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Abstract

We consider a packing problem that arises in a direct-shipping system in the food and beverage industry:
Trucks are the containers and products to be distributed are the items. The packing is constrained by
two independent quantities, weight (e.g., measured in kg) and volume (number of pallets). Additionally,
the products are grouped into the three categories standard, cooled, and frozen (the latter two require
refrigerated trucks). Products of different categories can be transported in one truck using separated zones,
but the cost of a truck depends on the transported product categories. Moreover, product splitting should be
avoided so that (un-)loading is simplified. As a result, we seek for a feasible packing optimizing the following
objective functions in a strictly lexicographic sense: minimize the (1) total number of trucks; (2) number
of refrigerated trucks; (3) number of refrigerated trucks which contain frozen products; (4) number of
refrigerated trucks which also transport standard products; (5) and minimize product splitting. This is a
real-world application of a bin-packing problem with cardinality constraints a.k.a. the two-dimensional vector
packing problem, with additional constraints. We provide a heuristic and an exact solution approach. The
heuristic meta-scheme considers the multi-compartment and item-fragmentation features of the problem and
applies various problem-specific heuristics. The exact solution algorithm covering all five stages is based on
branch-and-price using stabilization techniques exploiting dual-optimal inequalities. Computational results
on real-world and difficult self-generated instances prove the applicability of our approach.

Key words: bin packing, lexicographic objective, heuristics, column generation, dual-optimal inequalities

1. Introduction

In this paper, we present a system of bin-packing problems that arise in a direct-shipping system in
the food and beverage industry. More than 1.2 million units of different products leave the factory of our
industry partner every day. By far the largest share of the products is transported by trucks from the factory
to the distribution centers of supermarket chains (in the following denoted as warehouses). As shipping is
done directly from the factory to individual warehouses with full-truck volumes, the routing of trucks plays
no role. For each warehouse, the use of the utilized trucks has to be optimized by assigning shipments to
trucks. Hence, the overall problem naturally decomposes by warehouse.

The transportation of products is standardized and uses euro-pallets (which are typically packed with
a set of uniform boxes of a product). In our application, quantities are large so that pallets are not
mixed, i.e., each pallet contains only one product. Moreover, it is legitimate to assume that products are
equally distributed on pallets such that each pallet loaded with a certain product has the same weight.
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Let K = {1, 2, . . . ,m} denote the set of products (to be shipped to a particular warehouse on a specific
day). As the range of food products includes a huge variety of commodities, e.g., fruit juices, spirits, baked
goods, jams, wafers, and ketchup, the weight and space requirements for the transport differ substantially
by product. For each product k ∈ K, these requirements are therefore described by two attributes:
• the unit weight ρk (in kg/pallet) of a pallet loaded with product k and
• the number nk of pallets that need to be shipped.

In addition, all products can be uniquely grouped into three categories:
• Standard products IS require no cooling;
• Cooled products IC require cooling;
• Shipping of frozen products IF requires deep cooling and is the most costly transport.

As a result, the set of products is partitioned into I = IS ∪ IC ∪ IF .
The fleet consists of standard trucks and refrigerated trucks, i.e., trucks without and with a cooling

system. Frozen and cooled products must be transported in refrigerated trucks, which are more costly than
standard trucks. Frozen and cooled products can be mixed (using different zones), but costs are higher if
frozen products are transported. Also, standard products can be transported by refrigerated trucks (again
using separated zones). There are no conflicts between products, i.e., any subset of products can be packed
together into a truck. All trucks are homogeneous regarding capacity. Let W be the capacity (in kg) for
the physical weight and B be the capacity for the number of pallets that fit into one truck (usually B = 33
pallets).

Moreover, depending on the customer or warehouse, two policies are applied regarding the splitting of
pallets of the same product:

forbidden: Splitting is forbidden so that all nk pallets loaded with product k ∈ K must be transported
by the same truck. This is the standard case because it simplifies the handling and processing
in the loading and unloading phases.

allowed : Splitting is allowed so that the nk pallets of a product k ∈ K may be distributed arbitrarily
over the trucks. This splitting allowed policy can help to reduce the total number of used
trucks. However, distributing a product over several trucks causes inconveniences. It should
not occur more often than necessary (see objective 5 below).

For a given solution, we denote a product assigned to two or more trucks as split product.
We want to present both policies, splitting forbidden and splitting allowed, as variants of the same

packing problem. For this purpose, we introduce items which are the atomic, not-divisible objects in the
bin-packing model. The set K of products and the set I of items are identical, i.e., K = I. However, we
write k ∈ K to refer to products and i ∈ I to refer to items. Depending on the policy, we define two weights
for each item: wi refers to the physical weight and bi to the volume expressed as number of pallets. Table 1
and Example 1 clarify the correspondence.

Product k ∈ K Corresponding item i ∈ I
Policy splitting forbidden splitting allowed

Unit weight ρk Weight 1 wi = ρk · nk wi = ρk
Number of pallets nk Weight 2 bi = nk bi = 1

Demand qi = 1 qi = nk

Table 1: Relationship between products and items for the policies splitting forbidden and splitting allowed.

Example 1. Consider a set of products consisting of three standard products (n1 = 5, n2 = 5, n3 = 3, ρ1 =
ρ2 = ρ3 = 1), (gray in Figure 1), one cooled product (n4 = 2, ρ4 = 2) (green in Figure 1), and one frozen
product (n5 = 3, ρ5 = 3) (blue in Figure 1), i.e., K = I = {1, . . . , 5} with IS = {1, 2, 3}, IC = {4}, IF = {5}.
Then, the corresponding instance of the splitting forbidden policy has parameters w = (5, 5, 3, 4, 9), b =
(5, 5, 3, 2, 3), q = 1, whereas the corresponding instance of the splitting allowed policy has parameters w =
(1, 1, 1, 2, 3), b = 1, q = (5, 5, 3, 2, 3).
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With these definitions of items i ∈ I with two weights (wi, bi)i∈I and two capacities (W,B), the problem
of assigning products to trucks becomes a two-dimensional bin/vector-packing problem (see Section 2 for
references to the pertinent literature). Trivially, a feasible packing exists only if wi ≤ W and bi ≤ B holds
for all items i ∈ I.

What also makes our real-world problem interesting is the non-standard objective. We are seeking for a
feasible product-truck assignment optimizing the following five objectives in a strictly lexicographic sense:
1. minimize the total number of trucks;
2. minimize the number of refrigerated trucks;
3. minimize the number of refrigerated trucks transporting frozen products;
4. minimize the number of refrigerated trucks which also transport standard products; and
5. minimize product splittings, which is either

5a. minimize the overall number of splits; or
5b. minimize the number of products which are split (over any number of trucks).
The fifth objective is only relevant for the policy splitting allowed. Altogether, we show that this

lexicographic objective can be optimized by solving a sequence of extended bin-packing problems. Note that
it is not a-priori given how to measure the impact of splitting products. The corresponding objective will
depend on the actual handling of split products after their delivery at the destination warehouse. According
to our industry partner, there are two different strategies observed with its customers: One customer handles
products separately for every truck. This means that for every truck the processing effort depends on the
number of different products (but also on other factors, such as the number of pallets). Therefore, it is
cost efficient to minimize the overall number of splits, i.e., packing one product separated into two trucks is
preferred over packing it separated into three trucks, as stated in objective 5a.A second customer collects all
pallets carrying the same product, but arriving on different trucks, in the unloading zone and then inserts
them into the warehouse in one batch. Thus, the main effort of splitting is due to the necessity of reserving
a collection area, which happens whenever a product is split. Whether pallets are collected from two or
more trucks hardly plays a role, as stated in objective 5b.

Note that for both splitting policies, objectives 1.–4. have to be observed in a lexicographic sense. This
means that, e.g., a solution with 20 trucks and many refrigerated trucks is preferred over a solution with
21 trucks and less refrigerated trucks. An example of three different optimal solutions (splitting forbidden,
splitting allowed and minimize either the number of splits or the number of split products) is given in
Figure 1.

The methodological contribution of our paper is the development of an exact and heuristic solution
approach. The exact approach is based on branch-and-price (BaP) (Desaulniers et al., 2005; Lübbecke
and Desrosiers, 2005). For the different objectives and corresponding extended bin-packing problems, we
develop a unified description of the respective column-generation subproblems. We show that, in turn, each
subproblem can be solved by one or several modified 2-dimensional knapsack problems (Martello and Toth,
2003), (Kellerer et al., 2004, ch. 9.6). These are especially involved in the case of the policy splitting allowed.
Moreover, an important and here non-trivial algorithmic component is the branching scheme. We adopt the
branching scheme originally developed and successfully applied by Heßler et al. (2018) to the vector-packing
problem. Stabilization with dual-optimal inequalities (Ben Amor et al., 2006; Gschwind and Irnich, 2016)
helps to increase the performance of the BaP approach.

The heuristic approach works in two levels: In the first level, several constructive heuristics are employed
to reach a packing of items from the same category. They strive for a balanced utilization of weight and
volume constraints based on weight-per-pallet, i.e., density considerations and on the surrogate weights as
introduced by Caprara and Toth (2001). In the second level, a more complicated meta-scheme considers
the multi-compartment and product-fragmentation features of the problem at hand and applies various
problem-specific heuristics to search for good solutions. They are based on decomposing and regrouping
the best solution obtained from the first level to improve the lexicographic objectives for the different
product categories. At first, only the splitting forbidden policy is considered. Then, for the splitting allowed
policy we try to improve the given solution by separating certain pallets of the same product and possibly
reduce the number of trucks by reassigning these items. Throughout the heuristic process, we compare the
current solutions to lower bounds as a stopping criterion. It should be noted that the heuristics were also
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splitting forbidden splitting allowed

minimize number of splits (5a.) min. number of split products (5b.)

Figure 1: Optimal solutions of three objectives for Example 1 with capacity B = 6 pallets.

incorporated in the SAP ERP software system of our industrial partner, a European producer of foodstuffs
and beverages, and are used in the daily planning process.

We conducted a series of computational experiments with the exact and heuristic algorithms based on
real-world data sets with up to 430 items and on more difficult test instances derived from these. We
compare the performance of our heuristic to the previously employed strategy of the company and to the
proven optimal solutions. It turns out that the heuristic saves on average one truck per day compared to the
previously used approach for real-world instances, with an even higher advantage for more difficult instances.
At the same time, running times are moderate, often less than one second. The gap to the optimal solution
is fairly moderate for real-world instances but increases for the self-generated hard test cases. Regarding the
performance of the exact branch-and-price algorithm, most of the test instances can be solved to optimality
within the time limit of 10 minutes for every subproblem. Notably exceptions arise for some of the generated,
difficult instances in case of the splitting allowed policy. We can also illustrate the highly positive effect of
strengthening the ILP-models by lower bounds and of solving pricing problems on a reduced graph. Finally,
combining the two approaches it turns out that adding the best heuristic solution to the set of columns of
the branch-and-price approach has hardly any effect for the splitting forbidden policy, but it gives a major
improvement for the splitting allowed policy.

