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The Single Picker Routing Problem with Scattered Storage: Modeling and
Evaluation of Routing and Storage Policies
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Abstract

Despite ongoing automation efforts, most warehouses are still manually operated using a person-to-parts
collection strategy. This process of collecting items of customer orders from different storage locations
accounts for the lion’s share of the operating costs of the warehouse. Hence, optimizing picker routes is
an important instrument to reduce costs. We examine the scattered-storage variant of the single picker
routing problem in a one-block parallel-aisle warehouse. With scattered storage, an article can be stored
at several storage locations within the warehouse, whereas with classic storage, each article has a unique
storage location. We use a recently published network-flow model with covering constraints that is based
on an extension of the state space of the dynamic-programming formulation by Ratliff and Rosenthal. With
modifications in the state graph, this model serves for both exact and all established heuristic routing
methods for picker routing. The latter include traversal, return, largest gap, midpoint, and composite. We
show that these routing policies can also be implemented through adaptations in the state space. Extensive
computational studies highlight a comparison of the different routing and storage policies (in particular
class-based storage policies) in the scattered storage context. Analyses demonstrate which combinations of
policies are advantageous for the given warehouse layout. For class-based storage policies, we emphasize
how the scattering of articles of different classes should be performed.

Keywords: routing, warehousing, picker routing, scattered storage, storage policy

1. Introduction

In this work, we consider the single picker routing problem (SPRP), which is one of the fundamental
problems in warehouse operations for manual (non-automated) warehouses. For a given warehouse layout
and a list of articles with a storage location (=pick position) for each of the articles, the SPRP consists of
deciding how a picker travels through the warehouse in order to collect the articles (picker-to-parts) in a
minimum-length tour. It is estimated that more than 80% of all order-picking systems in Western Europe
are low-level picker-to-parts picking systems (de Koster et al., 2007).

We study the extension of the SPRP to warehouses with scattered storage (abbreviated as SPRP-SS in
the following) under the combination of different routing policies and storage policies. The three emphasised
terms need to be further elaborated: First, a warehouse operates as a scattered storage warehouse or mixed-
shelves warehouse if one or several articles are pickable from more than one pick position. Scattered storage
is predominant in modern e-commerce warehouses of companies like Amazon or Zalando (Weidinger, 2018;
Boysen et al., 2019; Weidinger et al., 2019). The main advantage of a scattered storage strategy is “that
items of demanded SKUs are found close by irrespective of the position within the warehouse [so that] the
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distance to be covered for order picking is reduced this way” (Weidinger, 2018, p. 139). The term scattered
storage should not be confused with shared storage: while shared storage allows to allocate a storage location
consecutively to different articles in general (Cormier and Gunn, 1992), scattered storage even allows a single
load unit to be broken up and distributed to different storage locations (Weidinger and Boysen, 2018).

Second, even for the most simple warehouse layout, i.e., a single-block warehouse with parallel aisles,
exact (=minimum length) picker tours can be complicated, counter-intuitive, and difficult to memorize.
Therefore, the application of routing heuristics can be justified: the pickers can only perform tours defined
by some simple rules. We consider the standard rule-based routing policies such as traversal (a.k.a.
S-shape), midpoint, largest gap (Hall, 1993), return, and composite (Petersen, 1997).

Third, articles are either stored at a dedicated pick position, chaotically at random storage locations,
or the warehouse is grouped into zones (de Koster et al., 2007). In the latter case, the articles are often
assigned to these zones on the basis of their turnover rate (Petersen and Schmenner, 1999). Different class-
based storage policies can use, e.g., an ABC-classification of articles to determine which article is allocated
to which storage locations in the warehouse.

1.1. Literature Review
Literature on warehouse operations is extensive. For the sake of brevity, we restrict ourselves to the

same three central topics already sketched in the introduction, i.e., picker routing, scattered storage, and
class-based storage policies. Intentionally, we do not discuss integrated problems in warehouse operations
management where picker routing constitutes a well-defined subproblem such as in order batching and batch
scheduling (van Gils et al., 2019) or warehouse layout and storage design problems (Henn et al., 2013).

The SPRP seeks a minimum-length picker tour given the warehouse layout and the pick positions from
where articles must be collected. Hence, it is a special case of the (Steiner) TSP (Cornuéjols et al., 1985;
Roodbergen, 2001). For a single-block parallel-aisle warehouse, the seminal work of Ratliff and Rosenthal
(1983) has shown that the SPRP is a well-solvable special case of the TSP. Recently, Heßler and Irnich
(2022) stated the complexity of the SPRP more precisely as linear in the number of aisles and the number of
pick positions. The generalization of this dynamic-programming-based algorithm to the case of a two-block
parallel-aisle warehouse was presented by Roodbergen and de Koster (2001b) and a three-block warehouse
by Roodbergen and de Koster (2001a). For an arbitrary number of blocks, Pansart et al. (2018) presented
a dynamic-programming as well as a MIP-based approach. Despite the low computational complexity of
computing optimal picker tours with dynamic-programming algorithms, the application of heuristic policies
is well justified in settings where pickers prefer to perform tours defined by some simple rules. Accordingly,
heuristic routing policies are rule-based heuristics (see Section 2). In the following, we also consider the use
of minimum-length tours and denote the routing policy by exact. Both exact and heuristic techniques have
been extended into many different directions, e.g., to various warehouse layouts (Roodbergen and de Koster,
2001b,a; Ömer Öztürkoğlu et al., 2012; Çelk and Süral, 2014), non-identical start and endpoints (Masae
et al., 2020a; Löffler et al., 2022), and multiple end depots (de Koster and van der Poort, 1998; Goeke and
Schneider, 2021). The most recent survey on picker routing is the one of Masae et al. (2020b).

Scattered storage was first addressed by Daniels et al. (1998), who also pointed out that several items of
the same article can or must be retrieved from different pick positions whenever the demanded number of
items is greater than one (hereafter referred to as the general demand case). For the general demand case,
the authors proposed a TSP-type of formulation with demand fulfillment constraints as well as a solution
approach using a tabu search metaheuristic for the selection of pick positions. For the so-called unit demand
case, i.e., all requested quantities are one or, equivalently, each pick position holds a sufficient supply to
satisfy the given demand, Daniels et al. note that the resulting SPRP-SS is a special type of generalized
traveling salesman problem (GTSP, Gutin and Punnen, 2002). Although Gu et al. (2007) already stated the
great research potential of the SPRP-SS, it received only little attention up to the middle of the last decade.
Weidinger (2018) coined the term mixed-shelves storage as a synonym for scattered storage, emphasising that
it is particularly advantageous in large warehouses with many different articles but rather small, time-critical
orders. Weidinger showed that, for a single-block parallel-aisle warehouse, the determination of a minimum-
length picker tour is NP-hard. Moreover, he compared a decomposition procedure (select the pick position
by different priority rules and use the algorithm of Ratliff and Rosenthal to determine a picker tour) with
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the MIP-approach of Daniels et al. (1998) complemented with MTZ-based subtour-elimination constraints
(Miller et al., 1960). The effective model of Goeke and Schneider (2021) is tailored to the single-block
parallel-aisle warehouse layout. Independently, a rather involved MIP-based approach has been presented
by Su et al. (2023) for multi-block parallel-aisle warehouses. Unfortunately, this approach has not been
compared to any GTSP-based model or the approach of Pansart et al. The currently fastest exact SPRP-SS
algorithm is the one of Heßler and Irnich (2022) which is explained and exploited in Sections 2 and 3. The
latter approach assumes that the warehouse layout is such that a dynamic-programming formulation for the
non-scattered SPRP is known and can be extended to capture the options arising from scattered storage.
Overall, all exact solution approaches for the SPRP-SS are MIP-based. Complementing exact approaches,
Weidinger et al. (2019) presented a heuristic solution approach for SPRP-SS with multiple depots.

Class-based storage was first introduced by Hausman et al. (1976). Different criteria that are often
used for the assignment of articles to classes are the turnover rate, the required space, and the cube-per-
order index (COI) (Heskett, 1963) which is the ratio of required space to turnover rate (Gu et al., 2007).
Gibson and Sharp (1992) showed that class-based storage leads to significantly shorter picker tours than
random storage. A special case of class-based storage is full-turnover storage where all articles are ranked
according to their turnover rate. The articles are then assigned to the pick positions in such a way that
articles with the highest turnover rate are located closest to the depot and the articles with the smallest
turnover rate are most distant to the depot. Thus, in this case, each article is assigned to a different class
(de Koster et al., 2007). Full-turnover storage leads to shorter picker tours than class-based storage but
is more complex to implement and more detailed data is needed (Petersen et al., 2004). Hence, Petersen
et al. (2004) recommend class-based storage with two to four classes. Park and Webster (1989) consider
three-dimensional storage systems (vertically and horizontally organized storage positions) with specific
handling equipment and suggest a so-called ‘cubic-in-time’ rule for designing a two-class storage warehouse
minimizing traveling time.

1.2. Contributions
This is the first (exact) approach for picker routing that combines routing policies with scattered stor-

age. We formally introduce variants of the SPRP-SS in which picker routes must obey the rules of the
heuristic routing policies traversal, return, largest gap, midpoint, and composite, respectively. The
contributions of this work are:

• We prove that all variants of the SPRP-SS with the above heuristic routing policies and scattered
storage remain NP-hard.

• We provide a first exact approach based on an incomplete dynamic-programming formulation finally
solved as an integer program (IP) with the help of a mixed-integer programmming (MIP) solver.

