B \& C$ algorithm are much faster for class B, which can be attributed to the special structure of the B instances: the customer vertices are truly clustered and not scattered, i.e., almost uniformly distributed like all others (Augerat 1995).

The results show that the branch-and-price and B\&C algorithms are complementing each other. The column Total underlines this statement, because the reference B\&C algorithm computes optima for five non-solved instances of HI20. Comparing results with extended computation times and other algorithms employed in Hintsch and Irnich (2020) another four (five) previously open instances are solved now with the $\mathrm{B} \& \mathrm{C}(\diamond \mathrm{B} \& \mathrm{C})$ algorithm. At the end, only seven of the 158 GVRP instances remain unsolved.

We provide instance-by-instance results with additional information in the Online Appendix.

Table 2: Results for the GVRP instances.

Set (\#inst.)	HI20		Reference B\&C algorithm						$\frac{\text { Total }}{\# \text { opt }}$	$\frac{\text { Total }^{*}}{\# \text { opt }}$
			B\&C			\diamond B\&C				
	\#opt	time \bar{T}	\#opt	time \bar{T}	gap	\#opt	time \bar{T}	gap		
GVRP-2										
A (27)	26	713.2	21	1000.3	1.4	26	605.2	0.1	26	27
B (23)	17	1104.5	22	342.2	2.9	23	156.5	0.0	22	23
P (24)	23	474.5	15	1482.3	4.1	16	1355.4	0.8	23	24
GC (5)	1	2993.8	0	TL	50.9	0	TL	3.6	1	1
GVRP-3										
A (27)	27	83.0	26	256.1	0.2	26	207.9	0.1	27	27
B (23)	23	160.1	23	10.8	0.0	23	7.5	0.0	23	23
P (24)	24	106.6	23	253.7	0.1	23	244.9	0.0	24	24
GC (5)	1	3221.4	1	3084.8	9.7	1	2937.0	2.5	1	2
Total (158)	142	605.1	131	741.3	8.7	138	612.8	0.9	147	151

5.4. Results for the Golden Instances

In this section, we use the Golden benchmark to compare the new B\&C algorithm against the branch-and-price algorithm of Hintsch and Irnich (2020). The results are summarized in Table 3.

The branch-and-price of Hintsch and Irnich (2020) is for all twenty classes better than the B\&C algorithms. We have two possible explanations for the rather poor performance of the $\mathrm{B} \& \mathrm{C}$ algorithm on the Golden benchmark: First, the instances are much larger than the GVRP instances with vertices symmetrically distributed (on a circle, square grid, and star, see Section 4). The results of the previous section showed that the B\&C algorithm is strong for truly clustered instances. The Golden instances are however not nicely clustered.

Second, the capacity restriction is most of the time not tight. In fact, for almost all instances, the number of required vehicles can be reduced. Indeed, instances of the SoftCluVRP ${ }^{\leq m}$ most of the time have optimal solutions with strictly lower costs. To show this, we perform an additional run for the Golden instances where the number of vehicles is limited but not fixed to m. For the SoftCluVRP ${ }^{\leq m}$, more instances are solved optimally (26 instead of 21) in less time (on average) compared to the SoftCluVRP with fixed fleet size. Detailed results can be found in the Online Appendix.

On the positive side, the $\diamond \mathrm{B} \& \mathrm{C}$ algorithm always provides a valid lower bound so that the overall average gap for the Golden instances is approximately 2%. In contrast, the branch-and-price algorithm failed to provide a valid lower bound in approximately one third of the cases (only 137 of 220 with $L B$). This is clearly a point in favor of the $\mathrm{B} \& \mathrm{C}$ algorithm.

What we can also see from Table 3 and the simple $L B$ section is that sometimes the lower bounding procedures of Section 4.2 are very effective. For three classes, the simple $L B$ computation is successful and provides a proof of optimality for more instances than could be solved with either branch-and-price or B\&C. Overall, the new lower bounds allow proving optimality for nine previously open instances.

5.5. Results for Square Grid Instances

In this final experiment, we analyze and quantify the impact that the reduction technique of Section 4.1 has on the performance of the $\mathrm{B} \& \mathrm{C}$ algorithm. We use the 90 self-generated instances with customers located on a square grid and nontruncated Euclidean distances.

Both B\&C algorithms that are compared use the default B\&C once for the reduced and once for the non-reduced edge set. The number of columns and rows of the model is reduced on average by 17.8% and 16.7%, respectively. As before, we compare both variants with the help of performance profiles, see Figure 5.

80I	L8	07	も	I＇ 7	L＇¢LE¢	7\％	$0 ¢$	6． $668 ¢$	LZ	\＆ 2187	89	（07\％）［セれОL
†	\＆	97	0	$\mathrm{I}^{\prime} \mathrm{G}$	TL	0	C 9	TL	0	L｀\％80¢	\＆	（LI） 0 \％
8	9	87	0	$\mathcal{T}^{\circ} \mathrm{E}$	TL	0	$9 \cdot 9$	TL	0	9．LもL	9	（LI） 6 I
8	9	0%	0	6.0	$8 \cdot 9918$	ε	［＇t	\＆ 6978	7	－ 888 E	9	（LI） 8 I
6	8	0%	0	$7 \cdot 0$	citg9	8	0．${ }^{\text {I }}$	L 6799	8	お而しを	8	（LI） LI
7	ε	$7 \cdot 0$	ε	80	TL	0	$\square^{\circ} \mathrm{E}$	TL	0	TL	0	（LI） 9 I
8	9	I＇0	9	9.0	TL	0	$7 \cdot ¢$	TL	0		I	（LI）$¢ \mathrm{~L}$
8	I	70	0	90	TL	0	$\square^{\circ} \mathrm{E}$	TL	0	6.0987	I	（LI） IL
II	II	70	9	80	9• TZ0¢	†	9．	7．8967	ஏ	8．81IL	6	（tI）$¢ \mathrm{~L}$
0	0	8.0	0	${ }^{\circ} \mathrm{C}$	TL	0	9.8	TL	0	TL	0	（II） ZI
6	\＆	$\square^{\circ} 0$	\checkmark	0 0	TL	0	7.9	TL	0	9＊TL98	I	（LI）LI
L	9	L0	0	$9 \cdot \mathcal{L}$	TL	0	8.8	TL	0	L•¢¢も	9	（LI） 0 L
0I	6	$\square^{\circ} 0$	4	も＇も	TL	0	8＇7	TL	0	9．gitit	8	（LI） 6
0	0	97	0	8^{\prime} I	TL	0	［．9	TL	0	TL	0	（II） 8
7	0	97	0	6.1	TL	0	6.7	TL	0	TL	0	（II） 2
9	G	$7^{\prime} ¢$	0	${ }^{\prime} \%$	LGLt¢	I	$9 \cdot 9$	7－8998	I	I＇z0Lz	G	（II） 9
II	0I	$8 \cdot 9$	0	$\mathcal{E}^{\prime} \mathrm{I}$	か．9しても	9	L L＇	9．987\％	9	－ 788	01	（It） 9
0	0	［＇\％	0	6.1	TL	0	$\llcorner 9$	TL	0	TL	0	（It） $\mathrm{I}^{\text {d }}$
0	0	87	0	0%	TL	0	［99	TL	0	TL	0	（LI）\＆
I	I	$\varepsilon \varepsilon$	0	［＇7	TL	0	$\angle 9$	TL	0	c．0898	I	（II） 7
I	I	9 9	0	$L^{\prime} \%$	TL	0	$\overbrace{}^{\circ} 9$	TL	0	¢008¢	I	$\begin{aligned} & \text { (LI) L } \\ & \text { uәртоŋ } \end{aligned}$
ұdo\＃	ұdo\＃	de．${ }^{\text {d }}$	7do\＃	des	\underline{L} әш！̣！	7do\＃	des	\underline{L} әш！̣！	7do\＃	\underline{L} әu！̣	ұ do \＃$^{\text {d }}$	
＊［EZOL	［eqoL		ә¢¢ụs			Dr8®			Drga		0ZIH	

Table 3：Results for the Golden instances．

Figure 5: Performance profile for the reduced and non-reduced edge set.

The profiles clearly indicate that the reduction procedure is effective and has a relatively strong impact. Comparing both algorithms at $\tau=1$, the algorithm with reduced (non-reduced) edge set is in 51% (34\%) of the cases the fastest. For higher τ-values, the difference between both algorithms decreases but in total three more instances can be solved by the B\&C algorithm that is applied to the reduced graph.

Results summarized in Table 4 also confirm the positive effect of the edge reduction: Average time and gap are overall smaller for the reduced version. In total 75 of 90 instances can be solved to proven optimality. Detailed results including number of columns and rows of the model can be found in the Online Appendix.

Table 4: Results for square Grid instances.

Set (\#inst.)	$\mathrm{n}+1$	reduced			non-reduced		gap	Total	
		\#opt	time \bar{T}	gap	\#opt	time \bar{T}		\#opt	gap
Grid									
1-30 (30)	121	28	605.8	0.4	27	643.1	0.5	28	0.3
31-60 (30)	169	24	1091.6	1.8	23	1084.2	2.8	25	1.6
61-90 (30)	225	22	1470.3	5.4	21	1487.2	5.1	22	4.6
Total (90)		74	1055.9	2.6	71	1071.5	2.8	75	2.2

6. Conclusions

In this paper, we provided a first two-index formulation for the soft-clustered vehicle-routing problem (SoftCluVRP). The novelty of the model is the very clear separation of the standard routing part as known for the capacitated VRP from the part that ensures routes that respect the soft-cluster constraints. This latter part of the model uses an asymmetric and directed cluster graph so that MTZ-like constraints can be used here. Overall, the formulation is rather simple to use with modern MIP solvers, because only capacity constraints have to be added dynamically, i.e., in a cutting-plane fashion. All other valid inequalities that we presented are not mandatory when the fleet is not made artificially larger than necessary.

On the theoretical side, there are several contributions: First, we analyzed the impact of the fleet-size constraint and derived new constraints that allow to cope with non-minimal fleets. Second, we proved that one third of the transitivity constraints are actually redundant, for the complete integer formulation as well as for its linear relaxation. Third, we presented new capacity cuts that are stronger than the
straightforward adaptation of the well-known version for the capacitated VRP. Finally, we prove a deep result that SoftCluVRPs defined on a square grid are reducible.

On the algorithmic side, the new branch-and-cut (B\&C) algorithm is complementary to the only other exact solution approach from the literature that is based on branch-and-price. While not competitive on all instance classes, the B\&C algorithm is particularly useful for SoftCluVRP instances that are truly clustered. A B\&C approach is also much simpler to implement compared to the sophisticated branch-andprice of Hintsch and Irnich (2020). Overall, the B\&C algorithm and lower-bounding strategies deliver new provably optimal solutions to five GVRP and nine Golden benchmark instances that were unsolved before.

