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Exact Solution of the Vehicle Routing Problem With Drones

Jeanette Schmidta,∗, Christian Tilkb, Stefan Irnicha

aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

bDepartment of Business Decisions and Analytics, University of Vienna, Kolingasse 14–16, AT-1090 Vienna, Austria.

Abstract

The vehicle routing problem with drones (VRP-D) is an extension of the capacitated vehicle routing problem,
in which the fleet consists of trucks equipped with one drone each. A truck and its drone can either move
together or separately. To operate alone, a truck can release its drone at the depot or at a customer
location and likewise pick it up at a later location visited by the same truck. In this way, both trucks
and drones deliver goods to customers working together as synchronized working units. A feasible route
has to satisfy the capacity constraints of both the truck and the drone. The VRP-D consists of finding
a minimum-cost set of feasible routes such that each customer is served exactly once by either a truck
or a drone. We develop a branch-price-and-cut (BPC) algorithm to solve the VRP-D exactly for both
standard objectives considered in the literature, i.e., the minimization of the total routing cost and the
sum of the routes’ durations. To solve the column-generation subproblems, we present a new forward and
implicit bidirectional labeling algorithm defined over an artificial network. The new bidirectional labeling
algorithm substantially accelerates the solution process compared its monodirectional counterpart. In several
computational experiments, we analyze algorithmic components of the BPC algorithm, compare the cost
and duration objectives, and highlight the impact of the drones’ speed on the structure of VRP-D solutions.
The final version of the BPC algorithm is able to solve VRP-D instances with up to 50 vertices to proven
optimality within one hour of computation time.

Keywords: routing, drone delivery, synchronization, branch-price-and-cut, bidirectional labeling

1. Introduction

A drone, a.k.a. unmanned aerial vehicle, is an aircraft that does not have a pilot onboard and is con-
trolled remotely (ITA, 2023). Compared to ground vehicles such as trucks and ships, modern drones are
typically faster, can move in three dimensions to surmount obstacles on the ground, can take off and land
autonomously, have a lower cost per kilometer to operate, and emit less CO2 (Goodchild and Toy, 2018;
D’Andrea, 2014). In this sense, the use of drones represents a greener and more versatile alternative to
conventional delivery modes. However, they have the drawback of a limited payload and flight range (even
if modern parcel delivery drones can fly up to several kilometers with a payload of about 5kg, more than
5 percent of parcels weigh between 15 and 30kg (Joerss et al., 2016)). We consider combined delivery
operations of trucks and drones, which can lead to a significant increase of efficiency and effectiveness in
performing the delivery operations (Wang et al., 2017; Carlsson and Song, 2018). According to (Otto et al.,
2018, Sect. 5), such combined truck and drone operations are of four types: (1) trucks support the delivery
operations performed solely by drones, (2) drones support the delivery operations performed solely by trucks,
(3) trucks and drones operate independently and perform separate delivery routes, and (4) trucks and drones
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work together as synchronized working units. For the numerous existing and potential applications we refer
the reader to the surveys (Otto et al., 2018; Chung et al., 2020; Macrina et al., 2020; Moshref-Javadi and
Winkenbach, 2021; Madani and Ndiaye, 2022). We focus on the synchronized routing problem of type (4).

In the vehicle routing problem with drones (VRP-D), a fleet of trucks is equipped with one drone each.
A truck and its drone can either move together or separately. When truck and drone move together, the
drone is either inside or on top of the truck. The drone can leave the truck at the depot or any customer
location and perform a single delivery alone (this is realistic given the limited payload of the drone and for
operational/safety reasons). Meanwhile, the truck continues its journey alone serving one or several other
customers. In any case, the drone must return to the same truck at a customer or depot location. The
VRP-D consists of finding feasible combined truck and drone routes to serve a given set of customers. A
route is feasible if it starts and ends at a given depot and the capacity of the truck and of the drone is
respected on all drone subtours. Common objectives of the VRP-D are minimizing the total routing cost
and the sum of the durations of all routes.

The partially dependent movements of trucks and drones make the VRP-D more challenging compared
to the classical capacitated vehicle routing problem (CVRP, Irnich et al., 2014), because additional decisions
about which type of vehicle serves which subset of customers must be made (called task synchronization in
Drexl, 2012). The synchronization of a truck and its drone in space (movement synchronization) and, for
duration minimization, synchronization in time (operation synchronization) must be considered. Although it
is known that these two objectives are in conflict, the literature does not discuss this conflict for synchronized
routing with drones. Hence, we will analyze the different structure of solutions obtained with each objective.

We develop a VRP-D-tailored branch-price-and-cut (BPC) algorithm that allows the exact solution
for both objectives, i.e., the minimization of the total routing cost and the sum of the durations. The
most important algorithmic component is a bidirectional labeling algorithm to solve the column-generation
subproblems. This subproblem is defined over an artificial network originally introduced by Roberti and
Ruthmair (2021) for the single-vehicle version of this problem, i.e., for the traveling salesman problem with
drone (TSP-D). While Roberti and Ruthmair use a non-trivial monodirectional labeling algorithm, we use
a bidirectional labeling algorithm, which is responsible for the convincing performance of the overall BPC
algorithm: We are able to tackle larger instances than solved for the TSP-D, which is opposed to the often
observed relationship between the practical difficulty of single- and multiple-vehicle routing problems.

The artificial network is a multi-digraph, in which vertices represent possible combinations of locations
where a truck and its associated drone perform their service. Arcs of the artificial network model possible
truck and drone movements. A major complication in designing an effective bidirectional labeling algorithm
is that the same route, once considered in forward and once in backward direction, passes through different
vertices of the artificial network whenever the drone operates without the truck. In particular, the merge
procedure is unclear in such a setting. Moreover, the subproblem is asymmetric even though the VRP-D
is defined as a symmetric routing problem. Unexpectedly, the inherent symmetry of the VRP-D can be
exploited: Instead of explicitly generating forward and backward labels, the same set of labels can be
considered for both directions. This is what we name implicit bidirectional labeling.
Accordingly, the main contributions of the paper at hand are as follows:

• We develop a new exact algorithm based on BPC to solve the VRP-D exactly for both routing-cost
and duration objectives.

• We show that an implicit bidirectional labeling algorithm is essential for solving the pricing sub-
problems effectively. A particular novelty is that we apply two different merge procedures in the
bidirectional labeling algorithm depending on the current truck-and-drone locations.

• We present several computational analyses: First, we evaluate the new algorithmic components sug-
gested to accelerate the merge procedure that constitutes the bottleneck operation of the overall
BPC algorithm. Second, monodirectional labeling is compared with the implicit bidirectional label-
ing. Moreover, we compare the two objectives and the impact of the drone’s and truck’s speeds on
structure and quality of solutions.

The remainder of this work is structured as follows: We review the pertinent literature in Section 2.
Section 3 formally introduces the VRP-D. In Section 4, we present the new BPC algorithm to solve the
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VRP-D with a particular focus on the implicit bidirectional labeling algorithm. Computational results are
discussed in Section 5, and final conclusions are drawn in Section 6.

2. Literature Review

The integration of drones in vehicle routing is receiving increasing attention in the research literature
(Otto et al., 2018; Chung et al., 2020; Macrina et al., 2020; Moshref-Javadi and Winkenbach, 2021; Madani
and Ndiaye, 2022). These surveys show the vast amount of scientific contributions that have been published
in recent years, where heuristic solution approaches are predominant. For the sake of brevity, we limit the
scope of our literature review to exact optimization approaches in the context of vehicle routing in which
more than one truck is considered.

The first article dealing with the VRP-D was published by Wang et al. (2017). They define the VRP-D
as a generalization of the TSP-D by using multiple trucks each equipped with multiple drones. Wang et al.
assume that each drone is assigned to a specific truck and that a drone can only be released and picked up at
either a customer location or the depot. The objective is to minimize the sum of the durations of the routes.
Besides the introduction of the VRP-D, they conduct comprehensive analyses of worst-case scenarios on the
benefits of using trucks and drones as synchronized work units instead of truck-only solutions. The same
authors later extend their analyses in a follow-up paper (Poikonen et al., 2017).

Bakir and Tiniç (2020) consider the VRP-D with flexible drones, i.e., a drone does not necessarily have
to return to the truck from where it was released. They formulate the problem as a mixed integer linear
program (MILP) on a time-space network and propose a dynamic discretization discovery approach that
solves instances with up to 25 customers within five hours. Tamke and Buscher (2021) use a branch-and-
cut algorithm to solve a version of the VRP-D in which each truck can be equipped with more than one
drone. For larger instances, the number of drones on each truck is limited to two drones. Instances with
up to 30 customers are solved within twelve hours. Zhen et al. (2023) developed a BPC algorithm to solve
the VRP-D with the objective to minimize the total routing cost. They can solve instances with up to
14 customers to proven optimality within a 3-hours time limit. In the publication by Zhou et al. (2022),
each truck is equipped with more than one drone that is uniquely assigned to this truck. The truck has to
wait at a customer location until all launched drones return before serving the next customer. For this setting
with a simple synchronization, the authors develop a branch-and-price algorithm that uses a bidirectional
labeling algorithm that solves some instances with up to 35 customers within three hours. Li and Wang
(2022) extend the VRP-D by considering additional customer time windows. To the best of our knowledge,
they propose the first exact solution approach which is a BPC algorithm for this VRP-D variant. Instances
with up to 50 customers are solved to optimality within 20 hours. To solve larger instances, they combine
the BPC algorithm with an adaptive large neighborhood search.

Table 1 gives an overview of the slightly different VRP-D definitions. The column entries have the fol-
lowing meaning: Objective indicates whether routing cost or the sum of the durations is minimized. The
Trucks columns indicate whether they have a limited capacity (Capacity) and whether they are allowed to
revisit a customer (Revisits). The Drones columns indicate the number of drones carried by each truck
(#Drones per truck), whether each drone is assigned to a specific truck (Assignment), whether the drones
have limited flight range (Flight range), whether the drones serve a specific number of customers consecu-
tively (#customer deliveries), and whether a setup time has to be considered for each drone flight (setup
time). The Sync columns describe the synchronization of trucks and drones, i.e, whether trucks may have
to wait while the drones are serving customers (Drone loops) and the potential release and pickup sites
(Release & Pickup site). Drones can be released at a customer location (c) and/or at the depot (d). The
Customers columns indicate whether customers need to be served during predefined time windows (Time
windows) and whether some of them must be served by a truck (Truck-only).

