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Abstract

Given the insight that individual skills crucially impact various life outcomes, questions
about the process of skill formation are increasingly being researched. Evidence about path
dependency and about substantial and lasting effects of early childhood events emphasizes
the importance of the dynamic component in the skill formation process. This dynamic com-
ponent has been incorporated in skill formation models featuring self- and cross-productivity,
while empirical evidence is scarce. Filling this gap I estimate an instrumental variable model,
using as instrument a randomized controlled working memory training intervention, to inves-
tigate the question of whether skills are self- and cross-productive, i.e., whether skills boost
skills over time. My results show that, first, an exogenous shock to one specific skill (work-
ing memory capacity) at an initial stage leads to that same skill being improved in a later
stage, but only to the extent of the initial skill shift without any extra effect on the production
of this skill (self-productivity in the broader sense but not in the narrower sense). Second, I
find the exogenously shifted skill, while having no immediate effect on other skills, boosting
the production of a number of other skills over time. Hence, I provide evidence about skills
being dynamically cross-productive. My findings imply that early disadvantages can be the
reason for skill gaps opening up over the life cycle and they explain why early interventions
can have significant long-term effects for individual human capital accumulation. My results
have implications for the design of policies intended to foster human capital and to augment
equality of opportunity.
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1 Introduction

It is well documented that various skills (e.g., cognitive skills, social skills, emotional skills)
fundamentally determine a range of life outcomes, such as educational attainment, earnings,
and health (e.g., Heckman et al. 2006, Lindqvist and Vestman 2011, Heckman 2007, Chiteji
2010, Hanushek et al. 2015, Heckman et al. 2018a,b; for comprehensive surveys see Borghans
et al. 2008, Almlund et al. 2011). Given the major importance of skills, a growing amount of
research is trying to explain the complex process of skill formation. A deep understanding of
the process of skill formation is crucial for understanding the origins of inequality in socio-
economic outcomes. It is also fundamental for policy makers trying to design effective and
efficient instruments that facilitate skill formation and support disadvantaged groups suffering
from skill gaps and thus limited life opportunities.

The timing and the dynamics seem to play a key role in the process of skill formation. Gaps
in skills across children open up at early ages—even before schooling begins—and persist or
even widen over the life cycle (Heckman and Carneiro 2003, Cunha et al. 2006, Blomeyer et al.
2009). This pattern has been documented for various types of skills, including academic as
well as social skills. It explains the observation of growing skill gaps between different socio-
economic groups. In addition, evidence shows that early childhood environments importantly
shape later life outcomes and that even mild early life shocks can have lasting consequences
(Currie and Almond 2011, Almond et al. 2018). Interventions taking place in early stages of
childhood have been found to effectively reduce skill gaps (see Heckman and Kautz 2014, for
a review of this literature). Later programs, in contrast, seem to be less effective. Overall, the
economic returns to early educational interventions tend to exceed those from programs aimed
at adolescents or young adults (Heckman 2006, Knudsen et al. 2006). All this evidence points to
the importance of timing and dynamic interdependencies in the process of skill formation.

Given that evidence, it is important to improve the understanding about the dynamics in the
skill production process. In particular, the question arises to what extent skills at one stage play a
role in the formation of skills at later stages. The process of a skill at one stage positively affecting
this same skill at a later stage is termed ‘self-productivity’, following the seminal work by Cunha
and Heckman (2007), who propose a dynamic production function of skills. The process of a skill
at one stage positively affecting other skills at a later stage is termed ‘cross-productivity’. Skills
being self- and cross-productive could explain why skill gaps between children increase over the
life cycle and why schools fail to equalize starting opportunities. Evidence about skills being
self- and cross-productive would then corroborate the importance of human capital investments
being made early in life. So far, however, comprehensive evidence about skills being self- and
cross-productive is missing—given the enormous empirical challenges in its clean analysis.

The present paper aims at filling this gap. I provide estimates of self- and cross-productivity
of skills, i.e., I empirically answer the question of whether the stock of a skill in one period
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causally improves the stock of this skill (self-productivity) and other skills (cross-productivity) in
subsequent periods. I thus investigate a key aspect in the production technology of skills. I use
rich panel data on a variety of primary school students’ skills and exploit the exogenous increase
in one skill being the result of a specific randomized intervention. My data allow me to estimate
in a reduced-form manner the self- and cross-productivity, i.e., the causal effect of one skill on
the further development of that same as well as other skills over time.

The randomized intervention I exploit is a computer-based working memory (WM) training,
the exogenously manipulated skill thus is WM capacity. Working memory is the capacity to
mentally store and process information and plays an important role in many activities. It has
been researched on extensively in psychology and neuroscience (Baddeley 1999). In particular,
WM has been documented to play an important role in the process of learning (Bergman Nutley
and Söderqvist 2017, Holmes et al. 2009) and individuals with learning problems often have low
WM capacity (Martinussen et al. 2005). This is why WM capacity is particularly likely to have
dynamic effects in the skill formation process.

Furthermore, WM capacity has been documented to be malleable by training (Aksayli et al.
2019, Melby-Lervåg et al. 2016, Sala and Gobet 2020, Shipstead et al. 2012). The results from
our intervention documented in Berger et al. (2020) confirm this conclusion. Moreover, normal
school routine does not explicitely train WM capacity and the WM training intervention is thus
likely to have a measurable impact for a longer period of time. This is in contrast to interventions
targeting skills that are focussed on in subsequent human capital investments anyway (Bailey
et al. 2020), such as arithmetic skills focussed on by regular school lessons. The effects of a,
say, arithmetics intervention, even though potentially being effective in the short-run, are likely
to fade out over time because the subsequent regular school lessons work as a substitute for the
arithmetics intervention and thus make the control group catch up with the treatment group over
time. This is different for the skill our intervention focusses on, WM capacity, which is not the
direct focus of regular school lessons. Hence, the intervention meets the criteria outlined by Bai-
ley et al. (2017) for treatment effects being persistent: according to these authors, interventions
should target at what they call “trifecta” skills—ones that are malleable, fundamental, and would
not have developed in the absence of the intervention.

Identifying skills’ self- and cross-productivity is challenging for at least two reasons. The
first is the omited variables bias: Factors in the environment of children affect skills at several
stages. Skill gaps widening over the life cycle could certainly be the result of skills being self-
and cross-productive. However, alternatively, it could be the result of differences in the stimulat-
ing environment across children and these different environments persisting and affecting skills at
various stages. A variety of factors in a child’s environment influence her skill development, and
environments vary across children (e.g., across socio-economic groups). The number of factors
that influence a child’s skill development is enormous. Relevant factors include the number and
variety of words spoken at home (Hart and Risley 1995), the amount of time children spend in
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educational activities with their parents and parenting style (Fiorini and Keane 2014), neighbor-
hood stability (Gibbons et al. 2017), exposure to disruptive peers in the classroom (Carrell et al.
2018), ordinal academic rank (Murphy and Weinhardt 2020, Elsner and Isphording 2017), and
teacher quality (Kane et al. 2011, Jackson 2018)—to name just a few. The examples illustrate that
countless and in part hardly measurable factors in a child’s environment affect skill development
and that it is impossible to fully observe and control all these factors when estimating the skill
production function. Estimations of the effect of early skills on later skills will therefore usually
suffer from omitted variables bias. In order to get unbiased estimates it is of major importance to
exploit an exogenous source of variation in the skill level at the earlier stage in the analysis. This
is the fundamental advantage of the data used in this paper: I exploit the exogenous variation in
WM capacity being the result of a specific randomized controlled intervention. In a two-stage
estimation model I use the treatment indicator as an instrument for WM capacity at the early
stage and thus consistently estimate the self- and cross-productivity effect of WM capacity.

The second challenge for empirical studies on skills’ self- and cross-productivity is the mul-
tiplicity of skills. Besides cognitive ability (typically measured by IQ tests), a number of other
skills, such as self-regulatory, social, and emotional skills, have been documented to play an
important and independent role for various life outcomes (Almlund et al. 2011, Borghans et al.
2008, Kautz et al. 2014, Bowles et al. 2001, Moffitt et al. 2011, Dohmen et al. 2009, Backes-
Gellner et al. 2018). The fact of skills being multiple in nature implies the possibillity of dynamic
interdependencies in the skill production process. As an example, one could think of a highly
attentive child being able to improve math skills at school more than a child that is less atten-
tive. A child with a strong memory might improve her language skills faster than a child with a
weaker memory. Emotional skills (emotional security) fosters child exploration and more vigor-
ous learning of cognitive skills (Cunha and Heckman 2007). Hence, apart from self-productivity
(i.e., the stock of a skill in one period shapes this same skill in future periods), cross-productivity
(i.e., the stock of a skill in one period shapes other skills in future periods) has to be taken into ac-
count when exploring the dynamic skill formation process. The challenge in identifying self- and
cross-productivity of some skill j lies not only in the requirement of a randomized intervention
that generates an exogenous variation of skill j, it lies also in the requirement of the intervention
being specific in the sense that it directly changes only skill j without directly changing other
skills nor environments. This is necessary in order to be able to causally trace changes in skills
at later stages back to changes in skill j rather than to other skills or environments at the earlier
stage.

The intervention I rely on, the WM training intervention, is very specifically targeted to only
WM capacity. Direct effects of the training on other skills are close to zero (see Section 5 below
as well as the intervention results analyzed in detail in Berger et al. (2020)). This is consistent
with the evidence privided in the literature documenting a zero short-term effect of WM training
on skills other than WM capacity (for reviews see, e.g., Aksayli et al. (2019), Melby-Lervåg et al.
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(2016), and Shipstead et al. (2012)). Also, given that the WM training in our field experiment
(Berger et al. 2020) was integrated in the normal school routine—similar to any other sequence
of exercises introduced to children during a school year—the intervention did not change other
aspects of the school context nor the home environment. Parents’ consent was not required for
the training but only for the data collection—both for the treatment and the control group. This
educational intervention is thus special in terms of its specificity. In this respect the intervention
differs from other recent educational interventions, which involve a variety of changes in schools
or home environments and thus are highly effective in directly impacting various skills.1 In
contrast, the intervention this paper relies on is specifically targeted at WM capacity only, and
thus it is uniquely suitable to identify skills’ self- and cross-productivity, a key feature of the skill
production function.

