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A Branch-and-Cut Algorithm for the Soft-Clustered Vehicle-Routing Problem

Katrin Heßler∗,a, Stefan Irnicha

aChair of Logistics Management, Gutenberg School of Management and Economics,
Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

The soft-clustered vehicle-routing problem is a variant of the classical capacitated vehicle-routing problem
(CVRP) in which customers are partitioned into clusters and all customers of the same cluster must be
served by the same vehicle. We introduce a novel symmetric formulation of the problem in which the
clustering part is modeled with an asymmetric sub-model. We solve the new model with a branch-and-cut
algorithm exploiting some known valid inequalities for the CVRP that can be adapted. In addition, we
derive problem-specific cutting planes and new heuristic and exact separation procedures. For square grid
instances in the Euclidean plane, we provide lower-bounding techniques and a reduction scheme that is also
applicable to the respective traveling salesman problem. In comprehensive computational test on standard
benchmark instances, we compare the different formulations and separation strategies in order to determine
a best performing algorithmic setup. The computational results with this branch-and-cut algorithm show
that several previously open instances can now be solved to proven optimality.

Key words: vehicle routing, clustered customers, branch-and-cut

1. Introduction

The soft-clustered vehicle-routing problem (SoftCluVRP) is a variant of the classical capacitated vehicle-
routing problem (CVRP, Toth and Vigo 2014) in which customers are partitioned into clusters, and all
customers of the same cluster must be served by the same vehicle. In contrast to the hard-clustered variant,
where a cluster must be served completely before the next cluster is served, we consider the variant in which
visits to customers of the same cluster can be interrupted by visits to customers of another cluster.

Both the CVRP and SoftCluVRP are defined over a complete undirected graph G = (V,E) with the
vertex set V = {0, 1, 2, . . . , n} and the edge set E. The vertex 0 denotes the depot and the other vertices
C = {1, 2, . . . , n} denote the customers. A homogeneous fleet of m vehicles with capacity Q is hosted at the
depot 0. For each edge {i, j} ∈ E, non-negative routing costs cij are given. A route r = (i0, i1, . . . , is, is+1) is
a cycle in G passing through the depot, i.e., i0 = is+1 = 0 and i1, . . . , is are customers (s ≥ 1). In the CVRP,
a route is feasible if (i) all customers i1, . . . , is are different and (ii) capacity constraints ∑s

j=1 dij ≤ Q hold
for given positive customer-specific demands di for i ∈ C.

The clustered variants require the definition of a partitioning of the vertex set: Let V = V0 ∪ V1 ∪ V2 ∪
. . .∪VN be such a partitioning, where V0 = {0} denotes the depot cluster. The customer clusters Vh ⊂ C are
index by h ∈ H = {1, 2, . . . , N} and are disjoint, i.e., Vh∩Vh′ = ∅ for all h ≠ h′ ∈ H. For any customer i ∈ C,
the associated cluster is denoted by h(i) ∈ H, i.e., i ∈ Vh(i). Each cluster Vh has an associated positive
demand dh and we define d0 = 0 for the depot cluster V0. For a route r = (i0, i1, . . . , is, is+1), it is convenient
to define H(r) as the customer clusters touched by the route r, i.e., H(r) = {h ∈ H ∶ Vh ∩ {i1, . . . , is} ≠ ∅}.
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In the SoftCluVRP, a route is feasible if (i) all customers i1, . . . , is are different and (ii) capacity con-
straints ∑h∈H(r) dh ≤ Q hold (summing of the customer clusters touched by the route), and (iii) the soft-
cluster constraints are fulfilled, i.e.,

Vh ⊆ {i1, . . . , is} ∀h ∈ H(r).

Note that the clustered vehicle-routing problem (CluVRP, Battarra et al. 2014) requires that the hard-cluster
constraints hold, i.e., for each h ∈ H(r) there must exist an index k ∈ {1, 2, . . . , s − ∣Vh∣ + 1} such that
Vh = {ik, ik+1, . . . , ik+∣Vh∣−1}.

In all cases (CVRP, CluVRP, SoftCluVRP), the task is to determine a cost-minimal set of m routes that
together serve all customers, and herewith also all clusters, exactly once.

The very recent paper by Hintsch and Irnich (2020) surveys the pertinent literature. Therefore, we
omit a comprehensive survey on clustered VRPs but briefly mention the most important findings: For the
exact solution of the CluVRP, Battarra et al. (2014) developed a very competitive two-level exact algorithm
computing optimal Hamiltonian paths through clusters for several entry and exit points in the subproblem
level and combining them to route plans in the master level. The most powerful metaheuristics for the
CluVRP are those of Vidal et al. (2015) and Hintsch and Irnich (2018) and they follow a similar two-level
principle. For the problem considered in the paper at hand, the SoftCluVRP, the only tailored exact solution
approach is the branch-and-price algorithm of Hintsch and Irnich (2020) using a MIP-based approach in the
pricing subproblem instead of a shortest-path dynamic programming labeling algorithm. These results will
serve as a benchmark for the newly developed branch-and-cut algorithm.

The only newer results not surveyed in (Hintsch and Irnich 2020) are the following: Hintsch et al. (2019)
have developed a branch-price-and-cut for the soft-clustered variant of the capacitated arc-routing problem.
Again, the pricing subproblem is solved by branch-and-cut as well as metaheuristics. Additional cutting
planes on the route-based master formulation help to strengthen the linear relaxation. Hintsch (2019) has
developed a large-neighborhood search (LNS) metaheuristic, which is the currently best-performing heuristic
approach for the SoftCluVRP. We later compare against these results.
The contributions of the paper at hand are the following:
1. We introduce the first two-index formulation for the exact solution of the SoftCluVRP. The formulation

decomposes into a standard routing part, a novel part ensuring vehicle-capacity and soft-cluster feasible
solutions using a directed cluster graph, and a simple coupling between the two parts.

2. We analyze the impact of the fleet-size constraint on the validity of the formulation. Some additional
constraints are mandatory to cope with non-minimal fleets. In addition, we exploit some non-trivial
redundancies of the basic formulation.

3. The soft-cluster requirement leads to a new type of capacity cuts. These cuts are known for the CVRP
and we derive a variant of the capacity cuts valid for the SoftCluVRP that are stronger than the straight-
forward adaptation of the capacity cuts for the CVRP.

4. Some SoftCluVRP instances from the benchmark of Golden et al. (1998) (adopted by Battarra et al.
(2014)) are constructed on a square grid network. We provide lower-bounding techniques for SoftClu-
VRP instances that are especially strong for grid-based instances. For square grid instances in the
Euclidean plane, we develop preprocessing techniques that allow to substantially reduce the edge set and
the corresponding routing variables of the formulation.

5. With comprehensive computational test, we determine a competitive setup combining the multiple
branch-and-cut components. The computational results on benchmark instances using SoftCluVRP
benchmark instances from the literature show that the resulting branch-and-cut algorithm is compet-
itive.
The remainder of this paper is structured as follows. In the next section, we present the new formulation

for the SoftCluVRP. The components of the branch-and-cut algorithm including the families of valid in-
equalities and their heuristic and exact separation are detailed in Section 3. Lower-bounding and reduction
techniques for the grid-based instances are presented in Section 4. In Section 5, we present the computational
experiments, in which we configure the final branch-and-cut algorithm, analyze the influence of reduction

2



for the grid instances on computational performance, and compare the results on all benchmark instances
against those from the literature. Final conclusions are drawn in Section 6.

2. Two-Index Formulation

Since the SoftCluVRP is a relatively new problem, only a few models can be found in the scientific
literature. A three-index formulation for the symmetric SoftCluVRP was recently presented by Hintsch
and Irnich (2020), while another three-index formulation was presented by Defryn and Sörensen (2017) for
the asymmetric version of the SoftCluVRP. These formulations use routing variables with a third index,
say k ∈ K = {1, 2, . . . ,m}, to refer to a specific vehicle (the first two indices describe the endpoints of a
direct connection). The major drawback of three-index formulations is that they grow linearly with the fleet
size and, more severely, they are inherently symmetric with respect to the numbering of the vehicles. Indeed,
for a given solution, any permutation of the vehicle indices k ∈ K produces one of ∣K∣! equivalent solutions.
This makes a branch-and-bound-based approach as used in MIP solvers ineffective (Fischetti et al. 1995).
The addition of symmetry-breaking constraints can only very partially mitigate the ineffectiveness of the
MIP solver’s branching decisions (Adulyasak et al. 2014).

Hintsch and Irnich (2020) also derive an extensive route-based formulation (a set-partitioning type of
model) from the aforementioned three-index formulation via Dantzig-Wolfe decomposition and subsequent
aggregation over vehicles. The drawback of this type of formulation is that a sophisticated branch-and-price
algorithm is needed to cope with the huge number of route variables.

The idea of the new formulation we present in the following is to exploit that already well-performing
standard models for the CVRP are known. We use the symmetric formulation of Laporte et al. (1985) that
has non-negative integer routing variables xij for all edges {i, j} ∈ E. Note that all benchmark sets for the
SoftCluVRP comprise symmetric instances.

To enforce the clustering constraints, we assume that the elements of the cluster index set H are com-
pletely ordered, which holds true if, e.g., H ⊂ N. We introduce the directed acyclic cluster graph D = (H,A)
with the arc set A = {(h, h′) ∶ h, h′ ∈ H,h < h

′}. The new formulation uses additional binary variables ya
for each a = (h, h′) ∈ A that indicates whether clusters Vh and Vh′ are served by the same vehicle (ya = 1),
or not (ya = 0). While routing variables are symmetric, we intentionally model with asymmetric y-variables.
Each component in the subgraph of D spanned by the positive y-variables, i.e., by Ay=1 = {a ∈ A ∶ ya = 1},
represents a subset of clusters served by one vehicle.

The orientation in the cluster graph enables an Miller-Tucker-Zemlin (MTZ)-based (Miller et al. 1960)
modeling approach with continuous resource variables uh for h ∈ H that accumulate the demand served by
each route. The new formulation is:

min ∑
{i,j}∈E

cijxij (1a)

subject to ∑
{i,j}∈δ(i)

xij = 2 ∀i ∈ C (1b)

∑
{0,j}∈δ(0)

x0j = 2m (1c)

∑
{i,j}∈δ(S)

xij ≥ 2r(S) ∀S ⊆ C, S ≠ ∅ (1d)

xij ∈ {0, 1} ∀{i, j} ∈ E \ δ∗(0) (1e)

x0j ∈ {0, 1, 2} ∀{0, j} ∈ δ∗(0) (1f)
xij ≤ yh(i),h(j) ∀{i, j} ∈ E \ δ(0) ∶ h(i) < h(j) (1g)

uh − uh′ +Qyhh′ ≤ Q − dh′ ∀(h, h′) ∈ A (1h)
dh ≤ uh ≤ Q ∀h ∈ H (1i)

yhh′ ≥ yhh′′ + yh′h′′ − 1 ∀(h, h′), (h′, h′′) ∈ A (1j)
3



yh′h′′ ≥ yhh′ + yhh′′ − 1 ∀(h, h′), (h′, h′′) ∈ A (1k)

yhh′′ ≥ yhh′ + yh′h′′ − 1 ∀(h, h′), (h′, h′′) ∈ A (1l)
ya ∈ {0, 1} ∀a ∈ A (1m)

The first part (1a)–(1f) is the CVRP formulation of Laporte et al. (1985): The objective (1a) minimizes the
routing costs. Constraints (1b) ensure that each customer is visited once, and constraints (1c) ensure that
exactly m vehicles leave and return to the depot. In the capacity cuts (1d), the set δ(S) is the set of edges
with exactly one endpoint in S, and the number r(S) describes the minimum number of vehicles needed
to feasibly serve the customer subset S. In the CVRP, it suffices to bound r(S) from below by computing
⌈d(S)/Q⌉, where d(S) is the sum of the demands of all customers in S. Since in the SoftCluVRP the demand
is associated with clusters, we can arbitrarily distribute the demand dh of every cluster Vh onto its customers,
e.g., defining di = dh/∣Vh∣ for all i ∈ Vh and h ∈ H. We discuss the role of the capacity cuts in more detail
in Section 3.1. The capacity cuts prohibit subtours not including the depot as well as subtours that serve
more customers than possible when respecting vehicle capacity. The domains of the routing variables are
given by (1e) and (1f). Note that a back-and-forth route (0, j, 0) is only feasible if j ∈ C is a customer that
forms a singleton cluster, i.e., Hh(j) = {j}. Therefore, we define δ∗(0) = {{0, j} ∈ δ(0) ∶ Hh(j) = {j}}, where
δ(0) is the set of all edges incident to the depot 0.

The last part (1h)–(1m) of the model provides a description of feasible combinations of clusters to be
served by the same vehicle. The MTZ-like constraints (1h) impose uh′ ≥ uh + dh′ for yhh′ = 1. It is
crucial here that the set H is ordered and that (1h) is imposed only for one direction, i.e., for (h, h′) ∈ A
and not for (h′, h) ∉ A, because otherwise the two constraints and yhh′ = yh′h = 1 would directly imply the
contraction uh′ > uh′ and uh′ < uh′ . The constraints (1i) describe the domain of the u-variables and guarantee
that the capacity Q is not exceeded. The constraints (1j)–(1l) are transitivity-enforcing constraints for the
y-variables.

The coupling between the x- and y-variables is established via constraints (1g).

Proposition 1. If m is the minimum number of vehicles needed to serve all customers C, then every feasible
solution to formulation (1) is a feasible solution to the given SoftCluVRP instance.

Proof. Note first that the minimum number of vehicles needed to serve C can be obtained as the solution
value mmin of a bin-packing instance with bins of capacity Q and items with weights (dh)h∈H .

A feasible solution to model (1) may have the following defect: The y-variables can impose a connected
component O ⊂ H of the cluster graph D that is served by more than one vehicle, i.e., the x-variables
impose more than one route in {0}∪⋃h∈O Vh. However, the connected component O respects the capacity
constraint, i.e., d(O) ≤ Q holds true due to (1h)–(1m). As all components of D imposed by the y-variables
together partition the setH into a feasible bin-packing solution, the number of connected components cannot
be smaller than mmin. If m = mmin, the pigeonhole principle tells us that only one vehicle can serve each
connected component. Therefore, a feasible SoftCluVRP solution results.

A trivial improvement to formulation (1) is to add

yhh′ = 0 ∀(h, h′) ∈ A ∶ dh + dh′ > Q. (1n)

This can also be established by eliminating the y-variable that are set to zero from formulation (1), modifying
the affected constraints (1g) and (1j)–(1l), and eliminating redundant constraints (1h).

Non-minimal Fleet. In many vehicle-routing problems, the primary objective is to minimize the number
of vehicles. Therefore, Proposition 1 shows that formulation (1) is valid and relevant for the standard
application, i.e., when m = mmin.