Appendix

Proof of Proposition 4:

Let $(\bar{x}, \bar{y}, \bar{u})$ be an integer feasible solution to model (R). We consider the connected components of the digraph $D_{\bar{y}}$ spanned by the arcs a with $\bar{y}_{a}=1$. Let $(H(O), A(O))$ be one of these components and let $O=\left\{h_{1}, h_{2}, \ldots, h_{|O|}\right\}$ with $h_{1}<h_{2}<\cdots<h_{|O|}$. In a first step, we show that

$$
\begin{equation*}
\left(h_{i}, h_{i+1}\right) \in A(O) \text {, i.e., } \bar{y}_{h_{i}, h_{i+1}}=1 \quad \text { for all } i=1,2, \ldots,|O|-1 \tag{7}
\end{equation*}
$$

holds true. If the opposite were true, i.e., $\left(h_{i}, h_{i+1}\right) \notin A(O)$, we consider a $h_{i}-h_{i+1}$-path P in $(H(O), A(O))$ with a minimum number of arcs (disregarding the direction of the arcs). Note that P must exist by definition of a connected component and that P and $\left(h_{i}, h_{i+1}\right)$ form a cycle (again disregarding the direction of the arcs). We now consider the minimum and maximum vertices $h_{\min }=\min H(P)$ and $h_{\max }=\max H(P)$ w.r.t. the <-relation, respectively. Note that $h_{\min }=h_{i}$ and $h_{\max }=h_{i+1}$ at the same time is not possible.

If $h_{\min }<h_{i}$, the vertex $h_{\min }$ has an out-degree of 2 in P, i.e., there exist two arcs $\left(h_{\min }, h\right)$ and $\left(h_{\min }, h^{\prime}\right) \in A(O)$ with $h<h^{\prime}$. Transitivity constraints (1k) for $h_{\min }<h<h^{\prime}$ then imply that also $\bar{y}_{h h^{\prime}}=1$, i.e, $\left(h, h^{\prime}\right) \in A(O)$. This however contradicts with the minimality of P, because replacing ($h_{\text {min }}, h$) and ($h_{\text {min }}, h^{\prime}$) by $\left(h, h^{\prime}\right)$ in P would create a shorter h_{i} - h_{j}-path.

If $h_{\max }>h_{i+1}$, the vertex $h_{\text {max }}$ has an in-degree of 2 in P. The same type of argument can now be used together with the transitivity constraints (1j) leading to a shorter h_{i} - h_{j}-path contradicting with the minimality of P. Therefore, (7) must hold true.

In a second step, we show that the \bar{y}-values can be set to one within each component without violating any constraint. Let $\left(h_{i}, h_{j}\right) \in A(O)$ be an arc with $\bar{y}_{h_{i} h_{j}}=0$. Because of (7), we know that $j>i+1$ holds true. Summing up (1h) over the $\operatorname{arcs}\left(h_{i}, h_{i+1}\right),\left(h_{i+1}, h_{i+2}\right), \ldots,\left(h_{j-1}, h_{j}\right)$ gives $\bar{u}_{h_{i}}-\bar{u}_{h_{j}} \leq-\sum_{k=i+1}^{j} d_{h_{k}} \leq-d_{h_{j}}$. This proves that (1h) for the arc $\left(h_{i}, h_{j}\right) \in A$ is also fulfilled even after increasing $\bar{y}_{h_{i}, h_{j}}$ to 1 . Hence, all arcs with both endpoints in O can be increased without violating (1i).

Note that the new values \bar{y} for the y-variables do not violate any transitivity constraint (1 j)-(1k) because the positive \bar{y} represent the transitive closure over O.

Proof of Proposition 5:

Let $(\bar{x}, \bar{y}, \bar{u})$ be a feasible solution to the linear relaxation of model (R). The feasible solution $(\bar{x}, \overline{\bar{y}}, \bar{u})$ to the linear relaxation of model (1) is constructed as follows. We consider the connected components of the digraph $D_{\bar{y}}$ spanned by the arcs a with $\bar{y}_{a}>0$. Note that $\bar{y}_{h, h^{\prime}}=0$ for h and h^{\prime} in different components. Accordingly, we also set $\overline{\bar{y}}_{h, h^{\prime}}=0$.

Within each component, the $\overline{\bar{y}}$-values are defined recursively. For this purpose, let $(H(O), A(O))$ be one of these components and let $C=\left\{h_{1}, h_{2}, \ldots, h_{|O|}\right\}$ with $h_{1}<h_{2}<\cdots<h_{|O|}$. We define

$$
\begin{aligned}
& \overline{\bar{y}}_{h_{i} h_{i+1}}:=\bar{y}_{h_{i} h_{i+1}} \\
& \bar{y}_{h_{i} h_{i+2}}:=\max \left\{\bar{y}_{h_{i} h_{i+2}}, \bar{y}_{h_{i} h_{i+1}}+\bar{y}_{h_{i+1} h_{i+2}}-1\right\}
\end{aligned}
$$

$$
\text { for all } i=1, \ldots,|O|-1 \text {; }
$$

$$
\text { for all } i=1, \ldots,|O|-2
$$

and for all $k=3, \ldots,|O|-1$

$$
\overline{\bar{y}}_{h_{i} h_{i+k}}:=\max \left\{\bar{y}_{h_{i} h_{i+k}}, \max _{j \in\{1, \ldots, k-1\}}\left\{\overline{\bar{y}}_{h_{i} h_{i+j}}+\overline{\bar{y}}_{h_{i+j} h_{i+k}}-1\right\}\right\} \quad \text { for all } i=1, \ldots,|O|-k .
$$

We have to show that ($\bar{x}, \overline{\bar{y}}, \bar{u}$) is a feasible solution to the linear relaxation of (1). Since $\overline{\bar{y}} \geq \bar{y}$, it suffices to show that this solution fulfills the MTZ-constraints (1h) and transitivity constraints (1j)-(11). Obviously, it suffices to check the validity of these constraints for arcs or pairs of arcs $\left(h_{i}, h_{i+k}\right) \in A(O)$.

Regarding MTZ-constraints (1h), if $\overline{\bar{y}}_{h_{i}, h_{i+k}}=\bar{y}_{h_{i}, h_{i+k}}$ then (1h) is fulfilled because ($\bar{x}, \bar{y}, \bar{u}$) is feasible. In addition, this solves the subcases $k=1$, i.e., $\operatorname{arcs}\left(h_{i}, h_{i+1}\right)$. Otherwise, we first consider the case of $k=2$ and $\overline{\bar{y}}_{h_{i} h_{i+2}}=\bar{y}_{h_{i} h_{i+1}}+\bar{y}_{h_{i+1} h_{i+2}}-1$. It follows

$$
\begin{aligned}
u_{h_{i}}-u_{h_{i+2}}+Q \overline{\bar{y}}_{h_{i} h_{i+2}} & =u_{h_{i}}-u_{h_{i+1}}+u_{h_{i+1}}-u_{h_{i+2}}+Q\left(\bar{y}_{h_{i} h_{i+1}}+\bar{y}_{h_{i+1} h_{i+2}}-1\right) \\
& =\left(u_{h_{i}}-u_{h_{i+1}}+Q \bar{y}_{h_{i} h_{i+1}}\right)+\left(u_{h_{i+1}}-u_{h_{i+2}}+Q \bar{y}_{h_{i+1} h_{i+2}}\right)-Q \\
& \stackrel{(1 \mathrm{~h})}{\leq} Q-d_{h_{i+1}}+Q-d_{h_{i+2}}-Q \leq Q-d_{h_{i+2}} .
\end{aligned}
$$

where we exploit (1h) for the \bar{y}-values.
For $k>2$, we assume that the values of $\overline{\bar{y}}_{h_{i} h_{i+k}}$ results from an index $j \in\{1, \ldots k-1\}$ with $\overline{\bar{y}}_{h_{i} h_{i+k}}=$ $\overline{\bar{y}}_{h_{i} h_{i+j}}+\overline{\bar{y}}_{h_{i+j} h_{i+k}}-1$. By induction over k, we get

$$
\begin{aligned}
u_{h_{i}}-u_{h_{i+k}}+Q \overline{\bar{y}}_{h_{i} h_{i+k}} & =u_{h_{i}}-u_{h_{i+j}}+u_{h_{i+j}}-u_{h_{i+k}}+Q\left(\overline{\bar{y}}_{h_{i} h_{i+j}}+\overline{\bar{y}}_{h_{i+j} h_{i+k}}-1\right) \\
& =\left(u_{h_{i}}-u_{h_{i+j}}+Q \overline{\bar{y}}_{h_{i} h_{i+j}}\right)+\left(u_{h_{i+j}}-u_{h_{i+k}}+Q \overline{\bar{y}}_{h_{i+j} h_{i+k}}\right)-Q \\
& \stackrel{(1 \mathrm{~h})}{ } \leq Q-d_{h_{i+j}}+Q-d_{h_{i+k}}-Q \leq Q-d_{h_{i+k}} .
\end{aligned}
$$

where we exploit (1h) for smaller k by induction hypothesis. This completes all case for the MTZconstraints (1h).

Next we prove that the first two classes of transitivity constraints (1 j) and (1 k) hold true for the $\overline{\bar{y}}$ values. The proof is also by induction over $k \geq 2$ for pairs of $\operatorname{arcs}\left(h_{i}, h_{i+j}\right)$ and $\left(h_{i+j}, h_{i+k}\right) \in A(O)$, i.e., with $h_{i}<h_{i+j}<h_{i+k}$. For $k=2$, the arc pair is $\left(h_{i}, h_{i+1}\right)$ and (h_{i+1}, h_{i+2}) so that the result directly follows because $\overline{\bar{y}}_{h_{i} h_{i+l}}=\bar{y}_{h_{i} h_{i+l}}$ and $\overline{\bar{y}}_{h_{i+1}, h_{i+2}}=\bar{y}_{h_{i+1}, h_{i+2}}$.

For $k>2$, we show w.l.o.g. that transitivity constraints (1j) are fulfilled (the proof for the second class of transitivity constraints (1 k) works analogously). Let $l \in\{1, \ldots, k-1\}$. We distinguish three cases.

The first case is $\overline{\bar{y}}_{h_{i} h_{i+k}}=\bar{y}_{h_{i} h_{i+k}}$ and $\overline{\bar{y}}_{h_{i+l} h_{i+k}}=\bar{y}_{h_{i+l} h_{i+k}}$. Then,

$$
\begin{equation*}
\overline{\bar{y}}_{h_{i} h_{i+l}} \geq \bar{y}_{h_{i} h_{i+l}} \stackrel{(1 \mathrm{j})}{\geq} \bar{y}_{h_{i} h_{i+k}}+\bar{y}_{h_{i+l} h_{i+k}}-1=\overline{\bar{y}}_{h_{i} h_{i+k}}+\overline{\bar{y}}_{h_{i+l} h_{i+k}}-1 . \tag{8}
\end{equation*}
$$

In the second case, let $\overline{\bar{y}}_{h_{i} h_{i+k}}=\bar{y}_{h_{i} h_{i+k}}$ and $\overline{\bar{y}}_{h_{i+l} h_{i+k}}>\bar{y}_{h_{i+l} h_{i+k}}$. The latter implies (using the definition of the $\overline{\bar{y}}$-values) that there exist indices $l_{1}<l_{2}<\cdots<l_{s}$ with $l_{1}>l$ and $l_{s}<k$ for an $s \in\{1, \ldots, k-l\}$ such that $\overline{\bar{y}}_{h_{i+l} h_{i+k}}$ can be expressed by \bar{y}-values in the following form:

$$
\begin{equation*}
\overline{\bar{y}}_{h_{i+l} h_{i+k}}=\bar{y}_{h_{i+l} h_{i+l_{1}}}+\bar{y}_{h_{i+l} h_{i+l_{2}}}+\cdots+\bar{y}_{h_{i+l_{s-1}} h_{i+k}}+\bar{y}_{h_{i+l_{s}} h_{i+k}}-s+1 \tag{9}
\end{equation*}
$$