The key results of this paper are as follows: First, I find that the target skill (WM capacity) at
one stage has a positive effect on the same skill measured at later stages. This means that I find
evidence for WM capacity being self-productive in the broader sense. But this self-productivity
effect appears to be close to one, i.e., it consists of a pure level effect with no additional effect
on skill production. In other words, the WM training appears to have shifted the level of WM
capacity and this higher level remains stable over time, i.e., neither it fades out nor does the
growth path of WM capacity become steaper. The latter, however, would be expected if one
hypothesized WM capacity to have an effect on own production. Second, with respect to cross-
productivity, I do find an effect of WM capacity on the subsequent production of skills other
than WM capacity: I find WM capacity to be cross-productive for geometry skills, the ability to
inhibit pre-potent impulses, and fluid IQ (measured by Raven’s matrices). Hence, I find that WM
capacity plays a role in the development of other skills. Showing that the stock of a skill can
affect the growth path of other skills, I reveal an important feature in the skill formation process.

It would be unreasonable to assume that the extent of self- or cross-productivity effects be
equal across all skills. Possibly, basic skills such as memory or reasoning capacities affect the de-
velopment of other skills to a greater extent than specific/applied skills such as calculation skills

1An example of a recent educational intervention includes the PATH (‘Promoting Alternative Thinking Strate-
gies’) program, which is an intensive one-year, teacher-run training program, which also involves parents, and which
targets socio-emotional skills such as self-control, empathy, emotional literacy, and interpersonal problem-solving
skills of eight year old children in Switzerland (Sorrenti et al. 2020). Another recent example is the one-year men-
toring program provided to second-grade primary school students in Bonn/Germany (Kosse et al. 2020). The grit
intervention conducted with elementary school students in Istanbul (Alan et al. 2019, p. 1128) involves a curriculum
designed to “highlight (i) the plasticity of the human brain against the notion of innate ability, (ii) the role of effort
in enhancing skills and achieving goals, (iii) the importance of a constructive interpretation of setbacks and failures,
and (iv) the importance of goal setting”. The reading intervention with second-grade children in Aarhus/Denmark
consisted of a growth mindset approach to parents combined with delivery of books and encouragement to read
together with the child Andersen and Nielsen (2016). Older and well-known programs include the Perry Preschool
Program and the Abecedarian Program, which both comprise intensive child care programs and home visits Cunha
et al. (2006). All the mentioned interventions encompass a variety of interventional measures and skills targeted.
This was reasonable given that the aim of those interventions was to be as effective as possible in improving impor-
tant skills and later life outcomes. The intervention analyzed in the present paper is different in that it specifically
targets WM capacity only.
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or foreign language skills do. Therefore, I certainly refrain from generalizing my findings by
claiming that all skills be cross-productive. Also, it is likely that the cross-productivity potential
varies not only across trigger skills but also across ‘cross-skills’ (other skills). In this study, I
found WM capacity to be cross-productive for geometry skills but not for arithmetic skills, for
Raven’s IQ but not for reading skills. The pattern of results might be different when investigating
a different trigger skill instead of WM capacity. Nevertheless, my results are crucial for research
and policy advice: I document that cross-productivity plays a role for at least some skills, and
therefore identifying skills that are cross-productive and fostering these skills early in the life
cycle can importantly affect human capital development.

My research relates to previous studies that aimed at estimating the dynamic production
function of skills, in particular to the seminal articles of Cunha and Heckman (2008) as well as
Cunha et al. (2010). The authors provide a comprehensive model of skill production where skills
and investments are dynamically interrelated across stages in childhood. They assume skills to
reduce to two latent factors, one being measured by a mathematics and a reading recognition test
(from PIAT) and the other being measured by a behavioral problem index. I contribute to the
literature, first, by allowing for a finer differentiation between skills, both among the cognitive as
well as among the noncognitive skills. Having a great battery of skills, all measured repeatedly
by objective and highly standardized tests, I address the challenge of the dynamic interrelation of
multiple skills. Second, the empirical approach by Cunha and Heckman (2008) and Cunha et al.
(2010) is different from mine: the authors estimate a structural model by explicitely including
parental factors that affect skill formation—termed ‘investments’ into skills. In contrast, I exploit
the exogenous variation of one skill level being the result of a randomized controlled intervention
study. I am thus able to estimate self- and cross-productivity in skill formation by a reduced-form
approach and refrain from structural modeling assumptions.

The present paper contributes to the understanding of the dynamic process of skill formation.
This is crucial for understanding the sustainability of inequalities in skills and life outcomes
within the population of many countries. Skills being self- and cross-productive explains (part of)
the observed path dependency in skill formation. It also contributes to understanding the limited
intergenerational mobility in socio-economic status observed in many countries. Furthermore,
an improved understanding of the dynamic skill formation process is also needed for optimally
designing policies aimed at fostering human capital development. Policy makers have to decide
about the skills targeted by interventions, the timing of intervention, and the amount spent for
interventions. My findings suggest to focus on skills that are cross-productive and to focus on
early stages in the children’s life cycle. Due to the dynamics in the skill production, the benefits
of educational interventions can be very high in future periods and the returns to educational
expenditure are thus larger than what is concluded when considering only immediate educational
improvements. This implies that the optimal amount spent for educational policies is higher than
what would be inferred from considerations of only short-term educational effects.
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The rest of the paper is organized as follows: In Section 2, I formalize the development of
skills in a dynamic model that accounts for multiple skill dimensions. In Section 3, I describe
the empirical strategy employed to estimate self- and cross-productivity. Section 4 presents the
experimental design and data collection. Section 5 presents and discusses the results. Section 6
concludes.

2 The Model of Skill Formation

The analyses in this paper are based on a dynamic model of skill formation. The stock of a child’s
skills in period t + 1, θt+1, is a function of the stock of skills in the previous period θt and initial
environmental factors X:

θt+1 = f (θt, X) (1)

The vector of environmental factors X includes all initial conditions that are exogenous to the
child’s skills but affect the production of the child’s skills.

Without loss of generality, the skill formation function f (.) can be split into two components:
the previous stock of skills θt and the change in skills ∆θt. The change in skills is a function of θt

and X, such that

θt+1 = θt + g(θt, X). (2)

Equation (2) can be interpreted as follows: The stock of skills in period t + 1 is equal to
the sum of the stock of skills from the previous period and the skill production since the last
period. The production component can be positive (learning) or negative (depreciation of skills
over time, i.e., unlearning).

In the next step I incorporate the fact that skills are not one-dimensional but have many facets.
A child can have high mathematical skills and weak verbal skills, while another child might have
high verbal skills and low mathematical skills. Even for skills that are contemporaneously or-
thogonal, a dynamic interdependency might exist. Such a dynamic interdependency emerges for
example if a child with strong verbal skills has an advantage in reading and understanding mathe-
matical exercises and explanations and therefore improves mathematical skills faster than a child
with weak verbal skills. It is therefore important to, first, allow for skills to be multidimensional
and, second, allow for their dynamic interdependency. I therefore expand the model as follows:
I consider two contemporaneously orthogonal skills, skill j and skill k ( j , k) and allow the
production of each skill to depend on the stock of both skills in the previous period. The stock
of skill j in period t + 1 thus is

θ
j
t+1 = θ

j
t + g j(θ

j
t , θ

k
t , X),
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and the stock of skill k in period t + 1 is

θk
t+1 = θk

t + gk(θ
j
t , θ

k
t , X).

I call the partial derivative of θ j
t+1 with respect to θ j

t “self-productivity”. It is given by

∂θ
j
t+1

∂θ
j
t

= 1 +
∂g j(θ

j
t , θ

k
t , X)

∂θ
j
t

. (3)

It results to be the sum of the level effect (which trivially is equal to one) and the production
effect (which is ∂g j(θ

j
t ,θ

k
t ,X)

∂θ
j
t

).

I call the partial derivative of θk
t+1 with respect to θ j

t “cross-productivity”. It is given by

∂θk
t+1

∂θ
j
t

= 0 +
∂gk(θ

j
t , θ

k
t , X)

∂θ
j
t

. (4)

In equation (4) the level effect is zero and the cross-productivity effect thus reduces to the
production effect.

Three different scenarios for the self-productivity, i.e., for the development of skill j after
an exogenous shock to skill j, are illustrated in Figure 1a. The scenarios vary in the value of
the production effect, i.e., in the sign of the second term of the right hand side of equation (3).
The red vertical line in the figure marks the period in which skill j is exogenously increased
(t = 1). The black dot in the subsequent period (t = 2) marks the level of skill j for the scenario
in which the production effect is zero. In this scenario the difference between the actual skill
level and the counterfactual skill level (grey dot) in t = 2 is equal to the difference between
actual and counterfactual skill levels in t = 1. I.e., the self-productivity is one (due to the
first term of the right hand side in equation (3)). The blue dot and dotted line, in contrast,
illustrate the skill development in the presence of a positive production effect. In this scenario,
the difference between the actual and the counterfactual skill level is larger in t = 2 than in t = 1.
I.e., the self-productivity is larger than one. The green dot (and dotted line) illustrates the skill
development in the presence of a negative production effect: the difference between the actual
and the counterfactual skill level is smaller in t = 2 than in t = 1. I.e., the self-productivity is
smaller than one.

Analogously, different scenarios for the cross-productivity, i.e., for the development of skill
k after an exogenous shift of skill j are illustrated in Figure 1b. Again, the red vertical line in the
figure marks the period (t = 1) in which skill j is exogenously increased, while the vertical axis
measures the level of skill k. The level of skill k in period t = 1 is unaffected by the exogenous
shock to skill j, this is a consequence of the two skills being contemporaneously orthogonal. The
black dot in t = 2 marks the level of skill k in the case that the production effect is zero: the level
of skill k is equal to the counterfactual skill level. This is the case if the cross-productivity is
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Figure 1: Self- and cross-productivity: The effect of increasing the level of skill j on the sub-
sequent development of skill j and the contemporaneously orthogonal skill k, three scenarios
each

(a) Self-productivity: The effect on skill j

(b) Cross-productivity: The effect on skill k
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zero due to the production effect being zero (second term of the right hand side of equation (4)).
In this case, skill j being shifted has no consequences for the development of skill k. The blue
dot, in contrast, illustrates the development of skill k in the presence of a positive production
effect and thus a positive cross-productivity: the actual level of skill k in t = 2 is larger than the
counterfactual level of skill k. The green dot illustrates the development of skill k in the presence
of a negative production effect and thus a negative cross-productivity: the actual level of skill k

in t = 2 is smaller than the counterfactual level of skill k in that period. To sum up, given that the
two skills are contemporaneously orthogonal, the exogenously shifted skill j can affect the stock
of skill k only through an effect on its subsequent production.