3. The Vehicle Routing Problem with Drones

We define the VRP-D on an undirected complete graph (V,E) with vertex set V and edge set E. The
vertex set V comprises {0, 0′} ∪N , where 0 and 0′ represent the depot (two copies for start point and end
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Wang et al. (2017) duration ✓ ✗ ≥ 1 ✓ ✓ 1 ✗ ✗ c/d ✗ ✗
Bakir and Tiniç (2020) duration ✗ ✓ > 1 ✗ ✓ 1 ✗ ✗ c/d ✗ ✗
Tamke and Buscher (2021) duration ✗ ✗ > 1 ✓ ✓ 1 ✓ ✗ c ✗ ✗
Li and Wang (2022) cost ✓ ✗ > 1 ✓ ✓ > 1 ✗ ✗ c/d ✓ ✓
Zhen et al. (2023) cost ✓ ✗ = 1 ✓ ✓ 1 ✗ ✗ c/d ✗ ✗
Zhou et al. (2022) duration ✓ ✗ > 1∗ ✓ ✓ 1 ✓ ✓ c ✗ ✗

Our paper cost/duration ✓ ✗ = 1 ✓ ✗ 1 ✗ ✗ c/d ✗ ✓

Table 1: Overview of different problem setting in VRP-D publications.
∗: The number of drones per truck is a decision variable.

point) and N = {1, 2, . . . ,m} denotes the set of customers. Each customer i ∈ N has a positive integer
demand qi which has to be served by either a truck or a drone. If the demand qi exceeds a given threshold q̄,
i is called a truck-only customer which cannot be served by drone.

A fleet of K homogeneous trucks is stationed at the depot. Each truck has a capacity Q and is equipped
with a single drone (the assignment of the drone to its truck is assumed fixed). The truck and its drone
can either move together or separately. When truck and drone move together, only the truck can serve
customers. The drone can leave the truck at the depot 0 or at any customer location to operate alone. In
the meantime, the truck continues its journey and can serve other customers on its own. The drone must
return to the same truck at the truck’s current location, which is either a customer location or the depot 0′.
Note that the drone is not allowed to leave and return to the truck at the same customer. Moreover, each
drone has a limited capacity in the sense that it can serve at most one customer before returning back to
its truck. Accordingly, a route in the VRP-D is a pair r = (P,D) consisting of the truck path P and a
possibly empty sequence D of drone subpaths. The truck path P = (i0, i1, . . . , iℓ, iℓ+1) starts at the depot
i0 = 0, serves the customers ip ∈ N for all p ∈ {1, . . . , ℓ} in this sequence, and ends at the depot iℓ+1 = 0′.
The drone subpaths D = (D1, . . . , Dℓ) specify the drone flights along the truck path P . For each index
s ∈ {1, . . . , ℓ}, each subpath Ds = ⟨js, ks, ls⟩ contains exactly three vertices: at js ∈ {0} ∪ N the drone
leaves the truck, ks ∈ N specifies the customer that is served by the drone, and ls ∈ N ∪{0′} indicates where
the drone lands on the truck again. In a feasible route r = (P,D) there exist, for each index s ∈ {1, 2, . . . , ℓ},
two indices g, h ∈ {0, 1, . . . , ℓ, ℓ + 1} with g < h such that js = ig and ls = ih holds. For convenience, we
define I(s) = {g, g + 1, . . . , h − 1} as the positions (indices) of P where either the drone leaves the truck
or the truck serves a customer alone (intentionally, the position where the drone lands on the truck is not
included). If ℓ > 1, the sets I(s) and I(s′) for s ̸= s′ must have empty intersection (the segments where
the truck is alone do not overlap). Finally, the route r = (P,D) is feasible if

∑ℓ
j=1 qij +

∑ℓ
s=1 qks ≤ Q and

qks ≤ q̄ for all s ∈ {1, . . . , ℓ}. The route r = (P,D) is elementary if i1, . . . , iℓ and k1, . . . , kℓ are all different.
To distinguish between routing-cost and duration minimization, each edge {i, j} ∈ E is associated with

a non-negative routing cost cij and a non-negative travel time tij for a truck. Likewise, the routing cost of
a drone is denoted by cdr

ij and the travel time by tdr
ij . The routing cost cr of a route r = (P,D) is defined

as the sum of the routing costs of the edges traversed by both types of vehicles, i.e., cr =
∑ℓ

p=0 cip,ip+1
+∑ℓ

s=1(c
dr
js,ks + cdr

ks,ls). The duration tr of a route r = (P,D) is more intricate to describe, because the truck
(drone) may have to wait for the drone (truck) depending on which vehicle is faster on a particular segment.
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Let I =
⋃ℓ

s=1 I(s). Then, the duration of route r is

tr =
∑

p∈{0,1,...,ℓ}\I

tip,ip+1
+

ℓ∑
s=1

max

 ∑
p∈I(s)

tip,ip+1
, tdr

js,ks + tdr
ks,ls

 . (1)

The left-hand term describes travel times when truck and drone travel together, while the right-hand term
sums over the ℓ drone subpaths taking the maximum of the travel time of either the truck or the drone.

The task of the VRP-D is to determine a set R of at most K feasible routes such that each customer is
served exactly once and either

∑
r∈R cr or

∑
r∈R tr is minimized.

Given:
customer

depot

truck-only

Solution:

truck alone

together

drone alone

Figure 1: VRP-D instance with a feasible solution.

Example 1. Figure 1 shows a VRP-D instance with customers N = {1, 2, . . . , 9} as well as a feasible
solution with two routes. On the first route (depicted in red), the truck releases its drone directly at the depot
(we assume a counterclockwise travel direction for this route). While the truck travels to customer 4 and
serves it, the drone moves to customer 5, serves this customer, and returns back to the truck at customer 4.
Immediately at customer 4, truck and drone separate again: while the truck serves the customers 9, 8, and 3
alone, the drone serves customer 7 and lands on the truck again at the location of customer 3. Afterwards,
truck and drone together travel back to the depot. Hence, the route serves customers {3, 4, 5, 7, 8, 9}. The
corresponding truck path is P = (i0, i1, . . . , i6) = (0, 4, 9, 8, 3, 0′) and the sequence of drone subpaths is D =
(⟨0, 5, 4⟩, ⟨4, 7, 3⟩). The second route (depicted in blue) serves another three customers {1, 2, 6} with P =
(0, 6, 2, 0′) and D = (⟨6, 1, 2⟩). Assuming that all travel costs and travel times of all edges {i, j} ∈ E are
cij = tij = cdrij = tdrij = 1, the truck has to wait for the drone at location 4, and vice versa, the drone has to
wait for the truck at location 3 in the first (red) route. Hence, the duration of the first route is tr = 6 while
its cost is cr = 9. Under these assumptions, the truck has to wait for the drone at location 2 in the second
(blue) route, which has a duration of tr = 4 while its cost is cr = 5. □

4. Branch-Price-and-Cut Algorithm

We employ a BPC algorithm to solve the VRP-D. BPC algorithms are ’the leading exact algorithms
for solving many classes of vehicle routing problems’ (see Costa et al., 2019). They rely on an extensive,
route-based formulation (a.k.a. master problem (MP)), i.e., a model with variables for all feasible routes. A
BPC algorithm is a branch-and-bound algorithm in which, at each node, the linear relaxation of the MP
is solved. At some nodes, valid inequalities are added to strengthen the linear relaxation. Due to the huge
number of variables in the MP, relaxations are not solved directly but with a column-generation procedure:
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Iteratively, restricted master programs (RMPs) defined over a subset of routes are solved, missing routes are
identified by solving subproblems (a.k.a. pricing problems), and these are added to the RMPs (Desaulniers
et al., 2005).

4.1. Route-based Formulation
Let Ω denote the set of all feasible VRP-D routes. The route-based formulation presented below uses

binary variables λr to indicate whether a route r ∈ Ω is part of the optimal solution. In addition, the non-
negative variable f describes the number of trucks employed. For each vertex i ∈ V and each route r ∈ Ω,
let the integer coefficient bir indicates how often route r serves customer i.

min
∑
r∈Ω

crλr or min
∑
r∈Ω

trλr (2a)

subject to
∑
r∈Ω

birλr = 1 ∀i ∈ N (2b)∑
r∈Ω

λr − f = 0 (2c)

KN ≤ f ≤ K (2d)
λr ∈ {0, 1} ∀r ∈ Ω (2e)

The objective (2a) is to minimize the total routing cost or the sum of the durations of all routes.
Constraints (2b) ensure that each customer is served exactly once. The number of trucks f in use is
determined via (2c) and restricted to the interval between a lower bound KN and the given fleet size K
via (2d). The domain of the route variables is specified in (2e).

A valid lower bound KN for the number of necessary trucks can be calculated by solving a bin-packing
problem as follows. The bin size is set equal to the truck’s capacity Q. For each customer i ∈ N , an item
with a weight equal to demand qi must be introduced. We solve the bin-packing problem with the arc-flow
formulation of Valério de Carvalho (1999) using a MIP solver. Note that the optimal number KN of bins is
an exact lower bound that helps to not solve some infeasible branch-and-bound nodes, which may otherwise
result from branching on the number of vehicles (see Section 4.4). Solving these infeasible nodes is often
very time-consuming.

4.2. Column Generation
Let (πi)i∈N be the dual prices of the set-partitioning constraints (2b) and µ be the dual price of con-

straint (2c). The reduced cost of a route r ∈ Ω is

c̃r = cr −
∑
i∈N

birπi − µ or c̃r = tr −
∑
i∈N

birπi − µ

depending on whether the objective is cost or duration minimization.
This pricing problem can be modeled as an shortest path problem with resource constraints (SPPRC,

Irnich and Desaulniers, 2005) and solved by means of a dynamic-programming labeling algorithm on an
artificial network.

4.2.1. Artificial Network
Compared to the classical CVRP, the major additional complication in the VRP-D is that truck and

drone can move independently, at least on subpaths of their itinerary. Already the decision which type of
vehicle will serve which subset of the customers adds a substantial degree of freedom. All these decisions
impact a route’s cost and duration, which can no longer be computed as the length of a single path. We
have shown in Section 3 that route feasibility constraints are much more involved compared to the CVRP,
because a route in the given network (V,E) consists of a truck path and a sequence of drone subpaths.
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For solving the single-vehicle version of the problem, the TSP-D, Roberti and Ruthmair (2021) model a
route/tour with the help of an artificial network N = (W,A). Its vertices

W = {(0, 0)} ∪ (N ∪ {0′})× ({0} ∪N) ∪ {(0′, 0′)} ⊂ V × V

represent possible truck-and-drone positions, i.e., the vertex (itr, idr) ∈ W describes that the truck is at
position itr and the drone at idr. In particular, the origin vertex (0, 0) represents the initial situation at the
depot when truck and drone are together ready to start a route. Likewise, the destination vertex (0′, 0′)
represents the final situation when truck and drone are back together at the depot after completing a route.