• We analyze combinations of routing and storage policies. In this sense, our work extends classical
results of Petersen and Schmenner (1999) to warehouses with scattered storage. We find that larger
cost savings are possible with scattered storage by choosing a suitable combination of the routing and
storage policy compared to classical warehouses, i.e., those without scattered storage. The combination
of largest gap and within-aisle outperforms other combinations in most cases.

• For class-based storage policies, we investigate how the scattering of articles of different classes should
be performed. For uniformly distributed articles (uniformly distributed), scattering of A-articles is
most beneficial as suggested by Weidinger (2018). We also obtain an unexpected result: scattering of
C-articles performs best for the standard class-based storage policies.

1.3. Structure
The remainder of this paper is structured as follows. In Section 2, we briefly review the dynamic-

programming formulation of Ratliff and Rosenthal (1983) and detail the necessary modifications on the
dynamic-programming state space to enforce picker routes that obey the rules of the respective heuristic
routing policy. In Section 3, we elaborate which extensions of the state space are required to correctly
model the options arising from scattered storage. Together, these results allow us to specify a unified integer
programming formulation. The NP-hardness of the SPRP-SS even for simple heuristic routing policies
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is proven in Section 4. Section 5 formally introduces the class-based storage policies. The comprehensive
computational study is presented in Section 6. The work closes with conclusions and an outlook in Section 7.

2. Solving the SPRP for different Routing Policies

While the non-scattered standard SPRP can be solved efficiently, the SPRP-SS is provenly NP-hard
(Weidinger, 2018). Different solution approaches have been presented in the literature (see Section 1.1). At
the moment, the best-performing exact algorithm is the MIP-based approach (IP model solved with a MIP
solver) of Heßler and Irnich (2022).

Heßler and Irnich (2022) have shown that, for the routing policy exact in a single-block parallel-aisle
warehouse, the SPRP-SS can be solved as a shortest-path problem with additional covering constraints. The
underlying network is an extension of the state space of Ratliff and Rosenthal’s dynamic program. In the
extended state space, every picker tour is still a path, and vice versa. The requirement to make consistent
selections of pick positions can be modeled with additional covering constraints. In this work, we follow the
same solution approach for solving the SPRP-SS but now also for the different heuristic routing policies.
The idea is that the tour defined by a heuristic routing policy is a shortest path in a state space that is
adapted according to the routing policy.

In the following, we first sketch the construction of Ratliff and Rosenthal’s state space for the routing
policy exact (Section 2.1). The formal notation for describing state spaces is also established in this section.
Hereafter, we construct state spaces for the heuristic routing policies (Sections 2.2–2.6). We summarize the
results of this longer dynamic-programming-related part in Section 2.7.

2.1. Routing Policy Exact
Let J = {1, 2, . . . ,m} denote the set of aisles (numbered from left to right). The dynamic-programming

formulation of Ratliff and Rosenthal (1983) constructs a distance-minimal picker tour by alternately deciding
how the picker moves through an aisle j ∈ J and through the next cross-aisles connecting aisle j with
aisle j + 1. Accordingly, the stages of the dynamic program can be denoted by

1−, 1+, 2−, 2+, . . . ,m−,m+, (m+ 1)−,

where j− (j+) represents the situation before (after) the aisle j ∈ J is traversed. Likewise, j+ and (j + 1)−

represent the situations before and after the cross-aisle action connecting aisle j with j+1 has been performed,
respectively. The stage (m+ 1)− is added to have a unique final state (see below).

For a distance-minimal picker tour, within an aisle, only the actions

Eaisle = {1pass, 2pass, top, bottom, gap, void},

are possible, where 1pass (2pass) stands for a single (double) traversal through the aisle (in either direction),
top (bottom) for a traversal from the back (front) cross-aisle to the lowest (highest) relevant pick position
and back, gap for double-sided traversal from front and back cross-aisle leaving a maximum length gap in
the middle, and void for no traversal of the aisle, which is only possible in aisles from where nothing needs
to be picked.

Possible cross-aisle actions are
Ecross = {00, 11, 20, 02, 22},

where the first (second) digit gives the number of traversals of the back (front) cross-aisle.
Ratliff and Rosenthal introduced so-called partial tour subgraphs (PTSs) that represent the part of the

picker tour containing only actions between aisle 1 and aisle j. A PTS results from introducing vertices aj
and bj at the crossing points of aisle j and the back and front cross-aisle, respectively. Every PTS can be
characterized by the following set of states:

S = {uu1c, e01c, 0e1c, ee1c, ee2c, 000c, 001c}.
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The first two symbols describe the parity of the right-most vertices aj and bj with u, e, and 0 for uneven
(=odd), even (with positive degree), and degree 0. The last two symbols describe the number of connected
components of the PTS, i.e., 1c (2c) for one (two) connected components, and 0c for an (empty) PTS
without edges.
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(a) Actions within an aisle j. Note that green
(blue) arcs are only valid in (non-)empty aisles.

States: ↓

uu1c
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0e1c

ee1c

ee2c

000c

001c

Stages: → j+ (j + 1)−

02

11

20

22

22

00

20

02

00

22

00

00

02

22

00

(b) Actions of the cross-aisles. Note that green
(blue) arcs are only valid in (non-)depot cross-
aisles, i.e., if j = j0 (j ̸= j0). Dashed arcs are
valid in all cross-aisles.

Figure 1: Possible actions between states for the routing policy exact.

Figure 1 visualizes the states and actions for the routing policy exact. The state space of Ratliff and
Rosenthal’s dynamic program can be constructed by joining the building block depicted in Figure 1a for
j = 1 with the building block depicted in Figure 1b for j = 1, the latter one with the building block depicted
in Figure 1a for j = 2, etc. The initial state is o = 000c at stage 1−, and the final state is d = 001c at
stage (m+ 1)−.

In contrast to Ratliff and Rosenthal, we do not model the depot 0, which is located at the front or back
of the depot aisle j0, as a pick position. Instead, the possible actions in cross-aisles can be restricted so that
the depot is surely connected with the constructed tour, see the caption of Figure 1b. For example, when
being in state e01c at stage j+, the actions 00 and 20 would make bj disconnected, which is forbidden if j
is the aisle j0 of the depot 0 (in this case bj represents the depot). Note that these restrictions are based on
the assumption that the depot 0 is located at a front cross-aisle. In the case that the depot is at the back
cross-aisle, the roles of back and front must be swapped. For simplicity, to not display symmetric cases,
we assume in the following figures that the depot 0 is located at the front cross-aisle. Note also that our
modeling approach is valid for any depot aisle j0 ∈ J , not only if j0 = 1, i.e., the depot is at the left end.

To complete the definition of the dynamic program, one must associate a cost to all actions, i.e., the
arcs of the state graph: the cost is defined by the distance traveled (or time consumed) by the picker when
performing the associated action. Recently, Heßler and Irnich (2022) have shown that computing these costs
can be done with linear effort measure in the number m of aisles and number n of pick positions. Recall that
any o-d-path in the state space represents a feasible picker tour. As a result, the length of the picker tour is
exactly the cost of the path. Therefore, solving the SPRP can be interpreted as solving an origin-destination
shortest-path problem. Note that the overall complexity is also linear because there is only a linear number
of states and actions and the state graph is acyclic.

5



2.2. Routing Policy Traversal
The rules of traversal specify that an aisle is completely traversed when it is visited (Hall, 1993). This

means that if an aisle is entered from the back (front), it needs to be left at the front (back) cross-aisle.
However, there is an exception regarding the rightmost aisle entered by the picker tour. In case an odd
number of aisles is traversed in the course of the picker tour, this last aisle is not traversed completely, but
entered and left from the same end. Thus, after collecting the articles, the picker is on the same side of
the warehouse as the depot and can move back there without crossing an additional, unnecessary aisle. In
particular, if the order only contains articles that are stored in one single aisle, then this aisle is not traversed
completely.

For the remainder of this section, we assume the depot 0 to be located within the front cross-aisle at the
level of the leftmost aisle, i.e., j0 = 1. Then, possible actions within an aisle and possible cross-aisle actions
for the routing policy traversal are

Eaisle = {1pass, bottom, void} and Ecross = {00, 11, 02}.

When the depot is located in the back cross-aisle, actions top and 20 replace bottom and 02.
Due to the smaller sets of actions (compared to exact), the set of states for traversal has fewer

elements. State ee2c represents a PTS consisting of two components and is impossible here (ee2c cannot be
reached by any heuristic routing policy). Additionally, state e01c is omitted from the state set if the depot
is located at the front cross-aisle, since with the allowed actions of traversal, the state e01c cannot be
reached. Instead, 0e1c is omitted if the depot is sited at the back cross-aisle. Apart from the two excluded
states, there is also a supplementary state denoted by END. This state can only be reached in combination
with the action bottom (or top, if the depot is located in the back cross-aisle) and is therefore responsible
to enforce the above deviating rules for the last aisle entered by the picker tour. The resulting set of states
is

S = {uu1c, 0e1c, ee1c, 000c, 001c, END}.

Figure 2 depicts which state-action combinations are possible. Note that some combinations only exist
in (non-)empty aisles or (non-)depot cross-aisles. In addition, the action of the cross-aisles between two
END-states varies depending on the location j0 of the depot 0. If aisle j is left to the depot aisle j0 (or
identical to it), then the action is 02: The picker has already collected all demanded items at this point,
but still has to move to the depot. In case j is right to j0, the action is 00, and the picker does not need to
move further but returns directly to the depot.