In my empirical analysis I will shed light on the sign of the production effect in both self- and
cross-productivity by comparing the empirical skill profile to the different theretical scenarios.

3 Empirical Strategy

My empirical strategy to identify self-productivity, i.e., the effect of the current stock of skill j

(θ j
t ) on the future stock of that same skill j (θ j

t+1), and cross-productivity, i.e., the effect of the
current stock of skill j on the future stock of a different skill k (θk

t+1), relies on exploiting an
exogenous shift of the stock of skill j. Skill j in my application is WM capacity and the source
of exogenous variation is a randomized intervention that integrated a 5-week computer-based
WM training in primary schools. Children’s skills are measured before the training, shortly after
the training as well as 6 and 12–13 months after the training.

My empirical model is summarized by the following two equations:

θk
i,t+1 = αk

0 + αk
1θ

WMC
i,t + αk

2Xi + εk
i,t+1 (5)

θWMC
i,t = β0 + β1WMTi + β2Xi + ηi,t+1 (6)

WMTi is a binary variable indicating whether child i has been assigned to the treatment condition,
Xi is a vector of exogenous environmental factors relevant to skill formation, and WMC indicates
working memory capacity. I estimate the model using Two Stage Least Squares (2SLS) so that
equation (6) is the first stage and WMTi serves as an instrumental variable for θWMC

i,t . Replacing k

by WMC in equation (5), the parameter α1 will be the self-productivity parameter to be estimated.
Replacing k by a skill other than WM capacity, α1 represents the respective cross-productivity
parameter to be estimated.

The self-productivity effect will be equal to one if the production effect (second term of the
right hand side of equation (3)) is zero, larger than one if the production effect is positive, and
smaller than one if the production effect is negative. The cross-productivity effects, in contrast,
will be estimated to be zero if the production effect (second term of the right hand side of equa-
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tion (4)) is zero, larger than zero if the production effect is positive, and smaller than zero if the
production effect is negative.

All skill measures that I use in my estimations are scores standardized within the control
group of each evaluation wave to mean = 0 and standard deviation = 1. Hence, estimated effect
sizes can be interpreted in terms of fractions of a standard deviation. As outlined, instead of
using the skill change as dependent variable, I estimate the effect on skill levels and control for
the pre-treatment level of the respective skill. The advantage of this method is that the variance of
the estimated effect is smaller, i.e., the effect is measured with higher precision (McKenzie 2012,
Frison and Pocock 1992). All models further include school fixed effects as well as controls
for gender and age. Finally, in order to account for dependencies of observations within school
classes, standard errors are clustered at the classroom level.

4 Data

The data analyzed in this paper come from a randomized-controlled intervention study that was
conducted in primary schools in Mainz, Germany, in 2013/2014 (see Berger et al. 2020).

4.1 Participants

After having received ethical approval in September 2012, 31 first grade classes were recruited
from numerous schools in the city of Mainz, Germany for participation in the study; each school
participated with at least two classes. Out of 599 children in these classes in November 2012,
580 parents provided their consent to the data collection (consent rate of 96.8%). Test data of
the relevant outcome measures in all four evaluation waves, i.e., prior to the treatment (W1),
shortly after the treatment (W2), 5–6 months after the treatment (W3) and 12–13 months after
the treatment (W4), were successfully collected for 518 children. Attrition over the course of
the study (from W1 to W4) was very low (7%) with no difference between treatment and control
group (see Online Appendix Section A.1 for details).

4.2 Treatment and Control Condition

Randomization into treatment and control group was realized between classes and within schools:
15 classes (249 children, i.e., 48%) were randomly assigned to the treatment group and 16 classes
(269 children) to the control group. The treatment consisted of a daily WM training session last-
ing approximately 30 minutes, taking place during the first or second lesson of a school day over
a period of 25 consecutive school days. The WM training was embedded into the classes’ normal
school routine. It was introduced to the children as a normal sequence of exercises, similar to
when the teacher introduces a new sequence of exercises for math, reading, or writing required

11



by the curriculum. Children could not opt out of the WM training and no parental consensus
was required as the training was integrated into the usual classroom activities. The usual teacher
supervised the WM training lessons and children remained in their classroom and conducted the
training sessions at their usual desks.

The training was conducted with a commercially available WM training software2 providing
training on different span tasks, using an age-specific user-interface. As an example, in one of the
tasks (called ‘Rotating data link’) a panel of 16 lamps arranged in a 4x4 grid is shown. Lamps
light up in a certain order; then the panel turns by 45 degree; and finally the child has to click on
the lamps in the right order. In another task (called ‘Asteroids’) asteroids light up while floating
through the space and children must click on them in the right order. In the task called ‘Input
module’ buttons with the numbers 1 to 9 arranged on a 3x3 grid are shown. Some numbers are
read out loudly while lighting up; subsequently, the child has to click on the buttons in reverse
order. In total, children are trained on ten different tasks. Eight focus on purely visuo-spatial
WM, while two include elements of verbal WM training. The exercises become progressively
more challenging over the course of the training and adapt to the individual capacity level of each
child.

The training software is very specifically targeted to improve WM capacity. It is unlikely that
it directly improves other (e.g., academic) skills. However, it might well improve the acquisition

process for these other skills. This is what I examine in the empirical part of this paper.
Logins for the training software were user-specific and only valid during the intervention

period. The children thus had access to the training software only during their dedicated training
sessions. Hence, spill-over effects to the control group are impossible.

Compliance with WM training was high in this sample. Only four treated children finished
less than 20 out of the 25 daily training sessions. Since classes as a whole participated in the
training, children only missed a training session when they did not attend school (e.g., for health
reasons).

The WM training in this study typically took place in the first or the second lesson in the
morning. During this time, the control group teachers taught their students the usual content—
primarily math and German lessons—covered in the first and the second lesson of the day for
first graders in primary school. Given that the curriculum, which had to be covered until the end
of the school year, remained unchanged, the WM training lessons essentially replaced practice
lessons in math and German.

2The WM training software Cogmed was used. Cogmed and Cogmed Working Memory Training are trademarks,
in the U.S. and/or other countries, of Cogmed Inc. (www.cogmed.com).

12



4.3 Data Collection

A professional data collection service provider ran the four evaluation waves: prior to the treat-
ment (W1), shortly after the treatment (W2), 5–6 months after the treatment (W3), and 12–13
months after the treatment (W4) (for further details, see Online Appendix Section A.3).

In each evaluation wave, the children completed highly standardized tests administered by
staff that was blind to treatment conditions. Parents of both treatment and control children gave
their consent to participate in the data collection (consent rate of 96.8%). Teachers were not
present during the tests and did not know their content. The teachers also did not receive any
information or feedback about the performance of their students in the evaluation tasks. The
entire sequence of tests was computer-based, including auditive (via headphones) explanations
and comprehension checks. The input devices for the evaluation tasks were not computer mice
but large touchscreens in order to avoid any bias arising from the fact that children in the treat-
ment group had been working with computer mice during the WM training. When the children
had finished all evaluation tasks in a given wave, they were rewarded for their participation with
a selection of toys to ensure high motivation. Test and rewards were the same for children in
control and treatment condition.

Each data collection wave comprises tests on the following skill dimensions: WM capacity,
geometry, arithmetic, reading, fluid IQ, inhibition control, and sustained attention. The structure
of each test was similar across waves, but the difficulty level of items was adjusted according to
the children’s development over time. A pretest prior to W1 with a different (smaller) sample of
similar aged children served to adapt the initial level of difficulty.

Working Memory Capacity Measure

WM capacity was measured by a visuo-spatial complex span task. The task consisted of a series
of screens each of which showed three symbols arranged in a row. The child had to identify the
slightly deviant symbol within the three in each screen. After a sequence of screens, the child
had to recall the position of the deviant symbols in the correct order. The task clearly differs
from all WM training tasks. In addition to the visuo-spatial WM task, two verbal WM tasks have
been administered to the children in the course of the study. Since the training, however, focuses
on visuo-spatial WM, I also focus on the visuo-spatial WM measure when analyzing self- and
cross-productivity effects in this paper.

Educational Skill Measures

Educational achievement was measured in three areas: arithmetic, geometry, and reading. Skills
in geometry were used as an outcome measure because—like arithmetic and reading—it plays
an important role in everyday life (e.g., orientation, reading maps, driving) as well as in various
professions (e.g., construction/architecture, fashion/art design, geography, astronomy, physics,
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sports, etc.) and therefore is an important part of the math curriculum at school. (For further
details on the educational achievement tests, see Online Appendix Section A.4.)

Other Skill Measures

In addition, three other tests were administered to the children; the tests measure important as-
pects of fundamental skills like the ability to inhibit pre-potent responses, the ability to sustain
attention, and fluid intelligence. Fluid intelligence was measured using Raven’s Coloured Pro-
gressive Matrices test (Bulheller and Häcker 2010), the ability to inhibit pre-potent responses
was measured by the go/no-go task (Gawrilow and Gollwitzer 2008), and attentional stamina
was measured by the bp task (Esser et al. 2008). (For further details on these tests, see Online
Appendix Section A.4).)

In the go/no-go task the child faces a sequence of screens each of which shows an animal. For
the large majority of the animals (“target animals”) the children need to push a red button on the
touchscreen every time one of these animals appears on the screen. However, for one other (“non-
target”) animal, that appears only rarely in the sequence of screens, the children must not push
the red button (see Online Appendix Figure A12). Each screen is only shown for a short time
window during which the children must decide whether to push the button and to implement the
button press. Because the target animals occur much more frequently than the non-target animal
and the time window during which a decision can be made is short, the children are put in the
“go-mode”. In other words, the pre-potent impulse is to push the red button. A key challenge
in this task is, therefore, to inhibit the pre-potent impulse when a non-target animal appears.
Commission errors in this task are widely viewed as a behavioral measure of impulsivity and
lack of self-control (Helmers et al. 1995, Eigsti et al. 2006).

In the bp task the subjects see 45 randomly ordered letters during each trial and each letter is
either a ‘b’, ‘d’, ‘g’, ‘h’, ‘p’, or ‘q’ (see Online Appendix Figure A13). The child has to highlight
(i.e., touch) only the letters ‘b’ and ‘p’ on the touchscreen. Thus, in contrast to the go/no-go
task the children are here not habituated to a particular behavioral response (“go”) that they must
inhibit from time to time. Rather, the children have to continuously find (and touch) the letters b
and p.