Arcs of the artificial network represent movements and a possible additional service of a customer by the
drone. For the latter service aspect, let Ndr = {i ∈ N : qi ≤ q̄}∪{⊥} denote such a service by drone with ⊥
representing that no service is performed. The arcs fall into the following three categories: First, the alone
arcs

Aalone =
{
[(itr, idr), (jtr, jdr),⊥] ∈ W ×W × {⊥} : idr = jdr and itr ̸= jtr and idr ̸= jtr} (3a)

represent that only the truck is moving from position itr to position jtr while the drone still resides at
position idr = jdr. There is no additional service possible. Second, the together arcs

Atgthr =
{
[(itr, idr), (jtr, jdr),⊥] ∈ W ×W × {⊥} : itr = idr ̸= jtr = jdr} (3b)

represent that truck and drone are moving together from position itr = idr to a new position jtr = jdr. Also
here no additional service is possible. Third, the drone arcs

Adrone =
{
[(itr, idr), (jtr, jdr), k] ∈ W ×W ×Ndr : itr = jtr = jdr ̸= idr and k /∈ {idr, itr,⊥}

}
(3c)

represent that the drone flies from the position idr where it has separated from the truck to customer k,
serves customer k, and subsequently flies to the position itr = jtr = jdr where the truck is waiting. Note
that the arc sets defined via (3a)–(3c) are disjoint. Hence, each arc in A = Aalone ∪Atgthr ∪Adrone belongs
to exactly one category (alone, together, or drone arc). Moreover, the arcs in Aalone ∪Atgthr are referred to
as truck arcs, since they model serving customer jtr by truck.

We stress that the artificial network N is directed and has parallel arcs, i.e., it is a multi-digraph. Parallel
arcs are always drone arcs [(itr, idr), (jtr, jdr), k] ∈ Adrone and they differ in the additional service that is
performed at customer k.

The fundamental idea of Roberti and Ruthmair was to artificially separate truck movement decisions
from drone movement decisions. When truck and drone separate, it is not necessary to know in advance
which customer the drone will serve and where and when it will return to the truck. Hence, these decisions
can be postponed. Instead, the bookkeeping reduces to record the position where the drone has departed
from the truck. The truck is then routed independently serving an arbitrary number of customers. The
postponed decision about the drone’s subpath is made when truck and drone meet again. This enables a
forward labeling algorithm with an efficient dominance procedure as shown in Section 4.2.2.

Example 2. Figure 2 visualizes the artificial network for a VRP-D instance with three customers N =
{1, 2, 3}. The path ((0, 0), (1, 1), (2, 2), (3, 3), (0′, 0′)) in N represents a route where truck and drone travel
together from the depot 0 to the three customers 1, 2, and 3 (in this sequence), and back to the depot 0′. The
path ((0, 0), (2, 0), (2, 2), (3, 3), (0′, 0′)) in N has an associated unique truck path (0, 2, 3, 0′). However, there
are two parallel arcs connecting (2, 0) with (2, 2) leaving the choice of using one of them. Either customer 1
could be served leading to the associated drone subpath ⟨0, 1, 2⟩, or customer 3 could be served leading to the
associated drone subpath ⟨0, 3, 2⟩. In the first case, the route is elementary, serving customers 1, 2, and 3
exactly once, while in the second case, the route is non-elementary, serving customer 3 twice and customer 2
once. □

More generally, every (0, 0)-(0′, 0′)-path represents a joint truck-and-drone route. Since the artificial
network is a multi-digraph, only the sequence of its arcs describes it uniquely. Note that the corresponding
route is not necessarily elementary or feasible. The labeling algorithm presented in Section 4.2.2 checks
elementary and feasibility.
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Figure 2: Artificial network N = (W,A) with customer set N = {1, 2, 3}. For the sake of simplicity, not
all truck arcs are made explicit. Antiparallel arcs between vertices are depicted as undirected links. For
example, in the first row, antiparallel arcs exist between the vertices (1, 0), (2, 0), and (3, 0).

Each (0, 0)-(0′, 0′)-path can be resolved into a corresponding truck path and drone subpaths using the
information on each arc [(itr, idr), (jtr, jdr), k]. If the arc is a truck arc, i.e., k = ⊥, the trucks destination
jtr has to be appended to the truck path. If the arc is a drone arc, i.e., k ∈ N , the drone subpath ⟨j, k, l⟩
contains the following three pieces of information: the release location j = idr of the drone, the drone
customer k, and the drone’s destination location l = jdr.

Example 3. We consider a VRP-D instance with N = {1, 2, 3, 4, 5}. The (0, 0)-(0′, 0′)-path

([(0, 0), (1, 1),⊥], [(1, 1), (2, 1),⊥], [(2, 1), (2, 2), 3], [(2, 2), (4, 2),⊥], [(4, 2), (0′, 2),⊥], [(0′, 2), (0′, 0′), 5])

has P = (0, 1, 2, 4, 0′) and D = (⟨1, 3, 2⟩, ⟨2, 5, 0′⟩). In the following, we also use the more intuitive repre-
sentation

(0, 0) = (1, 1)− (2, 1)
3
− (2, 2)− (4, 2)− (0′, 2)

5
− (0′, 0′)

as a sequence of vertices where the connections are either =, −, or
k

−. The symbols − (=) indicate a
connection with an alone (together) arc, while the symbol

k

− indicates a drone arc of type [(·, ·), (·, ·), k]. □

4.2.2. Forward Labeling
In this section, we present a dynamic-programming labeling algorithm to solve the SPPRC pricing

problem. We begin with a basic forward labeling approach and then discuss refinements including implicit
bidirectional labeling and a non-trivial merge procedure.

Forward labeling starts with an initial label at the origin depot (0, 0) and propagates forward labels over
all type of arcs A = Aalone ∪ Atgthr ∪ Adrone towards the destination depot (0′, 0′). Each label refers to
a partial path Pi = ((0, 0), . . . , (itr, idr)) that starts at (0, 0) and ends at some vertex i = (itr, idr) ∈ W .
The label stores the corresponding resource consumption up to vertex i. The set of attributes (=resources)
depends on the objective function used in the VRP-D.

Cost Objective. For the cost objective and a partial path Pi, the associated label Li comprises the resources
(Rrdc

i , Rload
i , (Rcust,n

i )n∈N ) defined as follows:
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Rrdc
i : the reduced cost of path Pi;

Rload
i : the total demand served by path Pi excluding the demand of i; and

Rcust,n
i : the number of times that customer n ∈ N is served along the path Pi.

The initial label is given by L0 = (0, 0,0). Propagating a label Li over an arbitrary arc a = [(itr, idr), (jtr, jdr), k] ∈
A results in a new label Lj at vertex j = (jtr, jdr). We assume that dual prices π = (πi)i∈N of the con-
straints (2b) and the dual price µ of the constraint (2c) are given. For convenience, we define π0′ = µ for
the destination 0′. Moreover, we define q0 = q0′ = 0 for the depot. The associated resource values for the
partial path Pj = (Pi, j) are computed with the help of the following resource extension functions (REFs,
Irnich, 2008):

Rrdc
j =

{
Rrdc

i + citr,jtr − πjtr , if a ∈ Aalone ∪Atgthr

Rrdc
i + cdr

idr,k + cdr
k,jdr − πk, if a ∈ Adrone

(4a)

Rload
j =

{
Rload

i + qitr , if a ∈ Aalone ∪Atgthr

Rload
i + qk, if a ∈ Adrone

(4b)

Rcust,n
j =


Rcust,n

i + 1, if n = jtr and a ∈ Aalone ∪Atgthr

Rcust,n
i + 1, if n = k and a ∈ Adrone

Rcust,n
i , otherwise

(4c)

Note that in (4b) the update of the load resource is postponed regarding the customer jtr to the point
after the truck leaves customer jtr. We will see later that this is convenient for the symmetric bidirectional
labeling algorithm.

The new label Lj is feasible, if the capacity and the elementary constraints are fulfilled, i.e.,

Rload
j ≤

{
Q− qjtr , if a ∈ Aalone ∪Atgthr

Q, if a ∈ Adrone
(5a)

Rcust,n
j ≤ 1, ∀n ∈ N. (5b)

Infeasible labels are discarded immediately. To avoid the enumeration of all feasible paths, redundant labels
are eliminated with the help of dominance tests. Since all forward REFs are non-decreasing, we can use the
standard dominance rules (Irnich and Desaulniers, 2005):

Dominance Rule 1. A label L1 = (Rrdc
1 , Rload

1 , (Rcust,n
1 )n∈N ) dominates another label L2 = (Rrdc

2 , Rload
2 ,

(Rcust,n
2 )n∈N ) if Rrdc

1 ≤ Rrdc
2 , Rload

1 ≤ Rload
2 , and Rcust,n

1 ≤ Rcust,n
2 holds for all n ∈ N .

Duration Objective. When considering the duration objective, additional information is required. We fol-
low the ideas presented in Roberti and Ruthmair (2021). Hence, a label now comprises the resources
(Rrdc

i , Rdur
i , Rload

i , (Rcust,n
i )n∈N ) defined as:

Rrdc
i : the reduced cost based on the duration of path Pi;

Rdur
i : the duration for which the truck travels alone on the last open subtour of path Pi;

and Rload
i and Rcust,n

i as defined in (4b) and (4c), respectively.
The initial label is now given by L0 = (0, 0, 0,0). The REFs for the resources rdc and dur and arc

a = [(itr, idr), (jtr, jdr), k] ∈ A are given by:

Rrdc
j =


Rrdc

i − πjtr , if a ∈ Aalone

Rrdc
i + titr,jtr − πjtr , if a ∈ Atgthr

Rrdc
i +max{tdr

idr,k + tdr
k,jdr , R

dur
i } − πk, if a ∈ Adrone

(6a)

Rdur
j =

{
Rdur

i + titr,jtr , if a ∈ Aalone

0, if a ∈ Adrone ∪Atgthr
(6b)

Compared to the cost objective, there are no further feasibility requirements in addition to (5).

9



Dominance Rule 2. We consider two labels at a the same vertex (itr, idr) of the artificial network. A
label L1 = (Rrdc

1 , Rdur
1 , Rload

1 , (Rcust,n
1 )n∈N ) dominates another label L2 = (Rrdc

2 , Rdur
2 , Rload

2 , (Rcust,n
2 )n∈N )

if Rload
1 ≤ Rload

2 , Rcust,n
1 ≤ Rcust,n

2 for all n ∈ N , and
(1) itr = idr and Rrdc

1 ≤ Rrdc
2 ,

(2) or: itr ̸= idr and Rrdc
1 ≤ Rrdc

2 , Rrdc
1 +Rdur

1 ≤ Rrdc
2 +Rdur

2 ,
(3) or: itr ̸= idr and Rrdc

1 +Rdur
1 ≤ Rrdc

2 +Rdur
2 and Rrdc

1 +maxk,l{tdridr,k + tdrk,l} ≤ Rrdc
2 +Rdur

2 , where the
indices k and l in the maximum term run over k ∈ N and l ∈ N ∪ {0′} with k ̸= l.

Note that in part (1) the precondition itr = idr implies Rdur
1 = Rdur

2 = 0 because of (6b), which
proves correctness of the dominance due to non-decreasing REFs (4b), (4c), (6a), and (6b). In part (2),
the condition Rrdc

1 + Rdur
1 ≤ Rrdc

2 + Rdur
2 is fulfilled whenever Rrdc

1 ≤ Rrdc
2 and Rdur

1 ≤ Rdur
2 , which shows

that this dominance is stronger than a simpler pairwise comparison with ≤. The two conditions in part (3)
guarantee that the reduced cost of the first path is not larger than that of the second when both are
extended to a vertex (jtr, jdr) with jtr = jdr, either directly or with additional intermediate vertices. Such a
vertex (jtr, jdr) with jtr = jdr is certainly reached when arriving at (0′, 0′). The validity of this Dominance
Rule 2 is formally shown in Roberti and Ruthmair (2021).