Minimizing the number of vehicles and minimizing routing costs are in general conflicting objectives.
With the focus on the second objective (routing costs), a relaxed version of the SoftCluVRP is one in which
the minimum fleet-size constraint ∑{0,j}∈δ(0) x0j = 2mmin is replaced by ∑{0,j}∈δ(0) x0j ≤ 2m with a fleet-
size limit m > mmin. We denote this relaxation by SoftCluVRP≤m. The following proposition states that
formulation (1) is also valid for the SoftCluVRP≤m under some mild assumptions.
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Proposition 2. If the depot-triangle inequality holds for the routing costs of a given SoftCluVRP≤m in-
stance, i.e., cij ≤ c0i + c0j for all i, j ∈ C, then there exists, for every feasible solution to formulation (1), a
feasible solution to the SoftCluVRP≤m with identical or lower cost.

Proof. As shown in the proof of Proposition 1, a feasible solution to formulation (1) may only have the
defect that more than one route/vehicle serves a connected component O in the subgraph of D spanned
by the positive y-variables. In this case, a pair of edges {0, i} and {0, j} belonging to two different routes
can be replaced by the edges {i, j} so that the two routes are merged into one. This route is feasible,
because constraints (1h)–(1m) ensure d(O) ≤ Q. Moreover, the depot-triangle inequality implies that after
the replacement the new route is never more costly than the two merged routes. Iterative replacements
finally lead to a single feasible route per component. The constructed new solution is then feasible for the
SoftCluVRP≤m.

If neither the assumptions of Proposition 1 nor of Proposition 2 are fulfilled, it is still possible to use
formulation (1) for the SoftCluVRP≤m. In this case, the following class of single-route inequalities must be
added to model (1):

∑
{0,i}∈δ(0),
h(i)∈H(T )

x0i + 2 ∑
a∈A(T )

ya ≤ 2∣H(T )∣ ∀T = (H(T ), A(T )) tree in D (2)

Regarding the validity of (2), consider an integer feasible solution (x̄, ȳ) to the SoftCluVRP or SoftCluVRP≤m.
For an arbitrary tree T = (H(T ), A(T )) in D, the customers ⋃h∈H(T ) Vh are served by a certain number of
vehicles, say m(T ) vehicles. This implies

∑
{0,i}∈δ(0),
h(i)∈H(T )

x̄0i ≤ 2m(T ).

Moreover, the subgraph Tȳ of the tree spanned by arcs a with ȳa = 1 must decompose into m(T ) or more
components. The latter implies that

∑
a∈A(T )

ȳa ≤ ∣H(T )∣ −m(T ) (3)

holds true. Adding the first and twice the second inequality yields the inequality (2) for (x̄, ȳ).
Note that inequalities (3), for all trees (H(T ), A(T )), can be used to ensure capacity-feasible solutions,

i.e., they can replace the MTZ-part (1h)–(1i) of formulation (1). We denote (3) as tree-capacity constraints
in the following.

Proposition 3. For every feasible solution to model (1)–(2) with a relaxed fleet-size constraint
∑{0,j}∈δ(0) x0j ≤ 2m instead of (1c) defined by an arbitrary value m ≥ mmin, the solution is also feasi-
ble for the SoftCluVRP or SoftCluVRP≤m.

Proof. Consider a feasible solution (x̄, ȳ) to model (1)–(2) with a relaxed fleet-size constraint. The positive ȳ-
values decomposeD into a number of components. Consider an arbitrary componentO = {h1, h2, . . . , h∣O∣} ⊂
H and its ordered elements h1 < h2 < ⋅ ⋅ ⋅ < h∣O∣. Since O is a single connected component, the transitivity
constraints (1j) and (1k) impose ȳh1,h2

= ȳh2,h3
= ⋅ ⋅ ⋅ = ȳh∣O∣−1,h∣O∣ = 1. The path (h1, h2, . . . , h∣O∣) is also a

tree T . For this tree T = (O, {(hk, hk+1) ∶ k = 1, . . . , ∣O∣−1}), inequality (2) imposes∑(0,i)∈δ(0),h(i)∈O x̄0i ≤ 2
showing that the x̄-values define only a single route serving component O.

Redundancy. Formulation (1) has some redundant transitivity constraints. We denote by (R) the model (1)
without constraints (1l). The relationship between the two formulations is characterized in the following
two propositions:
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Proposition 4. Formulations (1) and (R) have the same set of integer solutions regarding the projection
onto the x-variables.

For the sake of clarity, all longer proofs (such as the one for Proposition 4) have been moved to the
Appendix section.

Proposition 5. The linear relaxations of formulations (1) and (R) have the same set of solutions regarding
the projection onto the x-variables.

3. Branch-and-Cut Algorithm

Formulations (1) and (1)–(2) are not directly solvable with a MIP solver, because they contain some
large-sized families of constraints. This section describes how constraints of these families can be added
dynamically using separation procedures. We distinguish between (possibly infeasible) integer solutions
(x̄, ȳ) ∈ Z∣E∣+∣A∣ and fractional solutions (x̄, ȳ) ∈ R∣E∣+∣A∣ for
• capacity cuts (1d) (exponential in ∣V ∣),
• single-route inequalities (2) (exponential in ∣H∣),
• tree-capacity constraints (3) (exponential in ∣H∣),
• transitivity constraints (1j) and (1k) (cubic in ∣H∣).
In the branch-and-cut implementation, we consider an inequality as violated only if the degree of violation
(difference between right-hand and left-hand side) exceeds ε = 10

−4.

3.1. Capacity Cuts

For an integer solution (x̄, ȳ) ∈ Z∣E∣+∣A∣, we determine the graph Gx̄ spanned by the positive x̄-variables.
Subsequently, we remove the depot vertex 0 leading to the induced graph Gx̄[V \ {0}] = Gx̄[C]. The
connected components of Gx̄[C] are subsets of customers served together. Each such subset S ⊂ V \ {0}
may violate the associated capacity constraint, i.e., if the component forms a cycle (=subtour not including
the depot). Since the LHS of the capacity cut is equal to zero in this case, the capacity cut (1d) is violated
independent of the value of r(S).

However, we strive for a tight value r(S) in order to add a strong valid inequality. It was already
mentioned in Section 2 that different lower bounds on the minimum number of vehicles needed to serve
some customers can be computed by arbitrarily distributing the cluster’s demands onto the associated
customers. For a given customer subset S ⊂ V \ {0}, we define the clusters touched as

H(S) = {h ∈ H ∶ S ∩ Vh ≠ ∅}. (4)

An optimal distribution of the demand is one that assigns the entire cluster demand for h ∈ H(S) to only
a single customer ih ∈ S ∩ Vh. This is summarized in the following proposition:

Proposition 6. For any S ⊂ V \ {0} with S ≠ ∅, a largest lower bound r(S) on the minimum number of
vehicles needed to serve the customers S results from considering the demands (dh)h∈H(S):
(i) the exact value r(S) results from solving a bin-packing problem with bins of capacity Q and weights

(dh)h∈H(S);
(ii) a valid lower bound for r(S) sufficient for formulation (1) is given by ⌈∑h∈H(S) dh/Q⌉.

For a fractional solution (x̄, ȳ) ∈ R∣E∣+∣A∣, we apply the following series of heuristic separation procedures.
First, we again consider Gx̄[C] and its components again. For each component S ⊂ C, we test x̄(δ(S)) <
2 ⌈∑h∈H(S) dh/Q⌉ (and herewith x̄(δ(S)) < 2r(S)) and, if true, a violated capacity cut (1d) is found.

Second, we apply two heuristic procedures that work according to the subset-first check-second principle,
i.e., promising subsets S are computed first and the violation x̄(δ(S)) < 2r(S) is checked for each computed
subset S. The first heuristic is the probabilistic graph contraction algorithm of Karger (1993), summarized
in Algorithm 1. The idea is to iterative contract edges of G where edges e ∈ E with a higher value x̄e are
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Algorithm 1: Karger’s contraction algorithm
input : graph G = (V,E)
output: sets to check S

1 for e ∈ E do
2 pe ← x̄e/∑f∈E x̄f ;

3 for ∣V ∣ iterations do
4 G

′
← G;

5 while G′ has more than two vertices do
6 Choose an edge e ∈ E(G′) with probability pe;
7 Contract e into a single vertex, i.e., G′ ← G

′/e;
8 (S, S̄) ← subsets of vertices represented by the two remaining vertices of G′, 0 ∈ S̄ ;
9 Compute r(S);

10 Check S regarding x̄(δ(S)) < 2r(S);

chosen with a higher probability (proportional to x̄e). In the contraction step for an edge {i, j} = e ∈ E, the
vertices i and j, and later subsets Si and Sj containing i and j, respectively, are replaced by the union Si∪Sj .
Edges {k, Si} and {k, Sj} with k ∈ V \ (Si ∪ Sj) are merged into a single edge with weight x̄k,Si

+ x̄k,Sj
.

The graph contraction algorithm and the testing of violated SEC is repeated ∣V ∣ times, and a most-violated
capacity cut is added.

The second heuristic uses the heuristic separation procedures for the CVRP publicly available in the
library of Lysgaard et al. (2004). Potential subsets S result from the solution of some max-flow/min-cut
problems. As the library is tailored to the CVRP, we distribute cluster demands dh equally onto the
customers i ∈ Vh. Both heuristic procedures (Karger, Lysgaard) are used independently.

If no violated capacity cut has been found with the heuristics, we apply the following exact MIP-based
separation algorithm: the MIP simultaneously determines the subset S ⊂ C, computes the lower bound on
r(S) given by Proposition 6(ii), and maximizes the violation (if any) 2r(S)− x̄(δ(S)). The MIP generalizes
ideas first presented by Ahr (2004) and later refined by Martinelli et al. (2013) for exactly separating
capacity cuts for the capacitated arc-routing problem. The formulation of the separation problem uses five
types of variables: Binary variables si for i ∈ V are indicator variables describing whether the vertex i
belongs to the unknown set S. Similarly, binary variables yh describe the clusters H(S) touched by S, i.e.,
H(S) = {h ∈ H ∶ yh = 1}. Variables ze for e ∈ E are indicators for the cut set, i.e., ze = 1 iff e ∈ δ(S).
Moreover, the integer variable r describes (the lower bound on) r(S) and the non-negative continuous
variable f < 1 describes the fractional difference between ⌈d(S)/Q⌉ and d(S)/Q.

max 2r − ∑
e∈E

x̄eze (5a)

subject to s0 = 0 (5b)
ze − si + sj ≥ 0 ∀e = {i, j} ∈ E, i ≠ 0 (5c)
ze − sj + si ≥ 0 ∀e = {i, j} ∈ E, j ≠ 0 (5d)
si + sj − ze ≥ 0 ∀e = {i, j} ∈ E (5e)
si + sj + ze ≤ 2 ∀e = {i, j} ∈ E \ δ(0) (5f)

∑
i∈Vh

si − yh ≥ 0 ∀h ∈ H (5g)

r = ∑
h∈H

(dh/Q)yh + f (5h)

si ∈ {0, 1} ∀i ∈ V \ {0} (5i)
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0 ≤ ze ≤ 1 ∀e ∈ E (5j)
yh ∈ {0, 1} ∀h ∈ H (5k)
r ≥ 0, integer (5l)
0 ≤ f ≤ 1 − 1/Q (5m)

The objective (5a) minimizes the violation of a capacity cut described by S = {i ∈ V ∶ si = 1}. Forcing
s0 = 0 ensures that S ⊂ V \{0} = C holds. The coupling of the z-variables with the s-variables is established
via (5c)–(5f), where (5c) and (5d) force ze to one if si ≠ sj , i.e., e = {i, j} ∈ δ(S), while (5e) and (5f) force
ze to zero if si = sj . To correctly consider that a cluster Vh for some h ∈ H is touched, constraints (5g)
couple the vertex and cluster indicator variables. The correct value of r is guaranteed with constraint (5h).
The domains of the variables are described by (5i)–(5m).

Repeatedly solving the exact separation formulation (5) with a MIP solver consumes considerable compu-
tation time. Therefore, the exact separation is only used at the root node of the branch-and-cut algorithm.
Moreover, we do not call the exact separation routine if the lower bound is not improved by more than
0.01% within the last ten iterations.

3.2. Single-Route Inequalities
Recall that single-route inequalities (2) are mandatory only if the fleet is larger than needed and the

depot-triangle inequality does not hold (cf. Propositions 1 and 2). As we found them violated only rarely,
we inspect only integer solution (x̄, ȳ) ∈ Z∣E∣+∣A∣. For every connected component O of the digraph Dȳ

spanned by the arcs a with ȳa = 1, let H(O) be the vertex set of the component O. We can take any
spanning tree T = (H(O), A(O)) spanning H(O) in Dȳ and check whether (2) is violated which is the case
if more than two edges {0, i} ∈ δ(0) are chosen.

3.3. Tree-Capacity Constraints
The tree-capacity constraints (3) can replace the MTZ constraints (1h)–(1i). Note that there are a

quadratic number of MTZ constraints, while the number of tree-capacity constraints is exponential in ∣H∣.
Therefore, the latter family of constraints must be added dynamically.

For an integer solution (x̄, ȳ) ∈ Z∣E∣+∣A∣, we consider all connected components O of Dȳ spanned by the
arcs a with ȳa = 1 and spanning trees T = (H(O), A(O)) (as in the previous Section 3.2). For the sake of
acceleration, the value m(T ) is approximated by ⌈d(O)/Q⌉ instead of solving a bin-packing problem. As
the number of components is small, all violated tree-capacity constraints (3) are added at the same time.

For fractional solutions (x̄, ȳ) ∈ R∣E∣+∣A∣, we use a heuristic inspired by the procedure for integer so-
lutions. Also here we consider all connected components O of Dȳ. Within each component O, the tree T
maximizing the left-hand-side of constraints (3) is computed as a maximum spanning tree using Kruskal’s
algorithm.

A special case of the tree-capacity constraints are constraints

∑
h′∈H∶h<h′

yhh′ + ∑
h′∈H∶h′<h

yh′h ≤ N − 1 for all h ∈ H

because all ingoing and outgoing arcs of h form a spanning tree in D. We add these N = ∣H∣ constraints at
initialization to accelerate the solution process.

Overall, later computational experiments will compare three setups: (1) only MTZ constraints statically
added at the beginning, (2) only tree-capacity constraints added dynamically, and (3) the combination of
static MTZ and dynamic tree-capacity constraints. The last strategy may lead to a faster branch-and-cut
algorithm as neither MTZ dominate tree-capacity constraints on fractional solutions, nor vice versa.
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3.4. Transitivity Constraints
Propositions 4 and 5 have proven that the transitivity constraints (1l) are completely redundant. How-

ever, the two groups (1j) and (1k) of transitivity constraints are each of cubic size in ∣H∣. Therefore, one
may either add transitivity constraints to the model right from the beginning or add them only when vio-
lated. In the later computational experiments, we test the following two strategies: Either, all transitivity
constraints (1j) and (1k) are present in formulation (1). This is the static case.

Alternatively, formulation (1) is initialized without constraints (1j) and (1k), and only violated constraints
are separated and added dynamically. The identification of violated transitivity constraints can be done by
straightforward direct inspection consuming ∣H∣3 time.