Iteratively exploiting constraints (1 j) for the \bar{y}-values yields

$$
\begin{aligned}
& \overline{\bar{y}}_{h_{i} h_{i+l}} \geq \bar{y}_{h_{i} h_{i+l}} \stackrel{(1 \mathrm{j})}{\geq} \bar{y}_{h_{i} h_{i+l_{1}}}+\bar{y}_{h_{i+l} h_{i+l_{1}}}-1 \stackrel{(1 \mathrm{j})}{\geq} \bar{y}_{h_{i} h_{i+l_{2}}}+\bar{y}_{h_{i+l_{1}} h_{i+l_{2}}}+\bar{y}_{h_{i+l} h_{i+l_{1}}}-2 \\
& \stackrel{(1 \mathrm{j})}{\geq} \ldots \stackrel{(1 \mathrm{j})}{\geq} \bar{y}_{h_{i} h_{i+k}}+\bar{y}_{h_{i+l_{s}} h_{i+k}}+\bar{y}_{h_{i+l_{s-1}} h_{i+l_{s}}}+\ldots+\bar{y}_{h_{i+l_{1}} h_{i+l_{2}}}+\bar{y}_{h_{i+l} h_{i+l_{1}}}-s \stackrel{(9)}{\geq} \overline{\bar{y}}_{h_{i} h_{i+k}}+\overline{\bar{y}}_{h_{i+l} h_{i+k}}-1 .
\end{aligned}
$$

In the third and last case, let $\overline{\bar{y}}_{h_{i} h_{i+k}}>\bar{y}_{h_{i} h_{i+k}}$. Again, using the definition of the $\overline{\bar{y}}$-values, we know that there exists a $j \in\{1, \ldots, k-1\}$ such that

$$
\begin{equation*}
\overline{\bar{y}}_{h_{i} h_{i+k}}=\overline{\bar{y}}_{h_{i} h_{i+j}}+\overline{\bar{y}}_{h_{i+j} h_{i+k}}-1 . \tag{10}
\end{equation*}
$$

By induction hypothesis, constraints

$$
\begin{gather*}
\overline{\bar{y}}_{h_{i} h_{i+l}} \geq \overline{\bar{y}}_{h_{i} h_{i+j}}+\overline{\bar{y}}_{h_{i+j} h_{i+l}}-1, \tag{11a}\\
19
\end{gather*}
$$

$$
\begin{equation*}
\overline{\bar{y}}_{h_{i+j} h_{i+l}} \geq \overline{\bar{y}}_{h_{i+j} h_{i+k}}+\overline{\bar{y}}_{h_{i+l} h_{i+k}}-1 \tag{11b}
\end{equation*}
$$

are satisfied, yielding

$$
\overline{\bar{y}}_{h_{i} h_{i+l}} \stackrel{(11 \mathrm{a})}{\geq} \overline{\bar{y}}_{h_{i} h_{i+j}}+\overline{\bar{y}}_{h_{i+j} h_{i+l}}-1 \stackrel{(11 \mathrm{~b})}{\geq} \overline{\bar{y}}_{h_{i} h_{i+j}}+\overline{\bar{y}}_{h_{j} h_{i+k}}+\overline{\bar{y}}_{h_{l} h_{i+k}}-2 \stackrel{(10)}{=} \overline{\bar{y}}_{h_{i} h_{i+k}}+\overline{\bar{y}}_{h_{i+l} h_{i+k}}-1 .
$$

This completes the proof for the transitivity constraints (1 j) and (1 k).
Finally, the validity of the third class of transitivity constraints (1l) directly results from the definition of the $\overline{\bar{y}}$-values.

Proof of Theorem 1:

Our proof is by contradiction, i.e., we assume an optimal EucTSP tour in which the vertex in the middle of the (3×3)-vertex block (the vertex \diamond) is connected to a vertex $x=\left(x_{1}, x_{2}\right)$ that is not part of the (3×3)-vertex block.

According to Flood (1956), an optimal EucTSP tour is without any crossings in the Euclidean plane. Therefore, the vertex \diamond cannot be connected to any other vertex on the horizontal or vertical line crossing \diamond outside the (3×3)-vertex block. For the same reason, the vertex \diamond cannot be connected to any points on the diagonals (45° and 135°) outside the 3×3-vertex block (the diagonals cross \diamond and the top-left and bottom-right vertex of the (3×3)-vertex block or the top-right and bottom-left vertices of the block).

Exploiting symmetry, we can assume that x is one of the green vertices • depicted in Table 5. Moreover, the vertex \star, right of \diamond, must be connected to two other vertices; these are denoted by $y=\left(y_{1}, y_{2}\right)$ and $z=\left(z_{1}, z_{2}\right)$. Possible y-coordinates have a gray background. The coordinates of x, y, and z are measured according to a coordinate system in which \star is the origin. W.l.o.g. the minimal distance is one so that $\diamond=(-1,0), \star=(0,0)$, and $x, y, z \in \mathbb{Z}^{2}$.

Because crossings are prohibited, the vertex \star must be connected to green or purple vertices (depicted as \bullet and \bullet, see Cases 1-3 in Table 5) or to the vertex \diamond (see Cases $4-7$ in Table 5).

For all seven cases, we can construct a (strictly) shorter EucTSP tour proving that the original tour was not optimal. Table 5 summarizes all cases, where below each grid the corresponding distances are calculated and y-vertices are marked with a gray background.

In the following, the inequalities of all cases are derived in detail. Simple calculations (square and estimate) show that

$$
\begin{equation*}
\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}} \geq \frac{1}{\sqrt{2}}+\sqrt{x_{1}^{2}+x_{2}^{2}} \tag{*}
\end{equation*}
$$

holds true for $x_{1} \geq x_{2} \geq 0$. This inequality is helpful for some intermediate steps. Note that in general $x_{1}, x_{2} \geq 1$ and $x_{1} \geq x_{2}$.
Case 1: Note first that in case of $x_{1} \geq y_{1}$ and $x_{2} \leq y_{2}$ two lines of x and y would cross. Hence, this case does not need to be considered. Three other cases remain: First, if $x_{1} \geq y_{1}$ and $x_{2} \geq y_{2}$ then $\sqrt{y_{1}^{2}+y_{2}^{2}} \geq 1$ and $\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}}>\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$. Second, if $x_{1} \leq y_{1}$ and $x_{2} \leq y_{2}$ then $\sqrt{y_{1}^{2}+y_{2}^{2}}>\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$ and $\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}}>1$.

Third, if $x_{1} \leq y_{1}$ and $x_{2} \geq y_{2}$ then we distinguish three subcases: If $y=(1,0)$ the inequality holds true because $1+\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}}>1+\sqrt{\left(x_{1}-1\right)^{2}+x_{2}^{2}}$. If $\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}} \geq \sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$ and $y_{1}, y_{2} \geq 1$, the inequality holds true because $\sqrt{y_{1}^{2}+y_{2}^{2}}>1$. Otherwise, let $\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}}<$ $\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$ and $y_{1}, y_{2} \geq 1$. We consider the triangle defined by the vertices $\mathbf{0}, x$, and y depicted in Figure 6. Let β be the angle between the edges (x, y) and ($\mathbf{0}, x)$. Since $x_{1} \geq x_{2}$ and $y_{2} \geq 1$, the angle is obtuse, i.e., $\beta>90$. Let $v=\left(v_{1}, v_{2}\right)$ be the intersection of the line crossing 0 and y and the line forming a 90-degree angle with vertices x and y. It follows that $\sqrt{y_{1}^{2}+y_{2}^{2}}>\sqrt{\left(v_{1}-y_{1}\right)^{2}+\left(v_{2}-y_{2}\right)^{2}}>$ $\cos (\beta) \sqrt{\left(v_{1}-y_{1}\right)^{2}+\left(v_{2}-y_{2}\right)^{2}}=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$.
Case 2: Obviously, $\sqrt{y_{1}^{2}+y_{2}^{2}}>\sqrt{\left(\left|y_{1}\right|-1\right)^{2}+y_{2}^{2}}$ and $\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}}>\sqrt{x_{1}^{2}+x_{2}^{2}}$.

Case	Assumption	TSP tour		Improved TSP tour
1	$\begin{aligned} & z-\star, \star-y \\ & y_{1} \geq 1, y_{2} \geq 0 \end{aligned}$		>	$1+\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$
2	$\begin{aligned} & z-\star, \star-y \\ & y_{1} \leq-1, y_{2} \leq-1 \end{aligned}$		>	
3	$\begin{aligned} & z-\star, \star-y \\ & z_{1} \geq 1, z_{2} \leq-1 \\ & y=(0,-1) \text { or } \\ & y_{1} \geq 1, y_{2} \leq-1 \end{aligned}$	$+x_{2}^{2}+\sqrt{y_{1}^{2}+y_{2}^{2}}+\sqrt{z_{1}^{2}+z_{2}^{2}}$		$1+\sqrt{x_{1}^{2}+x_{2}^{2}}+\sqrt{\left(y_{1}-z_{1}\right)^{2}+\left(y_{2}-z_{2}\right)^{2}}$
4	$\begin{aligned} & y_{1}, y_{2} \geq 1 \text { or } \\ & y=(0,2) \end{aligned}$			$\sqrt{2}+\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$
5	$y_{1} \leq-2, y_{2} \leq 0$ $1+1$	$\overline{\left.y_{2} \mid+1\right)^{2}}+\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}}$		$\sqrt{2}+\sqrt{\left(\left\|y_{1}\right\|-1\right)^{2}+y_{2}^{2}}+\sqrt{x_{1}^{2}+x_{2}^{2}}$
6	$\begin{aligned} & y_{1} \leq-1, y_{2} \geq 1 \\ & \left\|y_{1}\right\| \geq y_{2} \end{aligned}$			$\sqrt{2}+\sqrt{\left(\left\|y_{1}\right\|-1\right)^{2}+y_{2}^{2}}+\sqrt{x_{1}^{2}+x_{2}^{2}}$
7	$\begin{aligned} & y_{1} \leq-1, y_{2} \geq 1 \\ & \left\|y_{1}\right\|<y_{2} \\ & \left\|z_{1}\right\|<z_{2} \end{aligned}$ $\sqrt{y_{1}^{2}+\left(y_{2}-1\right)^{2}}$			$\sqrt{2}+\sqrt{\left(y_{1}-z_{1}\right)^{2}+\left(y_{2}-z_{2}\right)^{2}}+\sqrt{x_{1}^{2}+x_{2}^{2}}$

Table 5: Original and improved TSP tours.
Note: The horizontal axis is the first axis for x_{1}, y_{1}, and z_{1}, while the vertical axis is the second axis for x_{2}, y_{2}, and z_{2}.

Figure 6: Triangle described in Case 1.

