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Abstract

We propose a new method to detect weak identi�cation in instrumental variable (IV) models.
This method is based on the asymptotic normality of the distributions of the estimated
endogenous variable structural equation coe�cients in the presence of strong identi�cation.
Therefore, our method resulting in a speci�c test is more �exible than previous tests as
it does not depend on a speci�c class of models, but is applicable for a variety of both
linear and non-linear IV models or mixtures of them, which can be estimated by generalized
method of moments (GMM). Moreover, our proposed test does not rely on assumptions of
homoscedasticity or the absence of autocorrelation. For linear models estimated by two-stage-
least-squares (2SLS), our novel test yields the same qualitative conclusions as the usually
applied test on excluded instruments at the reduced form. By adopting weak identi�cation
de�nitions of Stock and Yogo (2005), we provide critical values for our test by means of a
comprehensive Monte Carlo simulation. This enables applied econometricians to make case-
by-case decisions regarding weak identi�cation in non-homoscedastic linear models by using
pair bootstrapping procedures. Moreover, we show how our insights can be applied to assess
weak identi�cation in a speci�c non-linear IV model.
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1 Introduction

Weak instruments, or more generally weak identi�cation, is a major concern for many IV models.

In reality, detecting su�ciently strong instruments in order to explain endogenous variables can

be quite di�cult for many works in the �eld of applied econometrics. On top of being su�ciently

strong, instruments have also to be exogenous. IV estimations based on weak identi�cation

can lead to biased and even inconsistent estimates (Nelson & Startz, 1990a, 1990b). This has

been most prominently illustrated by Bound, Jaeger, and Baker (1995) discussing the study of

Angrist and Krueger (1991), and showing that IV estimates can be inconsistent and su�er from

�nite-sample bias even in huge samples.

Previous research on this crucial topic for applied econometricians mainly focused on detecting

weak identi�cation in linear models. Starting with Rothenberg (1984), major contributions

were made by Staiger and Stock (1997), Stock, Wright, and Yogo (2002), Hahn and Hausman

(2003), Stock and Yogo (2005), Mikusheva (2013), Olea and P�ueger (2013) and I. Andrews,

Stock, and Sun (2019), among others. For non-linear models, only a small scope of literature

dealt with the topic of weak identi�cation. Stock and Wright (2000), Kleibergen (2005), and

I. Andrews (2018) discuss models that can be estimated by non-linear GMM. In contrast to linear

models, assessing weak identi�cation in non-linear models is more ambitious, resulting in the

consequence that applied researchers tend to adopt decision rules, which are solely designed for

linear models and which consequently have no theoretical foundation and validity for non-linear

models. Alternatively, applied researchers tend to switch to estimate linear models, although

the de�cits of applying them in order to explain inherent non-linear relationships, for instance

expressed by limited dependent variables, have been noticed (cf. Horrace and Oaxaca (2006)).

In summary, despite all the previous progress, which we shall discuss in more detail in the next

section, there is still a lack of a general decision rule that can be applied to a broad class of

regression models in order to assess weak identi�cation.

In this paper, we aim to contribute to �lling this research gap by proposing a new procedure

of detecting weak identi�cation in IV models. Hence, this study complements literature on the

topic of weak identi�cation starting in the nineties. In contrast to drawing conclusions based

on the examination of the conditional explanation power of the instruments on the endogenous

variables by means of a linear prediction, our novel method rests on analyzing the empirical

distributions of the endogenous variables' coe�cients to be estimated. By gathering information

on (the spread of) those distributions by means of bootstrap procedures, we propose a decision

rule based on testing for deviations of the gained empirical distributions approximating their

�nite samples analog to the normal distribution. Therefore, our procedure which has been in-

dependently developed, shares similarities to two most recent, but unpublished, contributions

(Zhan, 2017; Ievoli, 2019) and is applicable to all estimators whose distributions achieve asymp-

totic normality under su�ciently strong identi�cation and asymptotic non-normality under weak

identi�cation. This is true for all GMM estimators such as classical 2SLS, limited information

maximum likelihood (LIML) as well as full information maximum likelihood (FIML) estimators,

for instance a (non-linear) recursive bivariate probit estimator. More precisely, we argue that
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a considerable di�erence between the gained empirical distribution and normality is a credible

indicator for weak identi�cation, including non-identi�cation, if minimal conditions such as a

su�cient sample size hold.

As well as providing a guideline as to how our procedure can be applied to di�erent IV

models that can be estimated by GMM, we provide critical values for a corresponding test for

2SLS-estimations. This enables applied econometricians to test directly whether or not the

identi�cation of endogenous variables' coe�cients in their models is su�ciently strong. The

method we provide o�ers several advantages in comparison to those existing ones. Firstly, it

is easy to apply by researchers with respect to the topic of weak identi�cation. Secondly, it

follows previous de�nitions in terms of considering IVs to be weak. Thirdly, it does not rest on

parametric model speci�cations. Hence, the procedure is valid for linear as well as non-linear IV

models. Fourthly, it does not require the assumption of homoscedasticity, which is a drawback of

predominant test procedures but can be applied to settings characterized by heteroscedasticity.

Finally, it can be extended to models characterized by multiple endogenous variables. In terms

of evaluating our proposed decision rule based on the derived test, we show its analogy to

classical test statistics in corresponding valid settings in terms of delivering the same qualitative

conclusions. In addition, we apply it to a prominent illustration of Card (1995).

The remainder of the paper is organized as follows: Section 2 discusses di�erent methods and

tests developed in the past in order to detect weak identi�cation in IV models. Moreover, it

comprises an overview of approaches that can be seen as alternatives, given their focus on robust

inference to weak identi�cation. Section 3 presents a general IV model and contains a discussion

of relevant asymptotics and test statistics for our proposed procedure. Focusing on linear models,

Section 4 provides a de�nition of weak identi�cation, a corresponding translation into critical

values, and a formal procedure in order to assess weak identi�cation. In addition, it comprises

validations and extensions of our proposed method. In the subsequent section (Section 5), we

brie�y elucidate how our insights can be transferred to non-linear models and provide a speci�c

example. Section 6 concludes and presents an outlook for further research.

2 Literature

Relevant existing literature on the topic of weak identi�cation can be divided along two dimen-

sions. Firstly, the proposed methods and approaches can be di�erentiated by being suitable

solely for IV models which assume linearity in the reduced form, or conversely by being ap-

plicable also to (speci�c) non-linear models. While methods such as such as 2SLS - or what

is known as control function estimator or two-stage-residual-inclusion (2SRI) (cf. Rivers and

Vuong (1988); Blundell and Powell (2003)) - belong to the former sub-dimension, FIML esti-

mators are a prominent example for the later sub-dimension. The second dimension concerns

the aim of methods and approaches to detect weak identi�cation, or alternatively to provide

robust inference to weak identi�cation. Given their limits, methods and approaches of the latter

sub-dimension are of lesser interest for most applied econometric research. Among all methods
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and approaches, a great majority focuses on linear models at both the reduced form as well as

the structural equation. However, some of the methods and approaches contribute to more than

(one part of) one dimension.

Linear Models

One of the most in�uential contributions in (applied) econometrics based on its citation record

is the seminal study by Staiger and Stock (1997). In this study, Staiger and Stock develop an

asymptotic distribution theory for a single-equation IV regression model and the 2SLS as well

as the LIML estimator. Moreover, they provide measures of bias, tests of exogeneity, tests

of over-identifying restrictions, as well as non-standard con�dence sets for the coe�cients to

be estimated. Given the study's results, many researchers have concluded, and in some cases

continue to conclude, incorrectly as a rule of thumb, that an F-statistic of the test on excluded

instruments, also known as �rst stage F-test, above the value of ten ensures su�ciently strong

identi�cation in any IV setting, particularly when estimated by 2SLS.

In a sequel of this study, Stock et al. (2002) provide two di�erent formal de�nitions of weak

identi�cation when discussing corresponding concerns in linear models with homoscedastic er-

rors. Moreover, Stock et al. introduce critical values in order to enable researchers to assess

weak instruments by comparing them to the above-mentioned realized F-statistic of the test on

excluded instruments. However, those critical values are only valid for a selected set of linear

models characterized by error distributions mentioned above.

Taking up the �ndings of Stock et al. (2002), Stock and Yogo (2005) discuss quantitative

de�nitions of weak instruments in linear models more elaborately. In addition, they present

critical values for testing weak identi�cation in models estimated by a set of linear IV-estimators

subject to the number of excluded instruments, the number of endogenous regressors, but also the

accepted size of the bias. The set of estimators considered in this study comprises 2SLS, LIML,

but also Fuller-k (Fuller, 1977) estimators. As documented by the citation record as well as the

implementation into popular statistical software packages, the critical values provided by this

study are the main reference for assessing weak identi�cation in the majority of studies applying

IV models besides the above-mentioned rule of thumb.1 However, and mostly overlooked, those

critical values are merely valid when speci�c model assumptions such as homoscedasticity are

ful�lled.

A similar, relatively less in�uential contribution has been made by Hahn and Hausman (2003).

Instead of testing on the prevalence of weak identi�cation, Hahn and Hausman propose a pro-

cedure to test for strong instruments in a model estimated by 2SLS by means of comparing a

forward and reverse regression estimator. In other words, Hahn and Hausman emphasize that

the identi�cation of the e�ect of the endogenous variables should be robust to a normalization of

the regression in case of strong instruments. Hence, regressing the normalized dependent variable

on the endogenous variables should asymptotically yield the same estimates as those when doing

the opposite.

1The rule of thumb can actually be deduced from those critical values for the case of one endogenous variable.
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More recent studies have focused on methods of detecting weak instruments in settings when

assumptions raised by previous studies, such as homoskecasticity, are not ful�lled. Olea and

P�ueger (2013) propose a test for detecting weak instruments which is robust to heteroscedas-

ticity, autocorrelation, and clustering. They introduce the concept of the so-called e�ective

F-statistic, which can be estimated as a scaled version of the non-robust F-statistic of the test on

excluded instruments (Cragg & Donald, 1993), and which is identical to the robust F-statistic ac-

cording to Kleibergen and Paap (2006) in case of one instrument. In addition, Olea and P�ueger

provide corresponding critical values. In contrast to their contribution, our proposed method is

more general since it allows more than one included endogenous regressor and can be applied to

non-linear models.