The remainder of the paper is organized as follows: In Section 2, a brief overview of the literature
on two-dimensional bin-packing problems with and without item fragmentation and multi-compartment
vehicle-routing problems is given. Analytically computed lower bounds are presented in Section 3. Details
on the exact BaP algorithm are provided in Section 4, including the sequence of extensive formulations
used for the different objectives, the unified column-generation algorithm, and stabilization techniques. The
heuristic approach is presented in Section 5. In Section 6, the results of our computational experiments are
presented and discussed. Final conclusions are drawn in Section 7.
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2. Literature Review

The classical one-dimensional bin-packing problem (BP) is one of the most fundamental problems in
combinatorial optimization: A given set of items has to be packed into a minimum number of bins such that
the total weight of the items in each bin does not exceed the bin-capacity. Its mathematical foundations
were first studied in the early 1970s (Garey et al., 1972). Classical heuristics for BP, such as first-fit (FF),
best-fit (BF) and worst-fit (WF), and their variants based on a decreasing ordering of item weights, i.e.,
FFD, BFD, and WFD (see, e.g., Johnson, 1973), will be assumed common knowledge throughout this paper.

For the exact solution of BP, two alternative and competing solution principles can be observed in
the recent literature (see Delorme et al., 2016, for an overview of BP formulations). The first type of
solution approach relies on pseudo-polynomial arc-flow formulations (Valério de Carvalho, 1999) solved with
general-purpose mixed-integer linear programming (MIP) solvers. Important refinements are network/graph
compression techniques (Brandão and Pedroso, 2016) and the use of reflect networks modeling packings
with only half of the bin capacity (Côté and Iori, 2018). The first half and the second half of a packed
bin are represented and feasibly combined in the reflect network. The second type of solution approach
uses a pattern-based formulation a.k.a. the Gilmore-Gomory model (Gilmore and Gomory, 1961), which is
solved by column-generation techniques. While early works focused on the solution of the linear relaxation
in order to quickly compute a strong lower bound, the necessary theory providing a complete branching
scheme leading to a fully-fledged BaP algorithm has been provided with the work of Vanderbeck (1999). A
state-of-the-art branch-price-and-cut approach for BP is presented by Wei et al. (2019). A hybrid of both
approaches, denoted as reflect+, has been recently coined by Delorme and Iori (2020) and seems to be a very
competitive approach making use of the excellent dual bounds provided by column generation, heuristically
and exactly truncated reflect networks, and the power of modern MIP solvers.

Due to the high practical relevance of packing problems many variations of the classical one-dimensional
BP have been investigated. For a comprehensive overview, we refer to the surveys by Christensen et al.
(2017) and Coffman Jr et al. (2013). In the context of our real-world bin packing variant especially publi-
cations dealing with two-dimensional, multi-compartment, and item fragmentation aspects are of particular
relevance.

Two-dimensional BPs represent a well-studied generalization and, hence, a large number of publications
in this field appeared over the last decades. We do not consider packing problems in which geometric items
have to be placed into bins, known as rectangle packing (Lodi et al., 2002). Relevant for our application are
p-dimensional BPs with p = 2 independent dimensions (such as physical weight and volume, or value and
weight). In the literature these problems are given different names, e.g., (2-dimensional) vector (bin) packing
problem (VPP, 2D-VPP) and two-constraint bin packing problem. Our problem is a variant of the 2D-VPP
for which an early exact approach is given by Spieksma (1994). Recent exact approaches are based on BaP
and are described in Heßler et al. (2018) and Wei et al. (2020). General approximation results are given in
Bansal et al. (2016). The case, where weights and volume are strictly ordered is considered in Caprara et al.
(2003). Simple greedy-type heuristics are presented in Aringhieri et al. (2018). A comprehensive survey of
vector packing problems can be found in Christensen et al. (2017).

Multi-compartment problems arise when different item types can be packed into the same bin but have
to be separated from each other (incompatibility constraints). Those settings are mainly studied in vehicle-
routing problems, see the surveys (Pollaris et al., 2014; Henke, 2018). In our application, there are no
incompatibilities between products/items. However, the use of compartments for cooled and frozen products
imposes additional costs.

The introduction of item fragmentation generalizes the classical BP by allowing items to be split among
several bins at a cost. Item fragmentation for BPs is introduced and proved NP-hard by Mandal et al.
(1998). More recent publications provide exact solution algorithms based on column generation and dual
cuts techniques as well as employing heuristics and implicit enumeration (Casazza and Ceselli, 2016). LeCun
et al. (2015) presents models for practical applications of item fragmentation like minimizing the number
of money transfers after a group trip and present approximation algorithms for identical as well as for the
more generic case of non-equal-sized bins. The generalization to bins that differ in both cost and capacity is
tackled in the contribution Casazza (2019) by proposing new mathematical programming models that even

5



avoid the use of fractional variables. A worst-case analysis for BP with item fragmentation is performed
by Bertazzi et al. (2019). General models of valuations for fragmented items are considered for the closely
related knapsack problem in the recent work Malaguti et al. (2019). Recall from Section 1 that in our
application, products might be divisible (depending on the splitting policy) but that by definition our items
are never split. Our definition of an item has implicitly solved issues related to product fragmentation by
discretely splitting demand along the volume (=pallets) dimension.

3. Lower bounds

Various lower bounds for subsets of items or all items are used in different parts of the algorithms. For
convenience, we introduce these lower bounds in this brief section.

A straightforward lower bound on the number of bins needed to pack a subset I ⊆ I can be obtained
by dividing the problem along the two dimensions. For each dimension one can compute a bound on the
respective one-dimensional bin packing problems and then use the better bound of the two:

LB1(I) = max

{⌈∑
i∈I wi

W

⌉
,

⌈∑
i∈I bi

B

⌉}
.

Caprara (1998) proved that this lower bound equals the rounded up value of the linear relaxation to the
standard assigment-type ILP model for the two-dimensional bin-packing problem, see e.g. (1)–(6) in Caprara
and Toth (2001).

Another lower bound is inspired by the lower bounding procedure of Martello and Toth (1990) for
bin-packing problems. We use two distinct subsets of I, namely the subset

I1 = {i ∈ I : wi > W/2 and bi > B/2}

of items consuming more than half of a bin’s capacity, and the disjoint subset

I2 = {i ∈ I \ I1 : wi ≥W/2 or bi ≥ B/2}

of items that do not fit together into a bin with any item of the subset I1. We obtain the lower bound

LB2(I) = |I1|+ LB1(I2).

In the following, the lower bound LB(I) = max{LB1(I), LB2(I)} is used for various subsets I. For the
sake of brevity, we define the following shorthand notation for the lower bounds

LB = LB(I), LBS = LB(IS), LBF = LB(IF ), and LBC,F = LB(IC ∪ IF ).

4. Branch-and-price algorithm

We propose the exact solution of the overall lexicographic minimization problem using a stage-wise
modified BaP algorithm (Desaulniers et al., 2005; Lübbecke and Desrosiers, 2005). While the first objective
is minimized by solving a standard 2D-VPP, the following four stages first restrict the solution space to
previously computed optimal value(s) and then apply BaP to the restricted formulation. Since the initial
formulation is of the Gilmore-Gomory type (Gilmore and Gomory, 1961; Heßler et al., 2018), the linear
programs can be characterized as extensive, meaning that they typically exhibit an enormous number of
variables. BaP is tailored to solving such extensive optimization problems. Technically, BaP is a branch-
and-bound algorithm in which the linear relaxation at each node of the search tree is solved by column
generation (CG). CG is an iterative method that solves a linear program by decomposing it into a restricted
master problem (RMP) and a pricing subproblem (SP).

In Section 4.1, we start by describing the set of all feasible packing patterns and define some subsets
of patterns which are later used for presenting the restricted formulations that address the objectives 2.–
4., 5a., and 5b. at subsequent stages. The unifying approach for the pricing subproblems presented in
Section 4.2 is followed by the discussion of stabilization, branching schemes, and acceleration techniques in
Sections 4.3–4.5.
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4.1. Pattern-based formulations

The models of all stages are variations of the covering formulation of Gilmore and Gomory (1961) that
are based on patterns. A pattern describes a feasible packing of a bin with items. For each item i ∈ I the
value

ui = min

{
qi,

⌊
W

wi

⌋
,

⌊
B

bi

⌋}
is an upper bound on the number of times that item i may occur in a pattern. The set of all feasible patterns
is therefore

P =

{
(a1, . . . , am)> ∈ Zm+ :

m∑
i=1

aiwi ≤W,
m∑
i=1

aibi ≤ B and ai ≤ ui for all i ∈ I

}
.

Recall that for the standard case of the splitting forbidden policy, we have qi = 1 and thus ui = 1 so
that all feasible patterns are binary, i.e., (a1, . . . , am) ∈ {0, 1}m. Thus, the resulting VPP is a binary VPP
(01-VPP). For the splitting allowed policy, the coefficients ai are upper bounded by integers ui so that the
resulting VPP is a bounded VPP (B-VPP).

For Stages 2.–5., pattern subsets taking different product types into account have to be considered. We
use the superscripts S, C, and F to refer to standard, cooled, and frozen products/items, respectively. A
combination of superscripts refers to patterns that only include items of the respective categories. If a
superscript is supplemented with > 0, at least one item of the category must be included. Table 2 exactly
defines the relevant pattern subsets.

Specification regarding categories of items

Pattern standard cooled frozen
subset

∑
i∈IS ai

∑
i∈IC ai

∑
i∈IF ai

PS = 0 and = 0
PC = 0 = 0
PF = 0 and = 0
PC,F = 0
PS,C>0 ≥ 1 and = 0
PC,F>0 = 0 and ≥ 1
PS>0,C>0 ≥ 1 and ≥ 1 and = 0
PS,C,F>0 ≥ 1
PS>0,C,F>0 ≥ 1 and ≥ 1
PS,C∪F>0

∑
i∈IC ai +

∑
i∈IF ai ≥ 1

PS>0,C∪F>0 ≥ 1 and
∑
i∈IC ai +

∑
i∈IF ai ≥ 1

Table 2: Overview of pattern subsets.

Stage 1.: Minimize the total number of trucks

At Stage 1., the minimization of the number of trucks is equivalent to the minimization of the total num-
ber of bins that are used. Therefore, the problem is a standard 2D-VPP. The Gilmore-Gomory formulation
comprises non-negative integer variables xp for all patterns p ∈ P and is given by

z1. = min
∑
p∈P

xp duals: (1a)

(Stage 1.) subject to
∑
p∈P

api xp ≥ qi, i ∈ I [πi] (1b)

xp ≥ 0 integer, p ∈ P. (1c)
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The objective (1a) minimizes the number of bins, i.e., patterns used. Constraints (1b) ensure that the
demand of all items is covered. Note that for an RMP, i.e., the linear relaxation of a model with a restricted
variable/pattern set P ′ ⊂ P , we also show the associated dual variables (πi)i∈I of constraints (1b) that we
later use in Section 4.2 to describe the CG process. The domain of the pattern variables is defined by (1c).
The first stage can be exactly solved with the BaP algorithm presented by Heßler et al. (2018) without any
adaptation.