In pretests we found that many transitivity constraints are violated at the same time. In order to not
add too many constraints simultaneously, we separate them in batches. In every round, only those violated
transitivity constraints (1j) and (1k) defined by h < h′ < h′′ are added for which the distance in D between h
and h′′ is minimal (counting the number of arcs). We use this selection rule for integer as well as fractional
solutions, where in the latter case the distance-based rule does not at all consider the degree of violation
(except for the cut tolerance ε).

4. Square Grid Instances

In the VRP benchmark set of Golden et al. (1998) that is also used for the SoftCluVRP, the instances
have a specific structure. The customer vertices are located in a systematic and non-random fashion (see
also Section 5). In the groups Golden1 to Golden8, customers are located on concentric circles. In the
groups Golden9 to Golden16, customers are located on a square grid. Finally, in the groups Golden17 to
Golden20, the customers form a star.

For grid-based instances, we prove in Section 4.1 some properties of optimal solutions that allow the
reduction of the edge set E without loosing optimality. Moreover, we derive in Section 4.2 simple-to-compute
lower bounds that are especially effective for the grid-based instances.

4.1. Reduction of the Edge Set
The set of edges E of the grid-based instances can be reduced using the following theorem.

Theorem 1. Let an instance of a Euclidean traveling salesman problem (EucTSP) be given, where all
vertices are points of a square grid.

If there exists a (3 × 3)-vertex block, see Figure 1, then the vertex in the middle of the block (depicted
as a diamond ⋄ in Figure 2) is connected to two block neighbors in every optimal Euclidean EucTSP tour.
Therefore, in any optimal solution, two of the eight blue edges in Figure 2 are selected.

Figure 1: A (3 × 3)-vertex block. Figure 2: Edges of δ(⋄) of an optimal TSP tour.

In the following, a vertex in a Euclidean SoftCluVRP defined over a square grid is denoted as a middle
vertex if there exists a (3 × 3)-vertex block that is completely contained in one of the clusters. All edges
{i, j} ∈ E that connect a middle vertex i with a non-neighboring vertex j (different from one of the eight
neighbors depicted in Figure 2) are denoted as long edges.

Corollary 1. An optimal solution of a Euclidean SoftCluVRP defined over a square grid does not contain
long edges.

Proof. Follows directly from Theorem 1.
9



The instances with vertices located on a circle (classes 1–8 of the benchmark of Golden et al. (1998))
cannot be reduced as suggested in Corollary 1. A counterexample is given in Figure 3.

Figure 3: Instance with an optimal EucTSP tour with vertices on a concentric circles. The black vertices •
form a 3 × 3-vertex block. The vertex in the middle of the (3 × 3)-vertex block is connected to the red
vertex • that is not part of the block.

4.2. Lower Bounds
We present two different lower-bounding techniques for grid-based instances constructed as those of

classes 9–16 of the benchmark set of Golden et al. (1998).
First, we exploit that any cluster is connected to the depot with not more than two edges. Therefore,

connecting the depot to the closest customer vertices (allowing double connections for edges in δ∗(0)) with
the additional restriction that no cluster is connected more than two times yields a lower bound on the cost
of depot-edges. Moreover, each customer vertex is connected to other vertices with distance of at least 1.
Hence, the sum of connections to the depot plus the sum of distance 1 connections provides a valid lower
bound, in the following referred to as the grid lower bound.

Second, we reuse the same idea that every cluster is connected to the depot with not more than two
edges to formulate a relaxed model. The model relaxes formulation (1) and adds the condition on the depot
connections. It reads as follows:

min ∑
{i,j}∈E

cijxij (6a)

subject to (1b)–(1f)

∑
i∈Vh

x0i ≤ 2 ∀h ∈ H (6b)

For the grid instances, formulation (6) provides the same or a better lower bound as the simple grid lower
bound explained first, but the computational effort is higher. We refer to the second bound as the relax
lower bound. Note that this latter bound is generally applicable to all SoftCluVRP instances.

5. Computational Results

The computational experiments are based on the same benchmark instances as considered by Hintsch
and Irnich (2020). All benchmarks use CVRP instances and define an additional parameter θ that specifies
the average cluster size. Clusters are then constructed in various way (for details see Fischetti et al. 1997;
Bektaş et al. 2011).

The first set of 158 small- and medium-sized instances is based on the GVRP benchmarks A, B, P, and GC
with θ ∈ {2, 3}. The instances with 16 to 262 vertices and 6 to 131 clusters were generated by Bektaş et al.
(2011). The second set of 220 large-scale instances is based on the Golden instances of Golden et al. (1998)
with θ ∈ {5, . . . , 15} and were generated by Battarra et al. (2014). The instances are divided into 20 groups
denoted by Golden1 to Golden20 with 201 to 484 vertices and 14 to 97 clusters.
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Unfortunately, the distances in the grid-based instances (groups Golden9 to Golden16) are computed
as Euclidean distances rounded to the next integer value. As a consequence, neither distances fulfill the
triangle inequality nor Corollary 1 is directly applicable. To anyway test the reduction techniques described
in Section 4.1, we generated 90 additional but smaller Grid instances as follows: Six instances were generated
for each combination of grid size d× d with d ∈ {10, 12, 14} and number N ∈ {6, 8, 10, 12, 14} of clusters. In
all instances, the minimal distance between vertices is 1. The depot is either in the middle or at the corner
of the grid. To define the clusters, one vertex is randomly assigned to each cluster at initialization. As
long as vertices are unassigned, such a vertex with at least one already assigned vertex in the neighborhood
is chosen at random. This vertex is then assigned to a randomly chosen cluster of its neighborhood (see
vertex ⋄ with neighbors • in Figure 2 for the definition of the neighborhood). Demands of the clusters
are equally distributed on the interval [10, 50] and the vehicle capacity is set to Q = 100. The number of
vehicles is defined as m = ⌈∑h dh/Q⌉. All distances are computed as nontruncated Euclidean distances.
The instances are online available at https://logistik.bwl.uni-mainz.de/benchmarks/.

The branch-and-cut algorithm was implemented in C++ using CPLEX 12.8.0 with Concert Technology
and compiled into 64-bit single-thread code with Microsoft Visual Studio 2015. Experiments are carried
out on a 64-bit Microsoft Windows 7 personal computer with an Intel® Core™ i7-5930k CPU clocked at
3.5 GHz and 64 GB of RAM. CPLEX’s default values are kept for all parameters. Unless stated otherwise,
computation times are limited to a maximum of 3600 seconds (1 hour).

5.1. Comparison of Cutting Strategies
In a first experiment, we try to find a reasonable cutting strategy for the final branch-and-cut algorithm.

In Section 3, we discussed possible separation strategies for capacity cuts, single-route inequalities, tree-
capacity constraints, and transitivity constraints. A synopsis of the strategies is presented in Table 1. We
distinguish between constraints for model (1) (first section of the table) and the mandatory single-route
inequalities for model (1)–(2) needed for fixed non-minimal fleets and when the depot-triangle inequality is
not satisfied (second section). Note that in several instances of the Golden benchmark the fleet is larger
than the minimum fleet size.

Table 1: Summary of Cutting Strategies

Constraint type Abbrev. Separation strategies Remark

Transitivity constraints (1j)–(1k) Trans (2): static, dyn int: mandatory
MTZ constraints (1h)–(1i) MTZ (2): none, static int: mandatory, redundant if

Tree:dyn
Capacity cuts (1d) separated int: mandatory

with Lysgaard library LysCC (3): none, root only, dyn fract: optional
with Karger’s contr. alg. ProbCC (3): none, root only, dyn fract: optional

with MIP (5) MIPCC (3): none, root only, dyn fract: optional
Tree-capacity constraints (3) Tree (2): none, dyn int: mandatory, redundant if

MTZ:static

Single-route inequalities (2) Single (1): dyn int: mandatory only for
SoftCluVRP≤m w/o depot-
triangle inequality

Note: Default strategies are underlined.

Table 1 offers 2
3 ⋅ 3

3
= 216 possible configurations by combining separation strategies that either com-

pletely switch off a separation procedure (denoted by “none”), add all inequalities at initialization (“static”),
or add inequalities dynamically using separation procedures. In the latter case, we compare dynamic sep-
aration at the root node of the branch-and-bound tree only (“root only”) and separation at all tree nodes
(“dyn”). There are some invalid configurations, e.g., combining MTZ:none and Tree:none, that cannot ensure
capacity feasible solutions. We omit all invalid configurations.
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Empirically testing all possible configurations is hardly possible given that the benchmark sets are large
and the previous literature allowed one hour of computation time per instance. We address this issue in the
following way: First, we define some default separation strategies (denoted by “default”) that worked well
in pretests. We did however not find good default strategies for the transitivity constraints and MTZ con-
straints, but default strategies for the remaining inequalities (those underlined in Table 1). As a consequence,
we compare separation strategies that consider:
• all four combinations of either Trans:static or Trans:dyn and MTZ:none or MTZ:static; (4 strategies)
• use all default strategies (default) or vary exactly one of the default parameters for all other valid
inequalities and their separation. (8 strategies)
In the latter case, the parameter altered is either LysCC:none, LysCC:root only, ProbCC:none,

ProbCC:root only, MIPCC:none, MIPCC:dyn, or Tree:none. Overall, there remain 4 ⋅ 8 − 1 = 31 sep-
aration strategies to compare (one strategy is invalid). Second, we restrict the instance set to GVRP instances
of the groups A, B, P, the GC instances with n = 100 customers, and the two smallest Golden instances of
each group Golden1 to Golden20. The selection comprises 190 instances for this experiment.

We compare the different B&C algorithms resulting from the 31 different separation strategies with the
help of performance profiles as suggested by Dolan and Moré (2002). For a set of algorithms A (the 31 B&C
algorithms in our case), the performance profile ρA(τ) of an algorithm A ∈ A describes the ratio of instances
that can be solved by A within a factor τ compared to the fastest algorithm, i.e.

ρA(τ) =
»»»»»{I ∈ I ∶ tAI /t∗I ≤ τ}

»»»»»
∣I∣ ,

in which I is the set of instances, tAI is the computation time of algorithm A when applied to instance I ∈ I,
and t∗I is the smallest computation time among all algorithms of set A for instance I. Unsolved instances
are taken into account with tAI =∞ (assuming also that t∗I =∞ gives tAI /t∗I =∞). Note that ρA(1) is the
percentage of instances for which algorithm A is the fastest, and ρA(∞) is the percentage of instances that
are solved by algorithm A within the time limit.

Figure 4 displays the performance profiles of the B&C algorithms using the 31 different cutting strategies.
For the sake of clarity, we have decided to group the profiles in different way. In the upper part, the four
Subfigures 4a–4d group by values of Trans and MTZ, i.e., Trans:static or Trans:dyn and MTZ:none or
MTZ:static. Within each of these subfigures, the compared eight (seven in Subfigure 4b) strategies that
result from the default (default) and the variation of exactly one of the default parameters.

The result from each subfigure is simple to summarize. In all four subfigures, the strategy A =

MIPCC:none is the one that is the fastest for the highest number of instances (compare the val-
ues ρMIPCC:none(1) and ρA(1)). The reason is that completely switching off the MIP-based separation of the
capacity cuts accelerates the B&C substantially, but it comes at the cost of providing also less optimality
proofs (compare the values ρMIPCC:none(τ) and ρA(τ) for τ ≈ 15). Therefore, the strategy MIPCC:none is
not always the winning strategy. Having said this, we can identify the strategy ProbCC:none as the best
one in Subfigure 4a, ProbCC:root only in Subfigure 4b, Tree:none in Subfigure 4c, and MIPCC:none in
Subfigure 4d.

These four strategies are finally compared in Subfigure 4e: There is no strategy that dominates all other
strategies. The strategy Trans:dyn, MTZ:static, Tree:none solves the largest number of instances (within
the time limit). This strategy is (compare the figures) not the fastest algorithm most of the time. Analyzing
results in more detail, we find that the strategy Trans:dyn, MTZ:none, MIPCC:none is the fastest variant
most of the time for small-sized. It is however inferior for larger-sized instances. Therefore, we have decided
to choose the strategy

Trans:dyn, MTZ:static, MIPCC:root only
with default values LysCC:dyn, ProbCC:dyn, and Tree:none. (B&C)

as the one that we use as the reference B&C algorithm in the following computational experiments. This is
the algorithm that we refer to as B&C.
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(d) Trans:dyn, MTZ:none
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Trans:static, MTZ:static, ProbCC:none Trans:static, MTZ:none, ProbCC:root only
Trans:dyn, MTZ:static, Tree:none Trans:dyn, MTZ:none, MIPCC:none

(e) Performance profile for the different settings.

Figure 4: Performance profiles for different settings. default is defined as the version in which
MIPCC:root only, LysCC:dyn, Tree:dyn, ProbCC:dyn. The legend specifies which parameter of the
default-version is changed. 13



5.2. Savings-based Upper Bounds
Pretests have shown that tight upper bounds are very helpful for initializing the B&C algorithm. We

employ the savings-based algorithm of Hintsch (2019; p. 6), which is tailored to the SoftCluVRP. It works
as follows: In contrast to the classical savings algorithm, there is one initial route for each cluster visiting
all its customers. For each h ∈ H, this route is a TSP tour over the vertex set Vh ∪ {0} computed with
the help of a combined iterated local search and variable neighborhood decent (ILS/VND) (Hintsch 2019;
Section 2.1). Additionally, the same is done for each pair (g, h) ∈ H ×H. Such a route visits all customers
Vg ∪Vh and the depot 0. Let the cost of the resulting routes be ĉh and ĉg,h, respectively. Savings values are
calculated for each pair (g, h) ∈ H ×H as savg,h = ĉg + ĉh − ĉg,h. Subsets of clusters to be served by one
route are constructed now as in the classical savings algorithm: the largest (feasible) savings value savg,h is
chosen first. The two clusters are then merged, i.e., their demand is added. A saving becomes infeasible if
either the vehicle capacity Q is exceeded by the total demand of both routes or both clusters are already
part of the same route. The savings algorithm repeats these steps until the number of routes matches the
number of vehicles or all remaining savings become infeasible.

In case the number of routes exceeds the number of vehiclesm, we compute alternative subsets of clusters
to be served by one route as a bin-packing solution with items of weight dh, h ∈ H, and capacity Q. We use
the arc-flow model of Valério de Carvalho (1999) for this purpuse.

Finally, for each set of clusters served by a route, we construct a route with the combined ILS/VND.
Such a route visits all customers belonging to the given clusters and the depot 0.

5.3. Results for the GVRP Instances
In this section, we compare the new B&C algorithm against the branch-and-price algorithm of Hintsch

and Irnich (2020) using the GVRP benchmark. As mentioned before, the B&C algorithm benefits from tight
upper bounds available at initialization. To highlight this effect, we used the reference B&C initialized with
the savings-based upper bound of Section 5.2 and the same B&C algorithm but with the best known solution
(BKS) as upper bound.