Case 3: For the x-part, we find again $\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}}>\sqrt{x_{1}^{2}+x_{2}^{2}}$.
For the y-part, we consider the four different cases that distinguish the positions of y relative to z : First, if $y_{1} \geq z_{1}$ and $y_{2} \leq z_{2}$ then $\sqrt{y_{1}^{2}+y_{2}^{2}} \geq \sqrt{\left(y_{1}-z_{1}\right)^{2}+\left(y_{2}-z_{2}\right)^{2}}$. Second, if $y_{1} \leq z_{1}$ and $y_{2} \geq z_{2}$ then $\sqrt{z_{1}^{2}+z_{2}^{2}} \geq \sqrt{\left(y_{1}-z_{1}\right)^{2}+\left(y_{2}-z_{2}\right)^{2}}$. Third, if $y_{1} \geq z_{1}$ and $y_{2} \geq z_{2}$, it follows that $\sqrt{y_{1}^{2}+y_{2}^{2}}+\sqrt{z_{1}^{2}+z_{2}^{2}} \geq$ $y_{1}+\sqrt{1+z_{2}^{2}} \geq 1+\sqrt{\left(y_{1}-1\right)^{2}+z_{2}^{2}} \geq 1+\sqrt{\left(y_{1}-z_{1}\right)^{2}+\left(y_{2}-z_{2}\right)^{2}}$. Fourth and finally, if $y_{1} \leq z_{1}$ and $y_{2} \leq z_{2}$, it follows that $\sqrt{y_{1}^{2}+y_{2}^{2}}+\sqrt{z_{1}^{2}+z_{2}^{2}} \geq y_{2}+\sqrt{z_{1}^{2}+1} \geq 1+\sqrt{z_{1}^{2}+\left(y_{2}-1\right)^{2}} \geq 1+\sqrt{\left(y_{1}-z_{1}\right)^{2}+\left(y_{2}-z_{2}\right)^{2}}$. Note that the inequalities in the third and fourth case result again from squaring and estimating (as done for $\left({ }^{*}\right)$).
Case 4: The only possibility for $y_{1}=0$ is the point $y=(0,2)$. We consider two subcases for x_{2} : On the one hand, we assume that $x_{2}=1$. It follows that $1+\sqrt{\left(x_{1}+1\right)^{2}+1}>\sqrt{2}+\sqrt{x_{1}^{2}+1}$ [it is simple to show that the larger x_{1}, the smaller is the difference between LHS and RHS; the most critical case is therefore $x_{1}=1$, in which case the two sides evaluate to $1+\sqrt{5}>\sqrt{2}+\sqrt{2}]$. On the other hand, we assume $x_{2} \geq 2$. Then, $1+\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}} \stackrel{(*)}{\geq} 1+\frac{1}{\sqrt{2}}+\sqrt{x_{1}^{2}+x_{2}^{2}}>\sqrt{2}+\sqrt{x_{1}^{2}+\left(x_{2}-2\right)^{2}}$.

If $y_{1}, y_{2} \geq 1$, we consider four subcases according to the positions of x relative to y : First, in case of $x_{1} \geq y_{1}$ and $x_{2} \leq y_{2}$ two lines of x and y would cross so that this case does not need to be considered. Second, if $x_{1} \geq y_{1}$ and $x_{2} \geq y_{2}$ then $\sqrt{y_{1}^{2}+\left(y_{2}-1\right)^{2}} \geq 1$ and $\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}} \stackrel{\left({ }^{*}\right)}{\geq} \frac{1}{\sqrt{2}}+\sqrt{x_{1}^{2}+x_{2}^{2}}>\frac{1}{\sqrt{2}}+$ $\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$. Third, if $x_{1} \leq y_{1}$ and $x_{2} \leq y_{2}$ then $\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}}>\sqrt{2}$ and $\sqrt{y_{1}^{2}+\left(y_{2}-1\right)^{2}}>$ $\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}}$. Fourth and finally, if $x_{1} \geq y_{1}$ and $x_{2} \leq y_{2}$ then it follows by simple calculations that $\sqrt{y_{1}^{2}+\left(y_{2}-1\right)^{2}}+\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}} \geq \sqrt{1+\left(y_{2}-1\right)^{2}}+x_{1}+1>\sqrt{2}+\sqrt{\left(x_{1}-1\right)^{2}+\left(y_{2}-1\right)^{2}} \geq \sqrt{2}+$ $\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$.
Case 5: Obviously, $\sqrt{y_{1}^{2}+\left(\left|y_{2}\right|+1\right)^{2}}>\sqrt{\left(\left|y_{1}\right|-1\right)^{2}+y_{2}^{2}}$ and $\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}} \stackrel{(*)}{\geq} \frac{1}{\sqrt{2}}+\sqrt{x_{1}^{2}+x_{2}^{2}}>\sqrt{2}-1+$ $\sqrt{x_{1}^{2}+x_{2}^{2}}$.
Case 6: For the x-part we know $1+\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}}>\sqrt{2}+\sqrt{x_{1}^{2}+x_{2}^{2}}$. For the y-part, we exploit the precondition $\left|y_{1}\right| \geq y_{2} \geq 1$. It follows by simple estimations that $\sqrt{y_{1}^{2}+\left(y_{2}-1\right)^{2}} \geq \sqrt{\left(\left|y_{1}\right|-1\right)^{2}+y_{2}^{2}}$.
Case 7: If $y_{1} \geq 1$ and $y_{2} \geq 2$ then $\sqrt{y_{1}^{2}+\left(y_{2}-1\right)^{2}} \geq 1+\sqrt{\left(y_{1}-1\right)^{2}+\left(y_{2}-2\right)^{2}}$. It follows that $\sqrt{y_{1}^{2}+\left(y_{2}-1\right)^{2}}+\sqrt{z_{1}^{2}+\left(z_{2}-1\right)^{2}}+\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}} \stackrel{(*)}{\geq} 2+\sqrt{\left(y_{1}-1\right)^{2}+\left(y_{2}-2\right)^{2}}+\sqrt{\left(z_{1}-1\right)^{2}+\left(z_{2}-2\right)^{2}}+$ $\frac{1}{\sqrt{2}}+\sqrt{x_{1}^{2}+x_{2}^{2}}>\sqrt{2}+\sqrt{\left(y_{1}-z_{1}\right)^{2}+\left(y_{2}-z_{2}\right)^{2}}+\sqrt{x_{1}^{2}+x_{2}^{2}}$.

Two final remarks are due: The difference between the left-hand and right-hand side of the >-inequalities is in all the (sub)cases greater than 0.2 . Hence, the tours depicted on the right-hand side are always strictly improving.

Moreover, the improved tours of Cases 5 and 6 are certainly not optimal: The middle vertex \diamond of the (3×3)-vertex block is still connected to an outer vertex. Hence, these tours can be further shortened using one of the Cases 1,2 , or 3 .

References

Yossiri Adulyasak, Jean-François Cordeau, and Raf Jans. Formulations and branch-and-cut algorithms for multivehicle production and inventory routing problems. INFORMS Journal on Computing, 26(1):103-120, 2014. doi: 10.1287/ijoc.2013.0550.
Dino Ahr. Contributions to Multiple Postmen Problems. Ph.d. dissertation, Department of Computer Science, Heidelberg University, Heidelberg, Germany, 2004.
Philippe Augerat. Approche polyèdrale du problème de tournées de véhicules. PhD thesis, Institut National Polytechnique de Grenoble, Grenoble, France, 1995.
Maria Battarra, Güneş Erdoğan, and Daniele Vigo. Exact algorithms for the clustered vehicle routing problem. Operations Research, 62(1):58-71, 2014. doi: 10.1287/opre.2013.1227.
Tolga Bektaş, Güneş Erdoğan, and Stefan Røpke. Formulations and branch-and-cut algorithms for the generalized vehicle routing problem. Transportation Science, 45(3):299-316, 2011. doi: 10.1287/trsc.1100.0352.
Christof Defryn and Kenneth Sörensen. A fast two-level variable neighborhood search for the clustered vehicle routing problem. Computers \& Operations Research, 83:78-94, 2017. doi: 10.1016/j.cor.2017.02.007.
Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2):201-213, 2002. doi: 10.1007/s101070100263.
Mateo Fischetti, Juan J. Salazar Gonzáles, and Paolo Toth. A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Operations Research, 45(3):378-394, 1997. doi: 10.1287/opre.45.3.378.
Matteo Fischetti, Juan J. Salazar González, and Paolo Toth. Experiments with a multi-commodity formulation for the symmetric capacitated vehicle routing problem. In Proceedings of the 3rd Meeting of the EURO Working Group on Transportation, 1995.

Merrill M. Flood. The traveling-salesman problem. Operations Research, 4(1):61-75, 1956. URL https://www.jstor.org/ stable/167517.
Bruce L. Golden, Edward A. Wasil, James P. Kelly, and I-Ming Chao. The impact of metaheuristics on solving the vehicle routing problem: Algorithms, problem sets, and computational results. In Fleet Management and Logistics, pages 33-56. Springer US, 1998. doi: 10.1007/978-1-4615-5755-5_2.
Timo Hintsch. Large multiple neighborhood search for the soft-clustered vehicle-routing problem. Technical Report LM-2019-01, Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Mainz, Germany, 2019.
Timo Hintsch and Stefan Irnich. Large multiple neighborhood search for the clustered vehicle-routing problem. European Journal of Operational Research, 270(1):118-131, October 2018. doi: 10.1016/j.ejor.2018.02.056.
Timo Hintsch and Stefan Irnich. Exact solution of the soft-clustered vehicle-routing problem. European Journal of Operational Research, 280(1):164-178, 2020. doi: 10.1016/j.ejor.2019.07.019.
Timo Hintsch, Stefan Irnich, and Lone Kiilerich. Branch-price-and-cut for the soft-clustered capacitated arc-routing problem. Technical Report LM-2019-02, Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Mainz, Germany, 2019.
David R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-out algorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '93, pages 21-30, Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathematics. ISBN 0-89871-313-7. URL http://dl.acm.org/citation.cfm?id=313559.313605.
Gilbert Laporte, Yves Nobert, and Martin Desrochers. Optimal routing under capacity and distance restrictions. Operations Research, 33(5):1050-1073, 1985. doi: 10.2307/170853.
Jens Lysgaard, Adam N. Letchford, and Richard W. Eglese. A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming, 100(2):423-445, 2004. doi: 10.1007/s10107-003-0481-8.
Rafael Martinelli, Marcus Poggi, and Anand Subramanian. Improved bounds for large scale capacitated arc routing problem. Computers 8 Operations Research, 40(8):2145-2160, 2013. doi: 10.1016/j.cor.2013.02.013.
C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer programming formulations of traveling salesman problems. Journal of the Association for Computing Machinery (JACM), 7:326-329, 1960. doi: 10.1145/321043.321046.
Paolo Toth and Daniele Vigo, editors. Vehicle Routing, volume 18 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2014. ISBN 978-1-61197-358-7.
José M. Valério de Carvalho. Exact solution of bin-packing problems using column generation and branch-and-bound. Annals of Operations Research, 86:629-659, 1999. doi: 10.1023/A:1018952112615.
Thibaut Vidal, Maria Battarra, Anand Subramanian, and Güneş Erdoğan. Hybrid metaheuristics for the clustered vehicle routing problem. Computers \& Operations Research, 58:87-99, June 2015. doi: 10.1016/j.cor.2014.10.019.