Stage 2.: Minimize the number of refrigerated trucks

The secondary objective of minimizing the number of refrigerated trucks is equivalent to minimizing
the number of patterns of the subset PS,C∪F>0 (see Table 2). The first objective imposes the additional
condition that the total number of all trucks/bins is restricted to z1.. It can be incorporated into model (1)
with a single additional constraint, leading to:

z2. = min
∑

p∈PS,C∪F>0

xp duals: (2a)

(Stage 2.) subject to (1b)–(1c)∑
p∈P

xp ≤ z1. [δ2b] (2b)

∑
p∈PS,C∪F>0

xp ≥ LBC,F . [δ2c] (2c)

The objective (2a) minimizes the number of refrigerated trucks. Constraint (2b) restricts the total number
of trucks to the minimum number resulting from the solution of formulation (1). A lower bound on the
number of refrigerated trucks is imposed by constraint (2c). Note that constraint (2c) is not mandatory for
the correctness of the model but its addition often yields a better lower bound of the linear relaxation.

Stage 3.: Minimize the number of refrigerated trucks which contain frozen products

The tertiary objective of minimizing the number of refrigerated trucks that contain frozen products is
equivalent to minimizing the number of patterns of the subset PS,C,F>0 (see Table 2). At Stage 3., we
additionally have to bound the number of refrigerated trucks by z2., which yields to the model

z3. = min
∑

p∈PS,C,F>0

xp duals: (3a)

(Stage 3.) subject to (1b)–(1c), (2b)∑
p∈PS,C∪F>0

xp ≤ z2. [δ3b] (3b)

∑
p∈PS,C,F>0

xp ≥ LBF . [δ3c] (3c)

The objective (3a) is the minimization of the number of trucks transporting frozen products. Constraint (3b)
fixes the total number of refrigerated trucks. Since this fixation makes constraint (2c) redundant, it is
omitted. We add the constraint (3c) imposing a lower bound on the number of frozen trucks to strengthen
the linear relaxation.

Stage 4.: Minimize the number of refrigerated trucks which also contain standard products

The fourth rate objective of minimizing the number of refrigerated trucks which also contain standard
products is equivalent to the minimization of patterns of the subset PS>0,C∪F>0. Optimal values from the
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Stages 1.–3. are again incorporated as additional constraints:

z4. = min
∑

p∈PS>0,C∪F>0

xp duals: (4a)

(Stage 4.) subject to (1b)–(1c), (2b), (3b)∑
p∈PS,C,F>0

xp ≤ z3. [δ4b] (4b)

∑
p∈PS>0,C∪F>0

xp ≥ LBS + z2. − z1.. [δ4c] (4c)

The objective (4a) minimizes the number of refrigerated trucks which also transport at least one standard
product. In the following, such a truck is denoted as mixed truck. A lower bound on the total number
of mixed trucks is LBS − (z1. − z2.). The difference z1. − z2. gives the number of trucks containing only
standard products. Subtracting this number from the lower bound for the number of trucks required to
pack all standard products, gives a lower bound on the number of mixed trucks. Constraint (4b) restricts
the number of frozen trucks. As constraint (3c), constraint (4c) is not mandatory but helps to strengthen
the linear relaxation.

Stage 5.: Minimize product splitting

Recall from Section 1 that the last objective of minimizing product splitting applies only to the splitting
allowed policy and can be put into effect in two different ways using objective 5a. or 5b.

In the case of objective 5a., minimizing the overall number of splits is equivalent to minimizing the
number of different products packed into all bins. To this end, let sp = |{api > 0 : i ∈ I}| denote this number
of different products/items in a pattern api ∈ P . Then, the actual number of splits is given by the difference
of the total number of different products in all used bins and the total number m of products. Therefore,
minimizing the number of splits can be formulated as

z5a. = min
∑
p∈P

spxp duals: (5a)

(Stage 5a.) subject to (1b)–(1c), (2b), (3b), (4b)∑
p∈PS>0,C∪F>0

xp ≤ z4.. [δ5b] (5b)

Constraint (5b) restricts the number of mixed trucks as determined at Stage 4.
In the case of objective 5b., it only counts whether a product is split or not, but the number of trucks

a split product occupies is irrelevant. Minimizing the number of split products is equivalent to maximizing
the number of integrally packed products. A product is integrally packed if all its pallets are packed on
the same truck. Accordingly, for a pattern p ∈ P , we define for our minimization problem the negative
number of integrally packed products as dp = −| {i ∈ I : api = qi} |. Hence, our objective is expressed by the
minimization of the total value of dp over all patterns used:

z5b. = min
∑
p∈P

dpxp duals: (5c)

(Stage 5b.) subject to (1b)–(1c), (2b), (3b), (4b), (5b)∑
p∈P

(∑
i∈I

api

)
xp ≤

∑
i∈I

qi. [γ] (5d)

Constraint (5d) ensures that each item i ∈ I is packed at most qi times. Note that the latter constraint is
indeed necessary because otherwise one might artificially improve the objective function by adding additional
integrally packed products more often than demanded. In combination with the covering constraint (1b),
both constraints (5d) and (1b) are always binding. Therefore, adding disaggregated constraints of the form∑
p∈P a

p
i xp = qi for all i ∈ I does not yield a tighter formulation.
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4.2. Column generation

With the models (1), (2), (3), (4), (5a)–(5b), and (5c)–(5d) we have presented six different extensive for-
mulations that all require a CG-based solution approach. In principle, pattern generation is algorithmically
simple to manage, since we will show that the subproblem solution finally boils down to solving binary or
bounded 2-dimensional knapsack problems, see (Martello and Toth, 2003), (Kellerer et al., 2004, ch. 9.6). In
the following, we assume that a linear relaxation of the RMP is solved and has produced dual prices (πi)i∈I
and (δcon) for the respective constraint(s) con. The task of the SP is to determine at least one negative
reduced-cost pattern or to prove that no negative reduced-cost pattern exists.

A first difficulty for precisely describing the associated SPs lies in the fact that each of the six SPs
associates different dual prices to groups of patterns depending on whether they include standard, cooled,
or frozen products/items. Handling these multiple cases is indeed confusing. A fundamental step towards
a concise and unified handling is the idea to further divide each SP into 2D-KPs for subsets of patterns.
Solving the SP then amounts to solving the associated 2D-KPs. The decisive point is that the reduced cost
of a pattern p = (ai) can be described as (at least for the first four stages, see below)

c̃p = δ −
∑
i∈I

σiai,

where the coefficients δ = δX and σi = σXi for i ∈ I depend of the particular subcase X. Table 3 formalizes
the different (sub)cases: Depending on the stage/objective, there are between one and five different pattern
subsets (see Table 2 for their formal definition) for which independent 2D-KPs need to be solved. For
each pattern subset, the columns σi and δ describe how these coefficients can be computed from the given
dual solution (πi)i∈I and (δcon) (using only dual prices of constraints con that exist at the actual stage).
Moreover, the 2D-KP can be restricted to an item subset I ⊂ I. Finally, some pattern subsets require
the presence of one or two subsets of items. For example, PS>0,C,F>0 requires that at least one item of a
standard product and one item of a frozen product are present in the pattern. For this purpose, let R be the
set of required subsets of items, i.e., for PS>0,C,F>0 there is R = {IS , IF }. The elements of the respective
sets R are displayed in the last column of Table 3.

A second difficulty stems from the fact that, for the objectives 5a. and 5b., the reduced cost of a pattern
is no longer completely linear in the coefficients of the pattern. However, all 2D-KPs can be formalized as
follows. Nonnegative bounded integer (binary for ui = 1) variables yi for i ∈ I describe the unknown pattern
coefficients ai. Moreover, for these variables y = (yi)i∈I , the function f(y) captures the non-linear part of
the reduced cost (described in detail in the next paragraphs). For a given subset of admissible items I (in
the sense of the second last column of Table 3), the extended 2D-KP can now be described as

zKP(I, σi, δ,R) = δ −max

(∑
i∈I

σiyi − f(y)

)
(6a)

(KP(I, σi, δ,R)) subject to
∑
i∈I

wiyi ≤W (6b)∑
i∈I

biyi ≤ B (6c)∑
i∈J

yi ≥ 1 J ∈ R (6d)

yi ∈ {0, 1, . . . , ui}, i ∈ I. (6e)

The objective (6a) is the minimization of the reduced cost of the pattern. The constraints (6b) and (6c) are
the capacity constraints. The defining property of some pattern subsets to contain at least one item of one
or two particular categories is enforced by condition(s) (6d). The domain of the decision variables is defined
by (6e).

At Stages 1.–4., the function f vanishes, i.e., f ≡ 0, so that KP(I, σi, δ,R) reduces to a standard binary or
bounded 2D-KP with the additional constraints (6d). A straightforward solution approach could be to solve
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Stage Pattern Dual prices Item Elements of subsets R
subsets σi δ subset I of required items

1. P πi 1 I

2. PS πi 1− δ2b IS IS

PS,C∪F>0 πi 1− δ2b − δ2c I IC ∪ IF

3. PS πi 1− δ2b IS IS

PS,C>0 πi 1− δ2b − δ2c − δ3b IS ∪ IC IC

PS,C,F>0 πi 1− δ2b − δ2c − δ3b − δ3c I IF

4. PS πi 1− δ2b IS

PC πi 1− δ2b − δ2c − δ3b IC

PC,F>0 πi 1− δ2b − δ2c − δ3b − δ3c − δ4b IC ∪ IF IF

PS>0,C>0 πi 1− δ2b − δ2c − δ3b − δ4c IS ∪ IC IS , IC

PS>0,C,F>0 πi 1− δ2b − δ2c − δ3b − δ3c − δ4b − δ4c I IS , IF

5a. PS πi 1− δ2b IS

PC πi 1− δ2b − δ2c − δ3b IC

PC,F>0 πi 1− δ2b − δ2c − δ3b − δ3c − δ4b IC ∪ IF IF

PS>0,C>0 πi 1− δ2b − δ2c − δ3b − δ4c − δ5b IS ∪ IC IS , IC

PS>0,C,F>0 πi 1− δ2b − δ2c − δ3b − δ3c − δ4b − δ4c − δ5b I IS , IF

5b. PS πi + γ 1− δ2b IS

PC πi + γ 1− δ2b − δ2c − δ3b IC

PC,F>0 πi + γ 1− δ2b − δ2c − δ3b − δ3c − δ4b IC ∪ IF IF

PS>0,C>0 πi + γ 1− δ2b − δ2c − δ3b − δ4c − δ5b IS ∪ IC IS , IC

PS>0,C,F>0 πi + γ 1− δ2b − δ2c − δ3b − δ3c − δ4b − δ4c − δ5b I IS , IF

Table 3: Overview of pricing subproblems.

several standard binary 2D-KP that previously pack one item of each set J ∈ R. Instead of enumerating
all combinations, the selection of previously packed items could also be embedded into a branch-and-bound
algorithm. However, we formulate and solve this subproblem as a variant of the shortest-path problem with
resource constraints (see next paragraph).

For the first splitting variant that minimizes the total number of splits, i.e., objective 5a., the function f
must count the number of products the constructed pattern contains. This is done with

f(y) = |{i ∈ I : yi > 0}|.