Questionnaires

In addition to the skill testing of children, questionnaires were addressed to parents and teachers.
Parent questionnaires were only distributed in the data collection waves W1 and W3, i.e., before
the intervention and 5–6 months after the intervention. Parent questionnaires included a num-
ber of questions on background characteristics that we use to check sample balance. Parents’
response rate was 82% in W1 and 77% in W3. Teachers filled out a questionnaire in each data
collection wave. The questionnaire contained questions on children’s characteristics—such as
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their migration background or language problems—and teacher characteristics. The return rate
for the teacher questionnaire was 100% in all four data collection waves.

4.4 Summary Statistics

Summary statistics of the relevant variables are reported in Table 1. About 50% of the children
were male, mean age at the beginning of the year (i.e., on January 1, 2013) was 82 months (6.8
years, standard deviation = 4.4 months). Gender and age variables (including age at test days)
are taken from parental consent forms and are therefore available for all children. The variables
migration background and language problems stem from the teacher questionnaire administered
in W1, the variables on income and mother’s educational degree stem from the parental ques-
tionnaire in W1.

Table 1: Summary Statistics

Variable Mean Std. Dev. N
Treatment 0.481 0.500 518
Male 0.496 0.500 518
Age in months on Jan 1, 2013 82.205 4.356 518
Age on test day w1 (in months) 84.335 4.406 518
Age on test day w2 (in months) 87.377 4.384 518
Age on test day w3 (in months) 92.464 4.394 518
Age on test day w4 (in months) 99.622 4.391 518
Migration background 0.447 0.498 514
Language problems 0.241 0.428 518
Monthly HH Net Income <750 Euros 0.017 0.131 402
Monthly HH Net Income 750-1500 Euros 0.109 0.313 402
Monthly HH Net Income 1500-2500 Euros 0.211 0.409 402
Monthly HH Net Income 2500-5000 Euros 0.435 0.496 402
Monthly HH Net Income >5000 Euros 0.226 0.419 402
Mother university degree 0.460 0.499 404
Mother vocational degree 0.416 0.493 404
Mother no professional degree 0.124 0.330 404
The table provides socio-demographic information about our sample. The gender and
age variables have been reported by the schools and are therefore available for all chil-
dren. The variables ‘migration background’ and ‘language problems’ are taken from
the teacher questionnaire in W1 (prior to the intervention); for four children teachers
reported not to know the migration background. The income and maternal education
variables are taken from the parent questionnaire in W1.
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5 Empirical Results

5.1 Sample Balance

To examine whether randomization in the study led to a balanced sample across treatment and
control group in terms of socio-economic characteristics and outcome measures, I regress vari-
ous socio-demographic characteristics (gender, age, migration background, parental income and
parental education) measured prior to the treatment (W1) on the treatment indicator. In addi-
tion, I test for differences between treatment and control group in the test performance prior to
treatment (W1). The results reported in Tables 2 and 33 show no significant imbalances between
treatment and control group prior to the intervention.

Table 2: Sample Balance: Regressing Socio-Demographic Characteristics on the Treatment In-
dicator

(1) (2) (3) (4) (5) (6)
Male Age on Jan 1, Migration Language Low income Mother

2013 background problems (< Eur2500) univ degr
Treatment -0.037 0.206 -0.013 0.063 -0.018 -0.001

(0.032) (0.357) (0.056) (0.048) (0.049) (0.044)
N 518 518 514 518 402 404
The results are based on least squares models including school fixed effects. Standard errors in parentheses are
clustered at the classroom level. * p<0.05. The sample in column 3 is smaller than the total sample size because the
dependent variable ‘migration background’ is taken from the teacher questionnaire and for four children teachers
reported not to know the migration background. The samples in columns 5 and 6 are smaller because the dependent
variables are taken from the parent questionnaire, which has not been answered (completely) by all parents.

Table 3: Sample Balance: Regressing Pre-Treatment (W1) Test Scores on the Treatment Indica-
tor

(1) (2) (3) (4) (5) (6) (7)
WMC Geometry Arithmetic Reading Raven’s Inhibition Sustained

IQ control attention
Treatment -0.070 0.083 0.102 0.093 0.051 -0.105 0.137

(0.102) (0.087) (0.072) (0.124) (0.063) (0.092) (0.108)
N 515 515 500 514 515 514 513
The results are based on least squares models including school fixed effects as well as gender and age controls.
All outcome scores are standardized to mean = 0 and SD = 1. Standard errors in parentheses are clustered at the
classroom level. * p<0.05.

3The sample size slightly varies across outcomes due to technical reasons during the testing procedure. This is
not related to the children’s skills nor to treatment assignment. Restricting the sample to only those children for
whom all test scores are available does not alter my results.
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5.2 Direct effect of treatment on outcomes

In order to be able to estimate the 2SLS model presented in Section 3 the treatment needs to
sufficiently strongly affect WM capacity without affecting other skills. Table 4 reports results
from regressions of the standardized skill scores measured shortly after the training on the treat-
ment indicator (for a similar estimation, see Berger et al. (2020)). The models include school
fixed effects as well as controls for gender, age, and the respective pre-treatment skill level. The
treatment effect on WM capacity is sizeable at 0.345, which means that the WM training has
increased WM capacity by 34.5% of a standard deviation. The effect is significant at p< 0.001,
the F-statistic is with 25 well above the rule of thump of 10 and I thus conclude that it can serve
as a sufficiently strong first stage.

Table 4: Effect of treatment on skills measured shortly after the intervention (W2)

(1) (2) (3) (4) (5) (6) (7)
WMC Geometry Arithmetic Reading Raven’s Inhibition Sustained

IQ control attention
Treatment 0.345* 0.117 -0.022 -0.060 0.056 -0.230* 0.046

(0.069) (0.063) (0.077) (0.062) (0.067) (0.067) (0.046)
N 515 515 499 512 514 513 513
The results are based on least squares models including school fixed effects as well as controls for gender, age, and
the respective pre-treatment skill level. Skill variables are standardized to mean = 0 and SD = 1. Standard errors in
parentheses are clustered at the classroom level. * p<0.05.

The estimated treatment effects on all other skill dimensions is insignificant except for inhi-
bition control, where the coefficient appears to be negative (see columns 2–7 of Table 4). These
results suggest that the treatment did not directly improve skills other than WM capacity. These
findings thus confirm expectations based on the fact that the WM training is very specifically
focussing on WM capacity without including any elements close to math or reading tasks for ex-
ample. The findings are also consistent to what is known from earlier research on WM training,
namely that WM training is effective in improving WM capacity but unlikely to directly improve
other skills (for reviews of this literature see Aksayli et al. (2019), Melby-Lervåg et al. (2016),
and Shipstead et al. (2012)). Certainly, it is hard to prove a null effect; but I will provide further
evidence in Section 5.3) below showing that it is unlikely that the 2SLS results below are driven
by a direct effect of the treatment on skills other than WM capacity.

5.3 Self- and Cross-Productivity of WM Capacity

The 2SLS estimation results of model (5)–(6) are presented in Table 5. Column 1 reports the
self-productivity effect, i.e., the effect of WM capacity at period W2 (period t in the model) on
WM capacity at period W4 (period t + 1 in the model). It turns out to be significantly positive,
the point estimate being 1.033, i.e., close to one and not significantly different from one. Thus
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the hypothesis cannot be reject that the self-productivity effect of WM capacity reduces to the
level effect (first term on the right hand side of equation (3)) and the production effect (second
term on the right hand side of equation (3)) is zero. This implies that improving WM capacity
at some point in time has a positive effect on WM capacity at later periods, but only to the same
extent as the initial improvement, without an effect on the growth path of WM capacity.

Table 5: 2SLS estimates of self- and cross-productivity

(1) (2) (3) (4) (5) (6) (7)
WMC Geometry Arithmetic Reading Raven’s Inhibition Sustained

IQ control attention
WMC W2 1.033* 1.000* -0.283 0.006 0.444* 0.409* 0.551

(0.274) (0.335) (0.274) (0.360) (0.187) (0.192) (0.352)
N 515 514 500 514 515 514 512
The results are based on two stage least square models using skill levels measured in W4 as dependent variables
and the treatment indicator as instrument for working memory capacity (WMC) in W2. The models further
include school fixed effects as well as controls for gender, age, and the respective pre-treatment skill level. The
skill variables are standardized to mean = 0 and standard deviation = 1. Standard errors in parentheses are
clustered on the classroom level. * p<0.05.

Columns 2, 3, and 4 of Table 5 show the cross-productivity effects of WM capacity on edu-
cational skills, i.e., on geometry, arithmetic, and reading. For geometry the effect is significantly
positive of size 1. Given that in cross-productivity effects the level effect is always zero for
contemporaneously orthogonal skills, the estimate implies that WM capacity has improved the
production of geometry skills. In contrast, I do not find such a production effect for arithmetic
nor for reading skills. Two reasons that could explain this pattern of findings are as follows: First,
the area of WM improved by the exogenous treatment is the visuo-spatial WM rather than the
verbal WM. And the visuo-spatial WM is naturally closer to geometry skills than to arithmetic
or reading skills. Thus it is also more likely to play a role in the production process of geom-
etry skills than in that of arithmetic and reading skills. Second, arithmetic and reading skills
are trained intensively in primary schools. This intensive training on average strongly improves
children’s skills in these areas, but it also generates substantial heterogeneity across children due
to heterogenous motivation, effort, and learning skills for example. The additional effect result-
ing from the exogenously improved WM capacity might thus play a comparatively weaker role
for the production of frequently trained skills (arithmetic and reading) than for less frequently
trained skills (geometry).

Columns 5, 6, and 7 report cross-productivity effects on Raven’s IQ, inhibition control, and
sustained attention. The effects on Raven’s IQ and inhibition control4 are significantly positive
and sizeable with 0.444 and 0.409, respectively. Again, under the assumption that these skills
are contemporaneously orthogonal to WM capacity and the treatment did not directly improve

4Using the d’-score based on the go/no-go task instead of the inhibition control score produces similar results,
see Online Appendix Section A.4 and Table ??.
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them, the finding implies that the enhancement of WM capacity has improved the production of
these skills. The effect on sustained attention is not significantly different from zero.