While the studies mentioned above have focused mainly on the detection of weak identi�cation

in linear models, other literature has concentrated on the second dimension elucidated in the

�rst paragraph of this section, i.e. robust inference to weak identi�cation. In the presence of

weak instruments, Mikusheva and Poi (2006) refer to three di�erent tests which are already

partly discussed in Staiger and Stock (1997) and Stock et al. (2002). More precisely, Mikusheva

and Poi point out that the statistics of the proposed test by Anderson and Rubin (1949), the

Lagrange multiplier (score) test (Kleibergen, 2002), and the conditional likelihood ratio test

(Moreira, 2003) are robust to weak identi�cation. Consequently, those tests can be used in order

to obtain con�dence regions for endogenous variables' coe�cients in linear models by means of

test inverting. However, those tests are limited to the cases of a single endogenous regressor and

can result in unbounded or even empty con�dence regions of the parameter of interest.

In a similar vein, D. Andrews and Stock (2007) as well as Mikusheva (2013) review di�erent ap-

proaches for robust inference in linear IV models subject to weak identi�cation. While Mikusheva

focuses on extensions regarding multiple endogenous regressors, D. Andrews and Stock particu-

larly discuss the application of the di�erent robust tests for extensions of the standard model,

such as non-normal distributed errors as well as robustness to heteroscedasticity and autocor-

relation. Moreover, D. Andrews and Stock present new results for testing under many weak

IV asymptotics and introduce "conditioning" methods as an alternative to the above-mentioned

weak identi�cation robust tests. Despite all the progress, each of those methods fails to ful�ll the

applied researchers' usual aim to provide point instead of interval estimates in IV model settings.

I. Andrews et al. (2019) provide a comprehensive overview of the di�erent methods and ap-

proaches for a weak instrument setting in linear IV-models. They especially focus on non-

homoscedastic (error) distributed data and review how studies published in the American Eco-

nomic Review using IV regression models in the time period between 2014 and 2018 dealt with

weak instruments.

Non-linear Models

Although some of the studies mentioned above, such as D. Andrews and Stock (2007), have

links to or small discussions of weak identi�cation in non-linear models, literature on those

relatively more complex models is still rather incomplete, as emphasized by a small overview in
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Stock et al. (2002). Previous research on the topic of weak identi�cation in non-linear IV models

focuses on models that can be estimated by non-linear GMM, where major contributions were

made by the following studies.

Stock and Wright (2000) develop non-standard asymptotic approximations to the distribution

of GMM estimators and test statistics in a setting of weak identi�cation of parameters. However,

those approximations are typically based on nuisance parameters, which are unknown to the

researcher and which prevent direct inference. Therefore, the authors propose a procedure similar

to the principle of test inverting described above. In fact, Stock and Wright suggest a method of

inverting a test statistic that is directly constructed from the GMM objective function estimated

by a GMM continuous updating estimator (GMM-CUE) in order to obtain con�dence regions for

coe�cients that are robust to weak identi�cation. However, this method cannot be considered as

an unambiguous procedure to identify weak instruments in non-linear models since the con�dence

sets of the coe�cients are jointly determined by testing weak identi�cation as well as instrument

validity.

Drawing on previous work (Kleibergen, 2002), Kleibergen (2005) proposes a GMM Lagrange

multiplier (LM) statistic, which is robust to weak identi�cation and derives its asymptotic distri-

bution. The statistic's characteristic depends on a Jacobian estimator based on the GMM-CUE,

which is asymptotically uncorrelated with the GMM moment equations. Interval estimates for

the parameters of interest are established by test inverting. In contrast to the approach by Stock

and Wright (2000), Kleibergen's (2005) statistic ensures that the estimated con�dence regions

for the parameter of interest are never empty.

I. Andrews (2018) pursues a di�erent, but more generally applicable approach. In his study,

he proposes to detect weak identi�cation by means of constructing two-step con�dence sets in

GMM with controlled coverage distortions. More precisely, I. Andrews suggests to estimate

identi�cation-robust con�dence sets of the parameters of interest as well as identi�cation-non-

robust con�dence sets, and to check whether or not the former is contained by the latter, while

allowing for some distortion. I. Andrews argues that if this condition is not ful�lled, the well-

speci�ed model su�ers from weak identi�cation with a probability tending to one.

A most recent study by Martínez-Iriarte, Sun, and Wang (2020) con�ates the work by Stock

and Wright (2000) and Kleibergen (2005) and provides modi�ed corresponding test statistics.

More precisely, Martínez-Iriarte et al. argue that the asymptotic distributions described by Stock

and Wright and Kleibergen crucially rely on a consistent estimation of a non-parametric long-run

variance estimator. Therefore, they develop �xed-smoothing asymptotics for both test statistics

to account for estimation uncertainty. Those modi�ed test statistics can be used again for the

method of test inverting particularly in the presence of serial correlation.

To summarize, as documented by the respective number of studies discussed in this literature

review, which only re�ects the most relevant studies on the topic of weak identi�cation, previous

research has focused on linear IV models in the last twenty years. Instead of a general procedure

to detect weak identi�cation in IV models, only solutions for speci�c (classes of) models have
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been laid out. For example, a majority of applied econometricians might be convinced in terms of

su�ciently strong identi�cation when researchers using IV-methods in linear models can present

a considerably high F-statistic of the test on excluded instruments. However, a theoretical

foundation which value of this F-statistic corresponds with a su�ciently strong identi�cation in

model settings which are not captured by Stock and Yogo (2005) or Olea and P�ueger (2013) does

not exist. Hardly any procedures to detect weak identi�cation exist for non-linear models and

methods based on inference robust to weak identi�cation are rarely useful, given their interval

instead of point estimates.

As mentioned in the Introduction, two most recent, yet barely known contributions exist that

are close to ours. Zhan (2017) constitutes a discussion paper focusing on detecting weak instru-

ments by bootstrap procedures in linear models. By making use of the Edgeworth expansion,

Zhan shows analytically that the distribution of the standardized 2SLS-estimator deviates from

the standard normal distribution in case of weak instruments. For practical application, Zhan

proposes to assess weak identi�cation by using the method of residual bootstrap to derive a

distribution of the standardized 2SLS-estimator and to test it against normality by making use

of a simple distance test, i.e. the Kolmogorov-Smirnov test. Besides presenting a general review

of the topic of weak instruments and di�erent types of bootstrapping procedures, Ievoli (2019)

presents an in-depth discussion of theoretical bootstrap asymptotics under weak instruments in

his doctoral dissertation. In addition to 2SLS, he also considers other estimators, such as LIML

or Fuller-k (Fuller, 1977) and other bootstrap types in comparison to the residual based one.

Rather than relying on the Kolmogorov-Smirnov distance, Ievoli's proposed test of prevalent

strong identi�cation is based upon more powerful tests (Shapiro & Wilk, 1965; Jarque & Bera,

1980).

Our contribution di�ers to those of Zhan and Ievoli on several fronts. Firstly, both previous

studies focus entirely on linear IV models and corresponding estimators. Our argumentation

and derivation is based on GMM, including non-linear GMM. Although we also focus mainly

on linear IV models in this study when discussing the test procedure in Section 4, the theoret-

ical background presented in the subsequent section is relatively more general. Secondly, the

speci�c residual based bootstrap type applied by Zhan and Ievoli prevents the consideration

of heteroscedasticity and serial correlation, which is one of the key topics in linear IV models.

Thirdly, the decision rule by Zhan lacks of a theoretical foundation and neither Zhan nor Ievoli

provide critical values which are related to common de�nitions of weak identi�cation. We shall

explain the latter more detailed in Subsection 3.4.

3 Model, Asymptotics and Test Statistics

In this section, we explain the foundations for our new proposed method to assess weak identi�-

cation. Firstly, we introduce a general IV model for ease of argumentation. Secondly, we discuss

the asymptotic distribution of GMM estimators under strong and weak identi�cation. Thirdly,

we brie�y elucidate how to obtain a sample analog of the distribution of the estimator. Fourthly,
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we discuss an existing test on normality and explain how this test exploiting the gained empirical

distribution of the estimator can be used for a decision on weak identi�cation. Moreover, we

show how this test statistic is related to classical and predominant statistics in order to assess

weak identi�cation in linear IV models.

3.1 General IV Model

Following the notation of Stock and Yogo (2005), this paper relies on a most general IV regression

model expressed by the following system of equations:

y = f(Yβ + u) (1)

Y = h(ZΠ + V) (2)

Equation 1 constitutes the structural equation, whereas Equation 2 represents a system of re-

duced form equations. y is a T ×1 vector of observations of the dependent variable where Y is a

T × n matrix of endogenous regressors.2 Z is a T ×K matrix of excluded exogenous regressors,

i.e. the instruments, with ΣZZ = ZᵀZ/T . u is a T × 1 vector of structural equation errors while

V is a T × n matrix of reduced form errors. In contrast to Stock and Yogo, we do not pose any

restrictions on the errors such as homoscedasticity, but merely require that they have a mean of

zero, ful�ll the classical instrument related requirements of E(Zu) = E(ZV ) = 0, i.e. ensuring

instrument exogeneity, and are related to each other by an unspeci�ed relationship expressed by

the covariance matrix

Σ =

(
σ2
u ΣV u

ΣuV ΣV V

)
(3)

leading to the endogeneity of Y. Our general IV model also di�erentiates from that of Stock

and Yogo by allowing that the dependent and endogenous variables (y,Y) both rely on a non-

speci�c non-linear relationship, denoted by the functions f and h, on the respective regressors.

β is the n×1 vector of parameters of interest, and Π constitutes a K×n matrix determining the

instruments strength. In order to rule out under-identi�cation of our model, we require K ≥ n.

3.2 GMM Asymptotics

Newey and McFadden (1994) discuss an asymptotic distribution theory for a broad class of

estimators, i.e. minimum-distance estimators. Hansen's (1982) GMM estimator comprising

several other estimators, such as ordinary-least-squares (OLS), nonlinear-least-squares (NLS) or

maximum likelihood (ML), is part of this class. The GMM estimator requires that a certain

2For ease of notation and without loss of generality, we subsume all included exogenous regressors into the
vector of endogenous regressors and treat them as to be instrumented by themselves.
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number of speci�c moment conditions are equal to zero, i.e.