For the second splitting variant that minimizes the number of split products, i.e., objective 5b., the function f
must count the (negative) number of integrally packed products the constructed pattern contains. The
definition

f(y) = −|{i ∈ I : yi = qi}|

gives the correct contribution. As an example, the two 2D-KPs arising at Stage 2. are specified in the
following example.

Example 2. At Stage 2., we consider two 2D-KPs that generate patterns of the subsets PS and PS,C∪F>0.
Recall that δ2b and δ2c are the dual prices of constraints (2b) and (2c), respectively. Both 2D-KPs have
σi = πi for all i ∈ I and f ≡ 0. The first 2D-KP generates patterns of set PS and is defined by δ = 1− δ2b,
I = IS, and R = {IS}, while the second generates patterns of the set PS,C∪F>0 and is defined by δ =
1− δ2b − δ2c, I = I, and R = {IC ∪ IF }.

SPPRC-based solution. The different problems KP(I, σi, δ,R) can be formulated as shortest path problems
with resource constraints (SPPRCs, Irnich and Desaulniers, 2005). SPPRCs can model intricate relationships
between attributes and many variants of the SPPRC can be effectively solved by dynamic-programming
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labeling algorithms. Such an approach has been successfully chosen for the one-dimensional BP by Wei
et al. (2019) and for the VPP by Heßler et al. (2018). The advantage of a labeling-based approach is that
also subsets R of required items and the objectives 5a. and 5b. defining the function f can be considered as
well as involved branching decisions (discussed later in Section 4.4).

For the sake of simplicity, we start with the case that any item can be contained in a pattern, i.e.,
I = I = {1, 2, . . . ,m}. The underlying digraph G = (V,E) then consists of m+ 1 vertices V = {0, . . . ,m}.
The arc set E consists of m+

∑
i∈I ui =

∑
i∈I(ui + 1) arcs partitioned into m subsets E(i) associated with

item i ∈ I. The set E(i) contains ui + 1 parallel arcs connecting vertex i− 1 with vertex i. Thus, we have
an arc set E(i) consisting of arcs ej(i) with j ∈ {0, 1, . . . , ui + 1}.

Each arc ej(i) has three attributes, two for the weights and one for the profit. For the j-th arc ej(i) of
E(i), these are defined as w(ej(i)) = j · wi, b(ej(i)) = j · bi, and σ(ej(i)) = j · σi, respectively.

An example of the digraph is sketched in Figure 2. Each 0-m-path (0, ej1(1), 1, ej2(2), 2, . . . ,m −
1, ejm(m),m) uniquely defines a pattern (ai) with ai = ji. Necessary conditions for its feasibility are
that

∑m
i=1 w(eji(i)) ≤ W and

∑m
i=1 b(eji(i)) ≤ B holds. Partial paths that do not fulfill these conditions

can be directly discarded.

0 1 2 · · · m− 1 m

(0, 0, 0)

(w1, b1, σ1)

(2w1, 2b1, 2σ1)

(3w1, 3b1, 3σ1)

(0, 0, 0)

(w2, b2, σ2)

(0, 0, 0)

(wm, bm, σm)

Figure 2: SPPRC digraph with items having u1 = 3, u2 = 1, and um = 1. The arcs e ∈ E are shown with their weights and
profit (w(e), b(e), σ(e)).

If I ( I, i.e., some categories of items are not in I, the corresponding digraph can be obtained by
reducing the arc set so that for each i ∈ I \ I only the null-arc (0, 0, 0) is in E(i). Subsequently, the digraph
can be shrunk by merging vertices i− 1 and i for all i ∈ I \ I.

At Stages 2.–5., three additional boolean attributes v = (vS , vC , vF ) for the three categories standard,
cooled, and frozen are added to indicate whether a specific product category has been packed. For an
item i ∈ I, we define v(ej(i)) = (1, 0, 0), (0, 1, 0), or (0, 0, 1) for all j according to the category product/item i
belongs to.

The SPPRC is solved by a forward dynamic-programming labeling algorithm that works as follows: The
starting point is the trivial partial path (0) with the initial label (0, 0, 0). All labels at a vertex i − 1 are
extended to vertex i iteratively for i = 1, 2, . . . ,m. A forward extension along an arc e(i) ∈ E(i) of label
L(F ) = (w, b,v, σ) (omitting the index j) produces the label (w + w(e(i)), b + b(e(i)),max{v,v(e(i))}, σ +
σ(e(i))), where the maximum operator is applied component-wise. The labels at m and the associated 0-m-
paths have to be filtered at the end: Only labels (w, b,v, σ) with correct v-values provide feasible patterns,
e.g., vC+vF ≥ 1 for the pattern set PS,C∪F>0 used at Stage 2. in the second subcase. Moreover, the reduced
cost of the associated pattern is δ − σ.

The work of Heßler et al. (2018) has pointed out that different dominance principles between labels are
possible and worth to be investigated. There clearly exists a tradeoff between the strength of a dominance
rule and its computational burden resulting from the pairwise comparison of labels. A strong dominance
rule can help to drastically reduce the overall number of labels that remain at termination of the labeling
algorithm. The result is also fewer labels at intermediate vertices, which reduces the computational effort
associated with the label extension step and later dominance comparisons. On the downside, the application
of the following strong dominance rule may require the pairwise comparison of a possibly huge number of
labels.
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Rule 1. (Strong Dominance) A forward label L(F ) = (w, b,v, σ) of a forward partial path F dominates
another forward label L(F ′) = (w′, b′,v′, σ′) of a forward partial path F ′ ending at the same vertex if
w ≤ w′, b ≤ b′, v ≥ v′, and σ ≥ σ′.

The following weaker dominance rule allows a direct O(1) comparison of labels, immediately at the time
when a label is created, if labels are stored in a lookup table.

Rule 2. (Weak Dominance) A forward label L(F ) = (w, b,v, σ) of a forward partial path F dominates
another forward label L(F ′) = (w′, b′,v′, σ′) of a forward partial path F ′ ending at the same vertex if
w = w′, b = b′, v = v′, and σ ≥ σ′.

As in Heßler et al. (2018), also our pretests have confirmed that the weak dominance Rule 2 performs bet-
ter than the strong Rule 1 for most benchmark instance used in the computational experiments. Therefore,
we do not use Rule 1 and also omit its proof. The validity of the weak dominance Rule 2 is obvious.

Finally, we discuss the incorporation of the functions f at Stage 5. into the SPPRC modelling and
solution approach. For the first objective 5a., the function f counts the number of products the pattern
contains, i.e., f(y) = |{i ∈ I : yi > 0}|. Consequently, the profit attribute on the arcs of the SPPRC digraph
must consider the number of different products in the resulting pattern. Thus, a cost of 1 is subtracted for
every item that is packed, i.e., every non-zero arc. An example is given in Figure 3.

0 1 2 · · · m− 1 m

(0, 0, 0)

(w1, b1, σ1 − 1)

(2w1, 2b1, 2σ1 − 1)

(3w1, 3b1, 3σ1 − 1)

(0, 0, 0)

(w2, b2, σ2 − 1)

(0, 0, 0)

(wm, bm, σm − 1)

Figure 3: SPPRC digraph for objective 5a. with otherwise identical attributes as depicted in Figure 2. The arcs e ∈ E are
shown with their weights and profit (w(e), b(e), σ(e)).

For the second objective 5b., the function f counts the (negative) number of integrally packed products
the pattern contains, i.e., f(y) = −|{i ∈ I : yi = qi}|. Hence, arc profits are modified if an item i is
packed completely, i.e., the additional profit of 1 is added to the qith arc of item i (present only if qi ≤ ui).
An example is given in Figure 4. Note that the dual price γ of constraint (5d) is already included in the
definition of σi for all i ∈ I.

0 1 2 · · · m− 1 m

(0, 0, 0)

(w1, b1, σ1)

(2w1, 2b1, 2σ1)

(3w1, 3b1, 3σ1 + 1)

(0, 0, 0)

(w2, b2, σ2 + 1)

(0, 0, 0)

(wm, bm, σm + 1)

Figure 4: SPPRC digraph for objective 5b. with otherwise identical attributes as depicted in Figure 2. The arcs e ∈ E are
shown with their weights and profit (w(e), b(e), σ(e)).
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4.3. Stabilization

The CG process can be stabilized by using dual inequalities (Valério de Carvalho, 2005; Ben Amor et al.,
2006; Gschwind and Irnich, 2016). In the following, we restrict ourselves to inequalities that are formulated
only in the dual variables πi that correspond to the demand fulfillment constraints (1b) of the model solved
at Stage 1. (for the subsequent stages we consider the projection onto the m-dimensional space defined by
the π-variables). Let D∗ be the set of dual optimal solutions to the linear relaxation. For t ∈ Zm and t ∈ Z,
the dual inequality (DI) t>π ≤ t is a dual-optimal inequality (DOI) if D∗ ⊆ {π : t>π ≤ t}. A set of DIs
is a set of deep dual-optimal inequalities (DDOIs) if at least one optimal dual solution π∗ ∈ D∗ fulfills all
inequalities of this set.

We first focus on Stage 1. and the B-VPP and 01-VPP. According to Heßler et al. (2018), pair inequal-
ities (PIs) πh ≥ πi are DDOIs for all h, i ∈ I with wh ≥ wi and bh ≥ bi. In the primal formulation (1),
these additional columns stand for the exchange of the larger item h by the smaller item i, i.e., a zero-cost
column in the RMP with entries −1 and 1 for h and i, respectively. Moreover, subset inequalities (SIs)
−πh +

∑
i∈S πi ≤ 0 are defined for any item h ∈ I and subset S ⊆ I \ {h} with

∑
i∈S wi ≤ wh and∑

i∈S bi ≤ bh. We refer to a SI as (S, h). In general, SIs are not necessarily DOIs or DDOIs for the B-VPP
and the 01-VPP. Nevertheless, their associated primal columns can be added to stabilize the RMP at the
risk of a possible over-stabilization. Over-stabilization can be restored with a recovery procedure of low
computational effort as described in detail in Gschwind and Irnich (2016).

At Stages 2.–4., the use of DIs is still possible when categories of items are kept separate, i.e., a SI for
(S, h) can only be used if all items i ∈ S and also item h all belong to the same, stage-dependent subset
of exchangeable items. An overview of the applicable DIs at the different stages is provided in Table 4.
For example, at Stage 2., the PIs and SIs exclusively exchange either items of standard products IS or of
refrigerated products IC ∪ IF . At Stages 3. and 4., exchanges are only allowed among items of the same
category.

Stage/ Subsets of RHS of a SI defined by (S, h), i.e.,
objective exchangeable items cost c of the associated primal column

1. I 0
2. IS , IC ∪ IF 0
3. and 4. IS , IC , IF 0
5a. IS , IC , IF |{i ∈ I : ti > 0}| − χ1(uh)
5b. IS , IC , IF 1

Table 4: Overview of DIs.