Online Appendix

In this Appendix, we present instance-by-instance results. The entries in the Tables 6-8 have the following meaning:

Group: Subset of instances: A, B, P, C, and G for the GVRP instances; Golden1-Golden20 for the Golden instances
No.: Number of the instance for the self-generated, smaller-sized Grid instances
n : Number of customers
k : Number of vehicles in the original CVRP instance
N : Number of customer clusters
m : Number of vehicles for the SoftCluVRP
$U B: \quad$ Upper bound; bold if $L B=U B$, i.e., optimality is proven
LB: Lower bound; bold ditto
Moreover, we indicate which SoftCluVRP algorithm has computed/proven a(n) upper/lower bound for the first time ("first found by"):

HI20: branch-and-price of Hintsch and Irnich (2020)
H19: metaheuristic of Hintsch (2019)
DS17: metaheuristic of Defryn and Sörensen (2017)
BEV19: exact algorithm of Battarra et al. (2014)
B\&C: Trans:dyn, MTZ:static, Tree:none
*B\&C: Trans:dyn, MTZ:static, Tree:none with a time limit of 36,000 seconds (10 hours)
\diamond B\&C: Trans:dyn, MTZ:static, Tree:none, BKS provided as $U B$
\bullet B\&C: Trans:static, MTZ:none
\dagger B\&C: Trans:static, MTZ:static, ProbCC:none
pretest: Pretests with one of the algorithms described in Section 5.1
grid: grid lower bound from Section 4.2
relax: relax lower bound from model (6) with a time limit of 600 seconds, see Section 4.2
Table 6 displays the results for the GVRP instances, Table 7 for the Golden instances, and Table 8 for the self-generated Grid instances.

Table 6: Detailed results for the GVRP instances.

Instance					Results					
					$U B$	$L B$	first found by		time T	
Group	$n+1$	k	N	m			$U B$	LB	HI20	B\&C
GVRP-2										
A	32	5	16	2	595	595	HI20	HI20	7	140
A	33	5	17	3	528	528	HI20	HI20	12	4
A	33	6	17	3	561	561	HI20	HI20	5	5
A	34	5	17	3	568	568	HI20	HI20	13	3
A	36	5	18	2	596	596	HI20	HI20	65	101
A	37	5	19	3	573	573	HI20	HI20	6	4
A	37	6	19	3	660	660	HI20	HI20	4	10
A	38	5	19	3	547	547	HI20	HI20	1	2
A	39	5	20	3	659	659	HI20	HI20	78	9
A	39	6	20	3	676	676	HI20	HI20	78	375
A	44	6	22	3	723	723	HI20	HI20	23	42
A	45	6	23	4	679	679	HI20	HI20	4	1
A	45	7	23	4	774	774	HI20	HI20	242	1856
A	46	7	23	4	708	708	HI20	HI20	209	49
A	48	7	24	4	784	784	HI20	HI20	1431	149
A	53	7	27	4	732	732	HI20	HI20	285	56
A	54	7	27	4	806	806	HI20	HI20	265	1147
A	55	9	28	5	778	778	HI20	HI20	84	68
A	60	9	30	5	877	877	HI20	HI20	2010	262
A	61	9	31	5	749	749	HI20	HI20	142	432
A	62	8	31	4	849	849	HI20	HI20	839	692
A	63	9	32	5	1043	1043	HI20	HI20	3159	TL
A	63	10	32	5	895	895	HI20	HI20	512	TL
A	64	9	32	5	895	895	HI20	HI20	1132	TL
A	65	9	33	5	825	825	HI20	HI20	2544	TL
A	69	9	35	5	857	857	HI20	HI20	2506	TL
A	80	10	40	5	1115	1115	HI20	HI20	TL	TL
B	31	5	16	3	451	451	HI20	HI20	7	1
B	34	5	17	3	495	495	HI20	HI20	26	<1
B	35	5	18	3	654	654	HI20	HI20	27	<1
B	38	6	19	3	479	479	HI20	HI20	3	2
B	39	5	20	3	378	378	HI20	HI20	5	<1
B	41	6	21	3	514	514	HI20	HI20	13	50
B	43	6	22	3	522	522	HI20	HI20	897	44
B	44	7	22	4	562	562	HI20	HI20	363	3
B	45	5	23	3	542	542	HI20	HI20	7	1
B	45	6	23	4	506	506	HI20	HI20	141	246
B	50	7	25	4	495	495	HI20	HI20	1	<1
B	50	8	25	5	954	954	HI20	B\&C	TL	502
B	51	7	26	4	672	672	HI20	HI20	123	2
B	52	7	26	4	485	485	HI20	HI20	224	2
B	56	7	28	4	520	520	HI20	B\&C	TL	61
B	57	7	29	4	776	776	H19	B\&C	TL	7

Instance					Results					
					$U B$	$L B$	first found by		time T	
Group	$n+1$	k	N	m			$U B$	LB	HI20	B\&C
B	57	9	29	5	983	983	HI20	HI20	251	1204
B	63	10	32	5	865	865	HI20	HI20	1402	722
B	64	9	32	5	550	550	HI20	HI20	21	5
B	66	9	33	5	849	849	H19	B\&C	TL	207
B	67	10	34	5	721	721	H19	B\&C	TL	1192
B	68	9	34	5	745	745	HI20	HI20	293	21
B	78	10	39	5	842	842	HI20	HI20	TL	TL
P	16	8	8	5	299	299	HI20	HI20	<1	<1
P	19	2	10	2	195	195	HI20	HI20	<1	<1
P	20	2	10	2	208	208	HI20	HI20	<1	1
P	21	2	11	2	208	208	HI20	HI20	<1	<1
P	22	2	11	2	209	209	HI20	HI20	<1	1
P	22	8	11	5	397	397	HI20	HI20	<1	1
P	23	8	12	5	369	369	HI20	HI20	2	5
P	40	5	20	3	401	401	HI20	HI20	10	13
P	45	5	23	3	443	443	HI20	HI20	5	24
P	50	7	25	4	464	464	HI20	HI20	119	173
P	50	8	25	4	501	501	HI20	HI20	230	TL
P	50	10	25	5	512	512	HI20	HI20	56	358
P	51	10	26	6	548	548	HI20	HI20	21	114
P	55	7	28	4	477	477	HI20	HI20	8	284
P	55	8	28	4	484	484	HI20	HI20	40	2096
P	55	10	28	5	514	514	HI20	HI20	5	105
P	55	15	28	8	684	684	HI20	HI20	70	TL
P	60	10	30	5	575	575	HI20	HI20	725	TL
P	60	15	30	8	700	700	HI20	HI20	216	TL
P	65	10	33	5	616	616	HI20	HI20	291	TL
P	70	10	35	5	643	643	HI20	HI20	934	TL
P	76	4	38	2	557	557	HI20	HI20	2745	TL
P	76	5	38	3	571	571	HI20	HI20	2311	TL
P	101	4	51	2	645	645	H19	HI20	TL	TL
G	101	10	51	5	628	628	HI20	HI20	569	TL
C	121	7	61	4	799	782	H19	*B\&C	TL	TL
C	151	12	76	6	805	793	H19	HI20	TL	TL
C	200	16	100	8	944	910	H19	\diamond B\&C	TL	TL
C	262	25	131	12	3655	3355	H19	B\&C	TL	TL
GVRP-3										
A	32	5	11	2	515	515	DS17	HI20	1	<1
A	33	5	11	2	461	461	DS17	HI20	1	1
A	33	6	11	2	554	554	DS17	HI20	2	3
A	34	5	12	2	538	538	DS17	HI20	6	1
A	36	5	12	2	543	543	DS17	HI20	6	1
A	37	5	13	2	545	545	HI20	HI20	11	2
A	37	6	13	2	605	605	DS17	HI20	6	8
A	38	5	13	2	507	507	BEV19	HI20	5	<1

Instance					Results					
					$U B$	LB	first found by		time T	
Group	$n+1$	k	N	m			$U B$	LB	HI20	B\&C
A	39	5	13	2	588	588	DS17	HI20	13	3
A	39	6	13	2	603	603	DS17	HI20	6	4
A	44	6	15	2	691	691	DS17	HI20	27	246
A	45	6	15	3	652	652	DS17	HI20	2	4
A	45	7	15	3	661	661	DS17	HI20	29	11
A	46	7	16	3	642	642	DS17	HI20	12	18
A	48	7	16	3	680	680	DS17	HI20	57	34
A	53	7	18	3	627	627	DS17	HI20	14	<1
A	54	7	18	3	699	699	DS17	HI20	143	41
A	55	9	19	3	645	645	DS17	HI20	9	13
A	60	9	20	3	762	762	DS17	HI20	29	1127
A	61	9	21	4	671	671	DS17	HI20	23	75
A	62	8	21	3	771	771	DS17	HI20	404	48
A	63	9	21	3	837	837	DS17	HI20	43	432
A	63	10	21	4	779	779	DS17	HI20	13	61
A	64	9	22	3	767	767	DS17	HI20	585	934
A	65	9	22	3	693	693	DS17	HI20	14	17
A	69	9	23	3	794	794	DS17	HI20	603	TL
A	80	10	27	4	944	944	DS17	HI20	178	228
B	31	5	11	2	375	375	BEV19	HI20	4	<1
B	34	5	12	2	415	415	DS17	HI20	5	<1
B	35	5	12	2	557	557	DS17	HI20	18	<1
B	38	6	13	2	427	427	DS17	HI20	3	1
B	39	5	13	2	317	317	DS17	HI20	<1	<1
B	41	6	14	2	469	469	DS17	HI20	12	<1
B	43	6	15	2	405	405	DS17	HI20	8	1
B	44	7	15	3	443	443	DS17	HI20	7	2
B	45	5	15	2	489	489	DS17	HI20	3	<1
B	45	6	15	2	386	386	DS17	HI20	4	5
B	50	7	17	3	464	464	DS17	HI20	16	2
B	50	8	17	3	661	661	DS17	HI20	5	8
B	51	7	17	3	578	578	DS17	HI20	17	1
B	52	7	18	3	427	427	BEV19	HI20	11	1
B	56	7	19	3	420	420	DS17	HI20	16	3
B	57	7	19	3	622	622	DS17	HI20	437	1
B	57	9	19	3	746	746	DS17	HI20	1606	24
B	63	10	21	3	685	685	BEV19	HI20	21	3
B	64	9	22	4	524	524	DS17	HI20	32	6
B	66	9	22	3	683	683	DS17	HI20	252	74
B	67	10	23	4	619	619	DS17	HI20	72	7
B	68	9	23	3	582	582	DS17	HI20	25	40
B	78	10	26	4	704	704	DS17	HI20	1109	68
P	16	8	6	4	251	251	DS17	HI20	<1	<1
P	19	2	7	1	170	170	DS17	HI20	<1	<1
P	20	2	7	1	177	177	DS17	HI20	<1	<1
P	21	2	7	1	179	179	DS17	HI20	<1	<1
								Oontinu	on ne	page

Instance					Results					
					$U B$	LB	first found by		time T	
Group	$n+1$	k	N	m			$U B$	LB	HI20	B\&C
P	22	2	8	1	183	183	DS17	HI20	<1	<1
P	22	8	8	4	365	365	BEV19	HI20	<1	<1
P	23	8	8	3	270	270	DS17	HI20	1	1
P	40	5	14	2	381	381	DS17	HI20	8	2
P	45	5	15	2	422	422	DS17	HI20	2	3
P	50	7	17	3	430	430	DS17	HI20	4	9
P	50	8	17	3	441	441	DS17	HI20	3	23
P	50	10	17	4	471	471	DS17	HI20	5	40
P	51	10	17	4	493	493	DS17	HI20	2	11
P	55	7	19	3	454	454	HI20	HI20	21	94
P	55	8	19	3	454	454	HI20	HI20	9	51
P	55	10	19	4	481	481	DS17	HI20	4	21
P	55	15	19	6	572	572	DS17	HI20	9	86
P	60	10	20	4	534	534	HI20	HI20	61	703
P	60	15	20	5	591	591	DS17	HI20	39	967
P	65	10	22	4	575	575	HI20	HI20	8	43
P	70	10	24	4	602	602	DS17	HI20	30	240
P	76	4	26	2	556	556	HI20	HI20	382	50
P	76	5	26	2	556	556	DS17	HI20	71	143
P	101	4	34	2	649	649	DS17	HI20	1899	TL
G	101	10	34	4	598	598	DS17	HI20	1707	1024
C	121	7	41	3	680	673	H19	*B\&C	TL	TL
C	151	12	51	4	756	756	HI20	HI20	TL	TL
C	200	16	67	6	865	858	H19	HI20	TL	TL
C	262	25	88	9	3178	2974	H19	\diamond B\&C	TL	TL

Table 7: Detailed results for the Golden instances.