2.3. Routing Policy Return
The opposite routing policy to traversal is return (Petersen, 1997). Instead of traversing each relevant

aisle completely, for return each relevant aisle is entered and left from the same end. The change of direction
in the visited aisle is performed as soon as all requested articles in this aisle are collected. As the picker
starts and ends the tour at the depot, the location of the depot determines the cross-aisle the picker passes
through and, consequently, the end from which aisles are entered. This rather simple routing policy requires
only two different actions each, within the aisles and for the cross-aisles. Not even for the last aisle of the
picker tour is an additional action needed. Given the depot is located in the front cross-aisle, the two sets
of actions are

Eaisle = {bottom, void} and Ecross = {00, 02}

(if the depot is located in the back cross-aisle, instead of bottom the action top is used, and 02 is exchanged
by 20). The limited number of actions imposes three necessary states which are

S = {0e1c, 000c, 001c}.

(if the depot is placed in the back cross-aisle, 0e1c is exchanged by e01c).
Figure 3 confirms that the small number of possible actions and states also leads to few possible combi-

nations in the state space.
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States: ↓
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(a) Actions within an aisle j. Note that
bottom is only valid in the right-most non-
empty aisle and green (blue) arcs are only valid
in (non-)empty aisles.

States: ↓
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02
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(b) Actions of the cross-aisles. Note that green
(blue) arcs are only valid in (non-)depot cross-
aisles, i.e., if j = j0 (j ̸= j0). Dashed arcs are
valid in all cross-aisles. The action from state
END to END is 02 (00) for j+1 ≤ j0 (j+1 > j0).

Figure 2: Possible actions between states for the routing policy traversal.
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(a) Actions within an aisle j. Note that green
(blue) arcs are only valid in (non-)empty aisles.
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Stages: → j+ (j + 1)−

02

00
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(b) Actions of the cross-aisles. Note that green
(blue) arcs are only valid in (non-)depot cross-
aisles, i.e., if j = j0 (j ̸= j0). Dashed arcs are
valid in all cross-aisles.

Figure 3: Possible actions between states for the routing policy return.
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2.4. Routing Policy Largest Gap
The routing policy largest gap has rather complex rules (Hall, 1993): An aisle is entered (and left

again) from both ends. The two turning points within the aisle are chosen in such a way that the longest
possible part of the aisle is not traversed because there are no relevant articles. This part of the aisle is called
largest gap. When applying largest gap, the picker moves through both cross-aisles one after the other and
enters relevant aisles in between from the end that borders the cross-aisle. To reach the opposite cross-aisle,
the picker traverses the first and last aisle with relevant pick positions completely. For the implementation
of these routing rules, the actions

Eaisle = {1pass, top, bottom, gap, void} and Ecross = {00, 11, 02}

are required. Here, action 1pass is only used for the first and last aisle. For the aisles in between, the use of
gap is intended. If only one demanded article is stored in an aisle or if the largest gap of an aisle is connected
to one of the two cross-aisles, then this aisle is only entered from one end and the action top or bottom is
used instead of gap. Concerning the cross-aisle actions, 02 is replaced by 20, if the depot is located in the
back cross-aisle. The set of possible states necessary for largest gap is

S = {uu1c, 0e1c, 000c, 001c, END}.

Since the first and last aisle are traversed differently than all the other aisles, this must be taken into account
when defining the set of possible states. Thus, the additional state END is needed to enable the action 1pass
within the last aisle. For the complete traversal of the first aisle of the tour, no extra state is needed. As
the initial state 000c is only used for this aisle (and for empty aisles left of it), only the actions 1pass and
void are allowed at this state (see Figure 4a).

States: ↓

uu1c

0e1c

000c

001c

END

Stages: → j− j+

void

1pass

1pass 1pa
ss

void
gap / top / bottom

void

bottom

void

void

bottom

(a) Actions within an aisle j. Note that green
(blue) arcs are only valid in (non-)empty aisles.
Moreover, 1pass and bottom with head END are
only valid in the right-most non-empty aisle.
Between two uu1c states is either gap or top
or bottom allowed.

States: ↓

uu1c

0e1c

000c

001c

END

Stages: → j+ (j + 1)−

02

11

02

00

00

00

02 or 00

(b) Actions of the cross-aisles. Note that green
(blue) arcs are only valid in (non-)depot cross-
aisles, i.e., if j = j0 (j ̸= j0). Dashed arcs are
valid in all cross-aisles. The action from state
END to END is 02 (00) for j+1 ≤ j0 (j+1 > j0).

Figure 4: Possible actions between states for the routing policy largest gap.

In case all articles of the pick list are stored in one single aisle, the picker moves through the cross-aisle of
the depot until the corresponding aisle is reached (in general, in either direction from left to right or right to
left). In Figure 4a, this case can be observed in the states 0e1c and 000c with action bottom assuming the
depot is located at the front cross-aisle. This aisle is then served using the action bottom (otherwise with
action top). Another noticeable state is uu1c for which it depends on the number and the distribution of
the articles which action gap, top or bottom is possible (in a middle aisle of the tour). Looking at Figure 4b,
the possible action between two END-states is again dependent on the depot location.
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2.5. Routing Policy Midpoint
The routing policy midpoint (Hall, 1993) has many similarities to the just-described policy largest gap.

The picker moves through the warehouse following almost all principles of largest gap. The only differ-
ence is the criterion for defining the turning points in aisles that are visited from both ends. While for
largest gap the picker leaves out the maximum length part, the rules for midpoint require the picker to
not cross the middle of an aisle. This means if the picker enters an aisle from the back (front) cross-aisle, he
or she is only allowed to collect articles closer to the back (front) cross-aisle than to the front (back) cross-
aisle or articles that are equidistant from both cross-aisles. The location of the turning points of midpoint
can only lead to identical or longer tour lengths than obtained with largest gap. Nevertheless, midpoint
also brings its advantages. While a picker can easily determine the turning points of each aisle on the go
following the rules of midpoint, this quickly becomes difficult for largest gap as soon as several articles
have to be collected in the same aisle.

The following actions are possible for midpoint:

Eaisle = {1pass, top, bottom, mgap, void} and Ecross = {00, 11, 02}.

Compared to the routing policy largest gap, the action mgap replaces gap, thus respecting the rules for
the determination of the turning points of midpoint. Just as with largest gap, the actions top or bottom
are used instead of mgap if there is only one requested article in an aisle or if the largest gap of this aisle is
located at one end of this aisle.

The possible states of midpoint remain the same compared to largest gap:

S = {uu1c, 0e1c, 000c, 001c, END}

The resulting possible combinations of states and actions for midpoint are almost identical to the combi-
nations of largest gap (compare Figures 4 and 5). The only difference is the use of the aisle action mgap
instead of gap between two states uu1c in Figure 5a which differ in the definitions of the turning points.

States: ↓

uu1c

0e1c

000c

001c

END

Stages: → j− j+

void

1pass

1pass 1pa
ss

void
mgap / top / bottom

void

bottom

void

void

bottom

(a) Actions within an aisle j. Note that green
(blue) arcs are only valid in (non-)empty aisles.
Moreover, 1pass and bottom with head END are
only valid in the right-most non-empty aisle.
Between two uu1c states is either mgap or top
or bottom allowed.

States: ↓

uu1c

0e1c

000c

001c

END

Stages: → j+ (j + 1)−

02

11

02

00

00

00

02 or 00

(b) Actions of the cross-aisles. Note that green
(blue) arcs are only valid in (non-)depot cross-
aisles, i.e., if j = j0 (j ̸= j0). Dashed arcs are
valid in all cross-aisles. The action from state
END to END is 02 (00) for j+1 ≤ j0 (j+1 > j0).

Figure 5: Possible actions between states for the policy midpoint.
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2.6. Routing Policy Composite
The policy composite is a combination of the routing policies traversal and return. That means the

picker can either traverse an aisle completely or enter the aisle and move through it until all demanded
articles are collected before returning to the same end again, where the aisle was entered. These two options
are possible for each aisle that needs to be visited, regardless of whether it is one of the two aisles on the
edge of the tour or not.

To the best of our knowledge, there are two different definitions of composite in the literature. In both
cases, the decision whether an aisle is visited with action 1pass, bottom, or top is made in a greedy fashion.
We first describe the two versions of the policy composite and then present the state space of a new version
in which the distance-minimal route is generated when only allowing the actions 1pass, bottom, top, and
void.

Petersen (1995) introduced the routing policy composite. Here, the distance between the two most
distant articles of two successive aisles is used as the decision criterion which action is chosen. To be more
precise, in both aisles, this concerns the article that is furthest away from the picker’s current position
(crossing of the current aisle with back or front cross-aisle). Aisles without relevant articles are ignored.
This may result in relevant successive aisles not being contiguous, but separated by irrelevant aisles. If the
path resulting from applying 1pass (bottom or top) between these two pick positions is shorter than the
path resulting the other action, the former is chosen for the current aisle. If the two paths are of equal
length, it is irrelevant which action is selected. According to this principle, a decision is made for each aisle
on how it is passed through, starting with the aisle next to the depot. After all articles from the pick list
are collected, the picker moves back to the depot through the cross-aisle where the depot is located.

Scholz and Wäscher (2017) define the routing policy composite differently. If more than half of an aisle
needs to be visited to collect all demanded articles in this aisle, then the action 1pass is chosen. However, if
the picker can collect all necessary articles in the first half of the aisle, the picker follows the action bottom
or top (depending on the current position) and leaves the aisle at the same end again.

It should be noted that neither of the above definitions leads to an easy-to-compute and memorize tour.
We use a third and new version of composite in which the actions 1pass, bottom, and top are combined
optimally. More precisely, a distance-minimal picker tour is constructed, only allowing the possible actions
of these two routing policies. For this purpose, a state space is set up which contains the possible actions of
traversal and return.