At Stage 5., we have to take into account the following speciality. The transformation of a solution with
packing and DI columns into a pure packing column solution may change the number of packed products in a
pattern (to be taken into account at Stage 5a.). Likewise, an integrally packed product may be transformed
into a split product and vice versa (to be taken into account at Stage 5b.). In order to ensure a valid
objective value after the replacement, we have to modify the right-hand side of a DI from 0 to some integer
value c, i.e., add a cost c to the corresponding primal DI column. Table 4 summarizes the different cases.
For example, let p ∈ P be a pattern and let

∑
i∈I tiπi ≤ c be a DI. If at Stage 5a. in the primal model

both corresponding variables are positive, the following replacement can be performed: Exchange item h
by items {i ∈ I : ti > 0} in pattern p with original associated cost sp (i.e., the number of packed products)
yields a new pattern p′ with associated cost sp′ ≤ sp + |{i ∈ I : ti > 0}| − χ1(uh), where χ is the indicator
function. The new pattern p′ might consist of added items {i ∈ I : ti > 0} compared to pattern p and if
uh = 1 then item h vanishes in pattern p′.

Similarly, at Stage 5b., the (negative) number of integrally packed items for the new pattern p′ can be
estimated by dp′ ≤ dp + 1 because item h might change from an integrally packed item to a split item.

As discussed in Gschwind and Irnich (2016) in more detail, one may experiment with different strategies
which DIs and at what point in time the DI columns are added to the RMP. On the one hand, DI columns
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can be added at the very beginning to the initial RMP and stay there during the entire CG process (static).
On the other hand, only violated DIs can be added during the CG process (dynamic). We combine these
two strategies which yields a mixed approach that adds some DI columns at the start and adds violated DIs
later on.

We employ this mixed strategy in the following form: For the initialization of the first RMP, for each
item i, the PI πi ≥ πj with j = arg mink∈I\{i}{|wi − wk|+ |bi − bk| : wi ≥ wk, bi ≥ bk} is added and all SIs
with |S| = 2 are added. While solving the root node, violated PIs are added dynamically. At Stages 2.–5., we
only keep DIs belonging to the subset of exchangeable items according to Table 4 (and remove the others).
In the same spirit, we only dynamically add violated PIs belonging to these subsets.

4.4. Branching

We apply a single or a two-level branching scheme depending on the stage. At Stage 1., there is only
one level where we apply the branching scheme suggested by Vanderbeck (1999). The idea is to formulate
the 2D-VPP as a pure binary problem so that all pattern coefficients are also binary. Branching is then
performed choosing two disjoint subsets I0, I1 of items. In any fractional solution there exists a pair (I0, I1)
for which the number of patterns having coefficients ai equal to 0 (1) for all i ∈ I0 (∈ I1) is fractional. For
a detailed explanation and examples, we refer to Heßler et al. (2018).

At Stages 2.–4., there are two branching levels. First, we branch on the number of refrigerated trucks
(2c), the number of frozen trucks (3c), and the number of mixed trucks (4c), respectively. Second, we apply
the above described branching rules of Vanderbeck (1999).

At Stage 5., there are also two branching levels. First, we branch on the number of integrally packed
products, i.e., when the value ∑

p=(ai)∈P :api=qi

api xp (7)

is fractional for an item i ∈ I. Note that this is a special case of Vanderbeck branching, which we apply
subsequently at the second level.

At all levels, the branching variable/term is selected as one with fractional part closest to 0.5. Ties are
resolved randomly.

Note that all first-level and second-level branching decisions can be implemented by either adding some
linear constraint(s) to the RMP or by removing certain pattern subsets. Since the branching rule of Van-
derbeck (1999) ensures integrality, the overall branching scheme is complete for all stages.

Finally, we use a depth-first tree exploration strategy. The intention is to find an integer solution as
soon as possible. Since the lower bounds of the linear relaxations of formulations (1a)-(5) are often tight,
we quickly obtain good and sometimes optimal solutions.

4.5. Acceleration techniques

When applying the policy splitting allowed, patterns with fewer split products are preferred over patterns
with more split products. Therefore, it is beneficial to already generate patterns with very few split products
(if any) at the Stages 1.–4. so that the initial RMP at Stage 5. mainly consists of variables representing
patterns with many integrally packed products. To foster that predominantly patterns with only integrally
packed products are generated, the SP is always first solved heuristically over a reduced SPPRC digraph.
In this reduced digraph, each item i ∈ I has only two associated parallel arcs (0, 0, 0) and (uiwi, uibi, uiπi)
so that for ui = qi the item is either integrally packed or not packed at all. An example of a reduced graph
is given in Figure 5. Only if no pattern with negative reduced cost is found in the reduced digraph, SPPRC
SPs are solved again using the complete digraph.

This approach has two advantages: First, the 2D-KPs at the Stages 1.–4. are solved faster because in most
iterations the reduced network provides negative reduced cost patterns. Secondly, Stage 5. is solved faster
because the RMP already consists of beneficial columns. Computational results show that this approach
significantly accelerates the CG process. For a computational analysis, we refer to Section 6.4.
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0 1 2 · · · m− 1 m

(0, 0, 0)

(u1w1, u1b1, u1π1)

(0, 0, 0)

(u2w2, u2b2, u2π2)

(0, 0, 0)

(umwm, umbm, umπm)

Figure 5: Reduced SPPRC digraph for objective 1. with otherwise identical attributes as depicted in Figure 2. The arcs e ∈ E
are shown with their weights and profit (w(e), b(e), σ(e)).

5. Heuristics

For real-world applications, user acceptance is a crucial success factor, especially for constructive heuris-
tics, where the key users want to get some insights into the decision mechanism. Therefore, we developed
various heuristic ideas and presented their underlying rationals as well as their strengths and weaknesses to
the decision makers of the affected company. For comparison, we also re-implemented the strategy previously
employed by the dispatchers, the so-called Business Today logic.

For our own development, we started with the well-known BFD, FFD, and WFD heuristics, all of them
employing the concept of surrogate weight (Section 5.1). Then five additional heuristic approaches were
developed in accordance to the real-world situation of our industrial partner (Section 5.2). Comparisons to
results of the Business Today logic can be found in Section 6.

5.1. Basic single-class heuristics

At the beginning, we will introduce a number of heuristics which consider only a single class of items
and do not distinguish between products of different categories. Also splitting products is not taken into
account. At the end of this section, we will have obtained one combined heuristic which consists of running
all heuristics described so far and taking the best solution. This combined heuristic will serve as building
block for a more complicated heuristic framework described in Section 5.4.

As pointed out in the introduction, we are facing a highly heterogeneous product range where the unit
weight ρk of product k ∈ K varies considerably. It is obvious that truck loads containing mainly heavy
goods (ρk � W/B) will leave excess pallet spaces even if the weight capacity is exhausted. On the other
hand, truck loads containing mainly lightweight goods (ρk � W/B) still provide excess weight capacity
even if all pallet spaces are used. Thus, a “good” loading pattern should utilize both capacity dimensions
by mixing heavy and lightweight products in a suitable way.

Based on this simple observation the transport planners previously created loading patterns filling one
truck after the other in a FF manner. Each truck is manually assigned its load following a strict rule that
alternately packs the heaviest and the lightest unpacked item as described in the following Business Today
Algorithm 1.

Practical experience showed: If each product fills only one pallet, i.e., bi = 1 for all i ∈ I, then this
procedure amounts to a pairwise combination of items with large and small unit weight ρi and shows
reasonably good results. However, this is a rare case, and for all other, more general instances, inefficient
solutions may occur. In the worst case, many large items (high wi and bi) with medium density ρi remain
until the end, which leads to unnecessary additional trucks.

Naturally, Algorithm 1 suffers from neglecting the absolute weights of items and from the FF strategy of
handling trucks. However, sorting items by decreasing weight wi or decreasing number of pallets bi would
only be useful for instances with a clear dominance in one dimension. Our real-world test instances showed
that both constraints, weight and pallet capacity, can become active, i.e., there is no clear dominance of one
of the two dimensions.

To overcome this dilemma, we suggest to apply the concept of a surrogate weight proposed by Caprara
and Toth (2001). The surrogate weight of an item i ∈ I constitutes a convex combination of relative weight
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Algorithm 1 Business Today

Sort item set I by increasing ρi.
Open truck 1 and set t← 1.
while I 6= ∅ do

Take the last (first) item i from I in an odd (even) iteration.
if i fits into truck t then

Insert i into truck t.
else

Open a new truck t+ 1 and insert i.
t← t+ 1.

end if
Remove i from I.

end while

and relative pallet number. For each i ∈ I, it is defined as

si = λ
wi
W

+ (1− λ)
bi
B
, where λ =

∑
i∈I

wi
W∑

i∈I
(
wi
W + bi

B

) .
Based on these surrogate weights, we can (almost) transform our packing problem into a classical one-

dimensional bin packing problem and apply well-known standard heuristics. In particular, we take FFD,
BFD, and WFD, and adapt them for the solution of our truck loading problem by using the surrogate
weight si. In the following, we present further heuristic approaches based on the concept of a surrogate
weight.

5.2. Block-based single-class heuristics

In this section, we introduce three heuristics called A, B, and C, which are all based on a fixed pattern of
assigning blocks of items to trucks. Therefore, the lower bound of the number of trucks LB (see Section 3) is
computed and LB trucks are opened. Then, the item set is partitioned into blocks of equal size LB. In each
iteration, one block is selected and matched to the set of trucks, i.e., every item of the block is assigned to
one of the trucks. The selection of blocks and the matching patterns differ between the three heuristics. If
an item does not fit into the preferred truck, the item is moved to the next truck in the sequence (following
a FF logic) or, if necessary, a new truck is opened, see Algorithm 2. Note that any new trucks opened
during the execution of the heuristic only serve as a backup for loading items exceeding the capacity, while
the matching of subsets remains restricted to the originally opened LB trucks.

All three heuristics are based on sorting the items by increasing surrogate weights si. Their details are
informally described below followed by pseudocode. An illustrative example is given in Table 5 further
below.

Heuristic A assigns the LB items with largest surrogate weights to the LB trucks and then adds the LB
items with smallest surrogate weights in a reversed order, such that the items with smax and smin end up in
the same truck number 1. These two steps are repeated iteratively for the remaining items as described in
Algorithm 3.

Heuristic B also starts by assigning the LB items with largest surrogate weights to the LB trucks, but
then proceeds by assigning the next largest (w.r.t. si) LB items to the trucks in a mirrored order such that
items with LBth and (LB + 1)-largest surrogate weight end up being assigned to the same truck number
LB, see Algorithm 4.

Finally, Heuristic C repeats the first step of Heuristic A and iteratively assigns the items with largest
surrogate weights to the LB trucks, always maintaining the same order of trucks, see Algorithm 5.

To illustrate the different heuristics, an example with 20 items is given in Table 5. Obviously, Heuristic A
exhibits more similarities to the Business Today logic, including the feature of not keeping the items with
lowest si until the end. Heuristics B and C overcome that issue. Besides that, Heuristic B aims at uniformly
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Algorithm 2 Subprocedure Assign item i to truck t

Try to insert i into an open truck by a FF strategy,
i.e., try all trucks t, t+ 1, . . . ,LB and then trucks 1, 2, . . . , t− 1 until item i fits.
If no such truck is found, insert i into a truck LB + 1,LB + 2, . . . by a FF strategy, opening a new truck
if necessary.