Instance				Results								
				$U B$	$L B$	first found by		time T		SoftCluVRP ${ }^{\leq m}$		
Group	$n+1$	N	m			$U B$	$L B$	HI20	B\&C	$U B$	LB	time T
Golden1	241	17	4	4640	4640	HI20	HI20	304	TL	4531	4531	2709
Golden1	241	18	4	4645	4636	HI20	HI20	TL	TL	4539	4535	TL
Golden1	241	19	4	4650	4647	HI20	HI20	TL	TL	4597	4523	TL
Golden1	241	21	4	4650	4640	HI20	HI20	TL	TL	4582	4518	TL
Golden1	241	22	4	4650	4638	H19	HI20	TL	TL	4595	4517	TL
Golden1	241	25	4	4650	4614	H19	HI20	$T L$	TL	4628	4505	TL
Golden1	241	27	4	4652	4624	H19	HI20	TL	TL	4652	4478	TL
Golden1	241	31	4	4665	4632	H19	HI20	TL	TL	4665	4474	TL
Golden1	241	35	4	4619	4583	H19	HI20	TL	$T L$	4619	4441	TL
Golden1	241	41	4	4619	4525	H19	B\&C	TL	TL	4619	4470	TL
Golden1	241	49	4	4607	4525	H19	B\&C	TL	TL	4607	4470	TL
Golden2	321	22	4	7394	7393	H19	HI20	TL	$T L$	7394	7135	TL
Golden2	321	23	4	7369	7369	HI20	HI20	2836	TL	7369	7129	TL
Golden2	321	25	4	7367	7366	H19	HI20	TL	TL	7367	7126	TL
Golden2	321	27	4	7333	7329	H19	HI20	TL	TL	7333	7080	TL
Golden2	321	30	4	7329	7162	H19	B\&C	TL	TL	7329	7107	TL
Golden2	321	33	4	7311	7162	H19	B\&C	$T L$	TL	7311	7107	TL
Golden2	321	36	4	7293	7162	H19	- B\&C	TL	TL	7293	7107	TL
Golden2	321	41	4	7283	7161	H19	B\&C	TL	TL	7283	7106	TL
Golden2	321	46	4	7284	7161	H19	B\&C	TL	TL	7284	7106	TL
Golden2	321	54	4	7274	7160	H19	B\&C	TL	TL	7274	7105	TL
Golden2	321	65	4	7261	7160	H19	B\&C	$T L$	TL	7261	7105	TL
Golden3	401	27	4	10077	10064	H19	HI20	TL	TL	10077	9733	TL
Golden3	401	29	4	10018	9795	H19	pretest	TL	TL	10018	9727	TL
Golden3	401	31	4	10002	9783	H19	\diamond B\&C	TL	TL	10002	9723	TL
Golden3	401	34	4	9995	9772	H19	$\dagger \mathrm{B} \& \mathrm{C}$	TL	TL	9995	9713	TL
Golden3	401	37	4	9986	9762	H19	\diamond B\&C	TL	TL	9986	9708	TL
Golden3	401	41	4	9926	9763	H19	- B\&C	TL	TL	9926	9712	TL
Golden3	401	45	4	9936	9759	H19	B\&C	TL	$T L$	9936	9704	TL
Golden3	401	51	4	9916	9742	H19	B\&C	TL	$T L$	9916	9687	TL
Golden3	401	58	4	9910	9741	H19	B\&C	$T L$	TL	9910	9686	TL
Golden3	401	67	4	9901	9741	H19	B\&C	$T L$	$T L$	9901	9686	TL
Golden3	401	81	4	9868	9740	H19	B\&C	TL	TL	9868	9685	TL
Golden4	481	33	4	12741	12409	H19	pretest	TL	TL	12741	12331	TL
Golden4	481	35	4	12740	12427	H19	pretest	TL	TL	12740	12325	TL
Golden4	481	37	4	12645	12376	H19	\diamond B\&C	$T L$	TL	12645	12323	TL
Golden4	481	41	4	12568	12375	H19	relax	$T L$	TL	12568	12310	TL
Golden4	481	44	4	12566	12375	H19	relax	$T L$	$T L$	12566	12315	TL
Golden4	481	49	4	12566	12375	H19	relax	TL	TL	12566	12324	TL
Golden4	481	54	4	12525	12367	H19	relax	TL	$T L$	12525	12307	TL
Golden4	481	61	4	12558	12367	H19	relax	TL	TL	12558	12294	TL
Golden4	481	69	4	12573	12347	H19	B\&C	TL	TL	12573	12292	TL
Golden4	481	81	4	12555	12339	H19	B\&C	TL	TL	12555	12282	TL
										Contin	d on	t page

Instance				Results								
				$U B$	$L B$	first found by		time T		SoftCluVRP ${ }^{\leq m}$		
Group	$n+1$	N	m			$U B$	LB	HI20	B\&C	$U B$	LB	time T
Golden4	481	97	4	12528	12337	H19	B\&C	TL	TL	12528	12282	TL
Golden5	201	14	4	6970	6970	HI20	HI20	212	533	6742	6742	377
Golden5	201	15	3	6742	6742	HI20	HI20	280	582	6742	6742	241
Golden5	201	16	3	6742	6742	HI20	HI20	142	922	6742	6742	261
Golden5	201	17	3	6862	6862	HI20	HI20	380	1731	6862	6862	783
Golden5	201	19	4	6874	6874	HI20	HI20	180	2907	6735	6735	2485
Golden5	201	21	4	6816	6816	HI20	HI20	666	2679	6637	6637	1136
Golden5	201	23	4	6750	6750	HI20	HI20	260	TL	6637	6637	3352
Golden5	201	26	4	6704	6704	HI20	HI20	647	TL	6521	6521	1959
Golden5	201	29	4	6704	6704	HI20	HI20	779	TL	6521	6521	TL
Golden5	201	34	4	6684	6684	HI20	HI20	TL	TL	6567	6389	TL
Golden5	201	41	4	6557	6557	HI20	HI20	2010	TL	6557	6317	TL
Golden6	281	19	3	8115	8115	HI20	HI20	1110	3140	8115	8115	1824
Golden6	281	21	3	8119	8119	HI20	HI20	901	TL	8119	8068	TL
Golden6	281	22	3	8107	8107	HI20	HI20	1053	TL	8107	8047	TL
Golden6	281	24	4	8316	8316	HI20	HI20	2491	TL	8267	8008	TL
Golden6	281	26	4	8249	8249	HI20	HI20	2568	TL	8225	7987	TL
Golden6	281	29	4	8244	8234	H19	HI20	TL	TL	8244	7966	TL
Golden6	281	32	4	8179	8175	H19	HI20	TL	TL	8179	7955	TL
Golden6	281	36	4	8179	8178	H19	HI20	TL	TL	8179	7947	TL
Golden6	281	41	4	8204	7995	H19	-B\&C	TL	TL	8204	7938	TL
Golden6	281	47	4	8179	7970	H19	relax	TL	TL	8179	7913	TL
Golden6	281	57	4	8204	7960	H19	B\&C	TL	TL	8204	7908	TL
Golden7	361	25	3	9318	9318	HI20	HI20	TL	TL	9318	9173	TL
Golden7	361	26	3	9295	9295	HI20	HI20	TL	TL	9295	9173	TL
Golden7	361	28	3	9271	9150	H19	$\dagger \mathrm{B} \& \mathrm{C}$	TL	TL	9271	9151	TL
Golden7	361	31	4	9418	9418	HI20	HI20	TL	TL	9418	9159	TL
Golden7	361	33	4	9395	9215	H19	- B\&C	TL	TL	9395	9155	TL
Golden7	361	37	4	9395	9395	HI20	HI20	TL	TL	9395	9161	TL
Golden7	361	41	4	9386	9198	H19	\diamond B\&C	TL	TL	9386	9142	TL
Golden7	361	46	4	9368	9177	H19	\dagger B\&C	TL	TL	9368	9111	TL
Golden7	361	52	4	9365	9173	H19	\diamond B\&C	TL	TL	9365	9118	TL
Golden7	361	61	4	9316	9157	H19	B\&C	TL	TL	9316	9102	TL
Golden7	361	73	4	9302	9157	H19	B\&C	TL	TL	9302	9102	TL
Golden8	441	30	4	10409	10190	H19	pretest	TL	TL	10409	10122	TL
Golden8	441	32	4	10409	10197	H19	relax	TL	TL	10409	10120	TL
Golden8	441	34	4	10409	10177	H19	\diamond B\&C	TL	TL	10409	10121	TL
Golden8	441	37	4	10360	10198	H19	\diamond B\&C	TL	TL	10360	10142	TL
Golden8	441	41	4	10360	10219	H19	relax	TL	TL	10360	10155	TL
Golden8	441	45	4	10385	10198	H19	-B\&C	TL	TL	10385	10141	TL
Golden8	441	49	4	10399	10195	H19	B\&C	TL	TL	10399	10139	TL
Golden8	441	56	4	10371	10195	H19	B\&C	TL	TL	10371	10139	TL
Golden8	441	63	4	10361	10195	H19	B\&C	TL	TL	10361	10139	TL
Golden8	441	74	4	10356	10195	H19	B\&C	TL	TL	10356	10139	TL
Golden8	441	89	4	10281	10195	H19	B\&C	TL	$T L$	10281	10139	TL