This procedure should not be confused with another routing policy called combined (Roodbergen, 2001),
which also combines the possible actions of traversal and return in another target-oriented manner.
combined searches for a distance-minimal path starting at the depot and ending at the pick position of
the last demanded article while collecting all other articles on the way. The way back to the depot leads
through the cross-aisle of the depot. In contrast, our version of composite optimizes the entire picker tour
and allows the collection of articles on the way back to the depot.

A visual representation of the differences in the definitions of composite and the routing policy combined
can be found in Figure 6. In each version, the same instance is used in which the distance between two
neighboring pick positions as well as the distance between the first (last) pick position of an aisle and the
bordering cross-aisle is one. The routing costs show clear differences for the different definitions. The picker
tour has a length of 68 when constructed according to the definition of Petersen but a length of 56 results
from the definition of Scholz and Wäscher. Here, the picker tour is identical to the one resulting from the
routing policy traversal. Our new version of composite leads to a tour length of 48. In contrast, the
picker tour resulting from combined has a length of 54.

Our version of composite has the following the sets of actions:

Eaisle = {1pass, top, bottom, void} and Ecross = {00, 11, 20, 02}.

These two sets include all relevant actions of traversal and return for the both possible scenarios of the
depot being located in the back or front cross-aisle. The possible actions of composite are not dependent
on the position of the depot. The set of states is

S = {uu1c, e01c, 0e1c, ee1c, 000c, 001c}
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(a) Routing policy composite as defined
by Petersen (1995).
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(b) Routing policy composite as defined
by Scholz and Wäscher (2017).
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(c) Our new definition of composite.
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back:

front:

(d) Routing policy combined (Roodber-
gen, 2001).

Figure 6: Different definitions of the routing policy composite in comparison with the routing policy
combined.
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and contains almost all states required for the routing policy exact. Solely ee2c is missing. Furthermore,
no additional state is needed for the first or last aisle of the picker tour because the rules of composite treat
every aisle equally.

States: ↓

uu1c

e01c

0e1c

ee1c

000c

001c

Stages: → j− j+

1pa
ss

bo
tto

m

to
p

void
bottom

top

1pass

void
top

void

void

void
bottom

top

1p
as
s

void
1p

as
s

1pass

bottom

(a) Actions within an aisle j. Note that green
(blue) arcs are only valid in (non-)empty aisles.

States: ↓

uu1c

e01c

0e1c

ee1c

000c

001c

Stages: → j+ (j + 1)−

02

00

20

02

11

20

02

00

00

00

00

(b) Actions of the cross-aisles. Note that green
(blue) arcs are only valid in (non-)depot cross-
aisles, i.e., if j = j0 (j ̸= j0). Dashed arcs are
valid in all cross-aisles.

Figure 7: Possible actions between states for the routing policy composite.

Although this routing policy already allows several different actions and needs only one state less than
exact, the number of possible state-action combinations is substantial smaller for composite. Comparing
Figures 1 and 7, this difference is clearly visible.

2.7. Summary
Up to now, we have established dynamic-programming formulations for the SPRP restricting picker

routes to the rules of the different heuristic routing policies used in practice. These dynamic-programming
formulations may seem dispensable, since heuristic routing policies are simple route-construction procedures.
However, a recent result of Heßler and Irnich (2022) is applicable here showing that, if properly implemented,
all dynamic programs can be constructed and solved in linear time (measured in the number of aisles of
the warehouse and the number of given pick positions). Even more, the following section shows that also
the more difficult variants of the problem with scattered storage can be solved with a structurally simple
integer-programming formulation based on the state spaces that have been presented in this section.

3. Extensions of the State Spaces and IP Formulation for Scattered Storage

The SPRP-SS distinguishes from the basic SPRP by the additional flexibility that one can select a pick
position for a requested article whenever this article is stored at two or more positions. For capturing
these options, the state space must be extended. We again present this idea as in Section 2 for a standard
warehouse with parallel aisles and a single block layout. Compared to the SPRP, the number of stages
and the states within each stage remain identical, i.e., those of the state space of Ratliff and Rosenthal.
Moreover, cross-aisle actions Ecross

j remain identical (connecting stages j+ and (j +1)−), and also the aisle
actions 1pass and 2pass remain unchanged. However, additional aisle actions have to be added what we
explain with the help of the following example.
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i = 1

j = 1 2 3back:

front:

(a) The warehouse and optimal picker tour.

Aisle Type of additional aisle actions

j = 1 bottom(i) Cells i ∈ {1, 7}
gap(h, i) Cell (h, i) = (1, 9)

j = 2 top(i) Cells i ∈ {4, 8}
bottom(i) Cells i ∈ {2, 4, 8∗}
gap(h, i) Cells (h, i) ∈ {(2, 8)‡, (2, 9), (4, 9)}

j = 3 top(i) Cell i = 9
bottom(i) Cell i = 4
void

(b) Additional aisle actions compared to non-scattered stor-
age. ∗: dominated by bottom(4). ‡: dominated by gap(2, 9).

Figure 8: Instance of the SPRP-SS. The pick list contains four articles S = {1, 2, 3, 4} (unit demand); pick
operations are encircled.

Example 1. An instance of the SPRP-SS with four requested articles S = {1, 2, 3, 4} is depicted in Figure 8a.
For simplicity, we discuss the unit demand case first, i.e., qs = 1 for all s ∈ S. In aisle j = 1, it is possible
to pick only article 4 because articles 1 and 2 are also available in other aisles. The associated new aisle
action is bottom(1) which is the traversal from the front cross-aisle with a U-turn in cell i = 1. Moreover,
picking only articles 1 and 4 or articles 2 and 4 is feasible leading to the additional aisle actions bottom(7)
and gap(1, 9) (the latter is leaving out the position i = 7 where article 1 is stored). These are all additional
aisle actions as listed in the table in Figure 8b. Note that any action gap(i, k) can be disregarded if i and
k are neighboring positions with a non-maximal gap. As in the dynamic program of Ratliff and Rosenthal,
these actions are dominated by one with maximum gap.

Also in aisle j = 2, it is not required to collect articles 1 and 2. However, article 3 must be collected,
either from position i = 2 or i = 8 making void and top(9) impossible. With top(4) and gap(4, 9) we can
collect all three articles 1, 2, and 3. The aisle actions top(8), gap(2, 8), and gap(2, 9) can pick articles 2
and 3 but not 1. In this case, gap(2, 8) is dominated by gap(2, 9) in the sense that the latter is less costly but
can collect the same articles (in the unit demand case). Articles 1 and 3 are collected with bottom(4) and
bottom(8) where the latter is dominated by the first. Lastly, with bottom(2), only article 3 can be picked.

It is possible to not enter the last aisle j = 3, making void a feasible option here. Moreover, additional
aisle actions collecting only article 1 or article 2 are top(9) and bottom(4), respectively.

Overall, the set of aisle actions becomes aisle dependent. Hence, we denote by Eaisle
j the resulting set

of arcs connecting stages j− and j+ for all j ∈ J . Several aisle actions of the same type referring to the
same aisle can be considered as parallel arcs in the DP state space (in the above example, two parallel aisle
actions top in aisle 2 differing in cost and articles that can be collected). Please note that, compared to the
basic SPRP discussed in Sections 2.1–2.6, the aisle actions referring to empty aisles (depicted in green in
Figures 1–5 and 7) are now also possible for (some) non-empty aisles.

As mentioned above, the set of additional aisle actions can be reduced by dominance considerations. In
the example in aisle j = 2, gap(2,8) is dominated by gap(2,9) because of its higher cost. This is only true in
the unit demand case because otherwise, gap(2,8) could provide more items of article 3. Likewise, bottom(8)
is dominated by bottom(4) in aisle j = 2.

For scattered storage with general demand, any aisle action e ∈ Eaisle
j that leaves out some positions in

aisle j is feasible if and only if the quantity that can be collected from this aisle together with all quantities
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stored in other aisles j′ ̸= j is sufficient to fulfill the requested demand of the pick list.
In all cases (unit demand and general demand), we define bse as the quantity of article s ∈ S that can be

collected when traversing the aisle via aisle action e ∈ Eaisle
j . Cross-aisle actions have zero supply bse = 0

for all e ∈ Ecross
j and j ∈ J . For a given article s ∈ S, we denote the set of edges with a non-negative

quantity bse by Es.

Example 2. (continued from Example 1) For the SPRP-SS instance depicted in Figure 8, we now assume
that each position stores three units of each articles of the respective indicated type (the general demand case).
Then, overall, nine, nine, six, and three articles 1, 2, 3, and 4 are stored in the warehouse, respectively.
Any demand q = (q1, q2, q3, q4) ≤ (9, 9, 6, 3) can be retrieved from a picker tour. The picker tour depicted
in Figure 8a can collect (3, 3, 6, 3) units. This picker tour uses in aisle j = 1 the aisle action bottom(1)
with positive supply value bse = 3 for s = 4 and e = bottom(1) ∈ Eaisle

1 . In aisles j = 2, the aisle
action bottom(9) has positive supply values b1e = 3, b2e = 3, and b3e = 6 for e = bottom(9) ∈ Eaisle

2 . In
aisle j = 3, the aisle action void has no positive supply values.

We can now formalize the dynamic-programming-based formulation for the SPRP-SS. Recall that we
have stages 1−, 1+, 2−, 2+, . . . ,m−,m+, (m + 1)−. Let V denote the set of all states of all stages, i.e., the
vertices of state space. In particular, there are two distinct states, the initial state o = 000c at stage 1−

and the final state is d at stage (m+ 1)−. The latter state is either d = 001c or d = END depending on the
routing policy, see Section 2. Moreover, let E denote the (disjoint) union of all aisle and cross-aisle actions,
i.e.,

E =

m⋃
j=1

(
Eaisle

j ∪ Ecross
j

)
.