Algorithm 3 Heuristic A

Calculate lower bound LB and open LB trucks.
Sort item set I by increasing si.
Partition set I into H := dm/LBe subsets Ij of cardinality LB according to the sorting. {For simplicity
of notation we assume that H is even.}
j ← 1, h← H
while j < h do
for i← LB downto 1 do
Assign item i in set Ih to truck LB− i+ 1.

end for
h← h− 1
for i← 1 to LB do
Assign item i in set Ij to truck i.

end for
j ← j + 1

end while

Algorithm 4 Heuristic B

Calculate lower bound LB and open LB trucks.
Sort item set I by increasing si.
Partition set I into H := dm/LBe subsets Ij of cardinality LB according to the sorting. {For simplicity
of notation we assume that H is even.}
j ← H
while j ≥ 1 do
for i← LB downto 1 do
Assign item i in set Ij to truck LB− i+ 1.

end for
j ← j − 1
for i← 1 to LB do
Assign item i in set Ij to truck i.

end for
j ← j − 1

end while

Algorithm 5 Heuristic C

Calculate lower bound LB and open LB trucks.
Sort item set I by increasing si.
Partition set I into H := dm/LBe subsets Ij of cardinality LB according to the sorting.
for j ← H downto 1 do
for i← LB downto 1 do
Assign item i in set Ij to truck LB− i+ 1.

end for
end for
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Business Today Heuristic A Heuristic B Heuristic C

truck \ iter. 1 2 3 4 1 2 3 4 1 2 3 4

t = 1 20 1 19 2 18 20 1 15 6 20 11 10 1 20 15 10 5
t = 2 3 17 4 16 19 2 14 7 19 12 9 2 19 14 9 4
t = 3 5 15 6 14 18 3 13 8 18 13 8 3 18 13 8 3
t = 4 7 13 8 12 9 17 4 12 9 17 14 7 4 17 12 7 2
t = 5 11 10 16 5 11 10 16 15 6 5 16 11 6 1

Table 5: Comparison of solutions produced by the Business Today algorithm and Heuristics A, B, and C. The example has
20 items I = {1, 2, . . . , 19, 20} and LB = 5. Items are numbered according to their surrogate weight in ascending order, i.e.,
item 1 is the smallest item and item 20 is the largest item.

filling all trucks. According to the basic intuition of how good solutions might look like, this should reduce
the probability that any smaller item does not fit into its preferred truck. On the other hand, Heuristic C
provides gaps of different sizes in the LB different trucks, which may offer more room to maneuver if an
item does not fit into its assigned truck.

5.3. Density-based single-class heuristics

The third group of heuristics for items of the same class is based on the unit weight ρ considerations
discussed at the beginning of Section 5.1. Recall that “good” loading patterns, in general, utilize both
capacity dimensions and do not leave large excess capacity of pallet space if weight capacity is used to
the limit, and vice versa. Therefore, we can define a desired average density for an ideal load of a truck,
namely the ratio optavgρ = W/B. Clearly, a loading pattern Pt of a truck t with an average density
avgrt :=

∑
j∈Pt wj/

∑
j∈Pt bj close to optavgρ and total weight close to the capacity W also fills the available

pallet space close to the limit B, and vice versa.
Based on this simple observation, we introduce two heuristics D and E. In contrast to heuristics A, B,

and C, they both consider trucks one after the other and for each considered truck t they add the item
yielding a new average density avgrt as close as possible to the target value optavgρ. Of course, the item
also has to fit into the truck at hand. Ties are broken by choosing the item with the largest weight, because
smaller items can be expected to fit more easily in later iterations.

Heuristics D and E differ from each other only by the weight measure for the initial sorting step. Note
that the sorting only determines the first item put into every truck. Heuristic D sorts by the surrogate
weight si ensuring that “large” items are assigned first and will not give rise to trucks with low utilization
towards the end of the packing procedure. On the contrary, heuristic E focuses on outliers with an unusual
density that are potentially hard to assign. Therefore, items are sorted in decreasing order of unit weight ρi.
By the same rationale also the reverse ordering could be a reasonable choice, but for our test data, pretests
showed that this ordering is less effective.

Heuristics D and E could be immediately extended to consider all trucks instead of only the current truck t
for inserting items. In that case, the computation of i′ would have to be extended to taking the arg min over
all currently open trucks, which means that an item is inserted into a truck where the minimal deviation
from optavgρ can be realized. Indeed, we also implemented this extension with the initialization that the
first LB items (according to the given ordering) are packed on LB trucks. However, since improvements
were only marginal and occurred only for a small subset of instances, we decided to stick to the simpler
standard version described above.

5.4. Multi-class heuristic scheme of policy splitting forbidden

All heuristics described in the previous sections focus on creating good patterns utilizing both capacity
dimensions, but they take neither items of different product categories packed into different compartments
of a truck nor item fragmentation into account, while the latter is considered in the following Section 5.5.
Accordingly, we now present a heuristic scheme which is based on the single-class heuristics presented before.
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Algorithm 6 Heuristic D (E)

Sort items I by decreasing si (ρi).
Let Pt ← ∅ be the loading of all trucks t.
t← 0
while I 6= ∅ do
t← t+ 1
Take the first i from I and insert i into Pt.
Set avgrt = ρi and remove i from I.
while items exist that fit into Pt do

i′ ← arg mini∈I

{∣∣∣wi+∑
j∈Pt

wj

bi+
∑
j∈Pt

bj
− optavgρ

∣∣∣ : i fits into Pt

}
Insert i′ into Pt and remove i′ from I.

end while
end while

These are embedded into a more complicated algorithmic framework consisting of various decomposition
and re-merging steps. Since the running times of the single-class heuristics are rather low, we

perform the task of solving a single-class problem for a certain subset of item I ⊆ I as a subroutine
by running all nine heuristics from Sections 5.1, 5.2, and 5.3 and taking the best solution found. More
precisely, we run the Business Today algorithm, FFD, BFD, WFD, and Heuristics A to E. The result
(=number of trucks) derived by this combined single-class heuristic is denoted by zheu(I). Additionally,
this combined heuristic is executed with a given starting solution of prepacked trucks, i.e., some trucks have
reduced residual capacities. We refrain from listing all the details of adapting the single-class heuristics to
this situation.

In Section 3, the lower bounds LB,LBS ,LBC,F , and LBF for the corresponding subsets of items are
introduced. Applying a single-class heuristic only for standard items and then separately only for refrigerated
items yielding heuristic solution values zSheu and zC,Fheu , respectively, we can conclude the following: If z1.sep :=

zSheu + zC,Fheu = LB, then we have reached an optimal solution w.r.t. the objectives of Stages 1. and 2. with
z1. = z1.sep and z4. = 0.

Otherwise, if zSheu + zC,Fheu > LB, we cannot guarantee optimality of the merged solution without mixed
trucks. In this case, it makes sense to gradually introduce mixed trucks while trying to reduce the total
number of trucks. As already used in Section 4, constraint (4c), the lower bound for mixed trucks (z4.) is
given by LBmixed = LBS + LBC,F − LB for solutions that are optimal w.r.t. Stages 1. to 3.. Therefore,
LBmixed = 0, if LBS + LBC,F = LB and LBmixed > 0, otherwise.

The heuristic scheme striving for a good solution of the lexicographic optimization problem defined by
Stages 1.–4. with splitting forbidden works in three phases which are described in Algorithm 7. Phase 1
builds up a solution starting with frozen products. After packing IF by the combined single-class heuristic
(following the Stage 4. objective), the cooled items are added which might require additional trucks (Stage 3.
objective). Then a separate solution for the standard item set IS is determined. Taking the union of the
two sets of trucks gives a first solution, where standard and refrigerated items are packed in separate trucks
(Stage 2. objective). If the resulting number of trucks zbest equals the overall lower bound LB we stop
(STOP 1), since we have found a solution which is optimal w.r.t. Stages 1. and 2.

Otherwise, we try to improve the currently best solution in Phase 2: Therefore, we allow mixed trucks
and pack standard products also into refrigerated trucks. To reach a better starting position for adding
also large standard items to the refrigerated trucks given from Phase 1, but keeping the number of mixed
trucks small, the load of the refrigerated trucks is regrouped at the beginning of Phase 2 with the goal of
obtaining some refrigerated trucks with a low load and others which are almost fully packed with cooled
products. This is done by subprocedure Regroup, which tries to empty the least loaded refrigerated truck
by moving its items (in decreasing order of surrogate weight) to other refrigerated trucks selected by a BF
strategy. If the number of frozen products is small, we try to keep them together in the regrouping in the
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spirit of the Stage 3. objective. Therefore, all frozen products contained in the current truck are considered
as a single product and moved to a new truck together. Only if this artificial product does not fit, the
frozen products are reassigned individually. This regrouping is applied to all trucks in an increasing order of
surrogate load. Then the standard items IS are added to the regrouped refrigerated trucks by the combined
single-class heuristic. In this way, we aim to find a packing with a lower number of trucks (Stage 1.), but
without increasing the number of refrigerated trucks (Stage 2.). Again, we stop if the new solution matches
the lower bound LBI (STOP 1).

A further reduction of the total number of trucks is sought in Phase 3 at the cost of increasing the number
of refrigerated trucks. Again we try to improve the possibility of adding standard products to refrigerated
trucks. Therefore, we take the refrigerated truck with lowest load w.r.t. the surrogate weight and split its
content on two empty trucks, thereby incrementing the number of refrigerated trucks by one. The splitting
is performed in a balanced way by assigning the items by a WFD strategy (w.r.t. surrogate weights). Again,
all frozen items are treated as one product, if the truck contains both frozen and cooled products. Then the
standard items are again added by the single-class heuristic. If the total number of trucks reaches the lower
bound LB we stop the procedure. Otherwise, we unpack all standard items again and iterate, taking the
refrigerated truck with lowest load that was not split before. If all refrigerated trucks given at the beginning
of Phase 3 were split, another iteration is started permitting a second split operation for each refrigerated
truck given at the end of the first iteration. Further iterations along this rule are possible, until at some
point the number of refrigerated trucks exceeds the lower bound for all items (STOP 2). In this case, we
also run the single-class heuristic for all items I to reach a possible improvement of the Stage 1. objective.

5.5. Multi-class heuristic scheme for policy splitting allowed

If the multi-class heuristic of Section 5.4 reaches a solution where all lower bounds for the objectives of
Stages 1.–4. are reached, obviously the result cannot be improved by splitting products. However, if this is
not the case, item fragmentation offers potential for improvements.

In the following, we consider the two different splitting objectives introduced in the Introduction.

5.5.1. Stage 5a.: Minimizing the number of splits

In this setting it is not a-priori clear which items should be split and in which way to gain the largest
improvement of the solution. We have chosen to incorporate item splitting as a post-processing step applied
to a solution derived from the multi-class heuristic of Section 5.4. In every iteration of the main loop of
our Algorithm 8 we try to empty the truck with lowest surrogate load and thus reduce the total number of
trucks by one. If this turns out to be impossible, the procedure is stopped. Otherwise we proceed to the
next iteration, unless we have reached a solution with LB1 trucks, which proves optimality of objective 1.
and also lets us stop the procedure.