Instance				Results								
				$U B$	LB	first found by		time T		SoftCluVRP ${ }^{\leq m}$		
Group	$n+1$	N	m			$U B$	LB	HI20	B\&C	$U B$	LB	time T
Golden9	256	18	4	281	281	HI20	HI20	1287	TL	276	269	TL
Golden9	256	19	4	279	279	HI20	HI20	209	TL	276	269	TL
Golden9	256	20	4	276	276	HI20	HI20	112	TL	273	269	TL
Golden9	256	22	4	276	276	HI20	HI20	217	TL	276	269	TL
Golden9	256	24	4	276	276	HI20	HI20	175	TL	270	269	TL
Golden9	256	26	4	273	273	HI20	HI20	465	TL	273	266	TL
Golden9	256	29	4	273	273	HI20	HI20	985	TL	273	266	TL
Golden9	256	32	4	273	273	HI20	HI20	1650	TL	273	266	TL
Golden9	256	37	4	273	273	HI20	HI20	TL	TL	273	266	TL
Golden9	256	43	4	270	270	H19	HI20	TL	TL	270	262	TL
Golden9	256	52	4	269	268	H19	HI20	TL	TL	269	262	TL
Golden10	324	22	4	346	346	HI20	HI20	923	TL	346	345	TL
Golden10	324	24	4	346	346	HI20	HI20	1014	TL	346	345	TL
Golden10	324	25	4	346	346	HI20	HI20	1114	TL	346	345	TL
Golden10	324	27	4	346	346	HI20	HI20	1360	TL	346	345	TL
Golden10	324	30	4	347	347	HI20	HI20	1848	TL	347	345	TL
Golden10	324	33	4	344	344	HI20	HI20	2725	TL	344	341	TL
Golden10	324	36	4	344	344	HI20	HI20	TL	TL	344	341	TL
Golden10	324	41	4	346	340	H19	grid	TL	TL	346	340	TL
Golden10	324	47	4	344	340	H19	grid	TL	TL	344	340	TL
Golden10	324	54	4	340	338	H19	grid	TL	TL	340	338	$T L$
Golden10	324	65	4	335	334	H19	grid	TL	TL	335	334	TL
Golden11	400	27	5	434	434	HI20	HI20	TL	TL	434	423	TL
Golden11	400	29	5	434	434	HI20	HI20	TL	TL	434	423	TL
Golden11	400	31	5	433	433	HI20	HI20	2661	TL	433	423	TL
Golden11	400	34	5	427	427	HI20	HI20	TL	$T L$	427	416	TL
Golden11	400	37	5	427	427	H19	HI20	TL	TL	427	416	TL
Golden11	400	40	5	425	425	H19	HI20	TL	TL	425	415	TL
Golden11	400	45	5	425	425	H19	HI20	TL	TL	425	415	TL
Golden11	400	50	5	423	422	H19	grid	TL	TL	423	415	TL
Golden11	400	58	5	422	422	H19	grid	TL	TL	422	415	TL
Golden11	400	67	5	422	422	H19	grid	TL	TL	422	415	TL
Golden11	400	80	5	417	416	H19	grid	TL	TL	417	410	TL
Golden12	484	33	5	512	507	H19	grid	TL	TL	512	500	TL
Golden12	484	35	5	512	507	H19	grid	TL	TL	512	500	TL
Golden12	484	38	5	511	507	H19	grid	TL	TL	511	500	TL
Golden12	484	41	5	512	507	H19	grid	TL	TL	512	500	TL
Golden12	484	44	5	511	507	H19	grid	TL	TL	511	500	TL
Golden12	484	49	5	511	507	H19	grid	TL	TL	511	500	TL
Golden12	484	54	5	510	507	H19	grid	TL	TL	510	500	TL
Golden12	484	61	5	510	507	H19	grid	TL	TL	510	500	TL
Golden12	484	70	5	509	506	H19	grid	TL	TL	509	499	TL
Golden12	484	81	5	502	498	H19	grid	TL	$T L$	502	493	TL
Golden12	484	97	5	502	498	H19	grid	TL	TL	502	493	TL
Golden13	253	17	4	530	530	HI20	HI20	116	2378	519	519	506
										ontin	on	xt page

Instance				Results								
				$U B$	LB	first found by		time T		SoftCluVRP ${ }^{\leq m}$		
Group	$n+1$	N	m			$U B$	LB	HI20	B\&C	$U B$	LB	time T
Golden13	253	19	4	521	521	HI20	HI20	189	983	516	516	26
Golden13	253	20	4	521	521	HI20	HI20	192	538	516	516	13
Golden13	253	22	4	523	523	HI20	HI20	203	TL	516	516	48
Golden13	253	23	4	523	523	HI20	HI20	215	3496	516	516	73
Golden13	253	26	4	523	523	HI20	HI20	118	TL	516	516	74
Golden13	253	29	4	522	522	HI20	HI20	1483	TL	516	516	1551
Golden13	253	32	4	521	521	HI20	HI20	286	TL	516	516	TL
Golden13	253	37	4	521	521	HI20	HI20	2305	TL	521	516	TL
Golden13	253	43	4	521	521	HI20	HI20	TL	$T L$	521	516	TL
Golden13	253	51	4	521	521	H19	HI20	$T L$	$T L$	521	516	TL
Golden14	321	22	4	665	665	HI20	HI20	1814	$T L$	665	653	TL
Golden14	321	23	4	662	662	HI20	HI20	752	TL	655	652	TL
Golden14	321	25	4	660	660	HI20	HI20	637	TL	653	652	TL
Golden14	321	27	4	660	660	HI20	HI20	3067	TL	652	652	3067
Golden14	321	30	4	660	660	HI20	HI20	TL	$T L$	652	652	TL
Golden14	321	33	4	660	660	H19	HI20	TL	$T L$	660	652	TL
Golden14	321	36	4	658	658	H19	HI20	TL	TL	658	652	TL
Golden14	321	41	4	658	658	HI20	HI20	TL	$T L$	658	652	TL
Golden14	321	46	4	658	657	H19	grid	TL	$T L$	658	652	TL
Golden14	321	54	4	658	657	H19	grid	TL	$T L$	658	652	TL
Golden14	321	65	4	658	657	H19	grid	TL	TL	658	652	TL
Golden15	397	27	4	815	815	H19	HI20	TL	TL	815	813	TL
Golden15	397	29	4	815	815	H19	HI20	TL	$T L$	815	813	TL
Golden15	397	31	4	813	813	HI20	HI20	3176	$T L$	813	813	TL
Golden15	397	34	4	813	813	H19	HI20	TL	$T L$	813	813	TL
Golden15	397	37	4	815	813	H19	grid	TL	$T L$	815	813	TL
Golden15	397	40	4	815	813	H19	grid	TL	TL	815	813	TL
Golden15	397	45	5	817	815	H19	relax	TL	TL	817	808	TL
Golden15	397	50	5	815	815	H19	relax	TL	TL	815	808	TL
Golden15	397	57	5	815	815	H19	relax	$T L$	$T L$	815	808	TL
Golden15	397	67	5	815	815	H19	relax	TL	TL	815	808	TL
Golden15	397	80	5	815	815	H19	relax	TL	TL	815	808	TL
Golden16	481	33	5	993	990	H19	grid	$T L$	$T L$	993	980	TL
Golden16	481	35	5	993	993	H19	HI20	TL	TL	993	980	TL
Golden16	481	37	5	993	992	H19	HI20	TL	TL	993	980	TL
Golden16	481	41	5	993	990	H19	grid	$T L$	$T L$	993	980	TL
Golden16	481	44	5	993	990	H19	grid	TL	TL	993	980	TL
Golden16	481	49	5	989	987	H19	grid	TL	$T L$	989	979	TL
Golden16	481	54	5	985	984	H19	grid	TL	TL	985	977	TL
Golden16	481	61	5	985	984	H19	grid	$T L$	$T L$	985	977	TL
Golden16	481	69	5	984	984	H19	grid	TL	TL	984	977	TL
Golden16	481	81	5	984	984	H19	grid	TL	TL	984	977	TL
Golden16	481	97	5	984	984	H19	grid	TL	TL	984	977	TL
Golden17	241	17	3	386	386	HI20	HI20	132	417	386	386	269
Golden17	241	18	3	385	385	HI20	HI20	290	341	385	385	290

Instance				Results								
				$U B$	$L B$	first found by		time T		SoftCluVRP ${ }^{\leq m}$		
Group	$n+1$	N	m			$U B$	LB	HI20	B\&C	$U B$	LB	time T
Golden17	241	19	3	385	385	HI20	HI20	220	342	385	385	295
Golden17	241	21	3	385	385	HI20	HI20	457	625	385	385	316
Golden17	241	22	3	385	385	HI20	HI20	372	750	385	385	570
Golden17	241	25	3	382	382	HI20	HI20	487	1093	382	382	619
Golden17	241	27	3	382	382	HI20	HI20	1039	1851	382	382	1774
Golden17	241	31	4	390	390	HI20	HI20	661	1707	382	382	2582
Golden17	241	35	4	390	389	H19	HI20	TL	TL	381	379	TL
Golden17	241	41	4	388	388	HI20	HI20	TL	TL	382	378	TL
Golden17	241	49	4	387	386	H19	HI20	TL	TL	387	376	TL
Golden18	301	21	4	558	558	HI20	HI20	694	1571	552	547	TL
Golden18	301	22	4	558	558	HI20	HI20	781	1881	553	553	TL
Golden18	301	24	4	558	558	HI20	HI20	831	TL	553	548	TL
Golden18	301	26	4	562	562	HI20	HI20	974	TL	552	544	TL
Golden18	301	28	4	558	558	HI20	HI20	TL	TL	551	541	TL
Golden18	301	31	4	554	554	HI20	HI20	2450	TL	554	541	TL
Golden18	301	34	4	554	554	HI20	HI20	1992	TL	554	540	TL
Golden18	301	38	4	555	555	HI20	HI20	TL	TL	551	540	TL
Golden18	301	43	4	558	550	H19	\diamond B\&C	TL	TL	558	540	TL
Golden18	301	51	4	555	549	H19	$\dagger \mathrm{B} \& \mathrm{C}$	TL	TL	555	540	TL
Golden18	301	61	4	556	548	H19	-B\&C	TL	TL	556	538	TL
Golden19	361	25	10	886	886	HI20	HI20	538	TL	738	730	TL
Golden19	361	26	10	888	888	HI20	HI20	1208	TL	763	725	TL
Golden19	361	28	4	741	741	HI20	HI20	1479	TL	741	730	TL
Golden19	361	31	4	735	735	HI20	HI20	TL	TL	735	728	TL
Golden19	361	33	4	727	727	HI20	HI20	2719	$T L$	727	723	TL
Golden19	361	37	5	732	732	HI20	HI20	2612	$T L$	732	716	TL
Golden19	361	41	5	730	730	HI20	HI20	TL	TL	730	714	TL
Golden19	361	46	5	730	721	H19	B\&C	TL	TL	730	713	TL
Golden19	361	52	5	730	730	HI20	HI20	TL	TL	730	712	TL
Golden19	361	61	5	737	721	H19	B\&C	TL	$T L$	737	713	TL
Golden19	361	73	5	736	721	H19	B\&C	TL	TL	736	712	TL
Golden20	421	29	11	1170	1170	HI20	HI20	1099	TL	1052	971	TL
Golden20	421	31	12	1183	1183	HI20	HI20	1080	TL	1088	966	TL
Golden20	421	33	12	1175	1175	HI20	HI20	2381	TL	1162	966	TL
Golden20	421	36	5	1005	1005	H19	HI20	TL	TL	1005	963	TL
Golden20	421	39	5	991	971	H19	B\&C	TL	$T L$	991	961	TL
Golden20	421	43	5	990	971	H19	$\dagger \mathrm{B} \& \mathrm{C}$	TL	TL	990	962	TL
Golden20	421	47	5	988	970	H19	\diamond B\&C	TL	TL	988	961	TL
Golden20	421	53	5	988	970	H19	relax	TL	TL	988	961	TL
Golden20	421	61	5	987	970	H19	relax	TL	TL	987	961	TL
Golden20	421	71	5	986	970	H19	relax	TL	TL	986	961	TL
Golden20	421	85	5	980	969	H19	relax	TL	TL	980	960	TL

Table 8: Detailed results for square Grid instances.