For each e ∈ E, let ce be the length of the corresponding part of a picker tour described by e. The discrete
linear formulation uses binary variables xe for all e ∈ E to indicate whether the optimal picker tour contains
the respective part of a walk described by e. It reads as follows:

min
∑
e∈E

cexe (1a)

subject to
∑

e∈δ+(σ)

xe −
∑

e∈δ−(σ)

xe =

 +1, if σ = o
−1, if σ = d
0, otherwise

∀σ ∈ V (1b)

∑
e∈Es

bsexe ≥ qs ∀s ∈ S (1c)

xe ∈ {0, 1} ∀e ∈ E (1d)

The objective (1a) is the minimization of the length of the resulting picker tour. The flow-conservation
constraints (1b) ensure that the selected aisle and cross-aisle actions together describe a o-d-path in the
extended state space (V,E). For any state σ ∈ V , δ+(σ) and δ−(σ) denote the set of arcs leaving and
entering state σ, respectively. Demand fulfillment, i.e., that the requested number qs of articles s ∈ S can be
collected with the constructed tour, is guaranteed by (1c). The domain of the flow variables xe is given by
(1d). Note that (1a), (1b), and (1d) is the standard model of an origin-destination shortest-path problem.

Example 3. (continued from Example 2) We continue with the example depicted in Figure 8. Here, we
have the seven stages 1−, 1+, 2−, 2+, 3−, 3+, and 4−.

For the routing policy exact, the initial state is o = 000c at stage 1−, and the final state is d = 001c at
stage 4−. The optimal solution depicted in Figure 8a can be described by the corresponding sequence

(000c, 0e1c, 0e1c, 0e1c, 001c, 001c, 001c)

of states. The optimal control is (bottom(1), 02, bottom(9), 00, void, 00).
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For the routing policy return, the exactly same control (bottom(1), 02, bottom(9), 00, void, 00) is also
optimal (feasibility can be tested with the help of Figure 3) leading to the same sequence of states that the
o-d-path travels through and the same final picker tour.

For the routing policies traversal, largest gap, and midpoint, the picker tour depicted in Figure 8a
is not feasible. Applying the same control (bottom(1), 02, bottom(9), 00, void, 00) is infeasible, since the
action bottom(1) would let the path transit through the state END where it remains with action 02. From
state END, the action bottom(9) is not allowed, see Figures 2a, 4a, and 5a.

Finally, we consider the routing policy composite with the three different underlying definitions ex-
plained in Section 2.6. All three definitions lead to the picker tour depicted in Figure 8a. The con-
trol (bottom(1), 02, bottom(9), 00, void, 00) consists of two bottom actions and one void action within the
aisles. In general, these actions are possible when applying composite. Regarding our new definition of
composite, the state space constructed from the actions of Figure 7 allows the solution shown in Figure 8a.
Following the definitions of composite by Petersen (1995) and Scholz and Wäscher (2017), this picker tour
is also feasible.

4. NP-Hardness of the SPRP-SS

As mentioned above, Weidinger (2018, Theorem 1) has shown that computing a distance-minimal picker
tour (policy exact) in a one-block parallel-aisle warehouse for the SPRP-SS is NP-hard. We now show
an even stronger result, i.e., the problem remains NP-hard even if a shortest picker tour for one of the
commonly used heuristic routing policies has to be determined. The following proposition summarizes our
findings about the computational complexity of the SPRP-SS.

Proposition 1. The SPRP-SS is strongly NP-hard for the routing policies traversal, return, midpoint,
largest gap, and composite considering a one-block parallel-aisle warehouse.

Proof. The proof is analog to (Weidinger, 2018, Theorem 1) through a reduction from the hitting set problem
that is strongly NP-complete. We show that the existence of a hitting set is equivalent to the existence of
a picker tour of a certain maximal length.

The hitting set problem is defined as follows (Garey and Johnson, 1979): Given a finite set T , a positive
integer k ≤ |T |, and a set of subsets {M1, . . . ,Mn} with Mi ⊆ T for all i ∈ {1, . . . , n}, find a set H ⊆ T
such that |H| ≤ k and H ∩Mi ̸= ∅ for all i ∈ {1, . . . , n}.

Given an instance <T, k, {M1, . . . ,Mn}> of the hitting set problem, a corresponding instance of the
SPRP-SS can be constructed as follows. We consider a single-block warehouse with m = |T | aisles and
C = 2l + 2|T | cells per aisle. The depot is located at the front-end of the leftmost aisle. Let the (vertical)
distance between two neighboring cells be 1 and the (horizontal) distance between two neighboring aisles
be 3. Then, l = 3(|T | − 1) is the distance between the first and last aisle (see Figure 9). All n articles that
need to be collected are stored in the lower middle cell c = l + |T | + 1. Article i is stored in aisle j if and
only if j ∈ Mi. The figure illustrates how the SPRP-SS instance is constructed. We now prove that the
existence of a hitting set of size |H| ≤ k is equivalent to the existence of a picker tour of maximal length
k(C + 1) + 2l.
First, we consider the routing policies return, composite, and midpoint.

’⇒’: Given a hitting set of size |H| ≤ k. According to the routing policy, we construct the corresponding
picker tour that enters only the aisles i ∈ H, i.e., not more than k aisles. For the policies return, composite,
midpoint, and the constructed instance, this picker tour consist of bottom actions only for collecting articles.
The traveled distance is upper bounded by

|H|C︸ ︷︷ ︸
bottom traversals

+ 2l︸︷︷︸
cross-aisle traversals

|H|≤k

≤ k(C + 1) + 2l, (2)

where the first summand is the distance of |H| bottom traversals and the second summand is an upper
bound on the horizontal cross-aisle traversal distance. This shows the first direction.
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(a) Hitting set problem with T =
{1, 2, 3, 4, 5}, k = 3, and sets
M1, . . . ,M5 as shown. The solution
is the hitting set H = {1, 3, 4}.
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depot

(b) The corresponding picker routing problem with m = 5 aisles and
C = 34 cells per aisle. Article i is stored in aisle j if and only if j ∈ Mi.
The length of the plotted optimal picker route for the policies return,
composite, and midpoint is 120 ≤ kC + 2l = 126. Aisles 1, 3, and 4 are
entered.

Figure 9: Example for the transformation between the hitting set problem and the picker routing problem.
The hitting set corresponds to the entered aisles.
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’⇐’: Given a picker tour of maximal length k(C + 1) + 2l collecting all articles. It must be shown that
the picker tour enters not more than k different aisles. We prove this direction by contradiction: If k + 1
or more aisles were entered, at least one article was collected in each aisle. This results in a picker tour of
length not shorter than

(k + 1)C︸ ︷︷ ︸
bottom traversals

+ 2 · 3 · k︸ ︷︷ ︸
cross-aisle traversals

> kC + C = kC + 2l + 2|T |
k≤|T |
≥ kC + 2l + k = k(C + 1) + 2l (3)

contradicting with the maximal tour length of k(C + 1) + 2l. Consequently, the picker collects the articles
from not more than k different aisles. Defining the hitting set H as the set of all entered aisles, we have
proven this direction, too.
Second, we consider the routing policy traversal.

’⇒’: The shape of the traversal picker tour that enters only the aisles i ∈ H depends on whether |H|
is even or odd. If |H| is even, the length is at most |H|(C+1)+2l ≤ k(C+1)+2l, where the first summand
is the distance of |H| ≤ k 1pass traversals and the second summand is an upper bound on the horizontal
cross-aisle traversal distance. If |H| is odd, the picker tour consists of k−1 1pass traversals and one bottom
traversal, which amounts a shorter tour length of (|H| − 1)(C + 1) + C + 2l ≤ k(C + 1) + 2l.

’⇐’: As in the first case, if k + 1 or more aisles were entered, the contradiction results from replacing
(3) by

k(C + 1)︸ ︷︷ ︸
1pass traversals

+ C︸︷︷︸
bottom traversals

+ 2 · 3 · k︸ ︷︷ ︸
cross-aisle traversals

> k(C + 1) + C
C=2l+2|T |

> k(C + 1) + 2l. (4)

Third, we consider the routing policy largest gap.
’⇒’: The largest gap picker tour that enters only the aisles i ∈ H has the following shape: 2 1pass

traversals in the first and last non-empty aisle and |H| − 2 largest gap traversals that are actually bottom
traversals because only one position (at x) stores articles in a non-empty aisle. The distance of this optimal
picker tour is at most

2(C + 1) + (|H| − 2)C + 2l
|H|≤k

≤ 2(C + 1) + (k − 2)C + 2l ≤ k(C + 1) + 2l, (5)

where the first summand is the two traversals in the first and last non-empty aisle, the second summand
is the distance of |H| − 2 bottom traversals, and the third summand is an upper bound on the horizontal
cross-aisle traversal distance. This proves the first direction.

’⇐’: As in the first case, if k + 1 or more aisles were entered, the contradiction results from replacing
(3) by

2(C + 1)︸ ︷︷ ︸
1pass traversals

+ (k − 1)C︸ ︷︷ ︸
largest gap traversals

+ 2 · 3 · k︸ ︷︷ ︸
cross-aisle traversals

> k(C + 1) + C
C=2l+2|T |

> k(C + 1) + 2l. (6)

5. Class-based Storage Policies

De Koster et al. (2007) categorize several methods for the assignment of articles to pick positions. One
type of these methods are the class-based storage policies, where each article is assigned to a pick position
according to its value, e.g., the turnover rate, see Section 1.1. For this purpose, articles are classified into
one of the classes A, B, or C based on their value. As commonly assumed, 20% of all articles with the
highest value are assigned to class A, the next 30% are assigned to class B, and the remaining 50% of the
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articles belong to class C. We often observe then that classes A, B, and C are composed of approximately
80%, 15%, and 5% of the articles, respectively.