Every iteration for the truck t with minimal surrogate weight consists of two parts: At first (for-loop)
we try to further reduce the load of truck t by moving items (without splitting them) to other trucks by a
BF strategy. Then (in the while-loop) we iteratively take the largest (w.r.t. surrogate weight) remaining
item i′ in truck t and split it, i.e., we pack the largest possible fractional part of it, expressed as number
of pallets, to one of the other trucks. Formally, the largest pallet number h′ is calculated, such that h′

pallets out of the bi′ pallets constituting i′ can be loaded on some truck t′. Ties among trucks are broken
by a BF rule. The remaining part of item i′ consisting of bi′ − h′ pallets is treated like an individual item
in t. By moving the largest possible number of pallets, it can be expected that the total number of splits
remains small. If no single pallet can be moved from truck t (i.e., h′ = 0), the whole procedure is stopped.
Otherwise, truck t is completely empty and can be removed.

5.5.2. Stage 5b.: Minimizing the number of split products

In this case it does not matter whether a large or small item i is split and whether i is split into
two fragments or the maximum number of bi fragments. It is intuitively clear that the largest potential
for improvement is given by splitting large products completely into separate pallets. Therefore, in our
Algorithm 9 we iterate over all items in decreasing order of bi. Every considered item is split into separate
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Algorithm 7 Multi-class heuristic

Compute LB.
Phase 1: {pack refrigerated and standard items separately}
Compute zFheu
Compute zrefrig ← zCheu starting from the packing implied by zFheu
Compute zSheu {for empty trucks}
zbest ← zrefrig + zSheu {current best solution}
if zbest = LB then
STOP 1.

end if
Phase 2: {reshuffle the refrigerated items and then add standard items}
Regroup(all zrefrig refrigerated trucks)
Compute zSheu starting from the packing of the zrefrig refrigerated trucks returned by Regroup.
zbest ← min{zbest, zSheu}
if zbest = LB then
STOP 1.

end if
Phase 3: {Iteration: expand the number of refrigerated trucks by distributing the load of one truck on
two trucks and add standard items}
Remove all standard items IS from the zrefrig refrigerated trucks returned by Regroup.
repeat
zcurrent ← zrefrig
for all zcurrent refrigerated trucks t opened so far in increasing order of load w.r.t. surrogate weights do

Open a new (empty) truck zrefrig + 1
zrefrig ← zrefrig + 1
Take all (refrigerated) items currently loaded on truck t and pack them on the two trucks t and zrefrig
by a WFD strategy. {gives a balanced bipartition}
Compute zSheu starting from the current packing of the zrefrig refrigerated trucks.
zbest ← min{zbest, zSheu}
if zbest = LB then
STOP 1.

end if
if zrefrig ≥ LB then

Compute zheu {for empty trucks}
zbest ← min{zbest, zheu}
STOP 2.

end if
Remove all standard items IS from the trucks

end for
until false

Subprocedure Regroup(P1, . . . , PT )
Sort the T trucks in increasing order of load w.r.t. surrogate weights
for t = 1 to T do
for all items i in Pt in decreasing order of surrogate weights do

Try to pack item i in trucks {Pt+1, . . . , PT } by a BF strategy (w.r.t. surrogate weights)
end for

end for
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Algorithm 8 Multi-class heuristic: Stage 5a., minimizing the number of splits

Compute LB1

Execute Algorithm Multi-class heuristic returning T := zbest trucks with loads P1, . . . , PT
Sort the T trucks in increasing order of load w.r.t. surrogate weights
t← 1
repeat
for all items i in Pt in decreasing order of surrogate weights do

Try to pack item i into another truck by a BF strategy (w.r.t. surrogate weights)
end for
while Pt 6= ∅ do

Let i′ be the item in Pt with largest surrogate weight
{find the truck t′ where the largest number of pallets of i′ can be added}
h′ ← maxτ{h : h · wi′/bi′ +

∑
j∈Pτ wj ≤W, h+

∑
j∈Pτ bj ≤ B, τ ∈ {1, . . . , T} \ {t}} attained for t′

if h′ = 0 then
{Truck t cannot be emptied}
Return the solution with zbest trucks (as given at the start of the current iteration of repeat)
STOP.

end if
Move h′ pallets of product i′ from Pt to Pt′

end while
Remove Pt
zbest ← zbest − 1
if zbest = LBI1 then

Return current solution with zbest trucks
STOP.

end if
t← t+ 1

until false

Algorithm 9 Multi-class heuristic: Stage 5b., minimizing the number of split products

Compute LB1, LBS1 , LBC,F1 and LBmixed
1

Sort all items i ∈ I in decreasing order of bi
i← 0
repeat
i← i+ 1
Split item i into bi separate items
Execute Algorithm Multi-class heuristic returning zbest

until all lower bounds LB1, LBS1 , LBC,F1 and LBmixed
1 are reached or bi+1 = 1 or i = m

Return zbest
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pallets and then the multi-class heuristic from Section 5.4 is executed. The iterative process is stopped
in any of the following three cases: (i) the multi-class heuristic stops with a solution matching all lower
bounds for the objectives of Stages 1.–4.. Since we consider split products, we can only utilize the volume
based lower bound LB1; (ii) all products consisting of more than one pallet were split; (iii) all products were
considered and split.

6. Computational results

In this section we will report computational results for all algorithms described before. The experiments
are based on real-world instances and on more difficult instances generated from these by reducing their
data to more difficult item sets (see Section 6.2). We will first report in Section 6.3 results for the heuristic
approaches described above in Section 5. To analyze the performance of the algorithm we compare the
heuristic with the exact solutions in detail. Then we will illustrate the performance of the exact BaP
algorithm in Section 6.4. Furthermore, we also analyze in that section the impact of adding the heuristic
solutions as columns to the initial RMP.

6.1. Details of the implementation

All heuristic algorithms presented in Section 5 are implemented and tested in Python 3.3.7 on a standard
PC equipped with an Intel R© CoreTM i5-3210M processor with 2.5 GHz and 4 GB of RAM. Note that the
heuristics are also used in the daily planning task of our industrial partner. For this application they were
originally implemented within the SAP ERP system of the company in the SAP-internal programming
language ABAP. However, for test purposes we re-implemented the heuristics in Python.

The BaP algorithm described in Section 4 is implemented in C++ and compiled in release mode into a
single-thread code under MS Visual Studio 2015. The experiments are conducted on a standard PC with
an Intel R© CoreTM i7-5930k processor clocked at 3.5 GHz and 64 GB of RAM. The RMP is solved at each
column-generation iteration by means of CPLEX 12.9. Moreover, CPLEX is called after the solution of
each branch-and-bound node as a primal MIP-based heuristic solver using the so far generated columns.
CPLEX’s default values are kept for all parameters. The time limit to solve each stage is set to 10 minutes
(600 seconds). In case a stage cannot be solved within the time limit, the computation is stopped and
following stages are not considered.

6.2. Benchmark instances

We consider 80 real-world instances with 35 to 430 items provided by our partner from the European
food and beverage industry. The cardinality bound of each truck is 33 pallets (a common industry standard)
and the weight capacity is 22.8 or 24.5 tons. The weight of each item is rounded up with an accuracy of
10 kg. Preliminary tests show that both constraints, weight and cardinality, can become active, i.e., there is
no clear dominance of one of the two dimensions. Not all instances contain all types of products. Especially,
frozen products often appear in rather small quantities or even miss completely. A detailed summary of our
test instances can be found in Table 6.

Instance type real-world generated

number of instances 80 30
average number of items 144 153.9
average weight of items (in 10 kg) 93.7 114.6
average pallet number of items 3.8 6.7
number of instances with standard products 80 30
number of instances with cooled products 73 30
number of instances with frozen products 31 16

Table 6: Overview of benchmark instances.
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During the computational study it turned out that for most of the instances the optimal solutions
for Stages 1.–4. do not require any splitting and thus the objective of Stage 5. would be optimized by
default. The reason for this behavior is that the instances also contain rather small items which fill up
trucks without being split. Therefore, we distilled more difficult new instances from the given real-world
instances avoiding this effect in the following way. The 80 real-world instances are divided into 10 groups
each with 8 instances. For each group, we selected 5, 10 or 15 items with the highest weight and/or the
highest number of used pallets of each instance forming a new instance, respectively. In total, we generated
30 new instances with up to 80, 160 or 240 items, respectively. All instances are available on the website
http://logistik.bwl.uni-mainz.de/benchmarks.php.

6.3. Results of the heuristic approach

In this section, we report results of the heuristic approach. Table 7 shows the key results for the pure
heuristic approach. For 56 out of the 80 real-world instances, all lower bounds for objectives 1.–4. are already
achieved without splitting. The 24 remaining instances provide at least a theoretical improvement potential,
which is exploited in 18 cases. For 13 of them, even the lower bounds for objectives 1.–4. are achieved if
items are allowed to be split. While for the real-world instances exactly 70 % could be solved to the lower
bounds for objectives 1.–4., this was possible only for 10 % (3 out of 30) of the generated instances, all
without splitting.

However, the share of solutions that could be improved by applying splitting is far higher (25 out of 27)
and the same is valid for the number of instances where that improvements even led to the lower bounds
for objectives 1.–4. This higher improvement is not surprising, as the average pallet size of items is more
than 75 % larger for generated instances and thus the effect of splitting items into separate pallets is much
stronger. The higher difficulty of generated instances is also reflected in the running times of the heuristics.

For none of the 110 instances, the original Business Today logic outperformed the heuristic approach,
but for 89 instances, the heuristics performed better. For the other 21 (all real-world) instances, both the
heuristics and the Business Today logic reached the lower bounds.

Instance type real-world generated

number of instances 80 30

Business Today logic achieved LB 21 0
heuristics outperform Business Today logic 59 30
heuristics achieve LB without split 56 3

splitting improved heuristic solution 18 25
improvements led to reaching LB 13 21
no improvement by splitting 6 2

heuristic runtime < 1 sec. 46 3
heuristic runtime 1-10 sec. 27 8
heuristic runtime 10-30 sec. 4 7
heuristic runtime > 30 sec. 3 12

average number of trucks Business Today 23.1 45.8
average number of trucks heuristic unsplit 22.2 42.2
average number of trucks heuristic split 22.1 40.6

Table 7: Results of the heuristic approach.

For a further performance analysis, we compare the objective values of the heuristic approach with the
optimal objective values computed by the BaP approach. Detailed results can be found in Table 8. The
table entries have the following meaning:
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#opt: number of instances solved to proven optimality at the specific stage;
zH = z∗: number of instances in which the heuristic approach finds the optimal solution; instances

with non-optimal heuristic solutions in former stages are not considered;
zH > z∗: number of instances in which the heuristic approach does not find the optimal solution;

instances with non-optimal heuristic solutions in former stages are not considered;
gapH : average gap between heuristic and exact solution, we use the gap zH − z∗ instead of the

relative gap because the optimal solution can be z∗ = 0 in Stages 4.–5.; recall that solution
values for Stages 1.–4. represent number of trucks, but split parameters for Stage 5.

#implicit: number of instances for which the heuristic and optimal solution implicitly coincide, or
where the current stage is not active (e.g., no Stage 3. for instances without any frozen
items)

Σ-zH = z∗: total number of instances in which the heuristic approach finds the optimal solution up to
the specific stage: (Σ-zH = z∗) := (zH = z∗)+(#implicit).