4.2.3. Symmetry Considerations
By definition, the VRP-D is a symmetric routing problem which was thus defined using an undirected

graph. In this graph (V,E), the two depot vertices 0 and 0′ can be swapped without changing the VRP-D
instance. By reversing a route’s truck path and drone subpaths (if any) and by swapping 0 and 0′, the
resulting route is equivalent to the one considered originally. In particular, both routes serve the same
customers and have identical routing cost and duration. In contrast, the artificial network N = (W,A) is
intentionally defined as a directed multi-graph. This is consistent with the idea that the second component
idr of a vertex (itr, idr) ∈ W indicates the location where the truck has released the drone in case that
idr ̸= itr holds. This piece of information is asymmetric because the choice of the drone’s later landing
location is unspecified.

Even more, a given route r and its reversed counterpart r′, who both represent the same thing in
the symmetric VRP-D, are represented, in general, by paths that visit different vertices in the artificial
network N as shown in the following example.

Example 4. (continued from Example 3) The truck path P = (0, 1, 2, 4, 0′) and associated drone subpaths
D = (⟨1, 3, 2⟩, ⟨2, 5, 0′⟩) have reverse counterparts P ′ = (0, 4, 2, 1, 0′) and D′ = (⟨0, 5, 2⟩, ⟨2, 3, 1⟩), which are
perfectly symmetric in the original network (V,E). In the artificial network, however, the corresponding
(0, 0)-(0′, 0′)-paths

(0, 0) = (1, 1)−(2, 1)
3
− (2, 2)−(4, 2)−(0′, 2)

5
− (0′, 0′) and (0, 0)−(4, 0)−(2, 0)

5
− (2, 2)−(1, 2)

3
− (1, 1) = (0′, 0′)

differ in the vertices (1, 2), (2, 1), (4, 2), (4, 0), (0′, 2), and (2, 0). □

Having pointed out the asymmetry in forward and backward paths, it becomes clear that the reversal of
paths in the asymmetric network is somewhat confusing and not straightforward. It seems rather impossible
to develop a bidirectional labeling algorithm over the artificial network. These observations may explain
why Roberti and Ruthmair did not present a bidirectional approach for the TSP-D although the general
methodology for an exact solution algorithm for TSP variants is known (Baldacci et al., 2012; Tilk and
Irnich, 2017; Lera-Romero et al., 2022).

4.2.4. Implicit Backward and Bidirectional Labeling
The general motivation for applying a bounded bidirectional labeling procedure is the following: For

many SPPRCs, the number of labels generated by a monodirectional labeling algorithm increases rapidly
when feasible partial paths grow longer. This undesirable situation is known as combinatorial explosion,
which often renders the solution practically impossible. To mitigate the combinatorial explosion, Righini
and Salani (2006) introduced a bounded bidirectional labeling procedure for SPPRCs. In a bidirectional
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labeling, not only forward labels but also backward labels are created by propagating a label against the
orientation of the arcs starting from the sink of the network. Both forward and backward labels are only
extended up to a so-called halfway point (HWP). When forward and backward propagation is completed,
suitable labels are merged to obtain complete feasible origin-destination-paths.

The selection of a monotone resource (often the load or time attribute) and the concrete choice of the
HWP not exactly ‘in the middle’ can be important for the labeling algorithm’s performance for asymmetric
SPPRC instances (Tilk et al., 2017). If the underlying network is however perfectly symmetric, an implicit
bidirectional technique can be applied to further accelerate the labeling. Since forward and backward labeling
create exactly the same partial paths, it suffices to propagate labels only in forward direction. These labels
are combined in the merge procedure. Implicit bidirectional labeling has already been applied successfully
in several works (e.g., Bode and Irnich, 2012; Goeke et al., 2019; Heßler and Irnich, 2023).

We now show that implicit bidirectional labeling is possible for the artificial network of the VRP-D
although it is asymmetric. Since the only constrained resource is the capacity of the trucks, we use the
load resource Rload as the critical resource and fix the HWP to Q/2, i.e., only labels with accumulated load
Rload < Q/2 are extended.

The following observation can be made from Example 4: The two (0, 0)-(0′, 0′)-paths that represent
reversed routes differ only in vertices (itr, idr) ∈ W with itr ̸= idr. These vertices occur in segments of
the routes where truck and drone move independently. In contrast, when truck and drone are at the same
location itr = idr, segments are identical. In Example 4, the sequence (0, 0), (1, 1), (2, 2), (0′, 0′) is traversed
in either this or the reverse order.

As a consequence, we apply two different merge procedures depending on whether itr = idr or itr ̸= idr

holds at the vertex of a label that could potentially be merged. The procedure for itr = idr is rather standard,
while the one for itr ̸= idr is more sophisticated.

Merge at Vertices where Truck and Drone are together (itr = idr). In this case, we consider two labels
L = (R) and L′ = (R′) of partial paths that both end at the same vertex (i, i) = (itr, idr) ∈ W . These
vertices exist for all i ∈ V in the artificial network. The merge condition is the one known from the CVRP,
i.e., the resulting path must respect the truck’s capacity and be elementary:

Rload +R′ load + qitr ≤ Q (7a)

Rcust,n +R′ cust,n ≤ 1 ∀i ∈ N \ {itr} (7b)

The reduced cost of the route r resulting from the merge is

c̃r = Rrdc +R′ rdc + πi (8a)

independent of the objective function. The route itself is r = (P, reverse(P ′)) where P and P ′ are the partial
paths associated with L and L′, respectively, and the function reverse(P ′) denotes the reversed path to P ′.

Even if we do not need to know the reversed path for feasibility testing via (7a) and (7b) and the
reduced cost check c̃r < 0 based on (8a), we must formally describe the reversal of the second partial
path P ′ associated with L′. For the reversal of an arbitrary path, it suffices to describe the reversal of a
subpath between two subsequent vertices (i, i) and (j, j). In general, such a subpath (=segment) in the
artificial network is either trivial (i, i) = (j, j), i.e., it consists of a single together arc, or of the form

(i, i)− (i1, i)− (i2, i)− · · · − (il, i)− (j, i)
k
− (j, j)

with associated drone subpath ⟨i, k, j⟩ (we explicitly include the special case that l = 0 holds). In this
subpath, all arcs are alone arcs except for the last arc which must be a drone arc [(j, i), (j, j), k]. The reverse
subpath to the given subpath is

(j, j)− (il, j)− · · · − (i2, j)− (i1, j)− (i, j)
k
− (i, i),

i.e., except for the first and last vertex, the second entry i for the drone position must be replaced by j,
while the sequence i1, i2, . . . , il of truck positions is reversed in the usual way. The second last vertex (j, i)
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becomes the second last vertex (i, j) in the reversed path. Note also that in both subpaths, the customer k
is served by the drone, i.e., the last arc in the reversed path is a drone arc serving customer k.

Finally, several reversed (i, i)-(j, j)-subpaths can also be concatenated in the usual way.

Example 5. (continued from Example 4) We assume that the path (0, 0) = (1, 1)− (2, 1)
3
− (2, 2)− (4, 2)−

(0′, 2)
5
− (0′, 0′) considered in Example 4 is feasible, i.e.,

∑5
l=1 ql ≤ Q is fulfilled.

Let vertex (2, 2) be the merge vertex for the path, hence, it must hold q1 < Q/2 and q1 + q3 ≥ Q/2. In
this case, the merge of the two partial paths

(0, 0) = (1, 1)− (2, 1)
3
− (2, 2) and (0, 0)− (4, 0)− (2, 0)

5
− (2, 2)

produces the given path. Note that these are exactly the partial paths (up to vertex (2, 2)) of the two partial
paths shown in Example 4.

Their labels L = (R) and L′ = (R′) qualify for the merge, because Rload = q1 + q3 ≥ Q/2 and R′ load =
q4+ q5. The merge conditions are also fulfilled, what can be seen as follows: First, the load-related feasibility
test (7a) adds together Rload = q1 + q3, R′ load = q4 + q5, and q2 for the merge vertex (2, 2), which is exactly
the demand delivered by the resulting route. The assumption that the given route is feasible implies that (7a)
is fulfilled.

Second, regarding the served customers, Rcust,n = 1 if and only if n ∈ {1, 2, 3}, and R′ cust,n = 1 if and
only if n ∈ {2, 4, 5}. The elementarity check (7b) excludes n = 2 from the test Rcust,n+R′ cust,n ≤ 1. Hence,
labels L and L′ passes all merge conditions. □

Example 5 also provides a good example of why we must delay the addition of the customer demand
in the REF (4b). In an alternative model, the demand would always be immediately added, i.e., qjtr were
added to Rload on all arcs [(itr, idr), (jtr, jdr), k] with itr ̸= jtr. Then, the partial paths of both labels R and
R′ could sooner pass the HWP in which case they would not be extended to the merge point.

Example 6. (continued from Example 5) We consider an instance of the VRP-D with demands q1 = q2 =
q4 = 10 and q3 = q5 = 1 and a vehicle capacity of Q = 38 as well as the same paths as in Example 5.
Moreover, we assume a modified REF for the load resource that directly incorporates the demand of a new
customer visited by the truck.

The first path (0, 0) = (1, 1)− (2, 1)
3
− (2, 2) would pass the HWP Q/2 = 19 already at vertex (2, 1) with

an accumulated demand of q1 + q2 = 20 > Q/2. Similarly, the second path (0, 0) − (4, 0) − (2, 0)
5
− (2, 2)

would pass the HWP already at vertex (2, 0) with an accumulated demand of q4+q2 = 20 > Q/2. As a result,
the merge procedure would not generate the route that has the two partial paths as forward and (reversed)
backward partial path. □

Merge at Pairs of Vertices where Truck and Drone are at Different Locations (itr ̸= idr). This second case
is more intricate: A label belonging to a vertex (itr, idr) with itr ̸= idr must not be merged with labels
belonging to the same vertex. Instead, the second vertex (itr, jdr) must have identical truck position itr

but a different drone position jdr ̸= idr. As a consequence, the merge must be performed ‘over an arc’ so
that the total length of the forward and backward partial paths is by one arc smaller than the length of the
resulting merged route.