The results are summarized in Table 2, where the table entries have the following meaning:

#opt: number of instances solved to proven optimality within 1 hour (3600 seconds);
time T̄ : average computation time in seconds; unsolved instances are taken into account with the

time limit TL of 1 hour (3600 seconds);
gap: gap 100 ⋅ (UB − LB)/LB, i.e., gap in percent;

Total: Aggregated result of Hintsch and Irnich (2020) and our default B&C algorithm (see B&C
below);

Total*: Best known results (including other algorithms and higher computation times);

HI20: branch-and-price of Hintsch and Irnich (2020);
B&C: reference B&C with upper bound of the savings-based heuristic (see Section 5.2);
⋄B&C: reference B&C, but with BKS provided as upper bound UB;

simple LB grid or relax lower bound; the latter with model (6) run for a maximum of 600 seconds (see
Section 4.2); BKS provided as UB.

Overall, the branch-and-price of Hintsch and Irnich (2020) computes the largest number of proven optima
and it is slightly faster than the B&C algorithm. However, results are clearly mixed over the different
groups of benchmark instances. Both versions of the B&C algorithm are much faster for class B, which can
be attributed to the special structure of the B instances: the customer vertices are truly clustered and not
scattered, i.e., almost uniformly distributed like all others (Augerat 1995).

The results show that the branch-and-price and B&C algorithms are complementing each other. The
column Total underlines this statement, because the reference B&C algorithm computes optima for five
non-solved instances of HI20. Comparing results with extended computation times and other algorithms
employed in Hintsch and Irnich (2020) another four (five) previously open instances are solved now with the
B&C (⋄B&C) algorithm. At the end, only seven of the 158 GVRP instances remain unsolved.

We provide instance-by-instance results with additional information in the Online Appendix.
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Table 2: Results for the GVRP instances.

Reference B&C algorithm

HI20 B&C ⋄B&C Total Total*

Set (#inst.) #opt time T̄ #opt time T̄ gap #opt time T̄ gap #opt #opt

GVRP-2
A (27) 26 713.2 21 1000.3 1.4 26 605.2 0.1 26 27
B (23) 17 1104.5 22 342.2 2.9 23 156.5 0.0 22 23
P (24) 23 474.5 15 1482.3 4.1 16 1355.4 0.8 23 24
GC (5) 1 2993.8 0 TL 50.9 0 TL 3.6 1 1

GVRP-3
A (27) 27 83.0 26 256.1 0.2 26 207.9 0.1 27 27
B (23) 23 160.1 23 10.8 0.0 23 7.5 0.0 23 23
P (24) 24 106.6 23 253.7 0.1 23 244.9 0.0 24 24
GC (5) 1 3221.4 1 3084.8 9.7 1 2937.0 2.5 1 2

Total (158) 142 605.1 131 741.3 8.7 138 612.8 0.9 147 151

5.4. Results for the Golden Instances
In this section, we use the Golden benchmark to compare the new B&C algorithm against the branch-

and-price algorithm of Hintsch and Irnich (2020). The results are summarized in Table 3.
The branch-and-price of Hintsch and Irnich (2020) is for all twenty classes better than the B&C algo-

rithms. We have two possible explanations for the rather poor performance of the B&C algorithm on the
Golden benchmark: First, the instances are much larger than the GVRP instances with vertices symmetrically
distributed (on a circle, square grid, and star, see Section 4). The results of the previous section showed
that the B&C algorithm is strong for truly clustered instances. The Golden instances are however not nicely
clustered.

Second, the capacity restriction is most of the time not tight. In fact, for almost all instances, the number
of required vehicles can be reduced. Indeed, instances of the SoftCluVRP≤m most of the time have optimal
solutions with strictly lower costs. To show this, we perform an additional run for the Golden instances
where the number of vehicles is limited but not fixed to m. For the SoftCluVRP≤m, more instances are
solved optimally (26 instead of 21) in less time (on average) compared to the SoftCluVRP with fixed fleet
size. Detailed results can be found in the Online Appendix.

On the positive side, the ⋄B&C algorithm always provides a valid lower bound so that the overall average
gap for the Golden instances is approximately 2%. In contrast, the branch-and-price algorithm failed to
provide a valid lower bound in approximately one third of the cases (only 137 of 220 with LB). This is
clearly a point in favor of the B&C algorithm.

What we can also see from Table 3 and the simple LB section is that sometimes the lower bounding
procedures of Section 4.2 are very effective. For three classes, the simple LB computation is successful and
provides a proof of optimality for more instances than could be solved with either branch-and-price or B&C.
Overall, the new lower bounds allow proving optimality for nine previously open instances.

5.5. Results for Square Grid Instances
In this final experiment, we analyze and quantify the impact that the reduction technique of Section 4.1

has on the performance of the B&C algorithm. We use the 90 self-generated instances with customers
located on a square grid and nontruncated Euclidean distances.

Both B&C algorithms that are compared use the default B&C once for the reduced and once for the
non-reduced edge set. The number of columns and rows of the model is reduced on average by 17.8% and
16.7%, respectively. As before, we compare both variants with the help of performance profiles, see Figure 5.

15



T
able

3:
R
esults

for
the

Golden
instances.

R
eference

B
&
C

algorithm

H
I20

B
&
C

⋄
B
&
C

sim
ple

L
B

T
otal

T
otal*

Set
(#

inst.)
#
opt

tim
e
T̄

#
opt

tim
e
T̄

gap
#
opt

tim
e
T̄

gap
#
opt

gap
#
opt

#
opt

Golden1
(11)

1
3300.4

0
T
L

5.4
0

T
L

2.1
0

4.6
1

1
2
(11)

1
3530.5

0
T
L

5.7
0

T
L

2.1
0

3.3
1

1
3
(11)

0
T
L

0
T
L

6.1
0

T
L

2.0
0

2.8
0

0
4
(11)

0
T
L

0
T
L

5.7
0

T
L

1.9
0

2.1
0

0
5
(11)

10
832.4

6
2486.6

3.7
6

2216.4
1.3

0
5.8

10
11

6
(11)

5
2702.1

1
3558.2

5.5
1

3415.7
2.1

0
3.2

5
5

7
(11)

0
T
L

0
T
L

4.9
0

T
L

1.9
0

2.6
0

4
8
(11)

0
T
L

0
T
L

6.1
0

T
L

1.8
0

2.6
0

0
9
(11)

8
1445.5

0
T
L

4.8
0

T
L

4.4
7

0.4
9

10
10

(11)
6

2453.1
0

T
L

8.8
0

T
L

3.6
0

0.7
6

7
11

(11)
1

3514.6
0

T
L

5.2
0

T
L

4.0
2

0.4
3

9
12

(11)
0

T
L

0
T
L

8.5
0

T
L

3.1
0

0.8
0

0
13

(11)
9

1118.8
4

2963.2
1.6

4
3021.6

0.3
6

0.2
11

11
14

(11)
4

2860.9
0

T
L

3.4
0

T
L

0.6
0

0.2
4

8
15

(11)
1

3561.5
0

T
L

3.2
0

T
L

0.6
6

0.1
6

8
16

(11)
0

T
L

0
T
L

3.4
0

T
L

0.8
3

0.2
3

4
17

(11)
8

1314.4
8

1629.7
1.0

8
1654.5

0.2
0

2.0
8

9
18

(11)
6

2338.4
2

3259.3
4.1

3
3165.8

0.9
0

2.0
6

8
19

(11)
5

2741.5
0

T
L

6.6
0

T
L

3.4
0

2.8
5

8
20

(11)
3

3032.7
0

T
L

6.5
0

T
L

5.1
0

2.6
3

4

T
otal(220)

68
2817.3

21
3394.9

5.0
22

3373.7
2.1

24
2.0

81
108

16



1 1.26 1.58 2 2.51 3.16 3.98 5.01 6.31 7.94 10
0

20

40

60

80

100

τ (logarithmic)

ρ
A
(τ

)
in

pe
rc
en
t

B&C algorithm applied to reduced edge set B&C algorithm applied to non-reduced edge set

Figure 5: Performance profile for the reduced and non-reduced edge set.

The profiles clearly indicate that the reduction procedure is effective and has a relatively strong impact.
Comparing both algorithms at τ = 1, the algorithm with reduced (non-reduced) edge set is in 51% (34%)
of the cases the fastest. For higher τ -values, the difference between both algorithms decreases but in total
three more instances can be solved by the B&C algorithm that is applied to the reduced graph.

Results summarized in Table 4 also confirm the positive effect of the edge reduction: Average time and
gap are overall smaller for the reduced version. In total 75 of 90 instances can be solved to proven optimality.
Detailed results including number of columns and rows of the model can be found in the Online Appendix.

Table 4: Results for square Grid instances.

reduced non-reduced Total

Set (#inst.) n+1 #opt time T̄ gap #opt time T̄ gap #opt gap

Grid
1-30 (30) 121 28 605.8 0.4 27 643.1 0.5 28 0.3
31-60 (30) 169 24 1091.6 1.8 23 1084.2 2.8 25 1.6
61-90 (30) 225 22 1470.3 5.4 21 1487.2 5.1 22 4.6

Total (90) 74 1055.9 2.6 71 1071.5 2.8 75 2.2

6. Conclusions

In this paper, we provided a first two-index formulation for the soft-clustered vehicle-routing problem
(SoftCluVRP). The novelty of the model is the very clear separation of the standard routing part as known
for the capacitated VRP from the part that ensures routes that respect the soft-cluster constraints. This
latter part of the model uses an asymmetric and directed cluster graph so that MTZ-like constraints can be
used here. Overall, the formulation is rather simple to use with modern MIP solvers, because only capacity
constraints have to be added dynamically, i.e., in a cutting-plane fashion. All other valid inequalities that
we presented are not mandatory when the fleet is not made artificially larger than necessary.

On the theoretical side, there are several contributions: First, we analyzed the impact of the fleet-size
constraint and derived new constraints that allow to cope with non-minimal fleets. Second, we proved
that one third of the transitivity constraints are actually redundant, for the complete integer formulation
as well as for its linear relaxation. Third, we presented new capacity cuts that are stronger than the
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straightforward adaptation of the well-known version for the capacitated VRP. Finally, we prove a deep
result that SoftCluVRPs defined on a square grid are reducible.

On the algorithmic side, the new branch-and-cut (B&C) algorithm is complementary to the only other
exact solution approach from the literature that is based on branch-and-price. While not competitive
on all instance classes, the B&C algorithm is particularly useful for SoftCluVRP instances that are truly
clustered. A B&C approach is also much simpler to implement compared to the sophisticated branch-and-
price of Hintsch and Irnich (2020). Overall, the B&C algorithm and lower-bounding strategies deliver new
provably optimal solutions to five GVRP and nine Golden benchmark instances that were unsolved before.

Appendix

Proof of Proposition 4:
Let (x̄, ȳ, ū) be an integer feasible solution to model (R). We consider the connected components of

the digraph Dȳ spanned by the arcs a with ȳa = 1. Let (H(O), A(O)) be one of these components and let
O = {h1, h2, . . . , h∣O∣} with h1 < h2 < ⋅ ⋅ ⋅ < h∣O∣. In a first step, we show that

(hi, hi+1) ∈ A(O), i.e., ȳhi,hi+1
= 1 for all i = 1, 2, . . . , ∣O∣ − 1 (7)

holds true. If the opposite were true, i.e., (hi, hi+1) ∉ A(O), we consider a hi-hi+1-path P in (H(O), A(O))
with a minimum number of arcs (disregarding the direction of the arcs). Note that P must exist by definition
of a connected component and that P and (hi, hi+1) form a cycle (again disregarding the direction of the
arcs). We now consider the minimum and maximum vertices hmin = minH(P ) and hmax = maxH(P ) w.r.t.
the <-relation, respectively. Note that hmin = hi and hmax = hi+1 at the same time is not possible.

If hmin < hi, the vertex hmin has an out-degree of 2 in P , i.e., there exist two arcs (hmin, h) and
(hmin, h

′) ∈ A(O) with h < h′. Transitivity constraints (1k) for hmin < h < h
′ then imply that also ȳhh′ = 1,

i.e, (h, h′) ∈ A(O). This however contradicts with the minimality of P , because replacing (hmin, h) and
(hmin, h′) by (h, h′) in P would create a shorter hi-hj-path.

If hmax > hi+1, the vertex hmax has an in-degree of 2 in P . The same type of argument can now be
used together with the transitivity constraints (1j) leading to a shorter hi-hj-path contradicting with the
minimality of P . Therefore, (7) must hold true.

In a second step, we show that the ȳ-values can be set to one within each component without violating any
constraint. Let (hi, hj) ∈ A(O) be an arc with ȳhihj

= 0. Because of (7), we know that j > i+ 1 holds true.
Summing up (1h) over the arcs (hi, hi+1), (hi+1, hi+2), . . . , (hj−1, hj) gives ūhi

− ūhj
≤ −∑j

k=i+1 dhk
≤ −dhj

.
This proves that (1h) for the arc (hi, hj) ∈ A is also fulfilled even after increasing ȳhi,hj

to 1. Hence, all
arcs with both endpoints in O can be increased without violating (1i).

Note that the new values ȳ for the y-variables do not violate any transitivity constraint (1j)–(1k) because
the positive ȳ represent the transitive closure over O.

Proof of Proposition 5:
Let (x̄, ȳ, ū) be a feasible solution to the linear relaxation of model (R). The feasible solution (x̄, ¯̄y, ū)

to the linear relaxation of model (1) is constructed as follows. We consider the connected components of
the digraph Dȳ spanned by the arcs a with ȳa > 0. Note that ȳh,h′ = 0 for h and h′ in different components.
Accordingly, we also set ¯̄yh,h′ = 0.

Within each component, the ¯̄y-values are defined recursively. For this purpose, let (H(O), A(O)) be one
of these components and let C = {h1, h2, . . . , h∣O∣} with h1 < h2 < ⋅ ⋅ ⋅ < h∣O∣. We define

¯̄yhihi+1
∶= ȳhihi+1

for all i = 1, . . . , ∣O∣ − 1;

¯̄yhihi+2
∶= max{ȳhihi+2

, ȳhihi+1
+ ȳhi+1hi+2

− 1} for all i = 1, . . . , ∣O∣ − 2;

and for all k = 3, . . . , ∣O∣ − 1

¯̄yhihi+k
∶= max{ȳhihi+k

, max
j∈{1,...,k−1}

{¯̄yhihi+j
+ ¯̄yhi+jhi+k

− 1}} for all i = 1, . . . , ∣O∣ − k.
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We have to show that (x̄, ¯̄y, ū) is a feasible solution to the linear relaxation of (1). Since ¯̄y ≥ ȳ, it suffices
to show that this solution fulfills the MTZ-constraints (1h) and transitivity constraints (1j)–(1l). Obviously,
it suffices to check the validity of these constraints for arcs or pairs of arcs (hi, hi+k) ∈ A(O).