The pick positions of the warehouse are grouped into three zones (one zone for each class), and the
different class-based storage policies vary in how the zones are defined. As in (Petersen and Schmenner,
1999), we consider the typical class-based policies across-aisle, within-aisle, perimeter , and diagonal , for
which the corresponding distribution schemes are illustrated in Figure 10. As a counterpart to the class-
based policies, we include the storage policy uniformly distributed in the evaluation, which has already
evolved into the most common storage policy in the last millennium (Petersen and Schmenner, 1999, p. 483).
For the latter policy uniformly distributed , the articles of all three classes are distributed randomly in the
warehouse regardless of the classification.
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(a) Storage policy across-aisle.
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(b) Storage policy within-aisle.
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(c) Storage policy diagonal .
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(d) Storage policy perimeter .

Figure 10: Class-based storage policies.

The policies across-aisle, within-aisle, and diagonal arrange the zones in the warehouse such that zone A
is positioned closest to the depot. Zone B follows after zone A, and zone C generally comprises pick positions
that are farthest from the depot. The specific assignment of the pick positions to the zones depends on the
distance measure used. In policy across-aisle, zone A includes the pick positions of each aisle that are closest
to the cross-aisle of the depot. The remaining pick positions are allocated to zones B and C according to the
same principle. In policy within-aisle, pick positions are assigned to zones aisle by aisle and pick position by
pick position (as a secondary criterion): Starting with the depot aisle and the position closest to the depot
cross-aisle, the remaining pick positions are assigned to the zones. When zone A (B) comprises sufficiently
many pick positions, the next pick position is assigned to zone B (C). In policy diagonal , all pick positions
are sorted by ascending distance to the depot in a first step. Afterwards, the first 20% of the pick positions
are allocated to zone A, and the remaining 30% and 50% of the pick positions are added to zone B and C,
respectively.

In policy perimeter , the warehouse is split up into zones from the outside (zone A) to the inside (zones B
and C): Zone A comprises the pick positions around the perimeter of the warehouse, while zone C stores
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articles in the center of the warehouse. Zone B contains the remaining pick positions in between, arranged
in a ring-shaped fashion. Overall, pick positions are assigned to zones A to C by moving from the outside
to the inside of the warehouse. To exactly respect the predefined proportions of the zones (20%, 30%, and
50%), we used the following procedure for generating the three zones A, B, and C:

1. Select alternately the outer horizontal and vertical layer that are not yet assigned:
The horizontal layer k includes the kth and the kth-last pick position of each aisle. In contrast, the
vertical layer k includes all pick positions in the kth and the kth-last aisle. The selection of layers is
then: horizontal layer 1, vertical layer 1, horizontal layer 2, vertical layer 2 etc.

2. Assign zones to the (unassigned) pick positions of the chosen layer in the order A, B, C:
If all unassigned pick positions of the layer can be added to the considered zone without exceeding
the given size, they are assigned to the zone. Otherwise, if only a portion of the pick positions of the
layer can be assigned to the zone, randomly select pick positions from the layer and assign them to
the considered zone until the given size is reached. In the latter case, repeat the procedure with the
remaining unassigned pick positions of the layer and the next zone.

6. Computational Study

In this section, we present the results of our extensive computational study and analyze which combi-
nations of routing and storage policies are beneficial for a given warehouse layout and length of order list.
The state space and the resulting IP formulation are implemented in C++ and compiled in release mode
into a 64-bit single-thread code under MS Visual Studio 2017. We use the callable library CPLEX 20.1 for
optimizing the IP formulation (1a)–(1d). The default values are kept for all parameters except from setting
the number of threads to one. The computational study was executed on a 64-bit Microsoft Windows 10
computer with an Intel® Core™ i7-5930k CPU clocked at 3.5 GHz and 64 GB of RAM.

6.1. Instances

To the best of our knowledge, there are no benchmark instances combining scattered storage with class-
based storage policies publicly available. Therefore, we generated an extensive set of instances for our
computational study. We consider a single-block warehouse with parallel aisles and two bordering cross-
aisles, see Figures 8a, 9b, and 10. The depot is located in the front cross-aisle at the level of the first aisle
from the left, and the distance between the depot and the bottom cell in the first aisle is 1 unit. Likewise,
the distance between two neighboring pick positions of an aisle is always 1 unit. The distance between two
neighboring aisles is 3 units.

Parameter Value(s)

Number of aisles m 10
Number of pick positions C (per aisle) 40
Max. storage capacity per pick position 10 articles
Number of different articles n 1000
Relative sizes of zones A, B, and C 20%, 30%, and 50%
Overall scatter factor α 2
Number of different pairs of article and pick position αn 2000
Scatter factor settings (αA/αB/αC) (6/1/1), (1/1/3), (2/2/2)
Number of articles to pick = length of pick list 5, 15, 50
Distribution of A-, B-, and C-articles in pick list 80%, 15%, and 5%

Table 1: Parameters used for the generation of SPRP-SS instances.

For the entire computational study, we fixed the warehouse layout to m = 10 aisles with C = 40 pick
positions per aisle. At each pick position, there are two racks from which stored articles can be collected
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(left- and right-hand side are irrelevant for distance calculations). In total, there are 800 pick positions in
the warehouse. We assume the articles to be rather small so that up to ten different articles can be stored
at one pick position at the same time. Furthermore, we presume that a sufficiently large quantity of each
article is available at a pick position so that each line of the pick list can be collected from one pick position
(the unit demand case, see Section 1.1).

The number of different articles (SKUs) stored in the warehouse is fixed to n = 1000 for all instances to
ensure comparability. Hence, there are nA = 200 class-A, nB = 300 class-B, and nC = 500 class-C articles.

For the storage policy uniformly distributed, scattering is performed as follows. If the global scatter
factor is α there must be nα different pairs (a, p) of article a and pick position p. More precisely, for a given
scatter factor setting (αA/αB/αC), we generate nAαA + nBαB + nCαC = nα pairs in the following way:
First, each article a is assigned to a randomly chosen pick position p (while making sure that no position
contains more than 10 different articles). This guarantees that every article is available and stocked at least
once.

Second, for each class X ∈ {A,B,C}, we generate nX(αX−1) additional pairs (a, p) (excluding duplicates
and again making sure that no position contains more than 10 different articles).

Third, for class-based storage policies (across-aisle, within-aisle, perimeter , and diagonal), we use the
same instance generation mechanism but extend the procedure by the following additional step: The ware-
house is divided into three zones, one zone for each class A, B, and C depending on the storage policy and
according to the sizes of the zones, see Section 5. Hence, zone A comprises 20%, zone B 30%, and zone C
50% of all pick positions, respectively. Next, the pairs (a, p) generated in the second step are randomly
relocated to feasible positions p′ where the position p′ must belong to the class of article a. As a result, the
new set of pairs (a, p′) consistently stores all articles according to the given class-based storage policy.

Fourth and finally, the pick list must be created. The length of the pick list is fixed to 5, 15, or 50.
Given the length, we first assign each order line with a probability of 80%, 15%, and 5% to class A, B, or C,
respectively. Next, we randomly choose an article from the class (rejecting duplicate articles in the pick
list).

Table 1 summarizes the parameters used for generating instances for the computational experiments.
This includes the different scatter factor settings and lengths of pick lists. For each parameter combination,
we generated 50 instances. In total, this gives 5 ·3 ·3 ·50 = 2250 instances (five storage policies, three scatter
factor settings, and three lengths of pick lists) to be analyzed with six routing policies (see Section 2). The
instances are online available at https://logistik.bwl.uni-mainz.de/reserach/benchmarks/.

6.2. Computational Performance
As noted in Section 4, solving the SPRP-SS is NP-hard, even when heuristic routing policies are used.

However, all instances of the computational study can be solved within milliseconds. Table 2 shows the
average and maximum computation times (in milliseconds) for the different routing policies and pick list
lengths. One can see that more complex routing policies like exact or composite lead to longer computation
times than fairly simple routing policies like return or traversal. The reason for this are the differently
sized state spaces, see Section 2. While complex routing policies allow (almost) all states and many different
actions within an aisle for the different states, the state space of a simple routing policy is rather small
and sparse. The order size and the length of the pick list also influence the computation time (note that
in the unit demand case, order size equals pick list length; we will use the shorter term ‘order size’ in the
following). In particular, if the considered routing policy allows many different actions within an aisle for
many different states, a larger order size can result in a tenfold increase in runtime. In contrast, for small
and sparse state spaces, this effect is very small or disappears completely. Despite a maximum runtime of
634.91 milliseconds for an instance with a pick list length of 50 and routing policy exact, the computation
times are very short overall. Therefore, we do not go into further algorithmic details and neglect a more
in-depth analysis of the runtimes. Instead, we will focus on evaluating different routing and storage policy
settings in the following.
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Average time Max. time

Order size 5 15 50 5 15 50

Routing policy exact 6.60 15.57 72.78 48.64 227.38 634.91
composite 3.27 5.47 11.38 26.53 112.33 160.16
largest gap 1.54 2.20 7.93 14.43 20.57 141.76
midpoint 1.40 1.78 4.03 5.86 16.97 75.66
return 1.42 1.59 1.75 15.21 10.44 16.77
traversal 2.01 1.83 1.29 16.01 40.92 7.87

Table 2: Average and maximum computation times in milliseconds for different routing policies and order
sizes.

6.3. Evaluation of Combinations of Routing and Storage Policies
Next, we evaluate combinations of routing policies and storage policies for the SPRP-SS. To this end,

each of the earlier introduced routing policies is combined with every storage policy. In addition, both the
scatter factor settings (αA/αB/αC) and the order sizes are varied.