Example 7. (continued from Example 5) We consider the same route as in Example 5, but assume that
the merge is now ‘shifted one position to the right’ so that the forward and backward partial paths are

(0, 0) = (1, 1)− (2, 1)
3
− (2, 2)− (4, 2) and (0, 0)− (4, 0),

i.e., the first (forward) partial path with label L ends at vertex (itr, idr) = (4, 2), and the second (backward)
partial path with label L′ ends at vertex (itr, jdr) = (4, 0). Note that, compared to Example 5, the forward
path is one arc/vertex longer but the backward path is two arcs/vertices shorter.
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Clearly, the merged truck path (in forward direction) is (0, 1, 2, 4, 0′). The first partial path has two
drone subpath ⟨1, 3, 2⟩ and ⟨2, ·, ·⟩, where the latter is incomplete. Likewise, the second partial path has
an incomplete subpath ⟨0, ·, ·⟩. The two incomplete subpaths can be combined into one subpath ⟨2, ·, 0′⟩ (by
reversing ⟨0, ·, ·⟩). For the drone subpath to be valid, a drone customer k∗ needs to be chosen from the set N
so that it does not conflict with the elementarity constraints. □

The example shows that an appropriate drone customer k must be chosen when merging two partial paths
with an incomplete (last) drone subpath. Let label L = (R) represent a partial path ending at (itr, idr) ∈ W
with itr ̸= idr and label L′ = (R′) be a partial paths ending at (jtr, jdr) ∈ W with jdr ̸= idr. When merging
L and L′, the completed drone subpath is ⟨idr, k, jdr⟩ for a customer k ∈ N served on the additional drone
arc. The reduced cost of the resulting route r is

c̃r = Rrdc +R′ rdc + πitr + cdr
idr,k + cdr

k,jdr − πk or (8b)

c̃r = Rrdc +R′ rdc + πitr +max
{
Rdur +R′ dur, tdr

idr,k + tdr
k,jdr

}
− πk (8c)

depending on the objective, i.e., either cost or duration minimization. The route is feasible if

Rload +R′ load + qitr + qk ≤ Q (9a)

Rcust,n +R′ cust,n ≤

{
1, n ∈ N \ {itr, k}
0, n = k

(9b)

Accordingly, to obtain a minimum reduced-cost route, the drone customer k∗ is chosen as

k∗ = argmin
k∈N(R,R′,itr)

{
cdr
idr,k + cdr

k,jdr − πk

}
or k∗ = argmin

k∈N(R,R′,itr)

{
max{Rdur +R′ dur, tdr

idr,k + tdr
k,jdr} − πk

}
(10)

where the subset of the customers to choose from is defined as N(R,R′, itr) = {k ∈ N : (9) is fulfilled}. For
convenience, we assume that the minimum is ∞ for N(R,R′, itr) = ∅. All routes with c̃r ≥ 0 are rejected
in the merge procedure.

Finally, to avoid the generation of the same route multiple times, we restrict the merge to the cases when
either Rload > Q/2 or R′ load > Q/2 or itr = 0′ holds true.

4.2.5. ng-Path Relaxation
The elementarity constraints are those constraints that make many SPPRCs not only theoretically but

also practically difficult to solve. The use of an SPPRC relaxation offers an easier solution of the pricing
problems but comes at the cost of a generally weaker linear relaxation of the corresponding MP. For the
CVRP and the VRP with time windows (VRPTW), Baldacci et al. (2011) introduced the ng-path relaxations
to gradually control the trade-off between the strength of the LP-relaxation and the practical difficulty of
the SPPRC pricing problems. The concrete ng-route relaxation is defined by neighborhoods Ni ⊆ N , one
for each vertex i. A cycle (i, i1, . . . , iℓ, i) over vertex i (with ℓ ≥ 1) is feasible in the relaxation, if at least
one vertex ip (for some p ∈ {1, 2, . . . , ℓ}) fulfills i /∈ Nip .

The ng-path relaxation is not directly applicable in the artificial network of the VRP-D. We adapt it as
follows:

• Each vertex (itr, idr) of the artificial network is equipped with its own neighborhood.
• However, all neighborhoods are subsets N(itr,idr) ⊆ N of the customers, i.e., the service tasks of the

original network.
• For simplicity, we define N(itr,idr) based on the nng customers closest to itr (parameter nng controls

the size of the neighborhoods and, herewith, the strength and difficulty of the relaxation).
• In particular, for itr ∈ N , the neighborhood N(itr,idr) contains customer itr.

The REF (4c) is altered by setting Rcust,n
j = 0 if n /∈ Nj . The BPC implementation used in the computa-

tional experiments presented in Section 5 uses nng = 8. Note that the merge conditions Rcust,n+R′ cust,n ≤ 1
and (9b) remain valid.
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Monodirectional (forward) labeling and bidirectional labeling have slightly different ng-path relaxations
even if the neighborhoods are chosen identically: The monodirectional relaxation can be weaker. The effect
is observed for routes with two drone subpaths serving the same drone customer k. Such a non-elementary
route can be feasible in the ng-path relaxation when labeling is performed completely in forward direction,
but the same route can be excluded in the merge.

Example 8. We consider a route with truck path (0, 1, 2, 3, 0′) and two drone subpaths ⟨0, 4, 2⟩ and ⟨2, 4, 0′⟩,
i.e., the drone customer k = 4 is served two times. In the artificial network N = (W,A), the associated
route is

(0, 0)− (1, 0)− (2, 0)
4
− (2, 2)− (3, 2)− (0′, 2)

4
− (0′, 0′).

If the neighborhood of vertex 3 or 0′ does not include k = 4, this route is feasible in the forward labeling
algorithm.

For the bidirectional case, we assume that the merge happens at vertex (itr, idr) = (2, 2) and that vertex 2
has k = 4 included in its neighborhood. Then, the two partial paths are

(0, 0)− (1, 0)− (2, 0)
4
− (2, 2) and (0, 0)− (3, 0)− (2, 0)

4
− (2, 2)

are both ng-feasible with resource values Rcust,4 = R′cust,4 = 1 at the merge vertex (2, 2). However, the
merge condition for the case itr = idr requires (7b), i.e., Rcust,4 + R′cust,4 ≤ 1, which is clearly violated.
Hence, the considered route is excluded in the implicit bidirectional labeling. □

Finally, note that inconsistent results would be observed if the half-way point would be chosen dynam-
ically (Tilk et al., 2017). However, implicit bidirectional labeling requires a fixed half-way point exactly in
the middle at Q/2.

4.2.6. Acceleration Techniques
We now describe exact and heuristic acceleration techniques for the column-generation process.

Acceleration of the Merge Procedure. Pre-tests have shown that the merge procedure is often the bottleneck
of the column-generation process. In comparison to classical VRPs (like CVRP, VRPTW, etc.), the artificial
network contains a quadratic number O(m2) of vertices (itr, idr), and for those with itr ̸= idr the merge must
be performed ‘over arcs’. All these arcs are drone arcs [(itr, idr), (itr, jdr), k] for some jdr ̸= idr and k ∈ N .
As a result, the number of arcs to consider in the merge is O(m4). This explains the empirical observation
that the merge is very time consuming.

To reduce the computational effort of the merge procedure, we apply two exact acceleration techniques:
First, when the forward labeling process is finished, all labels R belonging to the same vertex (itr, idr) are
sorted in non-decreasing order by their load resource Rload. If truck and drone are at the same position,
i.e., both forward and backward label belong to a vertex (itr, idr) with itr = idr, the capacity constraint
Rload + R′ load + qitr ≤ Q can be exploited as follows. In two nested loops running over candidate labels R
and R′ with Rload ≤ R′ load, the inner loop for R′ can be discontinued as soon as Rload +R′ load + qitr > Q.
Moreover, the outer loop for R can be discontinued as soon as 2Rload + qitr > Q. If truck and drone are
at different positions, then we know that the backward label must belong to another vertex (itr, jdr) with
jdr ̸= idr. In this case, the capacity constraint can be further exploited: The load onboard is not smaller than
Rload +R′ load + qitr +mink∈N{qk}. Hence, when considering the two nested loops, the outer over labels R
at vertex (itr, idr) and the inner over labels R′ at vertex (itr, jdr), the inner loop can be discontinued if the
above value exceeds Q.

Second, the determination of a best drone customer in (10) is another time-consuming task that has
to be done numerous times in the merge procedure. To reduce te computational burden, we pre-compute
the reduced cost for each possible drone subpath ⟨idr, k, jdr⟩ before the actual procedure starts. For each
combination (idr, jdr) ∈ V ×V , the reduced cost of the drone subpath (i.e., cdr

idr,k+cdr
k,jdr−πk or tdr

idr,k+tdr
k,jdr−

πk) is stored in a list together with the respective drone customer k. The list is then sorted in non-decreasing
order by reduced cost. When using the cost objective, a drone customer k ∈ N(R,R′, itr) ⊂ N for a merge

14



with minimum reduced cost is found by inspecting the sorted list until a feasible merge is found (one that
fulfills (9)). When using the duration objective, however, the reduced cost of the merge also depends on
the sum Rdur + R′ dur and we cannot determine a merge with minimum reduced cost as the first one in
the sorted list that is feasible. However, inspecting potential drone customers in sorted ordering enables
breaking the loop over k ∈ N(R,R′, itr) as soon as reduced cost can be estimated being non-negative, which
accelerates the pricing also in this case.

Partial Pricing with Reduced Networks. We use a hierarchy of heuristics to quickly identify negative reduced-
cost routes. The use of one or more heuristics is also known as partial pricing (Gamache et al., 1999). In the
context of dynamic programming-based labeling, partial pricing results from using the bidirectional labeling
algorithm applied to an appropriate subgraph of the artificial network N = (W,A). For the VRP-D, we
use two reduced networks. The first has up to four ingoing and four outgoing truck arcs (Aalone ∪ Atgthr)
as well as at most two drone arcs (Adrone) per artificial vertex. The second reduced network doubles the
number of arcs per vertex (eight and four). To build the networks, the arcs with the smallest reduced cost
in the current pricing iteration are selected. Pricing always starts with the first network, and the pricing
problem is solved exactly only when both heuristics fail to provide any routes with negative reduced cost.

4.3. Valid Inequalities
We strengthen the linear relaxation of formulation (2) with the help of subset-row inequalities (SRIs,

Jepsen et al., 2008) and non-robust capacity cuts (CCs, Baldacci et al., 2007).
A SRI is defined for a subset S ⊂ N of customers and non-negative weights for each i ∈ S. We restrict

ourselves to subsets of size three and weight 1/2, because these can be easily separated by straightforward
enumeration and handled with a single binary attribute per active SRI in the labeling. The valid inequality
reads: ∑

r∈Ω

⌊∑
i∈S

bir
2

⌋
λr ≤ 1 (11)

A CC is also defined for a subset C ⊂ N of customers. Let KC be a lower bound on the number of routes
needed to serve C. The valid inequality for (C,KC) is∑

r∈Ω

max
i∈C

{min{1, bir}}λr ≥ KC , (12)

where we use the easy-to-compute lower bound KC = ⌈
∑

i∈C qi/Q⌉ (the exact solution of a bin-packing
problem like in Section 4.1 would sometimes create stronger inequalities at the cost of a much more time
consuming separation procedure).