Regarding MTZ-constraints (1h), if ¯̄yhi,hi+k
= ȳhi,hi+k

then (1h) is fulfilled because (x̄, ȳ, ū) is feasible.
In addition, this solves the subcases k = 1, i.e., arcs (hi, hi+1). Otherwise, we first consider the case of k = 2
and ¯̄yhihi+2

= ȳhihi+1
+ ȳhi+1hi+2

− 1. It follows

uhi
− uhi+2

+Q¯̄yhihi+2
= uhi

− uhi+1
+ uhi+1

− uhi+2
+Q(ȳhihi+1

+ ȳhi+1hi+2
− 1)

= (uhi
− uhi+1

+Qȳhihi+1
) + (uhi+1

− uhi+2
+Qȳhi+1hi+2

) −Q
(1h)
≤ Q − dhi+1

+Q − dhi+2
−Q ≤ Q − dhi+2

.

where we exploit (1h) for the ȳ-values.
For k > 2, we assume that the values of ¯̄yhihi+k

results from an index j ∈ {1, . . . k − 1} with ¯̄yhihi+k
=

¯̄yhihi+j
+ ¯̄yhi+jhi+k

− 1. By induction over k, we get

uhi
− uhi+k

+Q¯̄yhihi+k
= uhi

− uhi+j
+ uhi+j

− uhi+k
+Q(¯̄yhihi+j

+ ¯̄yhi+jhi+k
− 1)

= (uhi
− uhi+j

+Q¯̄yhihi+j
) + (uhi+j

− uhi+k
+Q¯̄yhi+jhi+k

) −Q
(1h)
≤ Q − dhi+j

+Q − dhi+k
−Q ≤ Q − dhi+k

.

where we exploit (1h) for smaller k by induction hypothesis. This completes all case for the MTZ-
constraints (1h).

Next we prove that the first two classes of transitivity constraints (1j) and (1k) hold true for the ¯̄y-
values. The proof is also by induction over k ≥ 2 for pairs of arcs (hi, hi+j) and (hi+j , hi+k) ∈ A(O), i.e.,
with hi < hi+j < hi+k. For k = 2, the arc pair is (hi, hi+1) and (hi+1, hi+2) so that the result directly follows
because ¯̄yhihi+l

= ȳhihi+l
and ¯̄yhi+1,hi+2

= ȳhi+1,hi+2
.

For k > 2, we show w.l.o.g. that transitivity constraints (1j) are fulfilled (the proof for the second class
of transitivity constraints (1k) works analogously). Let l ∈ {1, . . . , k − 1}. We distinguish three cases.

The first case is ¯̄yhihi+k
= ȳhihi+k

and ¯̄yhi+lhi+k
= ȳhi+lhi+k

. Then,

¯̄yhihi+l
≥ ȳhihi+l

(1j)
≥ ȳhihi+k

+ ȳhi+lhi+k
− 1 = ¯̄yhihi+k

+ ¯̄yhi+lhi+k
− 1. (8)

In the second case, let ¯̄yhihi+k
= ȳhihi+k

and ¯̄yhi+lhi+k
> ȳhi+lhi+k

. The latter implies (using the definition
of the ¯̄y-values) that there exist indices l1 < l2 < ⋅ ⋅ ⋅ < ls with l1 > l and ls < k for an s ∈ {1, . . . , k− l} such
that ¯̄yhi+lhi+k

can be expressed by ȳ-values in the following form:

¯̄yhi+lhi+k
= ȳhi+lhi+l1

+ ȳhi+l1hi+l2
+ ⋅ ⋅ ⋅ + ȳhi+ls−1hi+k

+ ȳhi+lshi+k
− s + 1 (9)

Iteratively exploiting constraints (1j) for the ȳ-values yields

¯̄yhihi+l
≥ ȳhihi+l

(1j)
≥ ȳhihi+l1

+ ȳhi+lhi+l1
− 1

(1j)
≥ ȳhihi+l2

+ ȳhi+l1hi+l2
+ ȳhi+lhi+l1

− 2

(1j)
≥ . . .

(1j)
≥ ȳhihi+k

+ ȳhi+lshi+k
+ ȳhi+ls−1hi+ls

+ . . . + ȳhi+l1hi+l2
+ ȳhi+lhi+l1

− s
(9)
≥ ¯̄yhihi+k

+ ¯̄yhi+lhi+k
− 1.

In the third and last case, let ¯̄yhihi+k
> ȳhihi+k

. Again, using the definition of the ¯̄y-values, we know that
there exists a j ∈ {1, . . . , k − 1} such that

¯̄yhihi+k
= ¯̄yhihi+j

+ ¯̄yhi+jhi+k
− 1. (10)

By induction hypothesis, constraints

¯̄yhihi+l
≥ ¯̄yhihi+j

+ ¯̄yhi+jhi+l
− 1, (11a)
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¯̄yhi+jhi+l
≥ ¯̄yhi+jhi+k

+ ¯̄yhi+lhi+k
− 1 (11b)

are satisfied, yielding

¯̄yhihi+l

(11a)
≥ ¯̄yhihi+j

+ ¯̄yhi+jhi+l
− 1

(11b)
≥ ¯̄yhihi+j

+ ¯̄yhjhi+k
+ ¯̄yhlhi+k

− 2
(10)
= ¯̄yhihi+k

+ ¯̄yhi+lhi+k
− 1.

This completes the proof for the transitivity constraints (1j) and (1k).
Finally, the validity of the third class of transitivity constraints (1l) directly results from the definition

of the ¯̄y-values.

Proof of Theorem 1:
Our proof is by contradiction, i.e., we assume an optimal EucTSP tour in which the vertex in the middle

of the (3 × 3)-vertex block (the vertex ⋄) is connected to a vertex x = (x1, x2) that is not part of the
(3 × 3)-vertex block.

According to Flood (1956), an optimal EucTSP tour is without any crossings in the Euclidean plane.
Therefore, the vertex ⋄ cannot be connected to any other vertex on the horizontal or vertical line crossing
⋄ outside the (3 × 3)-vertex block. For the same reason, the vertex ⋄ cannot be connected to any points
on the diagonals (45◦ and 135◦) outside the 3 × 3-vertex block (the diagonals cross ⋄ and the top-left and
bottom-right vertex of the (3 × 3)-vertex block or the top-right and bottom-left vertices of the block).

Exploiting symmetry, we can assume that x is one of the green vertices • depicted in Table 5. Moreover,
the vertex ⋆, right of ⋄, must be connected to two other vertices; these are denoted by y = (y1, y2) and
z = (z1, z2). Possible y-coordinates have a gray background. The coordinates of x, y, and z are measured
according to a coordinate system in which ⋆ is the origin. W.l.o.g. the minimal distance is one so that
⋄ = (−1, 0), ⋆ = (0, 0), and x, y, z ∈ Z2.

Because crossings are prohibited, the vertex ⋆ must be connected to green or purple vertices (depicted
as • and •, see Cases 1–3 in Table 5) or to the vertex ⋄ (see Cases 4–7 in Table 5).

For all seven cases, we can construct a (strictly) shorter EucTSP tour proving that the original tour was
not optimal. Table 5 summarizes all cases, where below each grid the corresponding distances are calculated
and y-vertices are marked with a gray background.

In the following, the inequalities of all cases are derived in detail. Simple calculations (square and
estimate) show that

√
(x1 + 1)2 + x2

2 ≥
1√
2
+

√
x2

1 + x
2
2 (*)

holds true for x1 ≥ x2 ≥ 0. This inequality is helpful for some intermediate steps. Note that in general
x1, x2 ≥ 1 and x1 ≥ x2.
Case 1: Note first that in case of x1 ≥ y1 and x2 ≤ y2 two lines of x and y would cross. Hence, this
case does not need to be considered. Three other cases remain: First, if x1 ≥ y1 and x2 ≥ y2 then√
y2

1 + y
2
2 ≥ 1 and

√
(x1 + 1)2 + x2

2 >

√
(x1 − y1)2 + (x2 − y2)2. Second, if x1 ≤ y1 and x2 ≤ y2 then√

y2
1 + y

2
2 >

√
(x1 − y1)2 + (x2 − y2)2 and

√
(x1 + 1)2 + x2

2 > 1.
Third, if x1 ≤ y1 and x2 ≥ y2 then we distinguish three subcases: If y = (1, 0) the inequality holds

true because 1 +
√
(x1 + 1)2 + x2

2 > 1 +
√
(x1 − 1)2 + x2

2. If
√
(x1 + 1)2 + x2

2 ≥

√
(x1 − y1)2 + (x2 − y2)2

and y1, y2 ≥ 1, the inequality holds true because
√
y2

1 + y
2
2 > 1. Otherwise, let

√
(x1 + 1)2 + x2

2 <√
(x1 − y1)2 + (x2 − y2)2 and y1, y2 ≥ 1. We consider the triangle defined by the vertices 0, x, and y

depicted in Figure 6. Let β be the angle between the edges (x, y) and (0, x). Since x1 ≥ x2 and y2 ≥ 1,
the angle is obtuse, i.e., β > 90. Let v = (v1, v2) be the intersection of the line crossing 0 and y and the
line forming a 90-degree angle with vertices x and y. It follows that

√
y2

1 + y
2
2 >

√
(v1 − y1)2 + (v2 − y2)2

>

cos(β)
√
(v1 − y1)2 + (v2 − y2)2

=

√
(x1 − y1)2 + (x2 − y2)2.

Case 2: Obviously,
√
y2

1 + y
2
2 >

√
(∣y1∣ − 1)2 + y2

2 and
√
(x1 + 1)2 + x2

2 >

√
x2

1 + x
2
2.
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Case Assumption TSP tour Improved TSP tour

1 z – ⋆, ⋆ – y x

y

z

x

y

z

y1 ≥ 1, y2 ≥ 0

√
y2

1 + y
2
2 +

√
(x1 + 1)2 + x2

2 > 1 +
√
(x1 − y1)2 + (x2 − y2)2

2 z – ⋆, ⋆ – y

y

x

z

y

x

z

y1 ≤ −1, y2 ≤ −1

√
y2

1 + y
2
2 +

√
(x1 + 1)2 + x2

2 >

√
(∣y1∣ − 1)2 + y2

2 +
√
x2

1 + x
2
2

3 z – ⋆, ⋆ – y

y

x

z z

y

x

z1 ≥ 1, z2 ≤ −1
y = (0,−1) or
y1 ≥ 1, y2 ≤ −1

√
(x1 + 1)2 + x2

2 +
√
y2

1 + y
2
2 +

√
z2

1 + z
2
2 > 1 +

√
x2

1 + x
2
2 +

√
(y1 − z1)2 + (y2 − z2)2

4 ⋄ – ⋆ x

y

z

x

y

z

y1, y2 ≥ 1 or
y = (0, 2)

√
y2

1 + (y2 − 1)2 +
√
(x1 + 1)2 + x2

2 >
√

2 +
√
(x1 − y1)2 + (x2 − y2)2

5 ⋄ – ⋆ x

y

z

x

y

z

y1 ≤ −2, y2 ≤ 0

1 +
√
y2

1 + (∣y2∣ + 1)2 +
√
(x1 + 1)2 + x2

2 >
√

2 +
√
(∣y1∣ − 1)2 + y2

2 +
√
x2

1 + x
2
2

6 ⋄ – ⋆ xz

y

xz

y

y1 ≤ −1, y2 ≥ 1
∣y1∣ ≥ y2

1 +
√
y2

1 + (y2 − 1)2 +
√
(x1 + 1)2 + x2

2 >
√

2 +
√
(∣y1∣ − 1)2 + y2

2 +
√
x2

1 + x
2
2

7 ⋄ – ⋆ xy

z

x

z

y

y1 ≤ −1, y2 ≥ 1
∣y1∣ < y2

∣z1∣ < z2

√
y2

1 + (y2 − 1)2 +
√
z2

1 + (z2 − 1)2 +
√
(x1 + 1)2 + x2

2 >
√

2 +
√
(y1 − z1)2 + (y2 − z2)2 +

√
x2

1 + x
2
2

Table 5: Original and improved TSP tours.
Note: The horizontal axis is the first axis for x1, y1, and z1, while the vertical axis is the second axis for x2,
y2, and z2. 21
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Figure 6: Triangle described in Case 1.

Case 3: For the x-part, we find again
√
(x1 + 1)2 + x2

2 >

√
x2

1 + x
2
2.

For the y-part, we consider the four different cases that distinguish the positions of y relative to z: First,
if y1 ≥ z1 and y2 ≤ z2 then

√
y2

1 + y
2
2 ≥

√
(y1 − z1)2 + (y2 − z2)2. Second, if y1 ≤ z1 and y2 ≥ z2 then√

z2
1 + z

2
2 ≥

√
(y1 − z1)2 + (y2 − z2)2. Third, if y1 ≥ z1 and y2 ≥ z2, it follows that

√
y2

1 + y
2
2 +

√
z2

1 + z
2
2 ≥

y1+
√

1 + z2
2 ≥ 1+

√
(y1 − 1)2 + z2

2 ≥ 1+
√
(y1 − z1)2 + (y2 − z2)2. Fourth and finally, if y1 ≤ z1 and y2 ≤ z2,

it follows that
√
y2

1 + y
2
2 +

√
z2

1 + z
2
2 ≥ y2 +

√
z2

1 + 1 ≥ 1 +
√
z2

1 + (y2 − 1)2
≥ 1 +

√
(y1 − z1)2 + (y2 − z2)2.

Note that the inequalities in the third and fourth case result again from squaring and estimating (as done
for (*)).
Case 4: The only possibility for y1 = 0 is the point y = (0, 2). We consider two subcases for x2: On the one
hand, we assume that x2 = 1. It follows that 1 +

√
(x1 + 1)2 + 1 >

√
2 +

√
x2

1 + 1 [it is simple to show that
the larger x1, the smaller is the difference between LHS and RHS; the most critical case is therefore x1 = 1,
in which case the two sides evaluate to 1 +

√
5 >

√
2 +

√
2]. On the other hand, we assume x2 ≥ 2. Then,

1 +
√
(x1 + 1)2 + x2

2

(*)
≥ 1 + 1√

2
+

√
x2

1 + x
2
2 >

√
2 +

√
x2

1 + (x2 − 2)2.
If y1, y2 ≥ 1, we consider four subcases according to the positions of x relative to y: First, in case of

x1 ≥ y1 and x2 ≤ y2 two lines of x and y would cross so that this case does not need to be considered.

Second, if x1 ≥ y1 and x2 ≥ y2 then
√
y2

1 + (y2 − 1)2
≥ 1 and

√
(x1 + 1)2 + x2

2

(*)
≥

1√
2
+

√
x2

1 + x
2
2 >

1√
2
+

√
(x1 − y1)2 + (x2 − y2)2. Third, if x1 ≤ y1 and x2 ≤ y2 then

√
(x1 + 1)2 + x2

2 >
√

2 and
√
y2

1 + (y2 − 1)2
>√

(y1 − x1)2 + (y2 − x2)2. Fourth and finally, if x1 ≥ y1 and x2 ≤ y2 then it follows by simple calculations
that

√
y2

1 + (y2 − 1)2 +
√
(x1 + 1)2 + x2

2 ≥

√
1 + (y2 − 1)2 + x1 + 1 >

√
2 +

√
(x1 − 1)2 + (y2 − 1)2

≥
√

2 +√
(x1 − y1)2 + (x2 − y2)2.

Case 5: Obviously,
√
y2

1 + (∣y2∣ + 1)2
>

√
(∣y1∣ − 1)2 + y2

2 and
√
(x1 + 1)2 + x2

2

(*)
≥

1√
2
+
√
x2

1 + x
2
2 >

√
2−1+√

x2
1 + x

2
2.