To sum up, I have found that the growth paths of some (though not all) skills depend on the
initial stock of WM capacity. As mentioned above, the interpretation is correct only if these skills
are contemporaneously orthogonal to WM capacity and if the treatment did not directly improve
them. In the following, I provide various checks on these issues.

5.4 Robustness Tests

If the exogenously improved WM capacity has made the growth path of skill development
steeper, one should see an effect on the difference between the skill score in a later (W4) and
the skill score in an earlier (W2) period. Combining two variables measured with some error,
however, boosts the attenuation bias generated by measurement error. A more efficient way of
estimation is to include the respective skill score from W2 into the model as a covariate (with
the W4 outcome as dependent variable). Results from these modified estimations are reported in
Table 6. The findings are very similar to my earlier estimates. I thus conclude that the estimated
cross-productivity effects are not driven by direct treatment effects on cross-skills. If that was the
case, treatment effects should emerge already in W2 (which they do not as shown in Table 4) and
including the W2-score as covariates in the 2SLS estimations (Table 6) should make disappear
the cross-productivity effects.

Table 6: 2SLS estimates of cross-productivity—including the respective W2 skill score as co-
variate

(1) (2) (3) (4) (5) (6)
Geometry Arithmetic Reading Raven’s Inhibition Sustained

IQ control attention
N 514 499 512 514 513 512
The results are based on two stage least square models using skill levels measured in W4 as
dependent variables and the treatment indicator as instrument for working memory capac-
ity (WMC) in W2. The models further include school fixed effects as well as controls for
gender, age, and the respective pre-treatment (W1) and post-treatment (W2) skill level. The
skill variables are standardized to mean = 0 and standard deviation = 1. Standard errors in
parentheses are clustered on the classroom level. * p<0.05.

As mentioned in Section 3, in all my estimations I include the respective skill scores measured
in W1. This is consistent with the model in Section 2. Also, this should increase the precision
of the estimates without biasing them because the evaluation wave W1 took place prior to the
training intervention. If, however, the sample was not perfectly balanced and the initial level of
a skill affected its growth path, my results could be driven by the inclusion of W1 skill scores.
Therefore, as a robustness test, I exclude the respective W1-scores. The results are shown in
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Table 7. The results do not alter compared to my main specification and I thus conclude that my
findings are robust.

Table 7: 2SLS estimates of self- and cross-productivity—excluding the respective W1 score as
covariate

(1) (2) (3) (4) (5) (6) (7)
WMC Geometry Arithmetic Reading Raven’s Inhibition Sustained

IQ control attention
WMC W2 0.981* 0.989* -0.012 0.154 0.493* 0.386* 0.610

(0.297) (0.283) (0.228) (0.254) (0.186) (0.174) (0.321)
N 518 517 518 518 518 518 517
The results are based on two stage least square models using skill levels measured in W4 as dependent variables
and the treatment indicator as instrument for WMC W2. The models further include school fixed effects as
well as controls for gender and age. The skill variables are standardized to mean = 0 and SD = 1. Standard
errors in parentheses are clustered on the classroom level. * p<0.05.

I exploit the randomized intervention as an exogenous source of variation in WM capacity
measured in W2. If, however, the sample was initially not perfectly balanced with respect to this
key skill, the results could be biased. As a robustness test I therefore include the pre-treatment
level of a WM capacity (i.e., measured in W1) in the estimations as control variables (see Table
8). The results are very similar to the baseline specification.

Table 8: 2SLS estimates of cross-productivity—including WMC W1 as covariate

(1) (2) (3) (4) (5) (6)
Geometry Arithmetic Reading Raven’s Inhibition Sustained

IQ control attention
WMC W2 0.916* -0.172 0.042 0.418* 0.425* 0.527

(0.264) (0.211) (0.320) (0.158) (0.183) (0.313)
N 514 500 511 512 511 512
The results are based on two stage least square models using skill levels measured in W4 as dependent
variables and the treatment indicator as instrument for working memory capacity (WMC) in W2. The
models further include school fixed effects as well as controls for gender, age, and the respective pre-
treatment skill level and pre-treatment WMC. The skill variables are standardized to mean = 0 and
standard deviation = 1. Standard errors in parentheses are clustered on the classroom level. * p<0.05.

If the different skill measures I use to estimate cross-productivity are not sufficiently contem-
poraneously orthogonal and the intervention affects at least one of the skills directly, my findings
cannot be interpreted as evidence for cross-productivity. To check for this possibility, I include
all skill scores of evaluation wave W2 as covariates into the estimation model. The results are
shown in Table 9. The estimated self- and cross-productivity effects are unaltered compared to
the main specification. This suggests that non-orthogonal skills and direct intervention effects
are not an explanation for my findings.
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Table 9: 2SLS estimates of self- and cross-productivity—including all W1 skill scores as covari-
ate

(1) (2) (3) (4) (5) (6)
Geometry Arithmetic Reading Raven’s Inhibition Sustained

IQ control attention
WMC W2 1.032* -0.277 -0.007 0.457* 0.427 0.592

(0.307) (0.270) (0.353) (0.192) (0.246) (0.412)
N 497 498 498 498 498 497
The results are based on two stage least square models using skill levels measured in W4 as dependent
variables and the treatment indicator as instrument for working memory capacity (WMC) in W2. The
models further include school fixed effects as well as controls for gender, age, and all pre-treatment skill
levels. The skill variables are standardized to mean = 0 and standard deviation = 1. Standard errors in
parentheses are clustered on the classroom level. * p<0.05.

My main estimations use as dependent variables the skills measured 12–13 months after
the intervention (W4). Yet, as mentioned above in Section 4, skills have been measured one
more time in between, namely 5–6 months after the intervention (W3). In order to be able to
detect self- and cross-productivity effects, a sizeable distance between the skill measurements,
i.e., between the exougenously improved WM capacity in W2 and later skill measurements is
needed. This is why I focused on skills measured in W4 (12–13 months after the treatment) as
the dependent variables. In addition, I estimated the same models using as dependent variables
the skills measured in W3 (5–6 months after the treatment). The results are reported in Table
A2 in the Online Appendix. The point estimates are similar in sign but most cross-productivity
effects are smaller in size and insignificant. This is consistent with the model telling that cross-
productivity effects exclusively rely on the production effect and no level effect. Given that the
time span between W2 and W3 is substantially shorter (only around five months) than the time
span between W2 and W4 (around twelve months), there was substantially less time (around
60% less) for the production of skills until W3 than for the production of skills until W4.

5.5 Discussion of Mechanisms

I have documented a positive cross-production effect implying that an increase in WM capacity
positively affects the production of other skills. Relating back to the model and linking it to the
model proposed by Cunha and Heckman (2007) as well as by Falk et al. (2020), the question
about the mechanism of this effect might arise. One could think of two possible mechanisms, the
first through an increased quantity (quality) of investments and the second through and increased
productivity of given investments (dynamic complementarity). To model these mechanisms I
have to modify the skill production function (equation (1)) by explicitely including human capital
investments as an argument. The stock of a child’s skills in period t + 1 is then a function of three
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arguments: the stock of skills in the previous period θt, human capital investments It, and initial
environmental factors X. The function then reads as

θt+1 = f1(θt, It, X). (7)

As before, the vector of environmental factors X includes all initial conditions that are exoge-
nous to the child’s skills but affect the production of the child’s skills. The vector of investments
It, in contrast, includes only those factors that are endogenous to the child’s skills. Parents (or
teachers or other subjects in the child’s environment or the child herself) might invest more in
the case the child’s skill level is already high than in the case the skill level is low (reinforcement
behavior). Or, conversely, investments might be higher in the case the child’s skill level is low
than in the case the child’s skill level is already high (compensational behavior). To explicitely
model the endogeneity of investments, I formulate the level of investments as a function of the
child’s skills as well as X:

It = f2(θt, X) (8)

The positive production effect that I estimated in the empirical part of this paper could thus
either be the result of WM capacity positively affecting the level of investments It in equation (8)
and It positively affecting skill development in equation (7). Alternatively, even if WM capacity
did not affect the level of investments, the positive production effect could be due to the cross
derivative of equation (7) being positive, i.e., ∂2θt+1

∂θt∂It
> 0. The latter is what Cunha and Heckman

(2007) called ‘dynamic complementarity’.
In my main analysis I do not model (nor measure) investments and therefore do not differen-

tiate between the two mechanisms. I instead estimate the total effect. This is by purpose and due
to the following reasoning:

Any activity of a child, being read a book, playing at the playground, talking to her parents,
even sleeping, can affect her skills. This means that every minute in a child’s life is an investment
into skills, with positive or negative returns. Classifying a child’s activities into two categories,
one being investments into skills and the other being no investments into skills will always be
arbitrary. But given that every minute is an investment, it is impossible to increase the quantity
of investments, one can only replace an investment by another investment. But if on cannot
increase the quantity of investments but only their quality, it becomes close to impossible (not
only empirically but even conceptually) to differentiate between the two mechanisms, i.e., to
answer the question of whether a skill shock increased the quality of an investment and as a
consequence improved further skill production, or whether it made the investment (at the given
quality) more productive.

Consider the following examples: First, take a child that—due to some exogenous skill
improvement—becomes faster in finishing her homework and as a consequence spends more
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time on reading her favorit book and therefore becomes better in reading. Nobody has changed
the amount of time spent with the child, nor changed the material spendings for the child. The
amount of time the child spends on her own and the materials available to the child have remained
the same, but she spends her time now in a different way. Is this now an improvement of the qual-
ity of the investments (in terms of the child’s own investment: she reads instead of spending long
time on homework) or did the productivity of a given investment increase (the parents continue
letting her spend one hour on her own but the time has become more productive)?

Take as a second example a child that—due to improved skills—has improved in chess and
thus spends more of her freetime in playing chess with her friend (instead of, say, playing cards).
Playing chess might improve her reasoning and concentration abilities. What is the mechanism
for the initial skill improvement raising reasoning and concentration abilities? Is it a change of
investments (playing chess instead of cards) or has just the productivity of the given investment
(parents let the child play with her friend) improved?

Take as a third example a child that likes playing with Lego bricks together with her parent.
After an exogenous skill enhancement the child and her parent construct more sophisticated Lego
buildings than they would in absence of the treatment. This construction experience makes the
child improve in visual-spatial imagination. Is this now a change of investments or are given
investments (given time the parent spends playing Lego with her child) more productive?