E[g(Dt,θ0)] = 0, (4)

where g(·) denotes a vector-valued function with its arguments Dt representing a multivariate

random variable for each observation t out of T , i.e. the data, and the true value θ0 of the

unknown parameter θ ∈ Θ to estimate. Using the notation for a general IV model introduced in

the previous subsection, Dt = [y,Y,Z] and θ0 = β0. By applying the empirical analog principle

and the law of large numbers, the GMM estimator can be expressed as the argument minimizing

a certain objective function St(θ), which is equal to minimizing a speci�c norm such as

θ̂ = argmin
θ∈Θ

ST (θ)

= argmin
θ∈Θ

(
T−1

T∑
t=1

g(Dt,θ0)
)ᵀ
ŴT

(
T−1

T∑
t=1

g(Dt,θ0)
)

(5)

where ŴT is a consistent estimator of a positive-de�nite weighting matrix, i.e. ŴT
p→W .3

Newey and McFadden (1994) show that this GMM estimator achieves asymptotic normality,

i.e.

√
T (θ̂T − θ0)

d→ N
[
0, (GᵀWG)−1GᵀWΩWᵀG(GᵀWG)−1

]
(6)

where G = E[∇θ g(Dt,θ0)] and Ω = E[g(Dt, θ0)g(Dt,θ0)ᵀ] under the following conditions: (i)

θ̂T is consistent, i.e. θ̂T
p→ θ; (ii) θ0 ∈ interior of Θ; (iii) g(Dt,θ0) is continuously di�erentiable

in a neighborhood N of θ0 with probability approaching to one; (iv) E[||g(Dt,θ0)||2 < ∞ ; (v)

E[supθ∈N ||∇θ g(Dt,θ0)|| <∞ and (vi) the matrix GᵀWG is non-singular. As stated by Newey

and McFadden, the underlying key idea is that, in large samples, estimators are approximately

equal to linear combinations of sample averages. Given this circumstance, normality follows by

de�nition of the central limit theorem (CLT).

Using the notation of Equations 1 and 2 and applying an IV estimator to a most simple model,

i.e. a linear bivariate regression model (n = 1) with one instrument (K = 1) and homoscedastic

errors estimated by 2SLS, the GMM moment condition is E[Zt(yt−Ytβ)] = 0 and the asymptotic

distribution of the parameter of interest β̂2SLS
T can be expressed by

√
T (β̂2SLS

T − β0) =
T−1/2

∑
Ztut

T−1
∑
ZtYt

d→ N
[
0,
(
E[−ZtYt]

)−1E[(Ztut)
2]
(
E[−ZtYt])−1

]
(7)

where the normality follows from the normality of T−1/2
∑
Ztut, which is the consequence of the

CLT, as explained above. β̂2SLS
T represents the classical 2SLS-estimator

β̂2SLS
T =

[
YᵀZ(ZᵀZ)−1ZᵀY

]−1
YᵀZ(ZᵀZ)−1Zᵀy =

[ T∑
t=1

ZtYt
]−1

T∑
t=1

Ztyt. (8)

3For more details, see Hansen (1982).

8



where the last equality holds only for our speci�c case under investigation (n = K = 1).

In case of weak identi�cation, the GMM asymptotics displayed in Equation 6 no longer apply,

i.e. the di�erence between the parameter estimate θ̂ and its true value θ0 does not root T

converge to a normal distribution. First and foremost, this is due to the inconsistency of θ̂ in

such a setting. This can be seen easily in the extreme case of non-identi�cation, i.e. Π = 0, where

θ̂ estimated by 2SLS in linear models converges to the probability limit of the OLS estimator,

i.e. θ̂
2SLS
T

p→ θOLS = θ0 + δ = θ0 + ΣY u/ΣY Y , where ΣY u denotes the covariance of Y and u

and ΣY Y the variance of Y. Similar behavior can be observed in non-linear models, which are

estimated by NLS.4

Stock and Wright (2000) provide a discussion of GMM asymptotics when some or all pa-

rameters to be estimated are weakly identi�ed.5 Their discussion rests on some "high level"

assumptions on the properties of the moments that enter the GMM �rst order conditions and

by making use of local sequences, i.e. sequences of mean functions, to provide a non-quadratic

global approximation to the objective function ST (θ). In the most compact version: By de�ning

ΨT (θ) as the centered sample moment, i.e. ΨT (θ) = T−1/2
∑T

t=1(g(Dt,θt) − E[g(Dt,θt)]), it

is �rst assumed that ΨT (·) ⇒ Ψ(·), where ⇒ denotes weak convergence of random functions

on Θ with respect to the supremum norm, and where Ψ(·) is a Gaussian stochastic process

on Θ with mean zero and covariance function Ω(θ1,θ2) = E[Ψ(θ1)Ψ(θ2)ᵀ].6 Secondly, de�ne

mt = T−1/2
∑T

t=1 E[g(Dt,θt)] =
√
T E[g(Dt,θt)], which is a nonrandom (linear) mean function,

uniformly converging in θ to is limit m, i.e. mT (θ)
p→ m(θ).7 As before, ŴT is a consistent

estimator of a positive-de�nite weighting matrix.

Given those assumptions are ful�lled, Stock and Wright show that the GMM objective function

can be rewritten as

ST (θ) =
(
T−1/2

T∑
t=1

g(Dt,θ0)
)ᵀ
ŴT

(
T−1/2

T∑
t=1

g(Dt,θ0)
)

=
(
T−1/2

T∑
t=1

(g(Dt,θ0)− E[g(Dt,θ0)]) + T−1/2
T∑
t=1

E[g(Dt,θ0)]
)ᵀ
ŴT

(
T−1/2

T∑
t=1

(g(Dt,θ0)− E[g(Dt,θ0)]) + T−1/2
T∑
t=1

E[g(Dt,θ0)]
)

=
(

ΨT (θ) +mT (θ)
)ᵀ
ŴT

(
ΨT (θ) +mT (θ)

)
(9)

4See Stock and Wright (2000) for more details.
5Please note that Stock and Wright slightly change the GMM criterion / objective function. In contrast to

Hansen (1982), they multiply the GMM criterion / objective function expressed in Equation 5 by T . This does not
change the optimal argument minimizing the objective function but enables some attractive asymptotic features
which will be exploited. We follow Stock and Wright in the following in order to avoid any confusion.

6As noted by Stock and Wright, this is an extension of the functional central limit theorem (FCLT).
7As noted by Stock and Wright this is the GMM analog for the weak instrument asymptotics design which is

re�ected by ΠT = C/
√
T in Staiger and Stock (1997) with C denoting some population constant.
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which under weak identi�cation asymptotics weakly converges to

S(θ) =
(

Ψ(θ) +m(θ)
)ᵀ
W
(

Ψ(θ) +m(θ)
)

(10)

and consequently

θ̂ ⇒ θ̃ = argmin
θ∈Θ

S(θ). (11)

Under weak identi�cation (asymptotics), the part Ψ(θ) +m(θ) of Equation 10 follows a normal

distribution, however, which does not in�ate resulting in a small curvature of the objective

function. This circumstance leads the objective function S(θ) following a random Chi-square

type process which in turn leads to θ̂ being inconsistent and having a nonstandard asymptotic

distribution.8

For ease of understanding, consider again the above-mentioned case of the simple linear model

estimated by the 2SLS-estimator of Equation 8. Assuming the most extreme version of weak

identi�cation, i.e. non-identi�cation (Π = 0) or in other words irrelevant instruments, the

endogenous variable Yt collapses to the error term of the reduced form Vt, leading to the following

asymptotic distribution of β̂2SLS
T

√
T (β̂2SLS

T − β0) =
T−1/2

∑
Ztut

T−1
∑
ZtVt

d→ ξu
ξv

(12)

where due to the CLT (
ξu
ξv

)
∼ N

[(
0

0

)
,

(
σ2
u σuV

σuV σ2
V

)]
.

Hence, β̂2SLS
T asymptotically follows a ratio of correlated normals. By means of a Cholesky

factorization / linear projection, one can rewrite ξu = δξv + ξ where by de�nition δ = σuV /σ
2
V ,

ξ ⊥ ξv and ξ is normally distributed. Hence, the asymptotics of β̂2SLS
T can be expressed as

√
T (β̂2SLS

T − β0)
d→ ξu
ξv

= δ +
ξ

ξv
∼ C

[
δ,
σu
σV

√
1−

(
σuV
σuσV

)2
]

(13)

which follows a general Gauchy distribution with a scale of (σu/σV )
√

1− (σuV /(σuσV )2, and

which is centered at the probability limit of the OLS estimator in case of irrelevant instruments

δ = σuV /σ
2
V as shown above.9 Thus, in the most extreme case of weak identi�cation / instru-

ments, β̂2SLS
T has heavy tails and is clearly not normally distributed.

8See Stock and Wright (2000) for more details.
9See Weisstein (1999) for more details on general Gauchy distribution.
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3.3 Bootstrapped Distributions

In order to derive a �nite sample distribution of a parameter estimate θ̂ which can be compared

to its theoretical asymptotic distribution as explained in the previous subsection, we make use of

resampling methods. More precisely, we apply bootstrapping methods according to Efron (1979)

in order to obtain a data-based approximation for the �nite sample distribution of our parameter

of interest θ̂.

In contrast to other contributions, we rely on the non-parametric method of pair(-wise) boot-

strapping suggested by Freedman (1981) and also known as bootstrap by pairs. In general, a

pair bootstrapped sample is obtained by resampling all variables, i.e. the endogenous as well

exogenous variables, together from the original data. Hence, a pair bootstrapped sample consists

of independent random draws of D = [y,Y,Z] with replacement denoted by D∗ = [y∗,Y∗,Z∗].

This non-parametric type of bootstrapping allows more �exibility in the comparison with other

types, such as the semi-parametric residual bootstrap or even some form of parametric bootstrap.