Instance				Results											
				reduced						non-red	ced				
No.	n	N	m	$U B$	$L B$	time T	\#nodes	\#cols	\#rows	UB	$L B$	time T	\#nodes	\#cols	\#rows
1	121	6	2	134.9	134.9	11	55	6.240	4.428	134.9	134.9	22	89	7.281	5.211
2	121	6	2	135.5	135.5	10	48	5.383	3.836	135.5	135.5	18	17	7.281	4.938
3	121	6	2	130.7	130.7	14	273	5.192	3.967	130.7	130.7	13	82	7.281	5.666
4	121	6	2	123.7	123.7	7	104	6.144	4.730	123.7	123.7	4	102	7.281	5.571
5	121	6	2	124.9	124.9	3	17	5.846	4.571	124.9	124.9	6	544	7.281	5.735
6	121	6	2	128.4	128.4	11	28	6.958	4.949	128.4	128.4	10	253	7.281	5.191
7	121	8	3	144.7	144.7	82	1.252	6.657	5.598	144.7	144.7	69	839	7.296	6.132
8	121	8	3	151.7	151.7	256	6.573	6.357	5.037	151.7	151.7	114	904	7.296	5.769
9	121	8	3	151.7	151.7	30	29	6.069	4.881	151.7	151.7	58	309	7.296	5.779
10	121	8	3	128.9	128.9	16	660	6.663	5.587	128.9	128.9	19	423	7.296	6.122
11	121	8	3	131.6	131.6	28	29	7.080	5.967	131.6	131.6	21	60	7.296	6.161
12	121	8	4	134.0	134.0	28	21	6.263	4.677	134.0	134.0	47	27	7.296	5.416
13	121	10	3	147.6	147.6	156	2.461	7.207	6.137	147.6	147.6	247	4.072	7.315	6.231
14	121	10	3	148.0	148.0	470	4.045	6.891	5.710	148.0	147.9	413	6.264	7.315	6.052
15	121	10	4	157.8	157.8	140	2.283	6.783	5.769	157.8	157.8	240	2.931	7.315	6.243
16	121	10	4	137.0	137.0	65	414	6.993	5.968	137.0	137.0	64	393	7.315	6.265
17	121	10	4	134.4	134.4	34	629	6.991	5.643	134.4	134.4	54	197	7.315	5.859
18	121	10	3	127.7	127.7	68	5.830	6.991	6.093	127.7	127.7	26	633	7.315	6.360
19	121	12	5	181.8	181.7	859	10.619	6.696	5.747	181.8	181.7	758	6.614	7.338	6.278
20	121	12	5	185.8	185.8	2607	19.868	7.338	6.490	185.8	185.8	2607	19.868	7.338	6.490
21	121	12	4	168.7	164.6	TL	34.449	6.284	5.299	168.7	162.0	TL	25.116	7.338	6.089
22	121	12	4	144.7	144.7	217	3.668	6.588	5.675	144.7	144.7	341	7.769	7.338	6.326
23	121	12	4	142.8	142.7	529	7.727	6.912	6.015	142.8	142.8	435	4.093	7.338	6.388
24	121	12	4	149.3	149.3	554	7.700	7.338	6.265	149.3	149.3	552	8.939	7.338	6.265
25	121	14	5	174.1	174.1	2224	26.489	7.046	6.207	174.5	169.3	$T L$	33.923	7.365	6.477
26	121	14	5	166.2	166.2	1506	21.842	7.365	6.708	166.2	166.2	1507	21.842	7.365	6.708
27	121	14	4	166.2	150.4	TL	18.496	7.365	6.789	161.8	152.2	$T L$	25.457	7.365	6.789
28	121	14	5	136.6	136.6	96	1.249	7.365	6.590	136.6	136.6	76	802	7.365	6.590
29	121	14	4	137.4	137.4	768	14.998	6.934	6.000	137.4	137.4	292	4.003	7.365	6.378
30	121	14	5	144.9	144.9	186	4.409	6.828	5.968	144.9	144.9	483	17.003	7.365	6.398
31	169	6	2	183.2	183.2	41	116	11.406	8.813	183.2	183.2	65	262	14.217	11.262
32	169	6	3	191.7	191.7	49	35	10.575	8.497	191.7	191.7	71	63	14.217	11.586
33	169	6	2	189.9	189.9	45	374	10.337	7.782	189.9	189.9	64	110	14.217	10.614
34	169	6	2	175.1	175.1	24	53	7.885	5.638	175.1	175.1	9	9	14.217	8.928
35	169	6	3	178.0	178.0	21	31	13.006	10.166	178.0	178.0	23	19	14.217	11.165
36	169	6	2	171.7	171.6	11	73	11.402	9.128	171.7	171.7	8	21	14.217	11.387
37	169	8	3	217.8	211.3	TL	42.500	13.012	11.147	217.0	217.0	1220	1.848	14.232	12.215
38	169	8	2	184.2	184.2	79	312	12.701	10.475	184.2	184.2	58	289	14.232	11.833
39	169	8	3	194.0	194.0	135	2.243	10.744	8.805	194.0	194.0	71	235	14.232	11.609
40	169	8	3	180.2	180.2	31	244	12.416	10.200	180.2	180.2	73	1.547	14.232	11.756
41	169	8	3	178.5	178.5	56	670	12.580	10.461	178.5	178.5	56	800	14.232	11.906
42	169	8	3	184.3	184.3	73	645	11.871	9.374	184.3	184.3	96	1.004	14.232	11.224
43	169	10	4	218.7	218.7	2026	6.464	12.588	11.021	218.7	218.7	443	2.679	14.251	12.430
44	169	10	4	221.3	221.3	525	3.100	13.186	11.171	221.3	221.3	1069	3.781	14.251	12.108
45	169	10	3	209.6	197.8	TL	17.723	11.754	9.900	217.3	187.9	$T L$	17.151	14.251	12.080
46	169	10	3	183.1	183.1	215	3.825	11.040	8.812	183.1	183.1	310	5.254	14.251	11.033
47	169	10	3	190.8	184.5	TL	27.593	13.179	11.516	189.3	181.1	TL	34.370	14.251	12.487
48	169	10	3	178.6	178.6	63	985	12.005	10.323	178.6	178.6	362	5.104	14.251	12.298
49	169	12	4	222.4	222.4	3559	18.086	12.463	10.411	222.4	217.6	TL	14.217	14.274	11.743
50	169	12	5	237.8	237.8	923	7.220	11.471	9.600	237.8	237.8	941	8.284	14.274	11.774
51	169	12	4	213.4	213.4	1688	16.525	12.310	10.715	214.7	204.2	TL	14.793	14.274	12.365
52	169	12	4	186.0	186.0	420	2.353	11.763	9.977	186.0	186.0	968	3.848	14.274	12.060
53	169	12	4	184.0	184.0	94	502	13.963	12.297	184.0	184.0	133	1.479	14.274	12.589
54	169	12	5	193.4	193.4	198	1.217	11.730	10.291	193.4	193.4	202	1.789	14.274	12.416
55	169	14	5	241.8	220.4	TL	17.207	12.501	10.997	244.0	218.8	$T L$	10.514	14.301	12.560
56	169	14	5	239.2	220.3	TL	14.034	13.846	12.227	243.6	209.2	$T L$	12.467	14.301	12.602
57	169	14	5	254.1	207.1	TL	5.475	13.990	12.422	273.3	210.7	TL	4.615	14.301	12.706
58	169	14	5	200.2	200.2	335	3.739	14.143	12.149	200.2	200.2	331	2.508	14.301	12.304
59	169	14	5	192.5	192.5	309	3.158	14.301	12.997	192.5	192.5	309	3.158	14.301	12.997
60	169	14	4	181.5	181.5	228	2.394	11.347	9.844	181.5	181.5	444	3.796	14.301	12.044
61	225	6	2	238.0	238.0	3084	143.818	13.152	9.517	238.0	238.0	749	16.137	25.221	18.062
62	225	6	3	268.2	268.2	82	89	15.012	10.724	268.2	268.2	152	162	25.221	16.435
63	225	6	3	259.9	259.9	67	98	14.081	10.246	259.9	259.9	493	3.139	25.221	18.243
64	225	6	3	238.8	238.8	26	178	12.956	9.056	238.8	238.8	32	44	25.221	16.670
65	225	6	3	237.5	237.5	30	25	18.579	14.800	237.5	237.5	55	355	25.221	20.660
66	225	6	2	229.3	229.3	22	26	15.123	11.577	229.3	229.3	33	66	25.221	18.956
67	225	8	2	245.5	245.5	308	1.372	14.857	11.298	245.5	245.5	789	1.201	25.236	19.394
68	225	8	3	255.5	255.5	137	229	16.313	12.624	255.5	255.5	262	381	25.236	19.495
69	225	8	3	249.0	249.0	237	946	19.107	16.176	249.0	249.0	105	122	25.236	21.440

Instance				Results											
No.	n	N	m	reduced						non-reduced					
				$U B$	$L B$	time T	\#nodes	\#cols	\#rows	UB	$L B$	time T	\#nodes	\#cols	\#rows
70	225	8	2	229.9	229.9	64	194	17.211	13.317	229.9	229.9	116	54	25.236	19.093
71	225	8	3	237.1	237.1	78	203	20.984	17.498	237.1	237.1	57	234	25.236	21.324
72	225	8	3	232.0	232.0	22	115	19.659	16.305	232.0	232.0	38	204	25.236	20.891
73	225	10	4	279.0	279.0	860	2.002	20.265	17.105	279.0	279.0	1852	3.746	25.255	21.286
74	225	10	3	252.9	242.8	TL	13.441	22.596	19.747	252.4	245.6	$T L$	10.978	25.255	22.084
75	225	10	3	267.7	267.7	2462	12.827	19.932	14.895	268.3	258.6	$T L$	10.959	25.255	18.826
76	225	10	4	236.9	236.9	97	519	22.168	19.294	236.9	236.8	98	508	25.255	22.111
77	225	10	4	242.7	242.7	1164	66.996	20.651	17.535	242.7	242.7	121	1.097	25.255	21.480
78	225	10	4	242.4	242.4	96	326	20.995	18.206	242.4	242.4	88	268	25.255	21.813
79	225	12	4	307.6	265.9	TL	5.107	21.421	17.484	308.5	259.5	TL	6.998	25.278	20.293
80	225	12	4	293.1	249.0	$T L$	7.661	21.616	18.943	283.9	254.7	$T L$	8.985	25.278	22.044
81	225	12	4	282.6	256.3	$T L$	6.601	21.804	19.103	285.6	257.6	$T L$	5.383	25.278	22.141
82	225	12	5	254.6	254.5	514	5.185	22.210	19.659	254.6	254.5	511	3.118	25.278	22.412
83	225	12	4	243.7	243.7	997	8.931	20.650	17.955	243.7	243.7	614	4.816	25.278	21.736
84	225	12	3	239.3	239.3	1011	9.041	24.853	22.162	239.3	239.3	1611	14.411	25.278	22.548
85	225	14	5	371.8	259.1	TL	6.599	23.430	20.701	360.9	267.6	$T L$	6.127	25.305	22.391
86	225	14	5	330.5	272.1	$T L$	10.855	21.054	18.595	325.0	257.7	$T L$	4.188	25.305	22.165
87	225	14	5	335.3	261.1	TL	4.371	22.429	20.178	335.3	264.6	$T L$	3.415	25.305	22.758
88	225	14	5	252.2	252.1	1242	13.298	21.057	18.070	252.2	252.1	1177	7.772	25.305	21.458
89	225	14	4	285.4	233.6	TL	10.966	22.424	20.345	272.6	233.1	TL	6.631	25.305	23.019
90	225	14	4	249.5	249.4	2711	18.971	22.008	19.684	249.5	249.4	3262	21.263	25.305	22.616
Tota	(90)					1056	8291	12832	10747			1072	5470	15611	12909

[^0]: * Corresponding author.

 Email addresses: khessler@uni-mainz.de (Katrin Heßler), irnich@uni-mainz.de (Stefan Irnich)