The examples illustrate that in many cases, differentiating between the two mechanisms will
be artificial and I therefore refrain from doing so. The core question in the context of the skill
production function is whether improved skills can change the subsequent growth path of skills
or not. This is the question I answer. And I provide evidence that this is the case. I conclude
that the skill formation process is dynamic and that improving one skill not only raises the future
level of this same skill but can even affect the subsequent production of other skills over time.

6 Conclusion

In this paper I have formulated a dynamic model of skill formation accounting for the multiplicity
of skills. Based on the experimentally manipulated level of one skills—working memory (WM)
capacity—I have estimated self- and cross-productivity effects. I found WM capacity to be self-
productive, but only to the extent that a level shift persists over time without improving the
production of further WM capacity. Furthermore, I found WM capacity to be cross-productive,
i.e., improving the production of other skills (geometry skills, inhibition control, Raven’s IQ).
Accounting for the multiplicity of skills results to be important as I have documented strong
cross-production effects on some skills (geometry, Raven’s IQ, inhibition control), while none
on others (arithmetic skills, reading skills, sustained concentration).

My finding of positive self- and cross-productivity contributes to the understanding of the
skill formation process and provides an explanation for skill gaps widening over the life cycle.
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The existence of self- and cross-productivity effects implies that educational interventions can
have increasing effects on human capital over time. Given this increasing pattern, policy mea-
sures intended to foster human capital are likely to be more effective, the earlier in the life cycle
they intervene.

Although I found positive production effects of WM capacity over a span of one year, I cer-
tainly do not claim this effect to be stable until infinity or at least through a very long period of
time. But even if the identified cross-productivity effect existed only this one year, the improved
cross-skills could have long-term implications through their own impact on the dynamic skill
production process. Changes in the children’s environment could also be a consequence of the
improved cross-skills. The important lesson from my findings is that dynamic effects of educa-
tional interventions play a role and thus the timing and interdependency of skills are fundamental
as well as the choice of the target skill of any intervention. The dynamic processes might explain
why in our main analysis of the treatment effect (Berger et al. 2020) we found an impact of the
5-week intervention even on the longer term school career of children. The contribution of this
paper is thus to shed more light on the mechanism through which the intervention operates in the
longer term through dynamic self- and cross-productivity.

Certainly, the extent to which skills are self- and cross-productive most likely varies across
skills, i.e., on the type of skill improved in the initial stage (Bailey et al. 2020) and the effects
cannot be generalized. I speculate that more basic skills, such as working memory or basic rea-
soning skills, have stronger cross-productive effects on other skills than applied skills, such as
calculation skills or drawing skills. The WM intervention study focussing on WM capacity, a
basic skill needed for many tasks and activities (Baddeley 1999), thus is a suitable opportunity
for studying self- and cross-productivity. In a similar vein, Bailey et al. (2017) argue that in-
terventions should target what they call “trifecta” skills—ones that are malleable, fundamental,
and would not have developed in the absence of the intervention. In order to be able to design
effective and efficient educational interventions, one need to know what skills can be improved
most effectively at the first stage by interventions and what types of skills improve the growth
path of other skills strongest. Hence, further research about the most productive skills is needed.
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prosociality: causal evidence on the role of social environment. Journal of Political Econ-

omy 128(2), 434–467.

Lindqvist, E. and R. Vestman (2011). The labor market returns to cognitive and noncognitive
ability: Evidence from the swedish enlistment. American Economic Journal: Applied Eco-

nomics 3, 101–128.

Martinussen, R., J. Hayden, S. Hogg-Johnson, and R. Tannock (2005). A meta-analysis of work-
ing memory impairments in children with attention-deficit/hyperactivity disorder. Journal of

the American Academy of Child & Adolescent Psychiatry 44(4), 377–384.

McKenzie, D. (2012). Beyond baseline and follow-up: The case for more t in experiments.
Journal of Development Economics 99(2), 210–221.

Melby-Lervåg, M. and C. Hulme (2013). Is working memory training effective? a meta-analytic
review. Developmental psychology 49(2), 270.

28



Melby-Lervåg, M., T. S. Redick, and C. Hulme (2016). Working memory training does not
improve performance on measures of intelligence or other measures of “far transfer” evidence
from a meta-analytic review. Perspectives on Psychological Science 11(4), 512–534.

Moffitt, T. E., L. Arseneault, D. Belsky, N. Dickson, R. J. Hancox, H. Harrington, R. Houts,
R. Poulton, B. W. Roberts, S. Ross, et al. (2011). A gradient of childhood self-control predicts
health, wealth, and public safety. Proceedings of the National Academy of Sciences 108(7),
2693–2698.

Murphy, R. and F. Weinhardt (2020). Top of the class: The importance of ordinal rank. Review

of Economic Studies forthcoming.

Sala, G. and F. Gobet (2020). Working memory training in typically developing children: A
multilevel meta-analysis. Psychonomic Bulletin & Review, 1–12.

Shipstead, Z., K. L. Hicks, and R. W. Engle (2012). Cogmed working memory training: Does
the evidence support the claims? Journal of Applied Research in Memory and Cognition 1(3),
185–193.

Sorrenti, G., U. Zölitz, D. Ribeaud, and M. Eisner (2020). The causal impact of socio-emotional
skills training on educational success. IZA Discussion Paper 13087.

29



Online Appendix

A Supplementary Details on the Data

Since I use the same data source for the empirical part of this paper as I did with my co-autrhos in
Berger et al. (2020), the study description in this section is—in large parts—a reproduction of the
relevant parts of the appendix to Berger et al. (2020). This is done for the reader’s convenience.

The experimental study was conducted in primary schools in Mainz, Germany in 2013/2014.
It consisted of a five-week intervention and four data collection waves. We here provide supple-
mentary details on participants (Section A.1), the treatment conditions (Section A.2), the data
collection waves (Section A.3), and the outcome measures (Section A.4). The study consisted of
a pre-intervention data collection wave (W1), the five-week intervention period, a data collection
wave shortly after the intervention (W2), and two follow-up data collection waves after 6 and
12–13 months, respectively (W3 and W4).

A.1 Participants

A.1.1 Sampling of Participants

In February 2012, we received the approval from the Federal Ministry for Education in Rhineland-
Palatine to conduct the study with first graders in the city of Mainz. The authority responsible for
elementary schools in Mainz (ADD) contacted schools and provided us with a list of elementary
schools in May 2012. We selected 12 schools for participation in the study based on two criteria:
being located in the city of Mainz and the possibility of including at least two school classes per
school in the study. The participating schools agreed that (i) one school lesson per day would
be replaced by a working memory (WM) training lesson for 25 school days in the treatment
classes, which we would randomly choose in the following step and (ii) the children (from both
treatment and control classes) would participate in all four planned data collection waves. In
turn, schools received the IT infrastructure necessary to run the intervention, namely a notebook
for each participating child (both for children assigned to the treatment as well as those assigned
to the control group), rolling cases for transportation, charging and storage of the notebooks, as
well as accessories like computer mice, headphones, and wifi routers. The schools retained this
IT infrastructure for their permanent use.

A.1.2 Final Sample and Attrition

As described above, we recruited 12 schools with 31 classes for the study. The sample consisted
of three schools with four classes, one school with three classes, and eight schools with two
classes each. There were 599 children in these classes in November 2012. We received 580
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parental consent forms that allowed us to collect data in evaluation waves W1–W4, resulting in a
consent rate of 96.8%.5 We were able to evaluate 572 children of the 580 for whom we received
parental consent to collect data for our final data set.6 The children we could not evaluate either
switched to non-participating classes or schools, moved away, or were ill for a longer period of
time during data collection.

Our sample decreased from 572 children in wave 1 (pre-training) to 531 children in wave 4
due to attrition. This corresponds to an attrition rate of 7.2%. Attrition did not differ between
the treatment and control groups, the sample in the treatment group shrank from 279 to 259
children (attrition rate of 7.2%), while the sample in the control group shrank from 293 to 272
children (attrition rate of 7.2% as well). In previous WM training studies (see review paper by
Melby-Lervåg and Hulme (2013)), the attrition rate was 10–11% even though the last follow-
up measurements took place only between three and eight months after the treatment in these
studies. Thus, compared to these studies, our rate of attrition of roughly 7% over a period of
more than a year is relatively low. The analysis sample used in this paper is restricted to the
sample including nonmissing data both of test outcomes measured in W4 (because these are the
main outcome measures for this paper) and of the WM score measured in W2 (because this is the
main explanatory variable in this paper), it thus contains 518 observations. Among this sample,
261 children were girls (50.4%) and 257 were boys (49.6%). Mean age at the beginning of the
year (January 1, 2013) (standard deviation = 0.36 years).

A.2 The Treatment

A.2.1 Procedures

The treatment in our study consisted of a daily WM training session that primarily took place
during the first or second lesson at school over a period of 25 school days. The training was
embedded into the classes’ normal school routine. In each class, the teacher who covered the
entire curriculum for the first grade also oversaw the WM training. The children thus considered
the WM training to be a normal exercise unit, similar to when the teacher introduces new exercise
units in a subject such as math, reading, or writing in the classroom. The teacher was present
during the lessons when the WM training took place. The children also remained in their regular
classroom and conducted the training sessions at their desks. This minimizes Hawthorne type
effects because it ensures that the children viewed the WM training simply as a usual exercise

5Among the children for whom we did not receive parental consent, roughly 50% participated in the WM training
while the other roughly 50% were in the control classes. Due to the lacking parental consent we could not collect
data in W1–W4 for these children. Despite the lacking parental consent for the data collection, the children did
participate in the WM training because the school authorities viewed the training as part of regular teaching.

6Among the 572 children, six children (two of them in the control group) completed the baseline (W1) tests
slightly after the actual start of the WM training because they were sick or absent at the regular test date. Since the
delays were rather small, we kept these children in the sample. All reported effects of WM training remain intact if
we exclude these children from the data analysis.
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unit in the context of their daily lessons, in which the sequential introduction of new learning
content during the school year is part of normal school routine.

The first training session had an introductory character during which procedures and software
were explained. The subsequent 24 lessons served as actual WM training sessions. The time
frame for each training session was one school lesson, i.e. 50 minutes. During that time, every
child had to pick up his/her computer as well as an external mouse and a headphone from the
case, start the software, log-in, try to solve the training exercises, log-out, and put the notebook
back to its pre-specified location. The net time available for training thus amounted to about 30
minutes per lesson.

The class teacher and one trained research assistant per class, who helped the teacher (e.g.,
in distributing the notebooks, supporting the children during log-in, solving technical issues,
ensuring compliance with the training protocol, and preparing a documentation of the training,
including special events during training sessions), supervised the children.7 The assistants also
helped in preparing a comprehensive documentation of the training.