More precisely, our preferred type of bootstrapping can be applied in cases of serial correlation

or heteroscedasticity, where the residual bootstrap fails to provide reliable �nite sample distri-

butions.10 However, this comes at the cost of e�ciency, i.e. our preferred bootstrap type is

relatively less e�cient. Nevertheless, given that we ensure a su�ciently large number of obser-

vations T in our following derivations from which our bootstrapped samples are drawn and a

su�ciently large number of bootstrap replications, this de�cit is negligible.

In case of strong identi�cation in IV models that can be estimated by GMM, the bootstrap

procedure is able to recover a meaningful approximation for the asymptotic distribution. Hence,

given su�ciently strong identi�cation the bootstrapped parameter estimate θ̂
∗
T converges in

distribution to normality, i.e.

√
T (θ̂

∗
T − θ0)

d→ N
[
0, (GᵀWG)−1GᵀWΩWᵀG(GᵀWG)−1

]
(14)

However, in case of weak identi�cation, the bootstrap procedure fails to provide a good approxi-

mation. This failure of the bootstrap can be related to the failure of the Edgeworth expansion, as

it has been shown in general by Hall (1992) and for the speci�c case of the Wald-statistic in case

of weak identi�cation by Moreira, Porter, and Suarez (2009). Exploiting the (local-to-zero) weak

instrument asymptotics approach suggested by Staiger and Stock (1997), Ievoli (2019) shows how

the bootstrapped distribution of the estimated parameter of interest deviates from normality for

homoscedastic linear models when two di�erent types of residual bootstrap are applied. More

precisely, Ievoli shows that the bootstrapped �nite sample distribution is a�ected by some addi-

tional components in his speci�c research design, which are conditional on full information on the

data partly normally distributed as well as subject to randomness in case of over-identi�cation.

Consequently, test statistics, such as the Wald test for instance, cannot be asymptotically pivotal.

For the speci�c case of non-identi�cation (Π = 0) as expressed by Equation 12 for the simplest

10In cases where serial correlation can be ruled-out, for instance by de�nition in cross-sectional data, the method
of Wild bootstrap according to Wu (1986) can be an alternative to our preferred method.
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linear model, Ievoli notes that the bootstrap completely breaks down such as asymptotic theory.

This is due to fact that the true in�uence of the instruments, i.e. the non-identi�cation Π = 0,

is never correctly estimated under this bootstrapping scheme. Therefore, the bootstrapped �nite

sample distribution also follows some general Gauchy distribution, but which is di�erent from

its theoretical asymptotic as expressed in Equation 12.

Zhan (2017) shows this phenomenon for linear models more generally by relying on the same

asymptotic approach, i.e. the weak instrument asymptotics. Focusing on the so-called concen-

tration parameter indicating the instruments' strength in linear models, which has to approach

in�nity under weak instrument asymptotics and which we shall discuss in detail in the next sub-

section, Zhan shows that the bootstrapping procedure does not accurately preserves the identi�-

cation strength but that it preserves the pattern of identi�cation. Moreover, Zhan shows that the

bootstrap procedure does not exaggerate weak instruments problems and rather overestimates

instruments strength, which can also be disadvantageous on the other side. In other words, the

information conveyed by the circumstance of bootstrap failure can be exploited. This is also

true when non-parametric bootstrapping techniques, such as bootstrap by pairs, are applied in

contrast to the special type of residual bootstrap used by Ievoli and Zhan. As Davidson and

MacKinnon (2010) suggest, the special type of residual bootstrap used in the before-mentioned

studies can be seen as some variant of the bootstrap by pairs. Although this analogy cannot be

seen as generalization, it can analytically be shown that the �nite sample limiting distributions

are the same across the two bootstrap methods.11

To summarize, the desirable feature of the bootstrap procedure preserving the pattern of

identi�cation yields the conclusion that a su�ciently strong deviation of the bootstrapped �nite

sample distribution of some IV estimator of a model that can be estimated by linear GMM in

comparison to normality is a severe signal of a problem of weak identi�cation. This is true for

all estimators part of the k-class introduced by Nagar (1959), such as 2SLS, LIML or Fuller-k.

In general, there may also be reasons why bootstrap methods fail to provide a reliable �nite

sample approximation, which are not related to the strength of identi�cation or the strength of

instruments in linear models, and which result in invalid inference. Canty, Davison, Hinkley,

and Ventura (2006) mention the presence of outliers, incorrect resampling schemes and non-

pivotality as three di�erent sources. However, we are con�dent that all bootstrap failure in our

research setting can be attributed to problems of weak identi�cation. In fact, given outliers, the

GMM assumptions would be violated even under strong identi�cation, which we rule out in our

approach. Since we use a non-parametric resampling scheme, we are most conservative and do

not apply a data generating process (DGP) leading to inhomogeneous data. In fact, the situation

of non-pivotality helps us to ascertain cases of weak identi�cation, as mentioned above.

11See Ievoli (2019) for corresponding expressions on the residual bootstrap (resampled instrument) type.
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3.4 Test Statistics

Given the insights explained in the two previous subsections, it is natural to apply bootstrapping

methods on IV models that can be estimated by GMM in order to derive an empirical �nite

sample distribution of the parameter of interest β̂
∗
, which can be tested on normality. For

this reason, our proposed method of assessing weak identi�cation is based on a test of the

goodness of �t of the empirical derived distribution of the parameter of interest in comparison

to its asymptotic counterpart. In contrast to relying on some general distribution tests, such

as the Kolmogorov�Smirnov test, the Cramér�von Mises test or the Anderson�Darling test, we

make use of the test suggested by Shapiro and Wilk (1965) and its adjusted version by Royston

(1982). Given that it is explicitly designed to test for normality, it possesses the strongest power

among all available tests. The test statistic under the null hypothesis, namely that the empirical

distribution comes from a normally distributed population, denoted as WSW in the following, is

adjusted to our setting as follows

WSW (I) =
b2βT

(I − 1) σ̂2
βT

=
(
∑I

i=1 ai β̂T (i))
2∑I

i=1(β̂T i − ¯̂
βT )2

(15)

where I is the bootstrap sample size, β̂T (i) is the i-th order statistic, i.e. the i-th smallest

estimated coe�cient in the bootstrap coe�cient sample, and the vector of weights a can be

expressed as a = (a1, . . . , aI) =
[
µᵀ

(i)Σ
−1
(i) Σ−1

(i)µ(i)

]−1/2
µ(i)Σ

−1
(i) where µ(i) is the expected value

of standard normal order statistics and Σ(i) the corresponding covariance matrix.
12

This test statistic describes a ratio of two variances, where the denominator represents the

bootstrap sample variance and the numerator contains an estimation for the bootstrap sample

variance denoted as b2βT , when the investigated distribution would follow a normal distribution.

Hence, the smaller WSW (I) ∈ (0, 1], the more likely the bootstrapped empirical distribution

is not normally distributed, which we consider to be a severe signal for a problem of weak

identi�cation, as discussed above.

In contrast to many other tests, the null hypothesis of the Shapiro-Wilk test on normality

is rejected if the calculated test statistic is smaller than a critical value, which is tabulated

for I ≤ 50, and which can be derived by means of Monte-Carlo simulation for larger samples.

Although those critical values can be seen as a naive or natural benchmark for deciding upon

weak identi�cation in IV models estimated by GMM, there is one subtle but important point.

These critical values have been established and are just valid for testing on normality. They

are not related to testing on weak identi�cation. Our contribution is to link the Shapiro-Wilk

test statistic to some common de�nition of weak identi�cation as proposed by Stock and Yogo

(2005) in order to derive new critical values for our proposed test of weak identi�cation, which

can be compared to an estimated W-statistic.13 In other words, while an estimated W-statistic

of some bootstrapped empirical distribution of β̂
∗
may lead to a rejection of the null hypothesis

12See Shapiro and Wilk (1965) for more details.
13This procedure shares a similarity to Stock and Yogo (2005) which exploit a test statistic proposed by Cragg

and Donald (1993) originally developed for testing under-identi�cation.
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of following a normal distribution, it might not reject the alternative null hypothesis of strong

identi�cation, because the empirical distribution is su�ciently similar to the normal distribution

according to the de�nition of weak identi�cation. This identi�cation strategy is conceptually

di�erent to the previous work of Zhan (2017) and Ievoli (2019). Both do not relate their suggested

statistic of testing weak identi�cation on a common de�nition of weak identi�cation, for instance

in terms of the bias. More precise, while Zhan's decision rule upon weak identi�cation is based

on some arbitrary chosen cuto� value without any theoretical foundation, Ievoli sticks to the

classical critical values of the Shapiro-Wilk test or those of the test proposed by Jarque and Bera

(1980).

Before deriving our proposed critical values forWSW (I) in the next section, we discuss further

advantages of our proposed method, i.e. making use of the Shapiro-Wilk test statistic on a non-

parametric bootstrapped distribution of the parameter of interest β̂, in more detail. Moreover,

we compare our method with test statistics, which are regularly applied in order to assess weak

identi�cation to date. As pointed out in the introduction of this paper, those statistics focus on

linear models and di�er with respect to their assumptions on the distribution of the errors of the

model.

All of those statistics share being based on a measure proposed by Rothenberg (1984) studying

weak instrument asymptotics in linear IV models with �xed instruments and Gaussian distur-

bances. The population concentration parameter denoted as

µ2 = (Σ
−1/2
V V ΠᵀZᵀZΠΣ

−1/2
V V ) (16)

is a unitless measure indicating the instruments' strength and collapses to

µ2 =
ΠᵀZᵀZΠ

σ2
V

(17)

in the one endogenous variable case, i.e. n = 1, which we will use without loss of generality

for clari�cation purposes in the following.14 Expressed in words, the concentration parameter

measures the ratio of the variation in the endogenous variables, which can be explained by the

set of instruments relative to the variation caused by the unknown error terms of the reduced

form equation. The most frequently applied version of the F-statistic of the test on excluded

instruments testing Π̂ = 0, i.e. the relevance of the set of instruments, proposed by Cragg and

Donald (1993) and taking the following expression

FN =
Π̂

ᵀ
ZᵀZΠ̂/K

σ̂2
V

(18)

is a direct estimator of the concentration parameter. This has been shown by Staiger and Stock

14Our motivation for reducing the dimension of Y to one is that the e�ective F-statistic proposed by Olea and
P�ueger (2013), which we will introduce in the following, is merely de�ned for the single endogenous regressor
case. The drawn insights are without loss of generality since by applying the Frisch-Waugh-Lovell Theorem
(Lovell, 1963) linear models with multiple endogenous regressors can always be transferred to bivariate models.
Measures for such models such as Partial F-statistics suggested by Angrist and Pischke (2009) and Sanderson and
Windmeijer (2016) are based on this strategy.
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(1997) by means of the relationship E(F ) ∼= 1 + µ2

K such that FN − 1 can be considered as an

estimator of the average instruments' strength. However, this version of the F-statistic is only

valid in case of homoscedasticity. Hence, we refer to it as the non-robust version of the F-statistic.