Table 3 provides aggregated results for each combination. (For the sake of readability, some routing and
storage policies are abbreviated in the tables: uniformly distributed is denoted as unif. distr., largest gap
as gap, across-aisle as across, and within-aisle as within.) The upper part of the table shows the average
tour lengths. A striking observation are the large differences in the tour lengths. While the combination of
return and uniformly distributed leads to an average tour length of 351.31, the policies exact and within-
aisle induce tours that are nearly 60% shorter with a mean length of 149.04. Even if the optimal routing
policy exact is replaced by composite, the tour hardly gets any longer on average. On the contrary, for a
given storage policy, the average tour lengths differ considerably for all heuristic routing policies. Similar
observations can be made when the routing policy is fixed and the storage policy is varied. Thus, we conclude
that both the choice of the routing policy and the storage policy have a major impact on the tour length.

When comparing the routing policies in Table 3, it is noticeable that there are two policies each that
behave very similarly. These are composite and exact as well as midpoint and largest gap. The lower
part of the table shows that the deviation of composite (midpoint) from exact (largest gap) is less than
5% for every storage policy, except for the single combination with perimeter (with a deviation of nearly
12%). As the tour lengths hardly differ for these routing policies, we exclude composite and midpoint from
further analyses. Routing policy exact is preferred over composite to be able to compare optimal rule-
based and minimum-length tours. Besides, as already discussed in Section 2.6, the heuristic routing policy
composite has rather difficult rules. Thus, the other routing policies are more attractive, because they are
easier to remember and are expected to lead to fewer human errors. The rules for largest gap and midpoint
only differ in the turning point within an aisle. Tours resulting from largest gap are always shorter or as
long as the tour resulting from midpoint. Therefore, we limit the further evaluation to largest gap and
disregard midpoint in the following.

Table 4 shows detailed low-level results. For each combination of a routing and storage policy, average
tour lengths are listed per scatter factor setting and order size. In addition, for each combination of routing
policy, scatter factor setting and order size, the storage policies leading to the shortest average tour length
(min) are given. Vice versa, for each storage policy, the best routing policy is given per setting (in this
case, we exclude the routing policy exact from the min-grading as the optimal routing always generates the
shortest average tour lengths; policy exact is shaded in gray in Table 4). In this spirit, the routing policy
exact is rather used as an optimal reference solution, not as one of the compared routing policies for the
subsequent evaluations.

We first concentrate on the global findings, before we analyze each class-based storage policy separately
concerning the different routing policies and the variation of the scatter factor setting and the order size. In
both cases, Table 4 is the basis for the evaluation, and Table 5 provides complementing data summarized
across all order sizes.
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Storage policy

unif. distr. within across perimeter diagonal

Routing policy exact 233.27 149.04 163.31 165.68 162.20
composite 238.82 151.61 164.30 185.46 163.99
largest gap 256.91 165.93 197.24 174.61 186.83
midpoint 268.50 169.86 198.80 176.36 189.54
return 351.31 204.38 197.45 287.40 204.45
traversal 290.00 181.35 284.22 249.73 227.52

Deviation composite / exact 2.38% 1.72% 0.61% 11.93% 1.10%
midpoint / largest gap 4.51% 2.37% 0.79% 1.00% 1.45%

Table 3: Average picker tour length for all combinations of routing policies and storage policies.

General observations can be summarized as follows:
• Storage policy uniformly distributed performs worse compared to the class-based storage policies: It

generates the longest picker tours for nearly all settings with scatter factor setting (1/1/3) and (2/2/2),
see Table 4. Only for (6/1/1), uniformly distributed can keep up and is in the midfield compared to
the other storage policies. This can also be seen in Table 5, which summarizes the average tour lengths
across all order sizes. These observations can be explained by the fact that an order consists of 80%
A-articles, and as uniformly distributed does not take advantage of the classification of the articles, it is
most advantageous to scatter only the articles that appear most frequently in an order. We disregard
the storage policy uniformly distributed in the following analysis and concentrate on the class-based
storage policies.

• Looking at the performance of the different scatter factor settings, it can be stated that, for every
order size, the scattering of C-articles leads to the shortest picker tours. We indicate the best result
per order size and scatter factor setting by using bold font in Table 4. Furthermore, each routing
policy also generates the shortest picker tours for each order size, if scatter factor setting (1/1/3) is
applied.
Comparing the tours generated by the different routing policies per scatter factor setting and order size,
it is noticeable that the scatter factor settings behave differently. For scatter factor setting (1/1/3),
the tour lengths resulting from the different routing policies vary considerably. In contrast, if only the
A-articles are scattered, the choice of the routing policy only has a minor influence on the tour length.
While A-articles are stored at beneficial pick positions close to the depot, C-articles are located far
from the depot. Thus, an A-article in the order list normally implies a shorter supplementary path
segment in the picker tour than a C-article. And similarly, scattering A-articles usually saves less
distance than scattering C-articles, since the choice of one or several alternative pick positions within
zone A potentially leads to smaller savings than in zone C.

• Comparing the different order sizes, there are particularly poor and good routing policies. With an
order size of 5, in eleven of 15 combinations, the routing policy traversal leads to the longest tours on
average. However, for order size of 50, the situation changes and return generates the longest picker
tours in most of the combinations. The reason is that return is more suitable for smaller order sizes,
while traversal is advantageous for larger order sizes. If only a few pick positions need to be visited,
it is shorter to enter the aisles only from the front cross-aisle. If many positions that are distributed
across many aisles need to be visited, traversing each aisle leads to shorter picker tours than entering
and leaving each aisle from the same end.
Looking at best-performing routing policies, the routing policy return generates the shortest picker
tours on average for order size 5. As already justified, the smaller the order, the better results achieves
return. For the larger order sizes 15 and 50, the routing policy largest gap leads to the shortest
picker tours in 24 of 30 settings.

• As highlighted in Table 5, the routing policies behave rather homogenous regarding the different scatter
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unif. distr. perimeter across within diagonal min

(1
/1

/3
)

exact 155.20 139.08 70.60 89.12 72.52 across
gap 167.36 141.08 139.44 90.24 114.92 within
return 220.80 186.92 70.60 110.36 72.88 across
traversal 214.56 158.76 200.88 90.40 127.16 within
min gap gap return gap return

(2
/2

/2
)

exact 130.56 127.84 81.52 87.64 95.48 across
gap 141.16 138.84 130.76 104.76 126.44 within
return 166.36 169.12 83.04 95.08 97.12 across
traversal 171.24 166.08 144.20 110.68 141.44 within
min gap gap return return return

(6
/1

/1
)

exact 98.12 93.48 98.04 92.68 94.76 within
gap 112.28 110.76 109.84 109.60 114.76 within
return 106.16 100.60 108.72 100.08 100.64 within
traversal 115.60 114.52 114.80 115.08 117.84 perimeter
min return return return return return

(a) Order size 5.
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unif. distr. perimeter across within diagonal min

(1
/1

/3
)

exact 278.88 152.40 137.00 114.76 130.12 within
gap 301.16 152.44 189.72 122.76 160.80 within
return 447.40 266.56 137.80 156.92 134.56 diagonal
traversal 373.24 241.12 385.12 131.24 212.76 within
min gap gap return gap return

(2
/2

/2
)

exact 214.08 164.32 159.12 152.60 153.68 within
gap 230.76 170.96 192.68 162.72 178.60 within
return 328.08 254.72 170.00 211.92 168.64 diagonal
traversal 291.64 242.00 297.84 189.60 238.40 within
min gap gap return gap return

(6
/1

/1
)

exact 160.64 154.08 166.96 151.44 167.08 within
gap 172.32 169.20 178.64 165.00 175.72 within
return 215.08 214.64 221.24 198.04 228.68 within
traversal 206.84 205.04 208.04 199.80 208.08 within
min gap gap gap gap gap

(b) Order size 15.
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unif. distr. perimeter across within diagonal min

(1
/1

/3
)

exact 434.24 181.80 210.68 162.88 201.00 within
gap 502.32 181.80 248.32 187.12 218.72 perimeter
return 706.40 555.04 220.56 241.64 231.24 across
traversal 462.88 440.08 464.00 197.16 292.24 within
min traversal gap return gap gap

(2
/2

/2
)

exact 359.48 232.68 257.28 240.60 263.80 perimeter
gap 396.68 233.52 280.60 270.76 290.20 perimeter
return 562.68 452.56 298.72 354.12 315.60 across
traversal 427.24 369.04 397.80 283.24 353.84 within
min gap gap gap gap gap

(6
/1

/1
)

exact 268.20 245.48 288.56 249.64 281.32 perimeter
gap 288.12 272.92 305.16 280.40 301.28 perimeter
return 408.80 386.44 466.36 371.28 490.72 within
traversal 346.72 310.92 345.32 314.92 355.96 perimeter

min gap gap gap gap gap

(c) Order size 50.

Table 4: Break down of average tour lengths on the level of scatter factor settings and order sizes.
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factor settings. Over all order sizes, largest gap performs best (aside from the exact routing) for all
three scatter factor settings. The average tour lengths of the other two routing policies return and
traversal differ only slightly, especially for (1/1/3) and (2/2/2).