For a better understanding, we describe the entries in the second row of Table 8 in detail. At Stage 2.,
the branch-and-price algorithm solves 64 instances to proven optimality. For 60 (3) instances, the heuristic
approach could (not) find the optimal solution. For one instance, we cannot compare the heuristic and exact
approach at Stage 2. because the solution at Stage 1. differs for this instance. For 6 instances without any
refrigerated items, the heuristic approach finds the optimal solution at Stage 1. so that Stage 2. is solved
implicitly. Including instances without refrigerated products, the heuristic and exact solution coincide for
in total 66 instances.

splitting class Stage #opt zH = z∗ zH > z∗ gapH #implicit Σ-zH = z∗

forbidden real-world 1 76 71 5 0.1 0 71
2 64 60 3 <0.1 6 66
3 26 24 1 <0.1 41 65
4 61 52 4 0.3 6 58

generated 1 30 15 15 0.6 0 15
2 22 9 5 0.9 0 9
3 11 4 0 <0.1 5 9
4 18 6 2 1.3 0 6

allowed real-world 1 73 73 0 0.0 0 73
2 64 64 0 0.0 7 71
3 27 27 0 0.0 44 71
4 60 60 0 0.0 7 67

5a. 5 62 50 6 98.3 0 50
5b. 5 63 48 6 3.9 0 48

generated 1 28 28 0 0.0 0 28
2 27 25 2 0.2 0 25
3 15 15 0 0.0 10 25
4 25 24 0 <0.1 0 24

5a. 5 7 3 4 80.8 0 3
5b. 5 8 3 5 32.2 0 3

Total 767 661 58 9.5 126

Table 8: Comparison between the heuristic and the exact solution.

For the policy splitting forbidden, the heuristic solution is optimal for 58+6 of 68+18 instances. Inter-
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estingly, in most of the cases, the heuristic approach fails to find the optimal solution at the first stage.
Especially for the generated instances, only 15 of 30 instances are solved to optimality. For the policy
splitting allowed, the heuristic approach performs well with 67+24 of 67+25 instances solved optimally up
to Stage 4. The absolute deviance gapH is low up to Stage 4. with a maximum of 0.2, but the values are big
for Stage 5. With 6/6+4/5 of 62/63+7/8 non-optimal instances, the heuristics fail for most of the instances
at Stage 5.

6.4. Results of the branch-and-price algorithm

In this section, we report the results of our BaP algorithm. In general, reaching a stage of the lexico-
graphic optimization task triggers the execution of a BaP algorithm solving the respective model (1)–(4),
and possibly (5a)–(5b) or (5c)–(5d). However, for some instances, not all stages become active, e.g., if there
are no frozen products in the instance or if a stage is solved implicitly during the preceding stage. Therefore,
the total number of instances per stage to be reported in the computational experiments may be different for
every stage. Moreover, the different BaP algorithms of the stages may have different success rates and thus
will lead to a different number of instances remaining for the successive stages. This makes the comparison
of different algorithmic approaches a delicate task. The following analyses may, therefore, seem somewhat
less transparent but our focus is on the correct interpretation of the results we obtained.

The construction of the initial RMP works as follows. As the first stage is a vector packing problem
without additional constraints, we start with the same initial RMP as described in (Heßler et al., 2018) by
adding unit vectors, columns with only one non-negative coefficient api = ui, and 200 additional columns
resulting from variants of the FF and BF heuristics. At Stage 2., we add other 200 columns resulting from the
FF and BF heuristics that first assign items to bins that already contain the same product type. Moreover,
the same FF and BF variants used in Stage 1. are performed on restricted item sets by considering standard
or refrigerated products separately. Analogously, Stage 3. applies the FF and BF variants for cooled or
frozen products separately. At Stage 4.–5., no additional columns are added initially to the RMPs.

For each stage, the computation time is restricted to a maximum of 10 minutes (600 seconds). If a stage
cannot be solved within the time limit, we cannot solve the instance exactly. Therefore, the computation
is stopped at this stage and the following stages are not considered. If an instance has no frozen or no
refrigerated products at all, Stage 3. or Stages 2.–4. are skipped, respectively.

At first, the BaP algorithm is tested employing the results of the heuristic approach, i.e., the correspond-
ing columns are added to the initial RMP. We refer to this variant as base. To analyze the impact of the
heuristic solution, we compare the base variant to a variant without using the heuristic solution. Moreover,
the impact of the lower bounds enforced by constraints (2c), (3c), and (4c), and the graph reduction pre-
sented in Section 4.5 are tested. We refer to these variants as without heuristic solution, without lb,
and without reduced graph, respectively. The results are summarized in Table 9. The table entries have
the following meaning:
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class: class of instances; real-world or self-generated; for details see Section 6.2;
splitting: allowed or forbidden; in case of splitting allowed, either the number of splits (objective 5a.)

or the number of split products (objective 5b.) is minimized, see Section 4.1;
#inst: number of active instances;

#inst cons: number of active instances considered at the current stage; instances that are not solved to
proven optimality in a previous stage are not considered;

#opt: number of instances (out of #inst cons) solved to proven optimality at the specific stage
within 10 minutes (600 seconds);

#implicit: number of instances for which the current stage is already implicitly solved by the result
of a previous stage, or where the current stage is not active (e.g., at Stage 3. for instances
without any frozen items);

Σ-#opt: number of instances solved to proven optimality at the current stage: Σ-#opt:=
#opt+#implicit

T̄ : average computation time in seconds over #inst cons instances; unsolved instances are taken
into account with the time limit of 10 minutes (600 seconds);

T̄LP : average computation time of the linear relaxation in seconds; unsolved linear relaxations are
taken into account with the time limit of 10 minutes (600 seconds);

gap: average gap between the upper and lower bound; we use the gap UB − LB instead of the
relative gap because the objective value can be zero at Stages 4.–5.

We summarize and interpret the results as follows: For the policy splitting forbidden, 68 of 80 real-world
and 18 of 30 self-generated instances are solved to optimality. In particular, the algorithm performs well
at Stage 3. with an average computation time of around one minute. In comparison, the policy splitting
allowed is more difficult than splitting forbidden. The performance at Stage 1. is similar for both policies
with 101 solved instances (splitting allowed) instead of 106 (splitting forbidden). Up to Stage 4., 67 of the
80 real-world and 25 of the 30 generated instances are solved which is (−1) + 3 instances more compared
to the policy splitting forbidden. The performance of the algorithm at Stage 5., where 62/63+7/8 instances
are solved, is almost the same for both objectives 5a. and 5b. with similar average solution time. As can
be expected, Stage 5. is particularly difficult for the generated instances. Especially, the average deviation
(gap) at Stage 5a. is very high because in many cases the root node cannot be solved or the solution of the
preceding stage is poor.

To analyze the impact of the heuristic solution, we compare the variants base and without heuristic

solution. For the policy splitting forbidden, the results hardly change when the initial columns from the
heuristic are omitted. In total, only one instance less can be solved and the average running times differ
by less than 5 seconds. Therefore, the use of the heuristic solution provides only a small advantage for the
policy splitting forbidden. In contrast, for the policy splitting allowed, the effect of adding the heuristic
solution is more significant, as it helps to solve 6/7+2/3 additional instances, respectively.

Adding the additional constraints (2c), (3c), and (4c) to ensure lower bounds on the number of refriger-
ated, frozen, and mixed trucks, respectively, has a strong impact on the performance of the BaP algorithm.
Without adding these lower bounds, only 45+13 instances of the policy splitting forbidden and 38/39+3
instance of the policy splitting allowed can be solved. In total, around one-third of the instances cannot be
solved without these bounds. Moreover, the running time increases significantly for all stages and problem
variants.

For the policy splitting allowed, using a reduced graph as described in Section 4.5 has a positive impact
for the Stages 1.–4. Already at Stage 1., 10+9 instances less are solved if the graph reduction is omitted.
Overall, 8/9+1/2 instances less are solved.
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7. Conclusion

Packing pallets of products from industrial producers into trucks for shipment to wholesalers is an im-
portant daily task for supply chain management. Reducing the number of trucks, even if only by one, or
rearranging the package plan to diminish the number of the more costly trucks carrying cooled or frozen
products, gives a valuable impact on costs as well as emissions, since the supply operation is usually per-
formed daily or several times a week. Thus, the effort spent on optimizing the packing operation yields
savings that will add up over a year to numbers of considerable economic relevance.

In this contribution, we consider a real-word packing problem where products should be packed into
trucks such that a five-level lexicographic objective function is minimized. Feasibility is defined by a weight
and a volume (=number of pallets) constraint for every truck. This special variant of a multi-objective
optimization problem considers the total number of required trucks as main objective dominating all other
goals due to the high cost of labor. However, after fixing the overall number of trucks (and thus the number
of required personal) secondary objectives come into play, which concern the cost consuming operations
of cooling and freezing devices of a truck. Finally, for practical handling it is clearly convenient for the
customer to receive all pallets carrying the same product in the same truck. But if the total number of
trucks could be reduced, the customer will agree to a splitting of products onto several trucks. Nevertheless,
such a splitting of products should be kept as low as possible, which opens the question how to measure the
inconvenience of splitting. We believe that such a lexicographic setting has not be considered for one- or
two-dimensional bin-packing problems before.

The first part of this paper gives a branch-and-price framework for computing exact solutions of our
problem. While the upper-level problem of minimizing the number of trucks can be modelled as a two-
dimensional vector packing problem, with a special structure in one dimension, the lexicographic objective
requires five iterative steps of successive optimization problems, in each of which columns are generated by
solving appropriate instances of a shortest path problem with resource constraints (SPPRC). It is a major
contribution of the paper to put the five different problems arising for the different levels into a uniform
framework of column generation. Furthermore, advanced concepts of stabilization and some acceleration
techniques are employed.

In the second part, we describe the heuristic solution method previously employed in practice and then
develop a number of new constructive heuristics for solving a single level of the packing problem. These try
to balance the two constraints and generate solutions with a favorable mix of weight and volume. Then, the
single-level heuristics are integrated into a more complex heuristic framework for building solutions of high
quality with respect to the multi-level lexicographic objective function.

Computational experiments for real-world benchmark instances as well as structurally more difficult
instances extracted from these show that the branch-and-price algorithm is highly effective in computing
optimal solutions. Within 10 minutes of computation time it reaches proven optimality for 68 out of 80 real-
world scenarios without splitting products. Allowing splitting leads to more difficult problems, but still 62
of 80 are solved to optimality.

It also turns out that the heuristic framework performs much better than the approach previously
applied in practice and matches the optimal solutions in 86 % of all subproblems. Note that it is also very
helpful to use the heuristic solution as a starting column for the branch-and-price algorithm. Based on this
evaluation, our heuristic framework has been successfully incorporated into the SAP ERP software system
of our industrial partner and is currently used for the daily planning process.

In the future, it would be interesting to extend our single-source single-sink shipping problem to a more
complex supply network serving multiple customers. This would open up the possibility of delivering less-
than-truckload amounts to one customer and using the residual capacity of a truck for serving a second (or
third) customer, if the routing costs support such a decision.
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