In order to cover models characterized by absence of homoscedasticity, Kleibergen and Paap

(2006) proposed a robust version of the F-statistic which is

FR =
Π̂

ᵀ
Σ̂
−1
ΠΠΠ̂

K
(19)

and which makes use of a heteroscedasticity and autocorrelation robust estimator of the standard

errors of Π̂ according to Eicker (1967), Huber (1967), White (1980), and Liang and Zeger (1986)

denoted by Σ̂ΠΠ.

As already noted in Section 2, more recently, Olea and P�ueger (2013) proposed the e�ective

F-statistic (for the single endogenous regressor case), which consists of the multiplication of the

robust F-Statistic and some correction factor for non-homoscedasticity expressed as

FE =
Π̂

ᵀ
ZᵀZΠ̂

tr
(
Σ̂
−1/2
ΠΠ ZᵀZΣ̂

−1/2
ΠΠ

) =
Kσ̂2

V

tr
(
Σ̂
−1/2
ΠΠ ZᵀZΣ̂

−1/2
ΠΠ

)FN (20)

The introduction of this version of the F-statistic, which can be compared to corresponding

proposed critical values, closed an important research gap for applied researchers since there is

no theoretical justi�cation to compare estimates of the robust version of the F-statistic to the

critical values proposed by Stock and Yogo (2005), which is based on the non-robust version and

corresponding model assumptions of homoscedasticity. As it is clearly evident, the robust and

the e�ective F-statistic are identical in case of a single instrument, i.e. K = 1.

In comparison to our proposed test statistic, those di�erent versions of the F-statistic of the

test on excluded instruments exhibit several de�cits. Firstly, the di�erent versions of the F-

statistic indicate the average instead of the total strength of the instrument set. Hence, in case

of over-identi�cation, i.e. K > n, those statistics might be misleading since they are not able

to di�erentiate between strong and weak instruments. In other words, given all of FR, FN and

FE are decreasing in K, those statistics are subject to the optimality of K, which has to be

decided by the researcher.15 For example, adding irrelevant and independent instruments to

a su�ciently strong instrument and assuming corresponding meaningful estimates, i.e. π̂k ≈
0 ∀ k > 1, decreases the F-statistic, ultimately leading to a rejection of the test of relevant

instruments despite the strong identi�cation present in the data. Related, although delivering

the same estimates for the model's coe�cients and standard errors etc. at the second stage,

applying the Frisch-Waugh-Lovell Theorem (Lovell, 1963) in cases of over-identi�cation can be

misleading in terms of assessing identi�cation strength. Reducing the dimension of the set of

instruments to one by means of this method leads to an automatic increase in the F-statistic by

the factor K in turn, which can gauge su�ciently strong instruments even if Π = 0.

15Please note that Equation 20 is decreasing in K because the trace in the denominator is increasing in K.
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Secondly, as noted by Hahn and Hausman (2003), none of the three versions of the F-statistic

considers the in�uence of ΣuV despite its direct impact on the �nite sample distribution of the

2SLS estimator among others. For the case of n = 1, this is shown by Hahn and Hausman (2002)

expressing the bias of the 2SLS estimator approximately as a function of σuV as follows

E[β̂2SLS ]− β0 ≈
σuV
σ2
V

K

µ2 +K
. (21)

This relationship can also be seen by the following expression of the approximation of the absolute

2SLS bias proposed by Nagar (1959), which is somewhat more precise for large µ2 in comparison

to the expression by Hahn and Hausman (2002), but limited to cases of K > 2

E[β̂2SLS ]− β0 ≈
σuV
σ2
V

(K − 2)

µ2
. (22)

Finally, all of the three di�erent versions of the F-statistic rely on estimates of the error term

(co-)variance of the reduced form equations. Hence, researchers have to make assumptions about

the structure of the model's error terms, resulting in a trade-o� between bias if the non-robust

version of the F-statistic is applied to models with non-homoscedastic disturbances and e�ciency

loss if the robust or e�ective F-statistics are applied to models with homoscedastic disturbances.

Our proposed test statistic, i.e. the Shapiro-Wilk test W-statistic, does not su�er from most of

the de�cits mentioned above. The W-statistic does not dependent on the number of instruments

K and any assumptions of the error term disturbances.16 Although it is insensible to ΣuV , similar

to the di�erent versions of the F-statistic, we take ΣuV into account following a strategy applied

by Stock and Yogo (2005) when deriving critical values in the next section. In summary, there is

just one small disadvantage of the W-statistic. Although less apparent, this statistic depends on

the bootstrap sample size I if the bootstrapped distribution is not perfectly normally distributed,

as the numerator and the denominator denoted in Equation 15 do not have to grow at the same

rate when increasing I. Nevertheless, this parameter is perfectly under control for researchers

in contrast to T which is exogenous. Moreover, we consider this in�uence in our derivation of

critical values for the test of strong identi�cation in the next section by holding I constant and

providing a guideline for researchers looking for critical values when I di�ers from our suggestion.

4 Weak Identi�cation Test

Taking up the idea of testing for weak identi�cation outlined in the last section, this section

presents a corresponding procedure drawing on critical values for linear models and the use of

the 2SLS estimator. We restrict ourselves to this simplest of all IV estimators contained in the

class of GMM estimators. However, our proposed method can also be applied to IV-estimations

16See Subsection 4.5.2 for some special exception in case of over-identi�cation.
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of the Fuller-k estimator.17 Firstly, we provide a de�nition of weak instruments. Secondly,

we derive corresponding critical values by means of a comprehensive Monte Carlo simulation.

Thirdly, we propose our decision rule in order to assess weak identi�cation. Thereafter, we relate

our proposed test procedure to previously discussed test statistics of assessing weak identi�cation

by means of presenting evidence on the data-based relationship and by reporting their outcome in

a prominent empirical illustration. This section concludes by providing extensions to the model

used for the derivation of the critical values discussing the in�uence of heteroscedasticity, over-

identi�cation (for the single endogenous regressor case), and multiple endogenous explanatory

variables (EEVs).

4.1 Weak Identi�cation Sets

As �rst shown by Nelson and Startz (1990a, 1990b), weak identi�cation leads to biased esti-

mates. Therefore, we follow Stock and Yogo (2005) and de�ne weak identi�cation in terms of

the maximum IV estimator bias. More precisely, we take over the de�nition by Stock and Yogo

and express the bias in relative instead of absolute terms as it has already been suggested by

Staiger and Stock (1997). A naive estimator not considering endogeneity, i.e. OLS for linear

models, constitutes the reference. As indicated in the last section, referring to the relative bias

o�ers the advantage that the level of endogeneity can be ignored since it is a�ecting both the

naive estimator bias and the one considering endogeneity, but not the corresponding relative bias

(Bun & Windmeijer, 2011). Stock and Yogo emphasize that the relative bias helps separating

the problems of endogeneity and weak instruments. While the former is re�ected by the bias in

the naive estimator, the latter a�ects the bias of the estimator considering endogeneity.

For the leading case with n = 1, the relative bias reads

B =
|E[β̂2SLS ]− β0|
|E[β̂OLS ]− β0|

(23)

where β̂2SLS has to be replaced accordingly when the Fuller-k is applied instead of the 2SLS-

estimator. In case of more than one endogenous variable (n > 1), di�erent possibilities of how

to de�ne the relative bias exist. We comment on that in Subsection 4.5.3, but use this leading

case of n = 1 for the following explanations and derivations without loss of generality. We follow

common threshold levels for the relative bias b ∈ (0.05, 0.1) as they have been suggested by

Stock and Yogo (2005).18 Consequently, we consider weak identi�cation to exist if B ≥ b for

some chosen b. This de�nes the weak identi�cation set in terms of the Shapiro-Wilk test statistic

as

W2SLS = {Z : B ≥ b} = {Z : WSW (I) < WSW
cv (I, b,K)} (24)

17Given that our method depends on �nite sample moments, our method cannot be used for IV estimations by
LIML, see Stock and Yogo (2005).

18In contrast to Stock and Yogo (2005), we refrain from reporting critical values for b ∈ (0.2, 0, 3) since we do
not believe that applied econometricians are willing to accept such large biases.
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where Z = (Π,ΣVV,ΣZZ, g) represents a set of parameters and functional form assumptions

characterizing the identi�cation strength, andWSW
cv denotes the critical values of the W-statistic

which depend on the number of the bootstrap replications I, the tolerated relative bias b selected

by the researcher, and the number of excluded exogenous regressors K, since the (asymptotic)

relative bias depends on this parameter as noted by Stock and Yogo (2005).

4.2 Critical Values

The derivation of the critical values of Stock and Yogo (2005), valid for linear models with ho-

moscedastic disturbances, crucially rests on weak instrument asymptotics. Under this process of

convergence, the asymptotic expression of the relative bias denoted by Equation 23 can be linked

to a weak instrument set characterized by a speci�c bound. This bound can then be transferred to

some conservative critical value of the F-statistic of the test on excluded instruments represented

by Equation 18. More precisely, Stock and Yogo show that a speci�c collapsing parameter Λ is

e�ectively governing both the relative bias as well as the critical values under weak instrument

asymptotics. This collapsing parameter Λ denoting the identi�cation strength can roughly be

seen as the ratio of the variance of excluded exogenous regressors multiplied with the square of

the reduced form coe�cients to the variance of the reduced form errors (after partialling out any

covariate terms). Given speci�c values for n and K, Stock and Yogo use a grid-based Monte-

Carlo simulation for di�erent minimal eigenvalues of Λ to search for the minimal eigenvalue of Λ

which corresponds to a relative bias b, given B is a function solely of the eigenvalues of Λ. This

speci�c eigenvalue of Λ de�ning the weak instruments set is optimized by some interpolation and

measures to eliminate the Monte-Carlo simulation error in order to increase precision. Using

the non-central chi-squared distribution as a bounding distribution for the test statistic, which

determines the Cragg and Donald (1993) statistic and follows a non-central Wishart distribution

the critical values are determined by a speci�c percentile of the non-central chi-squared distribu-

tion divided by K, using K times the value of Λ de�ning the weak instruments set as parameter

value for the corresponding non-centrality parameter.