• Compared to the results of Petersen and Schmenner (1999) for classical warehouses (without scattered
storage), the tour lengths vary over a wider range. In Petersen and Schmenner (1999, Table 6), the
largest deviation from optimal routing is 50.5% for perimeter and return, while for the scatter factor
setting (1/1/3) the corresponding value is significantly larger at 113%. Such a greater difference can be
observed for most of the routing and storage policy combinations. Consequently, larger cost savings
are possible with scattered storage by choosing a suitable combination of the routing and storage
policy compared to classical warehouses. However, note that the warehouse layout of Petersen and
Schmenner differs from ours. Even though the number of aisles coincides, the warehouse dimension is
approximately 2 : 1 in their approach, in contrast to 3 : 4 in ours. Nevertheless, both evaluations find
the combination within-aisle and largest gap the best performing one.

Sc
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or
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g

unif. distr. perimeter across within diagonal Subtotal

(1
/1

/3
)

exact 289.44 157.76 139.43 122.25 134.55 168.69
gap 323.61 158.44 192.49 133.37 164.81 194.55
return 458.20 336.17 142.99 169.64 146.23 250.65
traversal 350.23 279.99 350.00 139.60 210.72 266.11
Subtotal 355.37 233.09 206.23 141.22 164.08

(2
/2

/2
)

exact 234.71 174.95 165.97 160.28 170.99 181.38
gap 256.20 181.11 201.35 179.41 198.41 203.30
return 352.37 292.13 183.92 220.37 193.79 248.52
traversal 296.71 259.04 279.95 194.51 244.56 254.95
Subtotal 285.00 226.81 207.80 188.64 201.94

(6
/1

/1
)

exact 175.65 164.35 184.52 164.59 181.05 174.03
gap 190.91 184.29 197.88 185.00 197.25 191.07
return 243.35 233.89 265.44 223.13 273.35 247.83
traversal 223.05 210.16 222.72 209.93 227.29 218.63
Subtotal 208.24 198.17 217.64 195.66 219.74

Table 5: Average picker tour lengths summarized across all order sizes.

6.3.1. Storage Policy Perimeter
Given the storage policy perimeter , largest gap always provides the best results except for one setting

that combines (1/1/6) with the order size of 5 (see Table 4). The picker tours generated from the policies
largest gap and perimeter are only about 6% longer than the optimal tours resulting from exact and
perimeter . This is because the rules of largest gap are harmonized with the definition of the zones
of perimeter . Since A-articles are stored around the perimeter and an order consists of 80% A-articles,
the procedure of largest gap is advantageous where the outer positions of each aisle are cheap to visit.
Combined with perimeter , the routing policies return and traversal perform significantly worse than
largest gap. However, an exception is the already mentioned setting with (1/1/6) and an order size of 5.
Here the routing policy return leads to better results than largest gap. Because only very few articles
need to be collected, the typical transition of largest gap (where an aisle is entered from both sides and
the picker traverses both cross-aisles) enforces an unfavorable selection of pick positions to visit. In contrast,
applying the routing policy return instructs the picker to traverse only one cross-aisle while entering the
necessary aisles to collect the demanded articles. This leads to shorter picker tours for small order sizes.
The situation is exactly the opposite with the order size of 50. In this case, many articles from several pick
positions need to be collected so that, in the worst case, a typical transition of return causes entire aisles
to be traversed almost twice, as an aisle must be entered and exited from the same side.

In addition, it can be stated that perimeter is particularly suitable for large order sizes. Table 4 shows
that, for the order size of 50, perimeter is the best choice for half of the settings.
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6.3.2. Storage Policy Across-Aisle
The storage policy across-aisle performs best in combination with the routing policy return, as can be

seen from Table 4. Particularly, this affects orders with few C-articles (i.e., small orders) or orders with
scattered C-articles where advantageous pick positions are chosen to collect C-articles. For the large order
size of 50 and C-articles not being scattered exclusively, it is beneficial to use routing policy largest gap.
Here, the collection of additional C-articles can easily be appended to the tour. However, for routing policy
return, the visit of numerous pick positions in zone C induces additional costly path sections, since most
aisles must be traversed twice to collect an article of class C. Policy return can hardly gain any advantages
from the scattering of the A-articles, since only little distance can be saved by selecting favorable positions
of A-articles. As a result, largest gap generates shorter tours on average.

In seven of nine settings, the routing policy traversal is the worst policy for across-aisle because each
aisle entered must be traversed completely while many aisles need to be entered to collect all the demanded
A-articles. For the order size of 5, storage policy across-aisle delivers the best results among all storage
policies if combined with exact routing.

6.3.3. Storage Policy Within-Aisle
Comparing all 36 combinations of Table 4, within-aisle is the storage policy performing best. For nearly

60% of the settings (21 settings), the application of within-aisle leads to the shortest picker tours on average.
Compared to the other storage policies, within-aisle is less sensitive to the rules of the different routing
policies. The average tour lengths of within-aisle combined with all the routing policies deviate significantly
less among each other than the tour lengths produced by any other storage policy in combination with
the different routing policies. Nevertheless, largest gap is the best routing policy to be combined with
within-aisle. In seven of nine settings, this combination generates the best results.

For order sizes 15 and 50, the shortest (policy exact) picker tours can be obtained with within-aisle. In
both cases, the best results can be achieved if the C-articles are scattered. The reason is that pick positions
for the demanded C-articles can be selected in aisles close to the depot and the picker does not even have
to pass through some more distant aisles of the warehouse. For the same reason, within-aisle works best,
independent of the order size, if the scatter factor setting (1/1/3) is used. Overall, storage policy within-aisle
leads to the shortest picker tours compared to combinations in which another storage policies is applied.

6.3.4. Storage Policy Diagonal
The storage policy diagonal is a mixture of across-aisle and within-aisle. Depending on the warehouse

layout, it resembles one of the two storage policies more than the other: If the aisles of the warehouse
are rather short or the pick positions are arranged narrowly and without spacing, then diagonal has strong
similarities to within-aisle. Otherwise, the warehouse tends to have long aisles and/or large distances between
two consecutive aisles so that diagonal tends to resemble the storage policy across-aisle.

The warehouse layout that we use for the computational study (10 aisles and 40 pick positions per aisle)
effectuates that diagonal tends to resemble the storage policy across-aisle. In seven of the ten aisles, pick
positions of zone A can be found. This is also reflected in the results, where the best and worst routing
policies for diagonal and across-aisle are identical except for a single setting (order size of 50 and storage
factors (1/1/3)).

7. Conclusions and Outlook

This work has focused on the single picker routing problem with scattered storage (SPRP-SS) in com-
bination with standard routing and storage policies. Routing policies restrict possible picker tours to those
that obey policy-specific rules, which should preferably allow a fast tour computation and be easy to mem-
orize for the picker. On the theoretical side, we have proven in Section 4 that even under these routing
policies, the SPRP-SS, i.e., the problem of selecting pick positions in combination with the determination
of a shortest picker tour, remains an NP-hard problem.

On the practical side, we have developed an exact solution algorithm for these variants of the SPRP-
SS that is both effective and relatively simple to implement. It can be summarized as follows: First, we
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construct the state space of the dynamic program for the non-scattered SPRP. In Section 2, we have derived
and detailed these state spaces as modified and restricted versions of the well-known dynamic program of
Ratliff and Rosenthal (1983). Second, we introduce into the dynamic program additional aisle actions (in
particular for top, bottom, and gap) that become possible in the scattered storage case (see Section 3).
Third, we set up an IP that models the resulting dynamic program as an origin-destination shortest-path
problem. We add demand-covering constraints to ensure that a sufficient number of units of each requested
article is collected. Fourth and finally, a standard MIP solver computes an optimal solution to the IP.

The computational evaluation has shown that the main drivers for the practical difficulty of the SPRP-SS
are firstly the number of different articles to be picked, secondly the routing policy (the size of the respective
state space). The average computation times for pick lists of lengths 5, 15, and 50 are below 49, 228, and 635
milliseconds, respectively, for all routing policies and for a single-block warehouse with ten parallel aisles of
40 cells each. Hence, computation times become irrelevant when the SPRP-SS is considered as a stand-alone
problem.

The new and fast exact solution approach has enabled us to precisely analyze and compare different
combinations of routing and storage policies. Note that the storage policy, i.e., at which locations in the
warehouse articles are stored, determines how a typical instance of the SPRP and SPRP-SS is composed.
It does not require a storage policy-specific adaptation of the above solution approach. Therefore, the
comparison of all combinations of routing and storage policies focuses on the average tour lengths. The
main findings are:

• Neglecting the routing policy exact, the combination of the largest gap routing policy and the
within-aisle storage policy lead to the best overall results.

• For class-based storage policies, scattering of C-articles is most advantageous. On the contrary, for
uniformly distributed articles, scattering of A-articles performs best.

• In general, if only C-articles are scattered, different routing policies lead to picker tours with remarkable
differences in tour length. However, if only A-articles are scattered, the impact of the different routing
policies is substantially less pronounced and leads to only small differences among the tour lengths.

We see several avenues for interesting further research: Alternative warehouse layouts, multiple depots,
and different start and end points lead to new variants of the SPRP-SS (see Section 1.1). Since dynamic-
programming solution algorithms are known for most of them, a solution approach adapted from the one
presented here should also be tested and similar combinations of routing and storage policies should be ana-
lyzed. In addition, the storage policies could be refined and alternative storage policies could be empirically
analyzed using the methodology proposed in this paper. For example, articles that are ordered together
more often than other articles could be assigned to pick positions that are closer together. For class-based
storage policies, one may vary the scatter factors within class C. An analysis of how article-specific scatter
factors should be chosen is worth further investigation when class-based storage policies are replaced by
full-turnover storage. Finally, if SPRP-SS appears as a subproblem, e.g., in the joint order batching and
picker routing problem (Wahlen and Gschwind, 2022), the presented IP-based solution algorithm might
become too slow. Therefore, finding an even more effective solution algorithm for the SPRP-SS remains an
algorithmic challenge.
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