Let S and C denote the sets of active SRIs and CCs, respectively. Further, let σS < 0 be the dual price
of the SRI defined by S ∈ S and let τC > 0 be the dual price of the CC defined by (C,KC) ∈ C. We define
the additional binary resources (Rsri,S)S∈S and (Rcc,C)(C,KC)∈C . Initially, they are set to (Rsri,S) = 0 and
(Rcc,C) = 0. For every second time a partial path serves a customer in S, the dual price σS has to be
subtracted from the reduced cost. Similarly, the first time when a partial path serves a customer in C, the
dual price τC has to be subtracted from the reduced cost. As for the load resource, it is important for a
correct bidirectional labeling to delay the manipulation of the resource values when propagating over an
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arc a = [(itr, idr), (jtr, jdr), k] ∈ A. This is modeled in the following way:

Rrdc
j =


Rrdc

i + citr,jtr − πjtr −
∑

S∈S:Rsri,S
i =1,

itr∈S

σS −
∑

C∈C:Rcc,C
i =0,

itr∈C

τC , if a ∈ Aalone ∪Atgthr

Rrdc
i + cdr

idr,k + cdr
k,jdr − πk −

∑
S∈S:Rsri,S

i =1,
k∈S

σS −
∑

C∈C:Rcc,C
i =0,

k∈C

τC , if a ∈ Adrone
(4a’)

Rsri,S
j =

{
1−Rsri,S

i , if (a ∈ Aalone ∪Atgthr and itr ∈ S) or (a ∈ Adrone and k ∈ S)
Rsri,S

i , otherwise

Rcc,C
j =

{
1, if (a ∈ Aalone ∪Atgthr and itr ∈ C) or (a ∈ Adrone and k ∈ C)
Rcc,C

i , otherwise

The new formula (4a’) for the update of the reduced cost replaces the original REF (4a) for the cost-
minimization objective. Likewise,

Rrdc
j =



Rrdc
i − πjtr −

∑
S∈S:Rsri,S

i =1,

itr∈S

σS −
∑

C∈C:Rcc,C
i =0,

itr∈C

τC , if a ∈ Aalone

Rrdc
i + titr,jtr − πjtr −

∑
S∈S:Rsri,S

i =1,

itr∈S

σS −
∑

C∈C:Rcc,C
i =0,

itr∈C

τC , if a ∈ Atgthr

Rrdc
i +max{tdr

idr,k + tdr
k,jdr , R

dur
i } − πk −

∑
S∈S:Rsri,S

i =1,
k∈S

σS −
∑

C∈C:Rcc,C
i =0,

k∈C

τC , if a ∈ Adrone

(6a’)

replaces the original REF (6a) for the duration objective. There are no feasibility constraints associated with
new resources. The dominance Rules 1 and 2 have to be modified in the standard way as explained in (Jepsen
et al., 2008) and (Baldacci et al., 2007). Moreover, in the merge procedure, reduced cost computations (8a)
and (8b) have to be altered. For the merge of two labels R and R′ at the same vertex (i, i) = (itr, idr), the
reduced cost becomes

c̃r = Rrdc +R′ rdc + πi +

 ∑
C∈C:

Rcc,C=R′cc,C=1

τC −
∑
S∈S:

Rsri,S=R′sri,S=1

σS −
∑

S∈S:i∈S
Rsri,S+R′sri,S=1

σS −
∑

C∈C:i∈C
Rcc,C=R′cc,C=0

τC


︸ ︷︷ ︸

(∗)

(the first sum corrects dual prices of CCs whose customers have been visited in both partial paths, the
second sum incorporates the dual prices of SRIs with an odd number of visits in both partial paths, the
third incorporates dual prices of SRIs with i ∈ S, and the last sum CCs where only customer i is visited).

For the merge of a label R at vertex (itr, idr) with itr ̸= idr and a label R′ at vertex (itr, idr) with i = itr

and jdr ̸= i serving customer k ∈ N on the drone arc, the reduced cost becomes

c̃r = Rrdc +R′ rdc + πitr + cdr
idr,k + cdr

k,jdr − πk

−
∑

S∈S:k∈S,itr /∈S

Rsri,S+R′sri,S=1

σS −
∑

S∈S:k∈S,itr∈S

Rsri,S=R′sri,S=0

σS −
∑

C∈C:k∈C,itr /∈S

Rcc,C=R′cc,C=0

τC + (∗)

in case of the cost-based objective and

c̃r = Rrdc +R′ rdc +max
{
Rdur +R′ dur, tdr

idr,k + tdr
k,jdr

}
+ πitr − πk

−
∑

S∈S:k∈S,itr /∈S

Rsri,S+R′sri,S=1

σS −
∑

S∈S:k∈S,itr∈S

Rsri,S=R′sri,S=0

σS −
∑

C∈C:k∈C,itr /∈S

Rcc,C=R′cc,C=0

τC + (∗)

16



in case of the duration objective.
Violated SRIs can be identified with a straightforward approach that enumerates all subsets S with

|S| = 3 and then determines the left-hand side of (11), checks whether it is greater than 1, and stores S
together with the degree of violation. Separating violated CCs requires more computational effort. For the
capacitated arc routing problem, Martinelli et al. (2013) introduced a MIP-based CC separation algorithm
that simultaneously computes C and KC (for the above lower bound). The algorithm is directly applicable
here.

Pretests have shown that adding many SRIs makes the labeling algorithm considerably more difficult.
In contrast, the labeling algorithm can cope much better with CCs. Therefore, we always start with solving
the separation problem for CCs and search for violated SRIs only if no CCs have been added. Moreover, we
limit the total number of violated SRIs to be added to a maximum of 10 inequalities in total. Among the
most violated inequalities, we allow no more than five per round and limit the number of SRIs per customer
to not more than three. Violated inequalities are added only at the root node and we allow up to 100 CCs
in total.

4.4. Branching
Let (λ∗

r , f
∗) be a solution of the RMP. Whenever some component of (λ∗

r , f
∗) is fractional, branching

is necessary to obtain an integer solution. We apply the following four-level hierarchical branching scheme:
(1) total number of routes, (2) number of drone visits at each customer, (3) flow of trucks on customer-
to-customer arcs, and (4) flow on drone subpaths. At each branch-and-bound node, all routes that are
incompatible with the current branching decision are temporarily removed from the RMP. The branch-
and-bound tree is explored using a best-first search. Note that all constraints added to the RMP enforce
additional dual prices in the labeling algorithm that all can be added on the corresponding arcs. We describe
the four levels in detail now.

At the first level, when f∗ is fractional, we branch on the total number of routes by creating two branches
defined by f ≤ ⌊f∗⌋ and f ≥ ⌈f∗⌉, which is implemented by changing the bounds in (2d).

At the second level, we branch on the number of drone services performed for each customer (as proposed
by Roberti and Ruthmair (2021) as a first-level branching decision in the algorithms for the TSP-D). To
this end, let ykr be the number of drone services performed by route r at customer k, which is the number
of drone arcs of type [(·, ·), (·, ·), k] used in the artificial network. If y∗k =

∑
r∈Ω ykrλ

∗
r is fractional for some

customers k ∈ N , we choose a customer k∗ with value y∗k∗ − ⌊y∗k∗⌋ closest to 0.5 and branch on yk∗ = 0 and
yk∗ = 1. Instead of adding a constraint to the RMP, these decisions can be enforced directly on the artificial
network: The zero-branch results from eliminating all drone arcs of type [(·, ·), (·, ·), k] serving customer k∗.
Moreover, k∗ must be removed from the sets N(R,R′, itr) that are used in the merge procedure. The
one-branch results from eliminating all vertices representing that customer k∗ is served by a truck, i.e., all
vertices (k∗, ·) ∈ W and (·, k∗) ∈ W .

At the third level, we consider pairs of customers i, j ∈ N, i ̸= j and the flow induced by truck movements
between the two customers. Formally, we consider the following subset of together arcs and alone arcs

Atr
ij = {[(i, i), (j, j),⊥], [(j, j), (i, i),⊥]} ∪

{
[(i, jdr), (j, jdr),⊥], [(j, jdr), (i, jdr),⊥] ∈ Aalone : jdr ∈ V

}
and determine the flow values e∗ij =

∑
r∈Ω

∑
a∈Atr

ij
earλ

∗
r for each customer pair i and j, where ear is

the (standard) flow value of route r on arc a. Note that the symmetry in the definition of Atr
ij implies

e∗ij = e∗ji for all i, j ∈ N, i ̸= j. If at least one of these values is fractional, we choose a customer pair i∗

and j∗ with value e∗i∗j∗ − ⌊e∗i∗j∗⌋ closest to 0.5 and create the two branches
∑

r∈Ω

∑
a∈Atr

ij
earλr = 0 and∑

r∈Ω

∑
a∈Atr

ij
earλr = 1. As in the second level, the zero-branch can be directly enforced by removing all

arcs Atr
ij from the artificial network. The one-branch results from adding the above constraint to the RMP.

In addition, it is feasible and advantageous to reduce the artificial network by removing further arcs that
are incompatible with the branching constraint. In particular, the enforced truck customers i∗ and j∗ must
never be served by a drone so that the arcs of type [(·, ·), (·, ·), i∗] ∈ Adrone and [(·, ·), (·, ·), j∗] ∈ Adrone can
be eliminated. Likewise, i∗ and j∗ are disregarded as drone customers in the merge procedure. Branching
decisions on the third level finally ensure unique truck paths. However, drone subpaths can still be fractional.
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Hence, at the fourth level, we consider the flow on drone subpaths for branching. Recall that any drone
subpath ⟨j, k, l⟩ has a symmetric counterpart ⟨l, k, j⟩, which are uniquely determined by the two drone arcs
[(l, j), (l, l), k] and [(j, l), (j, j), k]. We define

Adr
⟨j,k,l⟩ = {[(l, j), (l, l), k], [(j, l), (j, j), k]}

and determine the flow values e∗⟨j,k,l⟩ =
∑

r∈Ω

∑
a∈Adr

⟨j,k,l⟩
earλ

∗
r for each drone subpath ⟨j, k, l⟩ with j, l ∈

V, k ∈ N , j ̸= l ̸= k, and j ̸= k. Note that the symmetry in the definition of Adr
⟨j,k,l⟩ implies e∗⟨j,k,l⟩ = e∗⟨l,k,j⟩.

We apply a similar strategy as at the third level: For the triplet (j∗, k∗, l∗) with value edr
⟨j∗,k∗,l∗⟩−⌊edr

⟨j∗,k∗,l∗⟩⌋
closest to 0.5, the two branches

∑
r∈Ω

∑
a∈Adr

⟨j,k,l⟩
earλr = 0 and

∑
r∈Ω

∑
a∈Adr

⟨j,k,l⟩
earλr = 1 are created.

Again, the zero-branch results from removing the arcs Adr
⟨j∗,k∗,l∗⟩ from the artificial network. The one-

branch is enforced by adding the corresponding constraint to the RMP. As before, the artificial network can
be reduced by eliminating arcs that are inconsistent with this branching decision: The vertices (k∗, i) and
(i, k∗) ∈ W for all i ∈ N can be removed because the customers i are not visited by a truck alone. Further,
all drone arcs of type [(·, ·), (·, ·), j∗] and [(·, ·), (·, ·), l∗] can be eliminated because the drone never serves the
truck customers j∗ and l∗. Finally, j∗ and l∗ are disregarded as drone customers in the merge procedure.