Taking over this approach, which does not rest on an explicit fully speci�ed DGP but just

implicitly by the collapsing parameter Λ, in order to identify critical values is not possible in

our case. This is due to the fact, that the approach by Stock and Yogo is based on the (weak

instrument) asymptotic behavior of the Cragg and Donald (1993) test statistic, which is solely

valid under homoscedasticity. Moreover, we are not aware of a theoretical analytic expression

for the (weak instrument) asymptotic relationship between the relative bias and the W-statistic.

Thus, we decide on a heuristic approach in the style proposed by Gentle (2009) in order to

determine critical values which share the characteristic of those developed by Stock and Yogo,

namely that the critical values of our proposed W-statistic expressed in Equation 15 are directly

linked to the relative error B. Our approach is based on a DGP and a comprehensive Monte-Carlo

simulation with the number of replications R = 50000. In the speci�c DGP, we hold everything

constant that is known by theory not to in�uence the identi�cation strength. The nuisance

parameters, which have a direct in�uence, are sampled from meaningful distributions given their
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continuous type, which prevents the use of corresponding permutations causing in�nite dimension

problems. The same is true for the parameters that have a direct in�uence on the identi�cation

strength. By making use of this approach of variability in combination with the tremendous size

of the Monte-Carlo replications, we end up with a simulated dataset where we can verify that the

limiting dependencies of the nuisance parameters do not a�ect the determination of the critical

values.19 Therefore, those can be seen as general.

Given that we focus on critical values for linear models in this section, it follows from referring

to the notation of the general IV model presented in Subsection 3.1 that f(Yβ+u) = Yβ+u and

h(ZΠ + V) = ZΠ + V. As explained previously, we focus on a setting of n = 1 until Subsection

4.5.3 without the loss of generality. Moreover, we set K = 1 in the following until Subsection

4.5.2, as the (asymptotic) relative bias depends on the level of K as mentioned above. Hence, the

critical values we provide in Table 1 are only valid for the simplest but also most frequent case

of n = K = 1. We provide critical values for the most common cases of over-identi�cation, i.e.

K > n = 1, in Subsection 4.5.2. While included exogenous regressors have been contained in Y

in our previous discussions and derivations and have been instrumented by themselves, we omit

them in the following by means of the application of the Frisch-Waugh-Lovell Theorem (Lovell,

1963). Hence, all endogenous regressands and excluded exogenous regressors can be viewed to

be residuals of linear projections on included exogenous regressors.

As explained above, we make use of a most �exible DGP in R = 50000 replications which re-

sults in any nuisance parameters having been marginalized and any limiting dependencies having

been ruled out. In this DGP, we sample the number of observations from T ∼ U [100, 10000].20

Based on the random sample size, we generate the excluded exogenous regressor Z, i.e. the

instrument, and the structural equation error u as well as the reduced form error V as followsZtut
Vt

 ∼ N

 0

0

0

 ,

 1 0 0

0 σ2
u σuV

0 σV u σ2
V

 (25)

where

Σ =

(
σ2
u σuV

σuV σ2
V

)
∼W2(2, I2)

and W2(2, I2) denotes a Wishart distribution with two degrees of freedom and using an identity

matrix as scale matrix. This distribution ensures that Σ is always positive semide�nite (PSD). In

other words, while the instrument is standard normally distributed in each replication without

loss of generality (and uncorrelated to the error terms ful�lling the instrument's exogeneity

condition), the model errors are mean zero, yet their variance and covariance are subject to

randomness. The di�erent replications cover di�erent degrees of endogeneity, ranging from close

to uncorrelated, i.e. ρuV = σuV /(σuσV ) ≈ 0, up to severe correlation of close to one, i.e. ρuV ≈ 1,

19Detailed analysis is available upon request.
20We require a minimum sample size of T = 100 since the bootstrap performance becomes unreliable in too

small samples.
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between u and V .21

Given those distributions, the endogenous variable Y and the outcome variable y are generated

as follows

yt = Ytβ0 + ut = Yt · 1 + ut (26)

Yt = ZtΠ0 + Vt (27)

where β0 is set to one for all replications without loss of generality. The strength of the in-

strument is supposed to vary, i.e. Π0 ∼ U [0, 0.5], covering replication speci�c di�erent strength

of identi�cation from irrelevant up to super strong identi�cation, as we shall see. In fact, the

identi�cation strength per replication depends on the sampled T , Π0 as well as σ
2
V . The expected

strength of identi�cation in our simulated dataset expressed by the concentration parameter of

Equation 17 is E[µ2] = E[πZ
ᵀZπ
σ2
V

] =
0.252· 10000+100

2
·1

2 = 157.81. As mentioned-above, β is estimated

by both 2SLS and OLS.

The relative bias per replication is estimated by Equation 23, where the population moments

are replaced by their sample analogs. Hence, each replication setting is iterated M = 200 times,

and the median of the M = 200 di�erent values of β̂2SLS (β̂OLS) is used as the unbiased and ro-

bust estimator for the expected value of β2SLS (βOLS).22 Using the speci�c realized parameter set

of the last of those iterations, the W-statistic denoted by Equation 15 is estimated by a bootstrap

sample of size T and a number of bootstrapped replication of I ∈ (99, 199, 299, 399, 499), leading

to �ve di�erent W-statistics, i.e. WSW (99),WSW (199),WSW (299),WSW (399) and WSW (499),

per single replication.23

Based on those R = 50000 simulated replications, the critical values of the W-statistics (de-

pending on the number of bootstrap iterations I) for our test procedure presented in the subse-

quent subsection are extracted from the relationship between the relative bias and the estimated

W-statistics. Similar to Stock and Yogo (2005), for some given tolerable relative bias b chosen

by the researcher (and given a speci�c I), the critical values of the W-statistics are identi�ed

by means of a grid search, which ensures that the average relative bias B is not larger than the

tolerated bias b. This identi�cation can be most intuitively explained by Figure 1, which plots

the data points of the estimated relative bias B and the W-statistic of I = 499 after excluding

data points with ρuV ≤ 0.05.24 For some given value of tolerable bias b, for instance b = 0.1

as marked by the dashed red vertical line, the value of the W-statistic, which is determined

by the intersection of the red dashed line with the blue line denoting the average relative bias

21See Figure A1 in the appendix for a histogram of the correlation coe�cient ρuV in our simulated dataset. The
relatively more frequent sampled extreme values of ρuV are caused by the Wishart distribution but not a�ecting
our results.

22We use the median instead of the mean as sample analog for the expected values since it is less prone to
outliers. The median is an unbiased estimator in this setting given the symmetry of the distributions of β̂2SLS

and β̂OLS .
23More precisely, we estimate a bootstrap sample of size 499 and randomly draw observations from this sample

to calculate the W-statistics which are based on a smaller number of bootstrap replications.
24We exclude observations with ρuV ≤ 0.05 since the relative bias B is an inappropriate measure for cases with

small σuV . However, this restriction has only minor in�uence on the determination of the critical values.
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Figure 1: Graphical Derivation of the Critical Values in 2SLS Estimations With n = K = 1

Note: For illustration purposes this �gure contains only 15.000 randomly

drawn data points of the total sample of R = 50000. However, the blue

line rests on the total sample.

Table 1: Critical Values of the Test of Weak Identi�cation in 2SLS Estimations With n = K = 1
and Homoscedastic Errors

I = 99 I = 199 I = 299 I = 399 I = 499

b = 0.05 0.899 0.886 0.871 0.867 0.863

b = 0.1 0.838 0.795 0.766 0.749 0.737

Note: R = 50000, Σ ⊥ Zt

per di�erent values of the W-statistic, is identi�ed as the critical value.25 Hence, our proposed

critical value for the W-statistic of the test of su�ciently strong identi�cation, i.e. WSW
cv (499),

which is indicated by the red vertical dashed line in Figure 1, is 0.737.

Table 1 reports critical values for di�erent values of the tolerated relative bias b and number

of bootstrap iterations I (for the leading case of n = K = 1). As it can be seen, the critical

values are intuitively decreasing in b similar to the F-statistic of Cragg and Donald (1993) used

in Stock and Yogo (2005). The displayed critical values are substantially di�erent from the

classical critical values of the Shapiro-Wilk test of normality highlighting our contribution to the

literature of linking the W-statistic to some measure of weak identi�cation. The classical critical

values depend on I and are above 0.974 for all di�erent values of I displayed in Table 1.

25The average relative bias marked by the blue line in Figure 1 is estimated by a local regression of type locally
estimated scatterplot smoothing (LOESS) with degree of smoothing equal to 0.75, degree of polynomials equal to
two and least-square �tting method. See Wasserman (2006) for more details on the topic of local regression.
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4.3 Decision Rule

Based on the de�nition of the weak identi�cation sets in Subsection 4.1 and the derivation of

corresponding critical values in the previous subsection, we suggest the following test procedure

comprising the decision rule:

1. For a given dataset DT = [y,Y,Z], estimate β by means of 2SLS.

2. Choose a speci�c value of the number of bootstrap replications I ∈ (99, 199, 299, 399, 499).

3. Choose a speci�c value of the tolerable relative bias b.

4. Apply the non-parametric pair bootstrap scheme described in Subsection 3.3 using T as

bootstrap sample size yielding β̂∗,2SLSi .

5. Repeat Step 4. I-times and obtain a bootstrap distribution β̂
∗,2SLS

=
{
β̂∗,2SLS

}I
i=1

.