Case 6: For the x-part we know 1 +
√
(x1 + 1)2 + x2

2 >
√

2 +
√
x2

1 + x
2
2. For the y-part, we exploit the

precondition ∣y1∣ ≥ y2 ≥ 1. It follows by simple estimations that
√
y2

1 + (y2 − 1)2
≥

√
(∣y1∣ − 1)2 + y2

2 .

Case 7: If y1 ≥ 1 and y2 ≥ 2 then
√
y2

1 + (y2 − 1)2
≥ 1 +

√
(y1 − 1)2 + (y2 − 2)2. It follows that

√
y2

1 + (y2 − 1)2+
√
z2

1 + (z2 − 1)2+
√
(x1 + 1)2 + x2

2

(*)
≥ 2+

√
(y1 − 1)2 + (y2 − 2)2+

√
(z1 − 1)2 + (z2 − 2)2+

1√
2
+

√
x2

1 + x
2
2 >

√
2 +

√
(y1 − z1)2 + (y2 − z2)2 +

√
x2

1 + x
2
2.

Two final remarks are due: The difference between the left-hand and right-hand side of the >-inequalities
is in all the (sub)cases greater than 0.2. Hence, the tours depicted on the right-hand side are always strictly
improving.

Moreover, the improved tours of Cases 5 and 6 are certainly not optimal: The middle vertex ⋄ of the
(3× 3)-vertex block is still connected to an outer vertex. Hence, these tours can be further shortened using
one of the Cases 1, 2, or 3.
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Online Appendix

In this Appendix, we present instance-by-instance results. The entries in the Tables 6–8 have the following
meaning:

Group: Subset of instances: A, B, P, C, and G for the GVRP instances; Golden1-Golden20 for the
Golden instances

No.: Number of the instance for the self-generated, smaller-sized Grid instances
n: Number of customers
k: Number of vehicles in the original CVRP instance
N : Number of customer clusters
m: Number of vehicles for the SoftCluVRP

UB: Upper bound; bold if LB = UB, i.e., optimality is proven
LB: Lower bound; bold ditto

Moreover, we indicate which SoftCluVRP algorithm has computed/proven a(n) upper/lower bound for
the first time (“first found by”):

HI20: branch-and-price of Hintsch and Irnich (2020)
H19: metaheuristic of Hintsch (2019)

DS17: metaheuristic of Defryn and Sörensen (2017)
BEV19: exact algorithm of Battarra et al. (2014)

B&C: Trans:dyn, MTZ:static, Tree:none
*B&C: Trans:dyn, MTZ:static, Tree:none with a time limit of 36,000 seconds (10 hours)
⋄B&C: Trans:dyn, MTZ:static, Tree:none, BKS provided as UB
•B&C: Trans:static, MTZ:none
†B&C: Trans:static, MTZ:static, ProbCC:none

pretest: Pretests with one of the algorithms described in Section 5.1
grid: grid lower bound from Section 4.2
relax: relax lower bound from model (6) with a time limit of 600 seconds, see Section 4.2

Table 6 displays the results for the GVRP instances, Table 7 for the Golden instances, and Table 8 for the
self-generated Grid instances.
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Table 6: Detailed results for the GVRP instances.

Results

Instance first found by time T

Group n + 1 k N m UB LB UB LB HI20 B&C

GVRP-2
A 32 5 16 2 595 595 HI20 HI20 7 140
A 33 5 17 3 528 528 HI20 HI20 12 4
A 33 6 17 3 561 561 HI20 HI20 5 5
A 34 5 17 3 568 568 HI20 HI20 13 3
A 36 5 18 2 596 596 HI20 HI20 65 101
A 37 5 19 3 573 573 HI20 HI20 6 4
A 37 6 19 3 660 660 HI20 HI20 4 10
A 38 5 19 3 547 547 HI20 HI20 1 2
A 39 5 20 3 659 659 HI20 HI20 78 9
A 39 6 20 3 676 676 HI20 HI20 78 375
A 44 6 22 3 723 723 HI20 HI20 23 42
A 45 6 23 4 679 679 HI20 HI20 4 1
A 45 7 23 4 774 774 HI20 HI20 242 1856
A 46 7 23 4 708 708 HI20 HI20 209 49
A 48 7 24 4 784 784 HI20 HI20 1431 149
A 53 7 27 4 732 732 HI20 HI20 285 56
A 54 7 27 4 806 806 HI20 HI20 265 1147
A 55 9 28 5 778 778 HI20 HI20 84 68
A 60 9 30 5 877 877 HI20 HI20 2010 262
A 61 9 31 5 749 749 HI20 HI20 142 432
A 62 8 31 4 849 849 HI20 HI20 839 692
A 63 9 32 5 1043 1043 HI20 HI20 3159 TL
A 63 10 32 5 895 895 HI20 HI20 512 TL
A 64 9 32 5 895 895 HI20 HI20 1132 TL
A 65 9 33 5 825 825 HI20 HI20 2544 TL
A 69 9 35 5 857 857 HI20 HI20 2506 TL
A 80 10 40 5 1115 1115 HI20 HI20 TL TL

B 31 5 16 3 451 451 HI20 HI20 7 1
B 34 5 17 3 495 495 HI20 HI20 26 <1
B 35 5 18 3 654 654 HI20 HI20 27 <1
B 38 6 19 3 479 479 HI20 HI20 3 2
B 39 5 20 3 378 378 HI20 HI20 5 <1
B 41 6 21 3 514 514 HI20 HI20 13 50
B 43 6 22 3 522 522 HI20 HI20 897 44
B 44 7 22 4 562 562 HI20 HI20 363 3
B 45 5 23 3 542 542 HI20 HI20 7 1
B 45 6 23 4 506 506 HI20 HI20 141 246
B 50 7 25 4 495 495 HI20 HI20 1 <1
B 50 8 25 5 954 954 HI20 B&C TL 502
B 51 7 26 4 672 672 HI20 HI20 123 2
B 52 7 26 4 485 485 HI20 HI20 224 2
B 56 7 28 4 520 520 HI20 B&C TL 61
B 57 7 29 4 776 776 H19 B&C TL 7

Continued on next page
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Results

Instance first found by time T

Group n + 1 k N m UB LB UB LB HI20 B&C

B 57 9 29 5 983 983 HI20 HI20 251 1204
B 63 10 32 5 865 865 HI20 HI20 1402 722
B 64 9 32 5 550 550 HI20 HI20 21 5
B 66 9 33 5 849 849 H19 B&C TL 207
B 67 10 34 5 721 721 H19 B&C TL 1192
B 68 9 34 5 745 745 HI20 HI20 293 21
B 78 10 39 5 842 842 HI20 HI20 TL TL

P 16 8 8 5 299 299 HI20 HI20 <1 <1
P 19 2 10 2 195 195 HI20 HI20 <1 <1
P 20 2 10 2 208 208 HI20 HI20 <1 1
P 21 2 11 2 208 208 HI20 HI20 <1 <1
P 22 2 11 2 209 209 HI20 HI20 <1 1
P 22 8 11 5 397 397 HI20 HI20 <1 1
P 23 8 12 5 369 369 HI20 HI20 2 5
P 40 5 20 3 401 401 HI20 HI20 10 13
P 45 5 23 3 443 443 HI20 HI20 5 24
P 50 7 25 4 464 464 HI20 HI20 119 173
P 50 8 25 4 501 501 HI20 HI20 230 TL
P 50 10 25 5 512 512 HI20 HI20 56 358
P 51 10 26 6 548 548 HI20 HI20 21 114
P 55 7 28 4 477 477 HI20 HI20 8 284
P 55 8 28 4 484 484 HI20 HI20 40 2096
P 55 10 28 5 514 514 HI20 HI20 5 105
P 55 15 28 8 684 684 HI20 HI20 70 TL
P 60 10 30 5 575 575 HI20 HI20 725 TL
P 60 15 30 8 700 700 HI20 HI20 216 TL
P 65 10 33 5 616 616 HI20 HI20 291 TL
P 70 10 35 5 643 643 HI20 HI20 934 TL
P 76 4 38 2 557 557 HI20 HI20 2745 TL
P 76 5 38 3 571 571 HI20 HI20 2311 TL
P 101 4 51 2 645 645 H19 HI20 TL TL

G 101 10 51 5 628 628 HI20 HI20 569 TL
C 121 7 61 4 799 782 H19 *B&C TL TL
C 151 12 76 6 805 793 H19 HI20 TL TL
C 200 16 100 8 944 910 H19 ⋄B&C TL TL
C 262 25 131 12 3655 3355 H19 B&C TL TL

GVRP-3
A 32 5 11 2 515 515 DS17 HI20 1 <1
A 33 5 11 2 461 461 DS17 HI20 1 1
A 33 6 11 2 554 554 DS17 HI20 2 3
A 34 5 12 2 538 538 DS17 HI20 6 1
A 36 5 12 2 543 543 DS17 HI20 6 1
A 37 5 13 2 545 545 HI20 HI20 11 2
A 37 6 13 2 605 605 DS17 HI20 6 8
A 38 5 13 2 507 507 BEV19 HI20 5 <1

Continued on next page
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Results

Instance first found by time T

Group n + 1 k N m UB LB UB LB HI20 B&C

A 39 5 13 2 588 588 DS17 HI20 13 3
A 39 6 13 2 603 603 DS17 HI20 6 4
A 44 6 15 2 691 691 DS17 HI20 27 246
A 45 6 15 3 652 652 DS17 HI20 2 4
A 45 7 15 3 661 661 DS17 HI20 29 11
A 46 7 16 3 642 642 DS17 HI20 12 18
A 48 7 16 3 680 680 DS17 HI20 57 34
A 53 7 18 3 627 627 DS17 HI20 14 <1
A 54 7 18 3 699 699 DS17 HI20 143 41
A 55 9 19 3 645 645 DS17 HI20 9 13
A 60 9 20 3 762 762 DS17 HI20 29 1127
A 61 9 21 4 671 671 DS17 HI20 23 75
A 62 8 21 3 771 771 DS17 HI20 404 48
A 63 9 21 3 837 837 DS17 HI20 43 432
A 63 10 21 4 779 779 DS17 HI20 13 61
A 64 9 22 3 767 767 DS17 HI20 585 934
A 65 9 22 3 693 693 DS17 HI20 14 17
A 69 9 23 3 794 794 DS17 HI20 603 TL
A 80 10 27 4 944 944 DS17 HI20 178 228

B 31 5 11 2 375 375 BEV19 HI20 4 <1
B 34 5 12 2 415 415 DS17 HI20 5 <1
B 35 5 12 2 557 557 DS17 HI20 18 <1
B 38 6 13 2 427 427 DS17 HI20 3 1
B 39 5 13 2 317 317 DS17 HI20 <1 <1
B 41 6 14 2 469 469 DS17 HI20 12 <1
B 43 6 15 2 405 405 DS17 HI20 8 1
B 44 7 15 3 443 443 DS17 HI20 7 2
B 45 5 15 2 489 489 DS17 HI20 3 <1
B 45 6 15 2 386 386 DS17 HI20 4 5
B 50 7 17 3 464 464 DS17 HI20 16 2
B 50 8 17 3 661 661 DS17 HI20 5 8
B 51 7 17 3 578 578 DS17 HI20 17 1
B 52 7 18 3 427 427 BEV19 HI20 11 1
B 56 7 19 3 420 420 DS17 HI20 16 3
B 57 7 19 3 622 622 DS17 HI20 437 1
B 57 9 19 3 746 746 DS17 HI20 1606 24
B 63 10 21 3 685 685 BEV19 HI20 21 3
B 64 9 22 4 524 524 DS17 HI20 32 6
B 66 9 22 3 683 683 DS17 HI20 252 74
B 67 10 23 4 619 619 DS17 HI20 72 7
B 68 9 23 3 582 582 DS17 HI20 25 40
B 78 10 26 4 704 704 DS17 HI20 1109 68

P 16 8 6 4 251 251 DS17 HI20 <1 <1
P 19 2 7 1 170 170 DS17 HI20 <1 <1
P 20 2 7 1 177 177 DS17 HI20 <1 <1
P 21 2 7 1 179 179 DS17 HI20 <1 <1

Continued on next page
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Results

Instance first found by time T

Group n + 1 k N m UB LB UB LB HI20 B&C

P 22 2 8 1 183 183 DS17 HI20 <1 <1
P 22 8 8 4 365 365 BEV19 HI20 <1 <1
P 23 8 8 3 270 270 DS17 HI20 1 1
P 40 5 14 2 381 381 DS17 HI20 8 2
P 45 5 15 2 422 422 DS17 HI20 2 3
P 50 7 17 3 430 430 DS17 HI20 4 9
P 50 8 17 3 441 441 DS17 HI20 3 23
P 50 10 17 4 471 471 DS17 HI20 5 40
P 51 10 17 4 493 493 DS17 HI20 2 11
P 55 7 19 3 454 454 HI20 HI20 21 94
P 55 8 19 3 454 454 HI20 HI20 9 51
P 55 10 19 4 481 481 DS17 HI20 4 21
P 55 15 19 6 572 572 DS17 HI20 9 86
P 60 10 20 4 534 534 HI20 HI20 61 703
P 60 15 20 5 591 591 DS17 HI20 39 967
P 65 10 22 4 575 575 HI20 HI20 8 43
P 70 10 24 4 602 602 DS17 HI20 30 240
P 76 4 26 2 556 556 HI20 HI20 382 50
P 76 5 26 2 556 556 DS17 HI20 71 143
P 101 4 34 2 649 649 DS17 HI20 1899 TL

G 101 10 34 4 598 598 DS17 HI20 1707 1024
C 121 7 41 3 680 673 H19 *B&C TL TL
C 151 12 51 4 756 756 HI20 HI20 TL TL
C 200 16 67 6 865 858 H19 HI20 TL TL
C 262 25 88 9 3178 2974 H19 ⋄B&C TL TL
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Table 7: Detailed results for the Golden instances.