The branching decisions at the third and fourth level imply unique truck paths and drone subpaths.
Since a solution is fully determined by both types of decisions, this four-level branching scheme is complete.

5. Computational Results

The following experiments were conducted on a standard PC equipped with 64 GB RAM running
MS Windows 10 on an Intel® Core™ i7-5930K CPU clocked at 3.5 GHz. The BPC algorithm is coded
in C++ and compiled with MS Visual Studio Community 2022 in release mode into a 64-bit single-thread
executable. The callable library of CPLEX 20.1.0 is used for the (re)optimization of the RMPs, for solving
a primal MIP-based heuristic, and for separating CCs. CPLEX’s default parameters are kept, except for
setting the number of threads to one. The MIP-based heuristic solves a restricted integer MP using all
columns generated up to this point. It is applied at the first and second level of the branch-and-bound-tree
as well as if the BPC algorithm terminates without finding a feasible solution. The BPC computation time
is limited to 3600 seconds per instance and additional 60 seconds are granted for the MIP-based heuristic
at the end.

5.1. VRP-D Instances
Up to date, no suitable VRP-D benchmark set has been made available. Therefore, we created new

VRP-D instances based on the Capacitated Vehicle Routing Problem Library (CVRPLIB) publicly available
at http://vrp.atd-lab.inf.puc-rio.br/index.php/en/ to properly evaluate the performance of our
BPC algorithm. We use CVRPLIB instances from set A and set B (proposed by Augerat et al., 1995) and
consider the first 20, 30, 40, or 50 vertices, respectively. The first vertex always represents the depot. As a
result, instances have m = 19, 29, 39, or 49 customers. For each size m, we consider 20 instances so that
the VRP-D instance set comprises 80 instances.

VRP-D-specific data is determined in the following way: All customers with a demand greater than
q̄ = Q/5 are truck-only customers. The share of truck-only customers varies between 10 and 33 percent
with an average of 20 percent over all instances. As a sidenote, if the value is kept in that interval, we could
not see predictable differences in the difficulty of the instances. This statement can be proven with the
instance-specific results presented in Tables A.6–A.13 in the appendix. The literature stresses that routing
costs and travel times are lower for drones than for trucks. Hence, we compute cij and tij for trucks as
Manhattan distances. In contrast, cdr

ij and tdr
ij for drones are computed as Euclidean distances divided by

the given drone speed factor β. We set β = 3 as the default value and analyze the impact of the drones’
speed in Section 5.5 using alternative factors β = 1 and β = 5.
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5.2. Acceleration of the Merge Procedure
When using implicit bidirectional labeling, pretest have shown that the merge procedure is the bottleneck

operation of the entire BPC algorithm. Therefore, we first investigate the effects of the acceleration tech-
niques presented in Section 4.2.6 on the time spent in the merge procedure. The following four algorithmic
setups are considered: (None) no acceleration technique is used for the merge, (Pre) the reduced cost of
each possible drone subpath is pre-computed, (Sort) all labels belonging to the same vertex are sorted by
their load resource, and (Both) both acceleration techniques are combined. We restrict the analysis to the
cost objective function.

m = 19 m = 29 m = 39 m = 49
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Figure 3: Average share (in percent) of the total computation time spent in the merge procedure for different
acceleration techniques.

Figure 3 shows the share of the total BPC computation time spent in the merge procedure for the above
acceleration techniques. Results are aggregated over instance of the same size. For all setups, the share of
the merge time increases with the size m of the instances. For setup None, the merge accounts for 65 to 80
percent of the total BPC runtime. Pre-computation of reduced cost of drone subpaths helps to decrease
the merge time by approximately seven percentage points on average. The effect of sorting (Sort) labels
by their load resource is also advantegeous, since it reduces the share by approximately 16.5 percentage
points compared to setup None. However, even if absolute savings are larger for Sort than for Pre, the
respective savings in relative computation time decrease with the size m of the instance. Combining both
techniques (Both) reduces the merge times considerably: compared to setup None, they are almost halved.
Interestingly, the sum of the reductions resulting from Pre and Sort (compared to None) is smaller than
the reduction resulting from Both.

For all experiments conducted in the following, we integrate the pre-computation of the reduced cost of
drone subpaths and the sorting of the labels, i.e., setup Both becomes the default.

5.3. Comparison of Forward and Bidirectional Labeling
We conduct two types of computational experiments to compare the performance of the forward and

the implicit bidirectional labeling strategy in the BPC algorithm. In both experiments, we again use the
objective that minimizes routing cost.

In the first analysis, we consider the root node, i.e., the linear relaxation of the MP including the
strengthening with SRIs and CCs. In each pricing iteration, the SPPRC subproblem is solved using both
labeling strategies (forward and implicit bidirectional) applying the labeling algorithms consecutively. Since
the dual prices and reduced costs used in both labeling algorithms are identical, a perfectly fair comparison
is ensured. We add the negative reduced cost routes generated by the bidirectional algorithm to the RMP
(this choice is arbitrary). As performance measures, we use the ratio of (1) the number of generated labels,
(2) the number of processed labels, and (3) the total pricing time in the implicit bidirectional and forward
labeling. The ratios are aggregated by taking the geometric mean over all pricing iterations of a VRP-D
instance. Whenever the linear relaxation is not completely solved within the time limit, we omit the last
iteration for both strategies. To increase the accuracy, we also omit those pricing iterations that consume
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less than 100 milliseconds of computation time. Table 2 reports the minimum (min), geometric mean (mean)
or arithmetic mean (avg), and maximum (max ) of each measure, aggregated over VRP-D instances with
an identical number of customers. Additionally, the table lists the number of iterations needed to solve the
LP-relaxation of the MP.

Ratio of

generated labels processed labels pricing time Num. iterations

m min mean max min mean max min mean max min avg max

19 0.22 0.26 0.30 0.16 0.19 0.25 0.20 0.29 0.40 1 23.85 58
29 0.21 0.23 0.27 0.15 0.17 0.22 0.22 0.28 0.54 19 69.25 109
39 0.20 0.22 0.26 0.14 0.17 0.20 0.02 0.23 0.59 41 88.25 136
49 0.18 0.21 0.27 0.14 0.17 0.21 0.02 0.21 0.42 64 98.20 149

Total 0.23 0.17 0.25 69.89

Table 2: Comparison of forward and implicit bidirectional labeling using identical dual prices.

All ratios presented in the table are less than one, which shows the implicit bidirectional labeling strategy
is superior to its monodirectional counterpart. The number of iterations is sufficiently large to provide
statistically significant results. The number of generated (extended) labels reduces to 23% (17%) on average,
i.e., by more than a factor of four (five). These reductions do not fully translate to the time consumed by
the labeling algorithms, which is reduced to 25% on average (exactly factor four). Even in the worst-case
(a VRP-D instance with m = 39 customers), the pricing time is still reduced to 59%. More importantly, all
geometric means decrease with the number m of customers, which highlights that the advantage of using
the implicit bidirectional labeling algorithm increases with the instance size.

In the second analysis, we compare two fully-fledged BPC algorithms described in Section 4, where one
uses the forward labeling and the other the implicit bidirectional labeling algorithm. Detailed results for
each instance can be found in Tables A.6–A.9 in the Appendix. Table 3 aggregates these results obtained
with both BPC algorithms, again grouped by VRP-D instances with an identical number m of customers.
The column entries have the following meaning: (#Inst) number of instances per group, (#Opt) number of
instances solved to proven optimality within the time limit, (#UB) number of instances for which an upper
bound was found, (Gap) average relative difference between the upper bound (UB) and lower bound (LB)
in percent at termination, i.e., 100(UB − LB)/LB (computed only when an upper and lower bound was
found), (Time) average solution time in seconds, and (#BB) average number of branch-and-bound nodes
solved per VRP-D instance.

Forward labeling Implicit bidirectional labeling

m #Inst #Opt #UB Gap Time #BB #Opt #UB Gap Time #BB

19 20 19 20 <0.01 295.2 19.0 20 20 — 41.9 20.5
29 20 14 20 0.36 2,160.4 34.2 17 20 0.07 1,046.8 72.3
39 20 6 20 1.55 3,233.0 27.8 11 20 0.22 2,237.8 64.3
49 20 2 20 8.45 3,400.0 8.6 3 20 2.70 3,215.6 21.0

Total 80 41 80 2.51 2,272.1 22.4 51 80 0.75 1,635.5 44.5

Table 3: Comparison of two BPC algorithms equipped with a forward or implicit bidirectional labeling
algorithm.

The results of the second analysis are very consistent over different instance sizes. The implicit bidi-
rectional labeling algorithm outperforms the forward labeling algorithm, i.e., more instances are solved to
optimality (51 versus 41), average gaps and computation times are smaller, and more branch-and-bound
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nodes are processed (in shorter time). In total, the BPC algorithm with implicit bidirectional labeling is on
average around 30% faster than the BPC with a forward labeling. The speedup for the smallest instances
with m = 19 customers is more than by a factor of 7. The results for the instances with more customers are
biased due to the one-hour time limit. Hence, the implicit bidirectional labeling is even more valuable than
the 30% speedup suggests: For instances with m = 29 (39) customers, the number of proven optimal solu-
tions increases from 14 to 17 (6 to 11), and for the largest instances with m = 49 customers, approximately
2.5 times more branch-and-bound nodes can be processed reducing the average gap from 8.5 to 2.7 percent.

All experiments conducted in the following use the implicit bidirectional labeling algorithm to solve the
pricing subproblems.

5.4. Comparison of Cost and Duration Objectives
Next, we highlight the differences between the cost and duration objectives. Recall that, up to now,

only results for the minimization of the routing costs have been shown. We evaluate the impact of the
parameter β ∈ {1, 3, 5}, which is the discount factor of the routing costs of the drones in the cost-objective
case and the speed factor of the drones (relative to the trucks’ speed) in the duration-objective case. Table 4
shows results regarding the difficulty of the VRP-D instances for the BPC algorithm. The column entries
have the same meaning as those in Table 3, now grouped by objective, the number of customers m, and the
value of β. Note that the entries for β = 3 and cost minimization are identical to the ones shown in Table 3.