6. Calculate the W-statistic denoted by Equation 15 on the bootstrapped sample delivering

WSW,∗(I).

7. Decide about weak identi�cation: If

WSW,∗(I) > WSW
cv (I, b,K)

conclude that the identi�cation is su�ciently strong, i.e. Z /∈ W2SLS , while if

WSW,∗(I) ≤WSW
cv (I, b,K)

conclude that identi�cation is too weak, i.e. Z ∈ W2SLS .

If the researcher has good reasons to deviate from our proposed number of bootstrapped

iterations I, we refer to our simulation code, allowing the researcher to calculate own critical

values for unconsidered values of I.26

4.4 Validation

Under the DGP, and particularly the speci�ed disturbance distributions used for the derivation

of the critical values of Subsection 4.2, the non-robust F-statistic according to Cragg and Donald

(1993) of the test on excluded instruments, i.e. Equation 18, is an appropriate measure for

assessing weak identi�cation. Hence, this version of the F-statistic and our proposed W-statistic

should come to the same conclusions upon weak identi�cation in such a setting.

Figure 2 visualizes the relationship between the non-robust version of the F-statistic and our

proposed W-statistic using the simulated data of the derivation of the critical values. It shows

26The R-code is available upon request.
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Figure 2: Relationship Between the Non-Robust F-Statistic and the W-Statistic

Note: For illustration purposes this �gure contains only 15.000 randomly

drawn data points of the total sample of R = 50000.

that both statistics actually deliver the same qualitative conclusions. For observations with low

values of the F-statistic, the W-statistic is in the range of rejecting the null hypothesis of strong

identi�cation. On the contrary, high values of the F-statistic correspond to high values of the

W-statistic. The general non-linear relationship between both statistics is marked by the blue

line indicating the average value by means of a local regression.27

For further illustration, we apply both previously discussed test statistics and corresponding

decision rules on a prominent example taken from Card (1995). Using 2SLS, Card estimates the

return on education exploiting data from the National Longitudinal Survey and focusing on a

cohort of young men. More speci�cally, Card regresses the logarithmic value of individual wage

on the years of schooling and covariates where years of schooling is considered to be endogenous

and instrumented by dichotomous measures of proximity to 2-year or 4-year colleges.28 Using the

original dataset of Card (1995), we follow the strategy proposed by Davidson and MacKinnon

(2010) which has been taken over by Zhan (2017) and substitute the second order polynomial

covariate of experience by a second order polynomial of age, since experience is considered to be

endogenous, too. Moreover, we drop any of the covariates that turn out to be insigni�cant in the

2SLS estimation. Hence, our set of covariates consists of indicators of race, living in the south

and living in standard metropolitan statistical areas besides the age polynomial, and is therefore

27The values of the blue line are estimated by a local regression of type LOESS with degree of smoothing equal
to 0.75, degree of polynomials equal to two and least-square �tting method.

28The respective dummies are equal to one if there is a 2-year / 4-year college in the local labor market area
the individual is living.
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Table 2: Empirical Illustration: Returns to Schooling

Instrument Proximity to 2-year college Proximity to 4-year college

β̂2SLS 0.508 0.093∗

SE 0.674 0.0496

FN 0.544 10.524

WSW 0.137 0.734

T 3010 3010

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Note: SE denotes the standard errors of the coe�cients.

identical to Zhan (2017). Di�erent to Card, we split up the instruments and use both indicators

of proximity in separate 2SLS regressions.

Table 2 provides estimates of the returns to schooling for both instruments. It also contains

the estimated non-robust F-statistic and our proposed W-statistic. According to the former,

proximity to a 2-year college is a considerably weak instrument with respect to the years of

schooling. However, when using proximity to a 4-year college as instrument, the test on excluded

instruments yields an F-statistic, which is between the rule of thumb of Staiger and Stock (1997)

and the critical value of Stock and Yogo (2005) with tolerated relative bias of b = 0.1. Both results

perfectly match to the estimated values of the W-statistic, using the proposed test procedure

of the last subsection with I = 499. While strong identi�cation can clearly be rejected for the

proximity to a 2-year college instrument, the estimated W-statistic of the proximity to a 4-year

college speci�cation is close to the corresponding critical value of Table 1 for b = 0.1.

4.5 Extensions

Given that the proposed decision rule in Subsection 4.3 relies on critical values of a most simple

linear model, we discuss some extensions of the model in the following. Firstly, by altering

the DGP we verify the analytically derived bene�t of the W-statistic proposed in Subsection

3.4 that this test statistic does not depend on the assumption of homoscedasticity, which is

a severe limitation for most methods of assessing weak identi�cation, as discussed previously.

Secondly, we analyze the impact of over-identi�cation for the single endogenous regressor case,

i.e. K > n = 1, and discuss the impacts of the scenario of extensive over-identi�cation for our

proposed test procedure. Thirdly, we brie�y comment on how our proposed decision rule can be

transferred to IV models, which can be estimated by linear GMM but which are characterized

by more than one endogenous variable, i.e. n > 1.

4.5.1 Heteroscedasticity

As shown most recently by the replication study of Young (2020), ignoring non-homoscedastic

disturbances in linear IV models can lead to severely misleading conclusions. By analyzing a
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sample of 1359 instrumental variables regressions in 31 papers published in the journals of the

American Economic Association, Young �nds that non-homoscedastic disturbances worsen infer-

ence of all sorts. Using non-robust tests on weak instruments and the rule of thumb by Staiger

and Stock (1997) leads to assess strong identi�cation with a probability of up to 60% (depending

on the concrete non-homoscedastic error process) in this sample, when the instruments are truly

irrelevant. As particularized in Subsection 3.4, our proposed W-statistic and the following test

procedure does not depend on correct assumptions about the error distributions. Consequently,

the derived critical values in Subsection 4.2 do not depend on the assumed error speci�cation.

For instance, introducing heteroscedasticity in the DGP displayed in Equations 25, 26, 27 by

means of the following distributions

üt ∼ N [0, σ2
u] (28)

V̈t ∼ N [0, σ2
V ] · sin(Zt) (29)

and combining standardized versions of (üt, V̈t) by means of a Cholesky factorization of Σ to

a joint distribution of (ut, Vt), ensuring bivariate normality under the same variance-covariance

structure Σ displayed in Equation 25, but with heteroscedasticity yields critical values displayed

in Table A1 for n = K = 1.29 Those vary just slightly in comparison to those of Table 1 because

of sampling variety.30 However, their expected values are identical; consequently, the critical

values themselves would be identical in case of T, I →∞.

Without being discussed in-depth, the logic outlined in the previous paragraph applies when

the errors in a panel data IV model exhibit serial correlation instead of homoscedastic variances.

Our proposed method and the corresponding test procedure are insensible to any model error

disturbances.

4.5.2 Over-Identi�cation

As emphasized in Subsection 3.4, our proposed W-statistic is independent from the number of

instruments K. However, as explained in Subsection 4.1, corresponding critical values depend

on K similar to Stock and Yogo (2005) as the relative bias B is a function of K. Therefore, we

additionally provide critical values for settings when one endogenous variable should be explained

by up to four instruments. Those settings re�ecting a modest degree of over-identi�cation are

most relevant since it is already demanding to possess one valid instrument in real applied

econometric settings.

In order to derive critical values of our proposed test statistic for settings with n = 1 and

1 < K ≤ 4, we adjust the speci�cation of the set of instruments in our DGP displayed in

Equation 25 in the sense that K independent and standard normally distributed instruments are

sampled, i.e. Zk ∼ N [0, 1]∀ k. The reduced form equation displayed by Equation 27 is modi�ed

29See the simulation R-code for additional information how the bivariate distribution of (u, V ) which depends
on Z but follows N ∼ [0,Σ] is generated. The code is available upon request.

30The average absolute di�erence amounts to 0.029.
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Table 3: Critical Values of the Test of Weak Identi�cation in 2SLS Estimations With n = 1 and
Di�erent K

K I = 99 I = 199 I = 299 I = 399 I = 499

2 b = 0.05 0.968 0.969 0.967 0.966 0.966

b = 0.1 0.949 0.948 0.943 0.939 0.936

3 b = 0.05 0.982 0.984 0.985 0.985 0.985

b = 0.1 0.971 0.975 0.976 0.976 0.975

4 b = 0.05 0.992 0.991 0.991 0.991 0.992

b = 0.1 0.979 0.984 0.986 0.986 0.986

Note: R = 50000 per K, Σ ⊥ Zt

such that πk = 0 ∀ k 6= 1. Hence, the additional K − 1 instruments are speci�ed to be truly

irrelevant. This parametrization and the distribution of the additional instruments are without

loss of generality since, given the distribution of π1, all di�erent degrees of identi�cation are still

sampled in our simulated dataset.

Table 3 presents critical values for 1 < K ≤ 4, where the number of replications per di�erent

K value is the same as for Table 1, i.e. R = 50000. As it can be seen, the critical values are

increasing in K; however, this increase is less pronounced for higher values of K. This pattern

is similar to the one of the critical values proposed by Stock and Yogo (2005).

While the critical values proposed in Table 3 are meaningful for the respective parameter

settings, our proposed test procedure can become invalid and misleading in speci�c linear over-

identi�ed models. In cases where the number of instruments is large the bootstrapped distri-

bution of the 2SLS estimator can be asymptotically normally distributed independent of the

strength of the instruments. As shown by Bekker (1994) using a sequence design where the

number of instruments increases as the number of observations increases, also known as many

(weak) instruments sequence / asymptotics, the 2SLS estimator becomes inconsistent but the

distribution of the estimates becomes asymptotically normal although di�erent to its limiting

distribution.31 As noted by Zhan (2017), one solution to circumvent this drawback when ap-

plying our proposed method to assess weak identi�cation in models estimated by 2SLS is to

make use of the bootstrapped distribution of a standardized version of the estimator which rest

upon the estimand and standard error from conventional asymptotics. Under (improper) stan-

dardization, the bootstrapped distribution does not follow a standard normal distribution such

that our proposed strategy of assessing weak identi�cation can be applied and the bootstrapped

based normality test is able to recognize weak identi�cation.32 Wang and Ka�o (2016) show

that standard bootstrapped procedures also fail for LIML and Fuller-k estimators under many

(weak) instrument sequences, but o�er modi�ed bootstrapped techniques solving this problem

similar to the proposition above. In summary, given �nite samples, the many (weak) instru-

ment asymptotics can be ignored. However, in settings of models estimated by 2SLS and a

31The many (weak) instruments sequence can be technically expressed as in case of n→∞, K/n→ ζ where ζ
describes some population constant.