Results

Instance first found by time T SoftCluVRP≤m

Group n + 1 N m UB LB UB LB HI20 B&C UB LB time T

Golden1 241 17 4 4640 4640 HI20 HI20 304 TL 4531 4531 2709
Golden1 241 18 4 4645 4636 HI20 HI20 TL TL 4539 4535 TL
Golden1 241 19 4 4650 4647 HI20 HI20 TL TL 4597 4523 TL
Golden1 241 21 4 4650 4640 HI20 HI20 TL TL 4582 4518 TL
Golden1 241 22 4 4650 4638 H19 HI20 TL TL 4595 4517 TL
Golden1 241 25 4 4650 4614 H19 HI20 TL TL 4628 4505 TL
Golden1 241 27 4 4652 4624 H19 HI20 TL TL 4652 4478 TL
Golden1 241 31 4 4665 4632 H19 HI20 TL TL 4665 4474 TL
Golden1 241 35 4 4619 4583 H19 HI20 TL TL 4619 4441 TL
Golden1 241 41 4 4619 4525 H19 B&C TL TL 4619 4470 TL
Golden1 241 49 4 4607 4525 H19 B&C TL TL 4607 4470 TL

Golden2 321 22 4 7394 7393 H19 HI20 TL TL 7394 7135 TL
Golden2 321 23 4 7369 7369 HI20 HI20 2836 TL 7369 7129 TL
Golden2 321 25 4 7367 7366 H19 HI20 TL TL 7367 7126 TL
Golden2 321 27 4 7333 7329 H19 HI20 TL TL 7333 7080 TL
Golden2 321 30 4 7329 7162 H19 B&C TL TL 7329 7107 TL
Golden2 321 33 4 7311 7162 H19 B&C TL TL 7311 7107 TL
Golden2 321 36 4 7293 7162 H19 •B&C TL TL 7293 7107 TL
Golden2 321 41 4 7283 7161 H19 B&C TL TL 7283 7106 TL
Golden2 321 46 4 7284 7161 H19 B&C TL TL 7284 7106 TL
Golden2 321 54 4 7274 7160 H19 B&C TL TL 7274 7105 TL
Golden2 321 65 4 7261 7160 H19 B&C TL TL 7261 7105 TL

Golden3 401 27 4 10077 10064 H19 HI20 TL TL 10077 9733 TL
Golden3 401 29 4 10018 9795 H19 pretest TL TL 10018 9727 TL
Golden3 401 31 4 10002 9783 H19 ⋄B&C TL TL 10002 9723 TL
Golden3 401 34 4 9995 9772 H19 †B&C TL TL 9995 9713 TL
Golden3 401 37 4 9986 9762 H19 ⋄B&C TL TL 9986 9708 TL
Golden3 401 41 4 9926 9763 H19 •B&C TL TL 9926 9712 TL
Golden3 401 45 4 9936 9759 H19 B&C TL TL 9936 9704 TL
Golden3 401 51 4 9916 9742 H19 B&C TL TL 9916 9687 TL
Golden3 401 58 4 9910 9741 H19 B&C TL TL 9910 9686 TL
Golden3 401 67 4 9901 9741 H19 B&C TL TL 9901 9686 TL
Golden3 401 81 4 9868 9740 H19 B&C TL TL 9868 9685 TL

Golden4 481 33 4 12741 12409 H19 pretest TL TL 12741 12331 TL
Golden4 481 35 4 12740 12427 H19 pretest TL TL 12740 12325 TL
Golden4 481 37 4 12645 12376 H19 ⋄B&C TL TL 12645 12323 TL
Golden4 481 41 4 12568 12375 H19 relax TL TL 12568 12310 TL
Golden4 481 44 4 12566 12375 H19 relax TL TL 12566 12315 TL
Golden4 481 49 4 12566 12375 H19 relax TL TL 12566 12324 TL
Golden4 481 54 4 12525 12367 H19 relax TL TL 12525 12307 TL
Golden4 481 61 4 12558 12367 H19 relax TL TL 12558 12294 TL
Golden4 481 69 4 12573 12347 H19 B&C TL TL 12573 12292 TL
Golden4 481 81 4 12555 12339 H19 B&C TL TL 12555 12282 TL

Continued on next page
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Results

Instance first found by time T SoftCluVRP≤m

Group n + 1 N m UB LB UB LB HI20 B&C UB LB time T

Golden4 481 97 4 12528 12337 H19 B&C TL TL 12528 12282 TL

Golden5 201 14 4 6970 6970 HI20 HI20 212 533 6742 6742 377
Golden5 201 15 3 6742 6742 HI20 HI20 280 582 6742 6742 241
Golden5 201 16 3 6742 6742 HI20 HI20 142 922 6742 6742 261
Golden5 201 17 3 6862 6862 HI20 HI20 380 1731 6862 6862 783
Golden5 201 19 4 6874 6874 HI20 HI20 180 2907 6735 6735 2485
Golden5 201 21 4 6816 6816 HI20 HI20 666 2679 6637 6637 1136
Golden5 201 23 4 6750 6750 HI20 HI20 260 TL 6637 6637 3352
Golden5 201 26 4 6704 6704 HI20 HI20 647 TL 6521 6521 1959
Golden5 201 29 4 6704 6704 HI20 HI20 779 TL 6521 6521 TL
Golden5 201 34 4 6684 6684 HI20 HI20 TL TL 6567 6389 TL
Golden5 201 41 4 6557 6557 HI20 HI20 2010 TL 6557 6317 TL

Golden6 281 19 3 8115 8115 HI20 HI20 1110 3140 8115 8115 1824
Golden6 281 21 3 8119 8119 HI20 HI20 901 TL 8119 8068 TL
Golden6 281 22 3 8107 8107 HI20 HI20 1053 TL 8107 8047 TL
Golden6 281 24 4 8316 8316 HI20 HI20 2491 TL 8267 8008 TL
Golden6 281 26 4 8249 8249 HI20 HI20 2568 TL 8225 7987 TL
Golden6 281 29 4 8244 8234 H19 HI20 TL TL 8244 7966 TL
Golden6 281 32 4 8179 8175 H19 HI20 TL TL 8179 7955 TL
Golden6 281 36 4 8179 8178 H19 HI20 TL TL 8179 7947 TL
Golden6 281 41 4 8204 7995 H19 •B&C TL TL 8204 7938 TL
Golden6 281 47 4 8179 7970 H19 relax TL TL 8179 7913 TL
Golden6 281 57 4 8204 7960 H19 B&C TL TL 8204 7908 TL

Golden7 361 25 3 9318 9318 HI20 HI20 TL TL 9318 9173 TL
Golden7 361 26 3 9295 9295 HI20 HI20 TL TL 9295 9173 TL
Golden7 361 28 3 9271 9150 H19 †B&C TL TL 9271 9151 TL
Golden7 361 31 4 9418 9418 HI20 HI20 TL TL 9418 9159 TL
Golden7 361 33 4 9395 9215 H19 •B&C TL TL 9395 9155 TL
Golden7 361 37 4 9395 9395 HI20 HI20 TL TL 9395 9161 TL
Golden7 361 41 4 9386 9198 H19 ⋄B&C TL TL 9386 9142 TL
Golden7 361 46 4 9368 9177 H19 †B&C TL TL 9368 9111 TL
Golden7 361 52 4 9365 9173 H19 ⋄B&C TL TL 9365 9118 TL
Golden7 361 61 4 9316 9157 H19 B&C TL TL 9316 9102 TL
Golden7 361 73 4 9302 9157 H19 B&C TL TL 9302 9102 TL

Golden8 441 30 4 10409 10190 H19 pretest TL TL 10409 10122 TL
Golden8 441 32 4 10409 10197 H19 relax TL TL 10409 10120 TL
Golden8 441 34 4 10409 10177 H19 ⋄B&C TL TL 10409 10121 TL
Golden8 441 37 4 10360 10198 H19 ⋄B&C TL TL 10360 10142 TL
Golden8 441 41 4 10360 10219 H19 relax TL TL 10360 10155 TL
Golden8 441 45 4 10385 10198 H19 •B&C TL TL 10385 10141 TL
Golden8 441 49 4 10399 10195 H19 B&C TL TL 10399 10139 TL
Golden8 441 56 4 10371 10195 H19 B&C TL TL 10371 10139 TL
Golden8 441 63 4 10361 10195 H19 B&C TL TL 10361 10139 TL
Golden8 441 74 4 10356 10195 H19 B&C TL TL 10356 10139 TL
Golden8 441 89 4 10281 10195 H19 B&C TL TL 10281 10139 TL

Continued on next page
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Results

Instance first found by time T SoftCluVRP≤m

Group n + 1 N m UB LB UB LB HI20 B&C UB LB time T

Golden9 256 18 4 281 281 HI20 HI20 1287 TL 276 269 TL
Golden9 256 19 4 279 279 HI20 HI20 209 TL 276 269 TL
Golden9 256 20 4 276 276 HI20 HI20 112 TL 273 269 TL
Golden9 256 22 4 276 276 HI20 HI20 217 TL 276 269 TL
Golden9 256 24 4 276 276 HI20 HI20 175 TL 270 269 TL
Golden9 256 26 4 273 273 HI20 HI20 465 TL 273 266 TL
Golden9 256 29 4 273 273 HI20 HI20 985 TL 273 266 TL
Golden9 256 32 4 273 273 HI20 HI20 1650 TL 273 266 TL
Golden9 256 37 4 273 273 HI20 HI20 TL TL 273 266 TL
Golden9 256 43 4 270 270 H19 HI20 TL TL 270 262 TL
Golden9 256 52 4 269 268 H19 HI20 TL TL 269 262 TL

Golden10 324 22 4 346 346 HI20 HI20 923 TL 346 345 TL
Golden10 324 24 4 346 346 HI20 HI20 1014 TL 346 345 TL
Golden10 324 25 4 346 346 HI20 HI20 1114 TL 346 345 TL
Golden10 324 27 4 346 346 HI20 HI20 1360 TL 346 345 TL
Golden10 324 30 4 347 347 HI20 HI20 1848 TL 347 345 TL
Golden10 324 33 4 344 344 HI20 HI20 2725 TL 344 341 TL
Golden10 324 36 4 344 344 HI20 HI20 TL TL 344 341 TL
Golden10 324 41 4 346 340 H19 grid TL TL 346 340 TL
Golden10 324 47 4 344 340 H19 grid TL TL 344 340 TL
Golden10 324 54 4 340 338 H19 grid TL TL 340 338 TL
Golden10 324 65 4 335 334 H19 grid TL TL 335 334 TL

Golden11 400 27 5 434 434 HI20 HI20 TL TL 434 423 TL
Golden11 400 29 5 434 434 HI20 HI20 TL TL 434 423 TL
Golden11 400 31 5 433 433 HI20 HI20 2661 TL 433 423 TL
Golden11 400 34 5 427 427 HI20 HI20 TL TL 427 416 TL
Golden11 400 37 5 427 427 H19 HI20 TL TL 427 416 TL
Golden11 400 40 5 425 425 H19 HI20 TL TL 425 415 TL
Golden11 400 45 5 425 425 H19 HI20 TL TL 425 415 TL
Golden11 400 50 5 423 422 H19 grid TL TL 423 415 TL
Golden11 400 58 5 422 422 H19 grid TL TL 422 415 TL
Golden11 400 67 5 422 422 H19 grid TL TL 422 415 TL
Golden11 400 80 5 417 416 H19 grid TL TL 417 410 TL

Golden12 484 33 5 512 507 H19 grid TL TL 512 500 TL
Golden12 484 35 5 512 507 H19 grid TL TL 512 500 TL
Golden12 484 38 5 511 507 H19 grid TL TL 511 500 TL
Golden12 484 41 5 512 507 H19 grid TL TL 512 500 TL
Golden12 484 44 5 511 507 H19 grid TL TL 511 500 TL
Golden12 484 49 5 511 507 H19 grid TL TL 511 500 TL
Golden12 484 54 5 510 507 H19 grid TL TL 510 500 TL
Golden12 484 61 5 510 507 H19 grid TL TL 510 500 TL
Golden12 484 70 5 509 506 H19 grid TL TL 509 499 TL
Golden12 484 81 5 502 498 H19 grid TL TL 502 493 TL
Golden12 484 97 5 502 498 H19 grid TL TL 502 493 TL

Golden13 253 17 4 530 530 HI20 HI20 116 2378 519 519 506
Continued on next page
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Results

Instance first found by time T SoftCluVRP≤m

Group n + 1 N m UB LB UB LB HI20 B&C UB LB time T

Golden13 253 19 4 521 521 HI20 HI20 189 983 516 516 26
Golden13 253 20 4 521 521 HI20 HI20 192 538 516 516 13
Golden13 253 22 4 523 523 HI20 HI20 203 TL 516 516 48
Golden13 253 23 4 523 523 HI20 HI20 215 3496 516 516 73
Golden13 253 26 4 523 523 HI20 HI20 118 TL 516 516 74
Golden13 253 29 4 522 522 HI20 HI20 1483 TL 516 516 1551
Golden13 253 32 4 521 521 HI20 HI20 286 TL 516 516 TL
Golden13 253 37 4 521 521 HI20 HI20 2305 TL 521 516 TL
Golden13 253 43 4 521 521 HI20 HI20 TL TL 521 516 TL
Golden13 253 51 4 521 521 H19 HI20 TL TL 521 516 TL

Golden14 321 22 4 665 665 HI20 HI20 1814 TL 665 653 TL
Golden14 321 23 4 662 662 HI20 HI20 752 TL 655 652 TL
Golden14 321 25 4 660 660 HI20 HI20 637 TL 653 652 TL
Golden14 321 27 4 660 660 HI20 HI20 3067 TL 652 652 3067
Golden14 321 30 4 660 660 HI20 HI20 TL TL 652 652 TL
Golden14 321 33 4 660 660 H19 HI20 TL TL 660 652 TL
Golden14 321 36 4 658 658 H19 HI20 TL TL 658 652 TL
Golden14 321 41 4 658 658 HI20 HI20 TL TL 658 652 TL
Golden14 321 46 4 658 657 H19 grid TL TL 658 652 TL
Golden14 321 54 4 658 657 H19 grid TL TL 658 652 TL
Golden14 321 65 4 658 657 H19 grid TL TL 658 652 TL

Golden15 397 27 4 815 815 H19 HI20 TL TL 815 813 TL
Golden15 397 29 4 815 815 H19 HI20 TL TL 815 813 TL
Golden15 397 31 4 813 813 HI20 HI20 3176 TL 813 813 TL
Golden15 397 34 4 813 813 H19 HI20 TL TL 813 813 TL
Golden15 397 37 4 815 813 H19 grid TL TL 815 813 TL
Golden15 397 40 4 815 813 H19 grid TL TL 815 813 TL
Golden15 397 45 5 817 815 H19 relax TL TL 817 808 TL
Golden15 397 50 5 815 815 H19 relax TL TL 815 808 TL
Golden15 397 57 5 815 815 H19 relax TL TL 815 808 TL
Golden15 397 67 5 815 815 H19 relax TL TL 815 808 TL
Golden15 397 80 5 815 815 H19 relax TL TL 815 808 TL

Golden16 481 33 5 993 990 H19 grid TL TL 993 980 TL
Golden16 481 35 5 993 993 H19 HI20 TL TL 993 980 TL
Golden16 481 37 5 993 992 H19 HI20 TL TL 993 980 TL
Golden16 481 41 5 993 990 H19 grid TL TL 993 980 TL
Golden16 481 44 5 993 990 H19 grid TL TL 993 980 TL
Golden16 481 49 5 989 987 H19 grid TL TL 989 979 TL
Golden16 481 54 5 985 984 H19 grid TL TL 985 977 TL
Golden16 481 61 5 985 984 H19 grid TL TL 985 977 TL
Golden16 481 69 5 984 984 H19 grid TL TL 984 977 TL
Golden16 481 81 5 984 984 H19 grid TL TL 984 977 TL
Golden16 481 97 5 984 984 H19 grid TL TL 984 977 TL

Golden17 241 17 3 386 386 HI20 HI20 132 417 386 386 269
Golden17 241 18 3 385 385 HI20 HI20 290 341 385 385 290

Continued on next page
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Results