In the same sample of children other treatments (unrelated to WM training) were conducted
with a randomly chosen part of the WM treatment group and a randomly chosen part of the
control group. Since the other treatments were orthogonal to the WM treatment, this should
not affect our results. Nevertheless, we carried out a robustness test controlling for the other
treatments. Our results are unchanged compared to our baseline results.

A.2.2 Hardware

Schools were equipped with one notebook for each child in the treatment and the control groups
as well as large wheeled cases for storage, charging, and transportation of the notebooks. The
cases also contained external mice and headphones for each child. For the treatment classes,
each notebook was labeled with the child’s name and his/her user account for the WM training
software during the time of the intervention. The control group had no access to the WM training
software.

Children in the treatment group worked with the external mouse during the training. This
ensured that the training group could not gain experience of any kind with an input device similar
to the touchscreens used for the outcome measure tests in the data collection phases (see Section
A.3).

A.2.3 Software

The WM training software used for the treatment was “Cogmed RM”8 in an offline version with
German instructions. It provides an age-specific user-interface, adaptive levels of difficulty, and a

7The assistants were university students who were familiar with the WM training software.
8Cogmed and Cogmed Working Memory Training are trademarks, in the U.S. and/or other countries, of Cogmed

Inc. (www.cogmed.com).
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built-in incentive game (see below). The software requires the user to fulfill a certain set of tasks
that consist of remembering sequences of information (e.g., numbers, locations) under various
conditions. We excluded three of the thirteen different tasks available in the software because
they contain letters or syllables that require reading abilities and knowledge about alphabetic
characters that had not yet been introduced in all classes at the time of the WM training. Apart
from this change (and the small reduction in trials, see below), we complied with the software
provider’s required protocol.

Of the ten tasks implemented, two consisted of remembering spoken digits and, hence, focus
on verbal WM capacity. These two tasks were very similar backward digit span tasks. The
remaining eight tasks were based on remembering sequences of locations and visual information,
and, thus, focused on visuo-spatial WM capacity. Due to the stronger emphasis on visuo-spatial
relative to verbal WM training, we thus would expect larger improvements in visuo-spatial WM
capacity. This is consistent to the actual findings of Berger et al. (2020).

Five of the ten training tasks were simple span tasks, as they only required storing and recall-
ing information sequences of varying length. The remaining five tasks were complex span tasks
because they contained at least one element of processing of stored content prior to recalling
(e.g., numbers must be recalled in backward order or locations are moved before they have to be
recalled).

The level of task difficulty was adapted within the training program based on the child’s
previous performance. After a few correctly (incorrectly) solved trials, the level of difficulty
increased (decreased). A daily training session consisted of six (varying) modules of 12 trials
each (resulting in 72 trials per day).9 When the children had finished the six modules of a training
session, they played a few trials of a fun game called “RoboRacing”. This is a feature built into
the software and helps motivate children to participate in the WM training tasks. Note that the
training software was only available for the children during the five weeks of the intervention
period. After this time, the login credentials for the software became invalid and thus no further
training was possible. The software is, in principle, commercially available but was not so for the
German market at the time of our intervention. Therefore, a further use of the training software
after the time of our intervention was practically impossible (although the notebooks remained
at the participating schools).

A.3 Data Collection

The main data was collected at four points in time: wave 1 took place 3–4 weeks before the
intervention (W1), wave 2 took place shortly after the intervention (W2), wave 3 took place 6
months after the intervention (W3), and wave 4 took place 12–13 months after the intervention

9The usual training protocol of Cogmed recommends 15 trials per module; we decreased the number of trials to
12 in order to fit the training in one school lesson (taking into account the time needed for picking up and bringing
back the notebooks).
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(W4). In each wave, we conducted several computer-based tests that served the purpose of
measuring the consequences of WM training on skills. We describe these tests in detail below.
In addition, we administered questionnaires to teachers and parents. In W4, we also asked the
children a few questions after they had finished the computer-based tests.

The data collection was run by a professional data collection service provider experienced
with conducting research projects in these settings. The tests were conducted outside the class-
room; both the children from the control and from the treatment groups participated in the tests.
The data collection was conducted by interviewers experienced in standardized testing proce-
dures and in working with children of that age. They were trained in an 8-hour training session
run by the data collection service provider together with the authors of this study. Importantly,
the interviewers involved in administering the tests to the children (i.e., the employees of the data
collection service provider) were blind to the children’s assignment to the treatment conditions.
The teachers were not involved in the design and the conduct of the tests, and they did not even
know the content of the tests, i.e., it was impossible for the teachers to prepare the children for
the tests.

A.3.1 Testing Procedures

The tests were administered using computers with 22” touchscreens and headphones. The in-
structions were auditive via headphones and supported by visual demonstrations shown on the
screens. The children entered their responses using touchscreens that were easy to handle.

The tests were run in two blocks of about 30 minutes, scheduled on two consecutive days,
primarily during the first or second lesson of the school day. Tests were done in groups of five
children supervised by one “interviewer”. Each child sat in front of a touchscreen positioned in a
standardized way on the desk and had headphones to listen to the instructions. All children started
at the same time, but could complete the test at their own pace. The whole testing procedure for
a class lasted for about three to four school days.

Note that (a) our testing procedure guaranteed a high degree of standardization, especially
through the instructions via headphones, and (b) by using large touchscreens as the method of
data input, we ensured that there was no advantage for the treatment group as the computer-based
WM training was run not with touchscreens but with a smaller notebook and external mice.

All tests were pretested in a primary school that did not participate in the study. All children
received a small toy for participating in the evaluation wave. Over the four data collection waves,
the tasks became generally more difficult to account for the increase in children’s abilities over
time.
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A.3.2 Parent Questionnaires

Parent questionnaires were only distributed in the data collection waves W1 and W3, i.e., before
the intervention and 6 months after the intervention. Parent questionnaires included questions
on socio-demographic characteristics of the family, parental behavior and characteristics as well
as the child’s attitude towards school and everyday behavior. Parents filled out 467 out of 572
parental questionnaires in W1 (82%) and 419 out of 544 in W3 (77%).

A.3.3 Teacher Questionnaires

In each data collection wave, teachers filled out a questionnaire containing questions on chil-
dren’s characteristics—such as their migration background or language problems—and teacher
characteristics. Children’s mean age on the day the teacher questionnaire was submitted equals
to 85.4 months in W1, 88.1 months in W2, 92.9 months in W3, and 100.3 months in W4. We
achieved a 100% return rate for the teacher questionnaire in all four evaluation waves.

A.4 Outcome Measures

This section describes the test measures that we use in our analysis. The main study (Berger et al.
2020) contains three WM tests. Since only one of these measures visuo-spatial WM capacity, we
focus on that one. For assessing educational achievement, we tested arithmetic skills, geometry
skills, and reading comprehension. To measure important components of children’s IQ, Raven’s
Coloured Progressive Matrices test (Bulheller and Häcker 2010) was administered. For the as-
sessment of self-regulation related abilities, we used a go/no-go task (adapted from Gawrilow
and Gollwitzer (2008) and the bp task (Esser et al. 2008)). For the ease of interpretation and
comparison, we standardize all test scores to mean = 0 and standard deviation = 1, separately
by test and wave and based on the control group. Histograms of the distribution of all raw test
scores (i.e., before standardization) for the evaluation waves W1–W4 are displayed in Figures
A1–A4.

A.4.1 Working Memory Test

WM capacity was measured by a visuo-spatial complex span task. To avoid task-learning effects,
we chose a task distinct from the training tasks. In the task, first, the child was presented a
sequence of “stimulus screens”. A stimulus screen contained three items; the child had to detect
the item shaped differently and click on it (see Figure A5). Then, a new stimulus screen appeared
and the child again had to click on the deviant shape, etc. Figure A5 below shows an example
with three different stimulus screens, after which the response screen appears, which contains
an empty grid. The child had to enter the position of the deviant items on the previous three
stimulus screens in the correct order on the response screen. In Figure A5, for example, the
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Figure A1: Distribution of Nonstandardized W1 Test Scores
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Figure A2: Distribution of Nonstandardized W2 Test Scores
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Figure A3: Distribution of Nonstandardized W3 Test Scores
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Figure A4: Distribution of Nonstandardized W4 Test Scores
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correct response is to click “center”, “right”, “center” on the response screen. The difficulty
level in this task is varied by varying the number of stimulus screens before the response screen
appears.

Figure A5: Stimulus and Response Screens in the Visuo-spatial Complex Span Task

The test scores in a given wave were constructed as follows. We summed up the number of
correctly solved item series weighted by each series’ difficulty, which is defined by the series’
length (i.e., number of items in the series). We standardized this score to mean = 0 and standard
deviation = 1. Because we expected the children to naturally improve their WM capacity when
growing older, we increased the difficulty of the WM tasks across the four waves W1–W4 in
order to avoid ceiling effects.

A.4.2 Educational Achievement Tests

Arithmetic skills
Arithmetic skills were assessed using three different subtasks: a number sense task, an auditory
arithmetic task, and a written arithmetic task. The children had to infer/compute a correct number
from the presented stimuli in all three arithmetic tasks. Children had to enter the number in an
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input device on the computer screen that looked like a pocket calculator (see Figure A6). For
example, if the child thought that the correct number is ‘23’ she had to tap first a ‘2’ so that this
number appeared in the empty top left rectangle of the device; then she had to tap on the number
‘3’ on the input device so that the number 23 appeared in the top left rectangle of the device. If
the child was satisfied with her answer, she had to confirm it by tapping on the green arrow on
the top right corner. If the child wanted to correct her answer, she could do so by tapping on the
red X on the bottom left corner of the input device.

Note that the children also had to identify a correct number in the geometry task described
below, again using the same input screen in that task.

Figure A6: The Input Device for the Arithmetic and Geometry Tasks

Number sense task

In this subtask, the children were presented a number of balls on a two by ten grid that was only
shown for 1.7 seconds (see Figure A7 below showing several different examples with various
levels of difficulty). In general, the display time was too short to count all balls before they
disappeared. After the grid had disappeared, the children had to type the correct number of balls
in the grid.