32See Zhan (2017) for further explanation.
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large set of instruments, for instance K > 5, we recommend that the bootstrapped distribution

of the standardized estimator instead of the non-standardized estimator should be checked on

normality.

4.5.3 Multiple Endogenous Variables

In case of multiple endogenous variables, i.e. Y does not collapse to a scalar, our suggested

approach of detecting weak identi�cation can be extended by means of two possibilities. As

explained previously, according to the GMM asymptotics the bootstrapped distributions of the

coe�cients of all endogenous variables should be normally distributed in case of su�ciently strong

identi�cation. Therefore, the �rst option is to test normality for each bootstrapped distribution

of the coe�cients of the n endogenous variables separately. In this case the critical values

provided in Subsection 4.2 remain valid and the single n W-statistics can be compared to them.

A second possibility is to apply tests such as those proposed by Mardia (1970), Royston (1983)

or Doornik and Hansen (2008), which test joint normality for the di�erent β∗ = (β∗1 , . . . , β
∗
n)

distributions.33 However, �rstly those tests are more restrictive in the sense that they impose

and test joint normality instead of jointly marginal normal distributions. Secondly, corresponding

test statistics should be compared to meaningful critical values, which depend on a joint measure

of bias such as the following one proposed by Staiger and Stock (1997)

B =

√√√√√
(
E[β̂

2SLS
]− β0

)ᵀ(
YᵀY/T

)(
E[β̂

2SLS
]− β0

)
(
E[β̂

OLS
]− β0

)ᵀ(
YᵀY/T

)(
E[β̂

OLS
]− β0

) (30)

where as before, Y is partialled out from any included exogenous regressors. From our per-

spective, there are no crucial disadvantages of the �rst option which, however, might lead to

results of partial identi�cation. Therefore, we refrain from providing critical values according

to the relative bias displayed in Equation 30 and leave it to further research to come up with

corresponding parsimonious ideas.

5 Application to Non-Linear Models

Although we have focused on linear IV models and the simplest corresponding GMM estimator,

i.e. 2SLS, in the last section, our new proposed method to assess weak identi�cation is also valid

for non-linear IV models estimated by GMM, since the foundations discussed in Section 3 are

not limited to linear models. In this section we brie�y illustrate how our proposed method can

be applied to a speci�c non-linear IV model estimated by FIML. More precisely, we concentrate

on the case of a binary response model (BRM) with a binary EEV constituting a common setting

in the �elds of applied microeconomics.34 As discussed in the literature review of Section 2, we

33See Henze (2002) for an overview of multivariate normality tests.
34See for instance leading publication such as Evans and Schwab (1995), Evans, Farrelly, and Montgomery

(1999) or Altonji, Elder, and Taber (2005).
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Table 4: Critical Values of the Test of Weak Identi�cation in Recursive Bivariate Probit Esti-
mations With n = K = 1

I = 99 I = 199 I = 299 I = 399 I = 499

b = 0.05 0.988 0.991 0.993 0.994 0.994

b = 0.1 0.943 0.95 0.951 0.952 0.952

Note: R = 30000

are not aware of any existing strategy to detect weak identi�cation in such a non-linear model

setting. We apply the same procedure as in Subsection 4.2 in order to derive critical values which

can then be used for our proposed test procedure on weak identi�cation.

Taking up the general IV model presented in Subsection 3.1 and focusing on a setting without

any covariate in�uence, a single endogenous variable and a single instrument, i.e. K = 1 without

loss of generality, our system of non-linear equations reads

yt = 1[Ytβ0 + ut > 0.5] (31)

Yt = 1[ZtΠ0 + Vt > 0] (32)

where given the binary nature of (yt, Yt) f and h become indicator functions represented by 1[·].
The threshold values for the latent variable expressions of Equations 31 and 32, i.e. 0 for Yt and

0.5 for yt, are speci�ed to achieve an equal balance of zeros and ones for both yt and Yt.

Given that we still assume the errors (ut, Vt) to be normally distributed as in Equation 25,

the recursive bivariate probit estimator of Heckman (1978) and Amemiya (1978) is the natural

choice of non-linear IV estimators in the class of GMM estimators due its performance bene�ts

(Denzer, 2020). Consequently, the IV estimator is not contrasted to the OLS estimator, but to

the bias of the probit estimator and the relative error becomes

B =
|E[β̂Biprobit]− β0|
|E[β̂Probit]− β0|

. (33)

We follow the heuristic approach illustrated in Subsection 4.2 and take over all corresponding

parametric speci�cations with the exception that we set σ2
u equal to one and that the number of

replications amounts to R = 30000. While the former is due to the fact that β̂Biprobit and β̂Probit

are identi�ed up to scale and therefore have to be standardized to make them comparable across

di�erent replications, the latter is due to computation load.

Table 4 reports critical values for di�erent values of the tolerated relative bias b and number of

bootstrap iterations I for the test of weak identi�cation in non-linear recursive bivariate probit

estimations. Similar to Table 1, the critical values are decreasing in b and increasing in I.

Despite using the same approach, the critical values proposed in Table 4 are less general in

comparison to those of Table 1 for two reasons. As mentioned above, coe�cients are identi�ed

up to scale in non-linear models, meaning that they depend on the variance of the structural
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equation's error. Since this measure of spread is unknown to the researcher in applied work, we

recommend concentrating on coe�cient ratios which circumvents the problem. However, this

requires a modi�ed de�nition of weak identi�cation since the relative bias of the coe�cient ratio

is not intuitive as before. As a second point, while in linear models covariates can be partialled

out by applying the theorem of Lovell (1963), this is not possible in non-linear models. We leave

it to further research to take up this point and to provide adequate strategies.

6 Conclusion

In this paper, we provide a new and simple method to detect weak identi�cation in IV models. In

line with other recent but independently developed contributions (Zhan, 2017; Ievoli, 2019), our

identi�cation approach is based on making use of bootstrap procedures to derive a �nite sample

distribution of the structural equation coe�cients of the EEVs in IV models. Given some minimal

requirements such as a su�cient sample size to obtain meaningful bootstrap distributions hold,

deviations of those empirical �nite sample distributions to normality can be considered as severe

signal for weak identi�cation. In contrast to previous test statistics to detect weak identi�cation,

which are almost exclusively limited to linear models and assumptions of homoscedasticity, our

proposed method is applicable to all IV models that can be estimated by GMM. Hence, our

proposed method covers models with non-homoscedastic disturbances, but also models estimated

by non-linear GMM such as FIML.

As well as discussing the theoretical background of our proposed method, i.e. GMM asymp-

totics (under weak identi�cation), we contribute to literature by providing critical values based

on an exhaustive Monte-Carlo simulation for a complete test procedure based on our proposed

method. This enables applied econometricians to test for weak identi�cation in their research

settings of linear models with endogenous regressors estimated by the most common estimator,

i.e. 2SLS, when classical tests of weak identi�cation cannot be used or when researchers do not

want to make use of weak identi�cation robust inference methods leading to interval instead of

point estimates for parameters of interest. Our proposed test procedure is easy to apply and is

linked to the de�nition of weak identi�cation used in the seminal paper of Stock and Yogo (2005),

as it exploits the same and intuitive metric relating the bias of the IV estimator to the bias of

some naive estimator ignoring endogeneity. We validate our test procedure by investigating its

performance in a prominent empirical illustration. Moreover, we show that our test procedure

delivers the same qualitative results when applied to settings where classical tests of weak iden-

ti�cation are valid. While we focus on the leading linear IV model case with a single endogenous

regressor and a single instrument, we discuss how our proposed method can be applied to set-

tings with more than one instrument for a single endogenous variable, which constitutes the most

frequent setting of over-identi�cation, and to settings of multiple endogenous variables. For a

speci�c non-linear model, we brie�y illustrate how our proposed test procedure can be applied.

Further research for re�ning our proposed method could concentrate on several issues. Firstly,

it would be bene�cial if the test statistic of the used normality test in our proposed procedure
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could be analytically linked to the relative bias, as is the case for the F-statistic of Cragg and

Donald (1993). This would make our applied heuristic approach obsolete and provide additional

precision. Although the Shapiro-Wilk test statistic o�ers advantages such as its power and its

boundedness, it is not trivial to �nd an analytical relationship to the relative bias. Secondly and

possibly based on improvements with respect to the former, future research could verify our test

procedure by means of assessing its power. Corresponding supporting outcome would further

con�rm the validity of our suggested approach. Thirdly, it would be bene�cial to overcome

the two loose ends with respect to the application of our proposed method to non-linear IV

models estimated by GMM, namely the limits with respect to the relative bias de�nition and

the impact of multiple explanatory variables, as outlined in the previous section. Finally, it

could be interesting to apply our proposed procedure to a weakly endogenous instrument setting

according to Ievoli (2019) in order to investigate the outcome when the instruments' requirement

on exogeneity instead of relevance is not ful�lled.

Despite this scope of improvement, this paper supports a new stream in econometrics to think

about the detection of weak identi�cation particularly in non-classical models, and to provide

reliable and more general metrics. Being the �rst in this regard, it provides a concrete test

procedure which is linked to well-established criteria in the �eld of econometrics, and which

should help applied researchers in their work.
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Appendix

Figures

Figure A1: Histogram of the Correlation Coe�cient ρuV in the Simulation Sample

Note: R = 150000

Tables

Table A1: Critical Values of the Test of Weak Identi�cation in 2SLS Estimations With n = K = 1
and Heteroscedastic Errors

I = 99 I = 199 I = 299 I = 399 I = 499

b = 0.05 0.888 0.874 0.844 0.846 0.825

b = 0.1 0.813 0.771 0.725 0.710 0.682

Note: R = 50000, Σ 6⊥ Zt
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