Instance first found by time T SoftCluVRP≤m

Group n + 1 N m UB LB UB LB HI20 B&C UB LB time T

Golden17 241 19 3 385 385 HI20 HI20 220 342 385 385 295
Golden17 241 21 3 385 385 HI20 HI20 457 625 385 385 316
Golden17 241 22 3 385 385 HI20 HI20 372 750 385 385 570
Golden17 241 25 3 382 382 HI20 HI20 487 1093 382 382 619
Golden17 241 27 3 382 382 HI20 HI20 1039 1851 382 382 1774
Golden17 241 31 4 390 390 HI20 HI20 661 1707 382 382 2582
Golden17 241 35 4 390 389 H19 HI20 TL TL 381 379 TL
Golden17 241 41 4 388 388 HI20 HI20 TL TL 382 378 TL
Golden17 241 49 4 387 386 H19 HI20 TL TL 387 376 TL

Golden18 301 21 4 558 558 HI20 HI20 694 1571 552 547 TL
Golden18 301 22 4 558 558 HI20 HI20 781 1881 553 553 TL
Golden18 301 24 4 558 558 HI20 HI20 831 TL 553 548 TL
Golden18 301 26 4 562 562 HI20 HI20 974 TL 552 544 TL
Golden18 301 28 4 558 558 HI20 HI20 TL TL 551 541 TL
Golden18 301 31 4 554 554 HI20 HI20 2450 TL 554 541 TL
Golden18 301 34 4 554 554 HI20 HI20 1992 TL 554 540 TL
Golden18 301 38 4 555 555 HI20 HI20 TL TL 551 540 TL
Golden18 301 43 4 558 550 H19 ⋄B&C TL TL 558 540 TL
Golden18 301 51 4 555 549 H19 †B&C TL TL 555 540 TL
Golden18 301 61 4 556 548 H19 •B&C TL TL 556 538 TL

Golden19 361 25 10 886 886 HI20 HI20 538 TL 738 730 TL
Golden19 361 26 10 888 888 HI20 HI20 1208 TL 763 725 TL
Golden19 361 28 4 741 741 HI20 HI20 1479 TL 741 730 TL
Golden19 361 31 4 735 735 HI20 HI20 TL TL 735 728 TL
Golden19 361 33 4 727 727 HI20 HI20 2719 TL 727 723 TL
Golden19 361 37 5 732 732 HI20 HI20 2612 TL 732 716 TL
Golden19 361 41 5 730 730 HI20 HI20 TL TL 730 714 TL
Golden19 361 46 5 730 721 H19 B&C TL TL 730 713 TL
Golden19 361 52 5 730 730 HI20 HI20 TL TL 730 712 TL
Golden19 361 61 5 737 721 H19 B&C TL TL 737 713 TL
Golden19 361 73 5 736 721 H19 B&C TL TL 736 712 TL

Golden20 421 29 11 1170 1170 HI20 HI20 1099 TL 1052 971 TL
Golden20 421 31 12 1183 1183 HI20 HI20 1080 TL 1088 966 TL
Golden20 421 33 12 1175 1175 HI20 HI20 2381 TL 1162 966 TL
Golden20 421 36 5 1005 1005 H19 HI20 TL TL 1005 963 TL
Golden20 421 39 5 991 971 H19 B&C TL TL 991 961 TL
Golden20 421 43 5 990 971 H19 †B&C TL TL 990 962 TL
Golden20 421 47 5 988 970 H19 ⋄B&C TL TL 988 961 TL
Golden20 421 53 5 988 970 H19 relax TL TL 988 961 TL
Golden20 421 61 5 987 970 H19 relax TL TL 987 961 TL
Golden20 421 71 5 986 970 H19 relax TL TL 986 961 TL
Golden20 421 85 5 980 969 H19 relax TL TL 980 960 TL
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Table 8: Detailed results for square Grid instances.

Instance Results

reduced non-reduced

No. n N m UB LB time T #nodes #cols #rows UB LB time T #nodes #cols #rows

1 121 6 2 134.9 134.9 11 55 6.240 4.428 134.9 134.9 22 89 7.281 5.211
2 121 6 2 135.5 135.5 10 48 5.383 3.836 135.5 135.5 18 17 7.281 4.938
3 121 6 2 130.7 130.7 14 273 5.192 3.967 130.7 130.7 13 82 7.281 5.666
4 121 6 2 123.7 123.7 7 104 6.144 4.730 123.7 123.7 4 102 7.281 5.571
5 121 6 2 124.9 124.9 3 17 5.846 4.571 124.9 124.9 6 544 7.281 5.735
6 121 6 2 128.4 128.4 11 28 6.958 4.949 128.4 128.4 10 253 7.281 5.191
7 121 8 3 144.7 144.7 82 1.252 6.657 5.598 144.7 144.7 69 839 7.296 6.132
8 121 8 3 151.7 151.7 256 6.573 6.357 5.037 151.7 151.7 114 904 7.296 5.769
9 121 8 3 151.7 151.7 30 29 6.069 4.881 151.7 151.7 58 309 7.296 5.779

10 121 8 3 128.9 128.9 16 660 6.663 5.587 128.9 128.9 19 423 7.296 6.122
11 121 8 3 131.6 131.6 28 29 7.080 5.967 131.6 131.6 21 60 7.296 6.161
12 121 8 4 134.0 134.0 28 21 6.263 4.677 134.0 134.0 47 27 7.296 5.416
13 121 10 3 147.6 147.6 156 2.461 7.207 6.137 147.6 147.6 247 4.072 7.315 6.231
14 121 10 3 148.0 148.0 470 4.045 6.891 5.710 148.0 147.9 413 6.264 7.315 6.052
15 121 10 4 157.8 157.8 140 2.283 6.783 5.769 157.8 157.8 240 2.931 7.315 6.243
16 121 10 4 137.0 137.0 65 414 6.993 5.968 137.0 137.0 64 393 7.315 6.265
17 121 10 4 134.4 134.4 34 629 6.991 5.643 134.4 134.4 54 197 7.315 5.859
18 121 10 3 127.7 127.7 68 5.830 6.991 6.093 127.7 127.7 26 633 7.315 6.360
19 121 12 5 181.8 181.7 859 10.619 6.696 5.747 181.8 181.7 758 6.614 7.338 6.278
20 121 12 5 185.8 185.8 2607 19.868 7.338 6.490 185.8 185.8 2607 19.868 7.338 6.490
21 121 12 4 168.7 164.6 TL 34.449 6.284 5.299 168.7 162.0 TL 25.116 7.338 6.089
22 121 12 4 144.7 144.7 217 3.668 6.588 5.675 144.7 144.7 341 7.769 7.338 6.326
23 121 12 4 142.8 142.7 529 7.727 6.912 6.015 142.8 142.8 435 4.093 7.338 6.388
24 121 12 4 149.3 149.3 554 7.700 7.338 6.265 149.3 149.3 552 8.939 7.338 6.265
25 121 14 5 174.1 174.1 2224 26.489 7.046 6.207 174.5 169.3 TL 33.923 7.365 6.477
26 121 14 5 166.2 166.2 1506 21.842 7.365 6.708 166.2 166.2 1507 21.842 7.365 6.708
27 121 14 4 166.2 150.4 TL 18.496 7.365 6.789 161.8 152.2 TL 25.457 7.365 6.789
28 121 14 5 136.6 136.6 96 1.249 7.365 6.590 136.6 136.6 76 802 7.365 6.590
29 121 14 4 137.4 137.4 768 14.998 6.934 6.000 137.4 137.4 292 4.003 7.365 6.378
30 121 14 5 144.9 144.9 186 4.409 6.828 5.968 144.9 144.9 483 17.003 7.365 6.398
31 169 6 2 183.2 183.2 41 116 11.406 8.813 183.2 183.2 65 262 14.217 11.262
32 169 6 3 191.7 191.7 49 35 10.575 8.497 191.7 191.7 71 63 14.217 11.586
33 169 6 2 189.9 189.9 45 374 10.337 7.782 189.9 189.9 64 110 14.217 10.614
34 169 6 2 175.1 175.1 24 53 7.885 5.638 175.1 175.1 9 9 14.217 8.928
35 169 6 3 178.0 178.0 21 31 13.006 10.166 178.0 178.0 23 19 14.217 11.165
36 169 6 2 171.7 171.6 11 73 11.402 9.128 171.7 171.7 8 21 14.217 11.387
37 169 8 3 217.8 211.3 TL 42.500 13.012 11.147 217.0 217.0 1220 1.848 14.232 12.215
38 169 8 2 184.2 184.2 79 312 12.701 10.475 184.2 184.2 58 289 14.232 11.833
39 169 8 3 194.0 194.0 135 2.243 10.744 8.805 194.0 194.0 71 235 14.232 11.609
40 169 8 3 180.2 180.2 31 244 12.416 10.200 180.2 180.2 73 1.547 14.232 11.756
41 169 8 3 178.5 178.5 56 670 12.580 10.461 178.5 178.5 56 800 14.232 11.906
42 169 8 3 184.3 184.3 73 645 11.871 9.374 184.3 184.3 96 1.004 14.232 11.224
43 169 10 4 218.7 218.7 2026 6.464 12.588 11.021 218.7 218.7 443 2.679 14.251 12.430
44 169 10 4 221.3 221.3 525 3.100 13.186 11.171 221.3 221.3 1069 3.781 14.251 12.108
45 169 10 3 209.6 197.8 TL 17.723 11.754 9.900 217.3 187.9 TL 17.151 14.251 12.080
46 169 10 3 183.1 183.1 215 3.825 11.040 8.812 183.1 183.1 310 5.254 14.251 11.033
47 169 10 3 190.8 184.5 TL 27.593 13.179 11.516 189.3 181.1 TL 34.370 14.251 12.487
48 169 10 3 178.6 178.6 63 985 12.005 10.323 178.6 178.6 362 5.104 14.251 12.298
49 169 12 4 222.4 222.4 3559 18.086 12.463 10.411 222.4 217.6 TL 14.217 14.274 11.743
50 169 12 5 237.8 237.8 923 7.220 11.471 9.600 237.8 237.8 941 8.284 14.274 11.774
51 169 12 4 213.4 213.4 1688 16.525 12.310 10.715 214.7 204.2 TL 14.793 14.274 12.365
52 169 12 4 186.0 186.0 420 2.353 11.763 9.977 186.0 186.0 968 3.848 14.274 12.060
53 169 12 4 184.0 184.0 94 502 13.963 12.297 184.0 184.0 133 1.479 14.274 12.589
54 169 12 5 193.4 193.4 198 1.217 11.730 10.291 193.4 193.4 202 1.789 14.274 12.416
55 169 14 5 241.8 220.4 TL 17.207 12.501 10.997 244.0 218.8 TL 10.514 14.301 12.560
56 169 14 5 239.2 220.3 TL 14.034 13.846 12.227 243.6 209.2 TL 12.467 14.301 12.602
57 169 14 5 254.1 207.1 TL 5.475 13.990 12.422 273.3 210.7 TL 4.615 14.301 12.706
58 169 14 5 200.2 200.2 335 3.739 14.143 12.149 200.2 200.2 331 2.508 14.301 12.304
59 169 14 5 192.5 192.5 309 3.158 14.301 12.997 192.5 192.5 309 3.158 14.301 12.997
60 169 14 4 181.5 181.5 228 2.394 11.347 9.844 181.5 181.5 444 3.796 14.301 12.044
61 225 6 2 238.0 238.0 3084 143.818 13.152 9.517 238.0 238.0 749 16.137 25.221 18.062
62 225 6 3 268.2 268.2 82 89 15.012 10.724 268.2 268.2 152 162 25.221 16.435
63 225 6 3 259.9 259.9 67 98 14.081 10.246 259.9 259.9 493 3.139 25.221 18.243
64 225 6 3 238.8 238.8 26 178 12.956 9.056 238.8 238.8 32 44 25.221 16.670
65 225 6 3 237.5 237.5 30 25 18.579 14.800 237.5 237.5 55 355 25.221 20.660
66 225 6 2 229.3 229.3 22 26 15.123 11.577 229.3 229.3 33 66 25.221 18.956
67 225 8 2 245.5 245.5 308 1.372 14.857 11.298 245.5 245.5 789 1.201 25.236 19.394
68 225 8 3 255.5 255.5 137 229 16.313 12.624 255.5 255.5 262 381 25.236 19.495
69 225 8 3 249.0 249.0 237 946 19.107 16.176 249.0 249.0 105 122 25.236 21.440
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Instance Results

reduced non-reduced

No. n N m UB LB time T #nodes #cols #rows UB LB time T #nodes #cols #rows

70 225 8 2 229.9 229.9 64 194 17.211 13.317 229.9 229.9 116 54 25.236 19.093
71 225 8 3 237.1 237.1 78 203 20.984 17.498 237.1 237.1 57 234 25.236 21.324
72 225 8 3 232.0 232.0 22 115 19.659 16.305 232.0 232.0 38 204 25.236 20.891
73 225 10 4 279.0 279.0 860 2.002 20.265 17.105 279.0 279.0 1852 3.746 25.255 21.286
74 225 10 3 252.9 242.8 TL 13.441 22.596 19.747 252.4 245.6 TL 10.978 25.255 22.084
75 225 10 3 267.7 267.7 2462 12.827 19.932 14.895 268.3 258.6 TL 10.959 25.255 18.826
76 225 10 4 236.9 236.9 97 519 22.168 19.294 236.9 236.8 98 508 25.255 22.111
77 225 10 4 242.7 242.7 1164 66.996 20.651 17.535 242.7 242.7 121 1.097 25.255 21.480
78 225 10 4 242.4 242.4 96 326 20.995 18.206 242.4 242.4 88 268 25.255 21.813
79 225 12 4 307.6 265.9 TL 5.107 21.421 17.484 308.5 259.5 TL 6.998 25.278 20.293
80 225 12 4 293.1 249.0 TL 7.661 21.616 18.943 283.9 254.7 TL 8.985 25.278 22.044
81 225 12 4 282.6 256.3 TL 6.601 21.804 19.103 285.6 257.6 TL 5.383 25.278 22.141
82 225 12 5 254.6 254.5 514 5.185 22.210 19.659 254.6 254.5 511 3.118 25.278 22.412
83 225 12 4 243.7 243.7 997 8.931 20.650 17.955 243.7 243.7 614 4.816 25.278 21.736
84 225 12 3 239.3 239.3 1011 9.041 24.853 22.162 239.3 239.3 1611 14.411 25.278 22.548
85 225 14 5 371.8 259.1 TL 6.599 23.430 20.701 360.9 267.6 TL 6.127 25.305 22.391
86 225 14 5 330.5 272.1 TL 10.855 21.054 18.595 325.0 257.7 TL 4.188 25.305 22.165
87 225 14 5 335.3 261.1 TL 4.371 22.429 20.178 335.3 264.6 TL 3.415 25.305 22.758
88 225 14 5 252.2 252.1 1242 13.298 21.057 18.070 252.2 252.1 1177 7.772 25.305 21.458
89 225 14 4 285.4 233.6 TL 10.966 22.424 20.345 272.6 233.1 TL 6.631 25.305 23.019
90 225 14 4 249.5 249.4 2711 18.971 22.008 19.684 249.5 249.4 3262 21.263 25.305 22.616

Total (90) 1056 8291 12832 10747 1072 5470 15611 12909
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