A two by ten grid with the subdivision at 5 is used in the first grade in the participating
primary schools to teach numbers and calculations. To solve the number sense task, children
need to be familiar with the number range up to 20, and a good understanding of the logic of
the grid is useful. Since the children could not count the balls due to the short display time, they
had to capture the pattern of the balls. This involves the assessment of structures as well as the
detection of possible subgroups and the number of balls per subgroup. Children had to sum up
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the number of balls from different subgroups or use subtraction in cases where only a few balls
were missing in the grid.

For example, consider the first grid below (see Figure A7) with 18 balls: Depending on the
child’s mathematical experience, different strategies are possible in this grid. A child knowing
that 20 balls would fit in the grid and noticing that 2 balls are missing at the right end of the
grid could compute 20 − 2 = 18 to arrive at the correct solution. Another child might recognize
10 balls (2 rows with 5 balls each) in the left half and 8 balls (2 rows with 4 balls each) in
the right half of the grid. This child will reach the correct solution by mentally computing
10+8 after the balls have disappeared. The third grid below (see Figure A7) gives an example
of a rather difficult item. Children had to quickly recognize and structure four groups of balls
containing different numbers of balls each. The children had to capture the number of balls in
each subgroup simultaneously and to correctly sum up 3 + 3 + 1 + 4. As one of the fundamental
steps in mathematical development at this age is to replace counting strategies by computing
strategies, it is important that the display time was too short to be able to count the balls.

The number of balls and their distribution within the grid varied across the items and evalu-
ation waves and was adjusted to the development of children’s mathematical skills. The size of
the grid, however, remained constant over time.

Figure A7: Number Sense Task, Screenshot Plus Two Further Examples
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Auditory arithmetic task

This subtask measures arithmetic skills for addition and subtraction of two numbers (see Fig-
ure A8). Computational tasks were presented over the headphone (e.g., “How much is 9 plus
6?”). Children had to listen and enter their answer into the input matrix. Each item in this task
contained two numbers to be added or subtracted. Each evaluation wave contained 10 of these
auditory arithmetic items.

The difficulty level was adapted to the school curriculum, e.g., with regard to the number
range: In W1 and W2 the number range was up to 20, while in W3 and W4 it expanded to 100.
Other major changes across waves are the increase in complexity of the mental operations and the
need for numerical comprehension. Moreover, for the more difficult items, such as “92 minus
17”, children needed to compute intermediate steps: First, many children would compute 92
minus 10 and keep the intermediate result 82 in mind. Then, they would subtract the remaining
7 from 82, leading to the final result.

Figure A8: Auditory Arithmetic Task, Screenshot Plus Two Further Examples

Written arithmetic task

In contrast to the auditory task, the arithmetic problems in the written subtask were not pre-
sented over the headphones but displayed on the screen. Most problems contained more than
two numbers that needed to be added or subtracted; the reason for this is that we tried to avoid
having children draw a result from their longer-term memory without computing. Each arith-
metic problem was visible on the screen during the whole trial (see Figure A9). Because of this
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(i.e., because the subjects did not need to recall the numbers from memory), the difficulty level
of the required mathematical operations was generally set to be higher than in the auditory task.
Children were, for example, required to add and/or subtract three or four numbers.

Figure A9: Written Arithmetic Task, Screenshot Plus Two Further Examples

The difficulty level was also adapted to the curriculum, analogously to the way it was done
in the auditory arithmetic task.
Computation of final arithmetic test score

For each of the three subtasks (number sense, auditory and written arithmetic tasks), we added
up the number of correctly solved items and standardized each subtask score to mean = 0 and
standard deviation = 1 within each wave. We then added up the three standardized subscores and
standardized this composite score to mean = 0 and standard deviation = 1 to achieve compara-
bility to the other test scores used in our analysis.

Geometry skills
Geometry skills were assessed by a test that required the children to assess how many simple-
shaped objects—such as triangles, squares, or rectangles—fit into a larger geometric object (see
Figure A10 below). Depending on the size and the shape of the larger geometric object, this task
can be made harder or easier.
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Figure A10: Geometry Task, Screenshot Plus Two Further Examples
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The task contained 10 items in each evaluation wave. The difficulty level varied across items
and evaluation waves. Difficulty varied along various dimensions. Consider the easy item shown
in Figure A10 (the red square): Children could solve the problem without any mental rotation of
the small square. Furthermore, the larger object is subdivided into two components, making the
task even easier. In contrast, for the first item shown in Figure A10 (the pink rectangle), children
had to mentally rotate the small object to solve the question. For the difficult item in Figure A10
(the green triangle), children hat to mentally rotate the triangle, store the number for subparts
and keep track of which parts were already counted when filling the larger geometric object.

We constructed an outcome score by counting the correctly solved items and standardizing
the figure to mean = 0 and standard deviation = 1 within each wave.

Reading comprehension skills
Reading comprehension was assessed by a sentence comprehension test in single choice format.
On the screen (see Figure A11), a sentence with one gap was presented in a line. To fill the gap,
the children had to choose from a list of four alternatives presented below the gap. Tapping on
one of the words in the list made it appear in the gap. Children could correct their choice by
using the red X button below the list. Children had to confirm their choice by tipping on the
green enter button right beside the sentence.

Figure A11: Reading Comprehension Task, Screenshot Plus Two Further Examples

Generally, there was only one word missing in the sentence. In W3 and W4 there were
also a few sentences containing gaps to be filled with a combination of two short words. The
difficulty of the items was multidimensional. It varied within a test, and in particular between
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the evaluation waves, where it was adjusted to the curriculum. In W1 and W2, the test contained
10 sentences consisting of 3 to 9 words per sentence. The words only contained those letters that
had already been introduced to the children in earlier lessons during the school year. As most
children become much faster in reading before W3, the reading comprehension task contained
16 sentences with 4 to 15 words per sentence in W3, and 16 sentences with 4 to 16 words per
sentence in W4.

We again constructed the outcome score by counting the correctly solved items and standard-
izing the figure to mean = 0 and standard deviation = 1 within each wave.

A.4.3 Fluid IQ

Children’s fluid IQ was measured using a set of Colored Progressive Raven’s Matrices (Bulheller
and Häcker 2010). While no single measurement tool will cover all aspects of a construct like
fluid IQ, there is probably a broad consensus that the Raven’s Matrices task captures important
aspects of fluid IQ. We used two different sets of 17 items in W1/W3 and W2/W4, respectively.
The child was shown a box with a pattern and had to choose which one out of six smaller patterns
would fit into a missing part of the large pattern. The outcome score used in the main analysis is
the standardized sum of correctly solved items.

A.4.4 The Go/No-Go Task

To measure inhibitory abilities, we employed a go/no-go task that was adapted from Gawrilow
and Gollwitzer (2008). In this task, the child had to push a red button on the touchscreen every
time one of four different animals appeared on the screen (rooster, mouse, cat, pig—see Figure
A12 below). However, the children were told not to push the red button for one other animal
(cow). The procedure of the task is as follows: The red button is displayed on the touch screen
throughout the task. In addition, the children first see an X in the middle of the screen for 0.6–1.2
seconds (the display times randomly vary across items but are equal across waves). Then, the
picture of an animal appears with a display time of 1.55 seconds and a time slot for reaction of
1.55 seconds (the display time for the animal was reduced to 0.65 seconds in W2, W3, and W4).
In this time window, the children must decide whether to push the red button. Subsequently, the
children again see the X, then the picture, and so on. In total, 50, 60, 70, and 80 items were
presented in W1, W2, W3, and W4, respectively. In W1 and W3, the pictures were animals as
described above. The pictures were vehicles in W2 and W4 (go = car, train, ship, airplane; no-go
= truck).

We measure performance in this task in two ways. First, we simply compute the commission
errors (i.e., the number of times a child fails to inhibit the “go-response” when a no-go item is dis-
played), multiply by -1, and standardize the score to mean = 0 and standard deviation = 1 within
each wave. Thus, a higher score indicates better performance in the task (i.e., fewer mistakes).
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Second, we compute the d’-measure of performance. The d’-measure is the standardized frac-
tion of commission errors in the no-go items subtracted from the standardized fraction of correct
responses in the go items. We again standardize this score to facilitate better interpretation.

Figure A12: The Animals and the “Go-Button” in the Go/No-Go Task

A.4.5 The bp Task

The bp task measures sustained concentration and is taken from Esser et al. (2008). In this
task, the child sees three lines filled with the letters “b”, “d”, “g”, “q”, “h”, and “p”, in total
45 letters on the touchscreen (see Figure A13 for an example of such a screen). The child had
to go through the letters from left to right, row by row, and tap on all “b”s and “p”s without
accidentally marking any other letter. The two target letters “b” and “p” are displayed at the top
of the screen in a salient form so that the child is always reminded of the goal in this task in every
single trial.

The screen emptied after 30 seconds, and a new screen appeared. This was repeated for 18
times (only 12 times in W1). To construct the outcome score we add up standardized scores for
both types of errors (i.e., marking a wrong letter and failure to mark a “b” or a “p”). This score is
then again standardized to mean = 0 and standard deviation = 1 within each wave and multiplied
by -1. Thus, a higher score indicates better performance in the task (i.e., fewer mistakes).
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Figure A13: Example of a Screen in the bp Task
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B Supplementary Robustness Tests

Table A1: 2SLS estimate of cross-productivity on the d’-score based on the go/no-go task

d’-score
WMC W2 0.465

(0.324)
N 514
The result is based on a two stage least square
model using the d’-score measured in W4 as
dependent variable and the treatment indica-
tor as instrument for working memory capac-
ity (WMC) in W2. The model further includes
school fixed effects as well as controls for gen-
der, age, and the pre-treatment d’-score. The
skill variables are standardized to mean = 0
and standard deviation = 1. Standard errors
in parentheses are clustered on the classroom
level. * p<0.05.

Table A2: 2SLS estimates of self- and cross productivity—dependent variables measured in W3

(1) (2) (3) (4) (5) (6) (7)
WMC Geometry Arithmetic Reading Raven’s Inhibition Sustained

IQ control attention
WMC W2 1.414* 0.165 0.092 0.043 0.870* -0.093 0.408

(0.287) (0.265) (0.284) (0.328) (0.170) (0.179) (0.225)
N 515 515 500 514 515 514 513
The results are based on two stage least square models using skill levels measured in W3 as dependent variables and
the treatment indicator as instrument for WMC W2. The models further include school fixed effects, gender and
age controls, and the pre-treatment skill score. The skill scores are standardized to mean = 0 and SD = 1. Standard
errors in parentheses are clustered on the classroom level. * p<0.05, ** p<0.01.
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