Cost objective Duration objective

m β #Opt #UB Gap Time #BB #Opt #UB Gap Time #BB

19 1 20 20 — 31.5 28.5 16 20 2.69 1,281.1 61.5
3 20 20 — 41.9 20.5 19 20 0.02 525.9 170.8
5 19 20 0.01 235.2 85.5 19 20 0.04 722.7 144.1

Subtotal 59 60 <0.01 102.9 44.8 54 60 0.92 843.2 125.4

29 1 20 20 — 183.3 20.4 2 20 3.11 3,446.8 18.2
3 17 20 0.07 1,046.8 72.3 5 20 1.25 2,988.7 113.5
5 18 20 0.05 965.8 91.8 4 20 2.30 2,994.3 80.3

Subtotal 55 60 0.04 732.0 61.5 11 60 2.22 3,143.3 70.6

39 1 9 20 0.80 2,424.1 91.0 0 20 5.47 3,660.0 3.6
3 11 20 0.22 2,237.8 64.3 0 19 1.83 3,660.0 23.8
5 7 20 0.65 2,641.8 54.3 1 19 1.84 3,484.0 26.7

Subtotal 27 60 0.56 2,434.5 69.8 1 58 3.04 3,601.3 18.0

49 1 6 20 2.07 2,927.6 23.7 0 20 4.44 3,660.0 0.3
3 3 20 2.70 3,215.6 21.0 0 19 4.10 3,660.0 6.3
5 2 20 3.38 3,392.1 20.9 0 17 3.45 3,660.0 9.6

Subtotal 11 60 2.72 3,178.4 21.8 0 56 4.00 3,660.0 5.4

Total 152 240 0.83 1,612.0 49.5 66 234 2.54 2,828.7 54.9

Table 4: Comparison of BPC results for objectives cost and duration minimization.

On average, VRP-D instances with duration objective are more difficult to solve for the BPC algorithm
than the respective instance with cost objective. For the smallest instances with m = 19 customers, only
54 out of 60 instances are solved to proven optimality with an average gap of 0.92 percent for duration
minimization, while almost all instances (59 out of 60) are solved approximately eight times faster leaving
an average gap smaller than 0.01 percent in the cost-minimization case. For instances with m = 29 (m = 39)
customers, the number of provably optimal solutions drops to 11 (1) compared to 55 (27) out of 60. For
m = 49, no optima were computed for the duration-minimization objective. In these cases, also the MIP-
based heuristic is less effective as it does not provide a solution and upper bound for six instances. The
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increased difficulty of the duration objective can, e.g., be explained by the need to introduce the additional
resource Rdur in the labeling algorithm (see Section 4.2.2).

Comparing different β-values, there are opposite tendencies visible for the two objectives. For cost
minimization, the smaller instances (with m = 19 and 29) show that computation times increase with larger
values of β. On the contrary, for m = 19 and 29, increasing β reduces the average computation time
when duration minimization is the goal. For instances with more customers, average computation times are
dominated by the number of unsolved instances (taken into account with 3660 seconds).

5.5. Effect of the Drones’ Routing Cost and Speed
The routing cost and speed of drones compared to trucks have a strong impact on the structure of optimal

and nearly optimal solutions. This last section details the impact in four analyses.

Conflicting Objectives. First, we show that the two objectives are conflicting. To this end, we re-evaluate
optimal and best-known solutions for one objective using the other objective. These values are then compared
with best-known solutions for the other objective. Figure 4 shows the resulting average percentage increase
of the objective value for different values of β and m.

β = 1 β = 3 β = 5 β = 1 β = 3 β = 5 β = 1 β = 3 β = 5 β = 1 β = 3 β = 5
0

10

20

30

40

50

60

D
ev

ia
ti

on
fr

om
be

st
-k

no
w

n
ob

je
ct

iv
e

va
lu

e
(%

)

m = 19 m = 29 m = 39 m = 49

0

20

40

60

cost → duration duration → cost

Figure 4: Increase of the objective value.

Considering the evaluation of solutions optimized with respect to routing cost using the duration objective
(indicated as ‘cost → duration’), we find that the deviations are highest (26.5%) for β = 3 and lower for
β = 1 and 5 (the smallest deviation is 10.6%). Results for m = 49 should be considered with care, since the
number of optimal solutions is small so that best-known upper bounds are used instead.

For the reverse evaluation (indicated as ‘duration → cost’), the cost increase for β = 1 stands out. Solu-
tions optimized with regard to duration are (on average) rather bad solutions for routing-cost minimization.
For β = 3 and β = 5, the deviations resulting from the two re-evaluations are in a rather similar range for
all instance sizes.

Share of drone customers. We now analyze the structure of optimal and best-known solutions. As shown in
Table 5, the share of drone customers varies considerably depending on the objective, the size of the instance,
and the β-value. On average, the share increases with β and when replacing cost by duration minimization.
In turn, the share decreases slightly when instances become larger. The impact of the parameter β is as
expected, since cheaper and faster drones foster their use.

The most surprising and striking result is that drones are hardly ever used when routing cost is minimized
and trucks and drones have identical cost/speed characteristics (β = 1). The following example explains the
above outcome.
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Cost objective Duration objective

m β = 1 β = 3 β = 5 β = 1 β = 3 β = 5

19 0 27 42 28 51 56
29 0 27 40 27 51 54
39 0 23 37 27 49 52
49 1 22 34 26 47 49

Table 5: Share (in percent) of drone customers in optimal/best-known solutions.

Example 9. Consider a tiny VRP-D instance with three customers N = {1, 2, 3}. The complete undirected
graph is then G = (V,E) with V = {0, 1, 2, 3, 0′}. Recall from Section 5.1 that routing costs and travel
times are computed from Manhattan distances for trucks and Euclidean distances for drones. Accordingly,
we define tij = cij = 2 and tdrij = cdrij = 1.5/β for all {i, j} ∈ E. (Similar distances of 2 and 1.5 ≈

√
2 occur

if coordinates differ by 1 in x- and y-direction.)
When all three customers are served by the same truck, the corresponding route r has an objective value

of cr = 8, regardless of the order in which the customers are visited. This applies for both objectives.
Alternatively, we assume that one of the customers is served by the drone and the two others by the same
truck to which the drone is assigned. The corresponding route is denoted by r′. Its drone subpath has
routing cost of 2 · 1.5/β, and the duration increases by max{2, 2 · 1.5/β}. Hence, routing costs accumulate
to cr′ = 6 + 3/β, and the duration is tr′ = 4 +max{2, 3/β}.

For β < 1.5, it follows cr < c′r for routing costs so that the use of the drone is not beneficial (in
particular for β = 1). This relation reverses for β > 1.5 so that the use of the drone is cost-effective (in
particular for β ∈ {3, 5}). This reasoning is empirically proven by the results shown on the left-hand-side
of Table 5. For the duration objective, the first travel time tr = 8 is never smaller than the second travel
time tr′ = 4+max{2, 3/β} (assuming that the drone speed is never lower than the truck speed, i.e., β ≥ 1).
Hence, using the drone is always advantageous as can be seen from the results on the right-hand-side of
Table 5. □
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Figure 5: Average percentage change in routing cost and duration for different β-values.

Comparison of different β-Values. Next, we compare optimal and best-known solutions for β = 3 with
optimal and best-known solutions for the values β = 1 and β = 5, respectively. Figure 5 visualizes the average
percentage chances relative to the baseline solutions for β = 3. First and foremost, percentage changes are
smaller for the cost-minimization (Figure 5a) and larger for the duration minimization (Figure 5b). For
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routing costs, increasing the drones’ routing costs by a factor of 3 (from β = 3 to β = 1) results in an overall
cost increase between 5 and 12 percent, depending on the instance size. Reducing the dones’ routing costs
(from β = 3 to β = 5) generates cost savings in roughly the same amount. For duration minimization, the
respective changes amount to between 20 and 30 percent and between 5 and 9 percent, respectively. The
latter result means that drones should be faster than trucks, but further increasing their speed beyound
β = 5 will not generate substantial additional savings.

Comparison with Approximation Results. The above results are in line with those of Carlsson and Song
(2018), namely, that the efficacy of the combined truck and drone delivery increases with the ratio of the
drone’s and truck’s speeds. Carlsson and Song’s most important finding is that ‘the improvement in efficiency
[resulting from the use of a drone] is proportional to the square root of the ratio of the speeds of the truck
and the unmanned aerial vehicle’ [drone]. Carlsson and Song do not use MIP-based optimization techniques
but a continuous approximation model (see Daganzo, 2005). They measure efficiency as the duration of a
tour (a max -term like in the duration objective (1)). However, in their model, only the drone delivers to
customers and the truck serves as a supportive vehicle (like in case (1) in Section 1). When reducing the
drone speed from β = 3 to β = 1, Carlsson and Song’s model predicts an increase of durations by 73 percent
(
√
3 = 1.73). Our results show relatively smaller duration increases of on average 26 percent, which can be

partly explained by the fact that, in our setting, only approximately half of the customers can be served
by drone (see Table 5). When increasing the drone speed from β = 3 to β = 5, they predict a reduction
of durations by 23 percent (

√
3/5 = 0.77). Our results are then rather consistent with the above numbers

showing average duration reductions of only 6.2 percent.

6. Conclusions

Drones are an emerging technology. This explains why planning problems related to drones have attracted
researchers from various disciplines, e.g., engineering, computer science, and control theory (Otto et al.,
2018). The VRP-D considered in this work is the prototypical routing problem for combined operations of
trucks and drones when they are used as synchronized working units. Combined delivery operations make
particularly sense when conventional vehicles cannot easily and quickly reach some delivery points, e.g.,
for parcel delivery to remote households, medical supply delivery (vaccines, blood, drugs) and collection
(samples of blood, urine, etc.), delivery of spare parts, etc.

From an Operations Research perspective, the planning of combined delivery operations with trucks and
drones collaborating in a synchronized way is very challenging. A a consequence, heuristic approaches are
predominant. Complementing these approaches, we presented a new exact solution algorithm that is based
on the BPC principle. Its most important algorithmic component is an innovative implicit bidirectional
labeling algorithm for solving pricing subproblems. For this purpose, we adapted an artificial network
originally introduced by Roberti and Ruthmair (2021) for modeling truck and drone synchronization in the
TSP-D. In this artificial network, the same route, once considered in forward and once in backward direction,
passes through different vertices. Our new implicit bidirectional labeling algorithm exploits the symmetry
inherent in the VRP-D as it however does not distinguish forward and backward directions. Labeling
performance is further improved by problem-tailored preprocessing and acceleration techniques of the merge
procedure, which is otherwise the bottleneck of the overall solution algorithm. For the performance of the
BPC algorithm, several known techniques had to be adapted to the VRP-D case: delayed propagation of
some resource values is helpful to handle the non-robust cutting planes (subset-row inequalities and capacity
cuts) that strengthen the linear relaxation of the column-generation MP. At the end, the BPC algorithm
is able to exactly minimize the routing cost for instances of the VRP-D with up to 49 customers. The
minimization of the duration is more difficult, but feasible solutions with an average gap of less than 2.2 (3.0)
percent are found for instances with 29 (39) customers. These gaps tend to be smaller for realistic settings
in which drones are significantly faster than trucks. Compared to other exact algorithms for variants of the
VRP-D (see Section 2) that allow solution times of up to 3, 5, 10, and even 20 hours for instances with
not more than 35 customers, our new BPC algorithm obtains the reported results within one hour. Roberti
and Ruthmair (2021) have shown how to modify the artificial network to cope with TSP-D variants that
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consider, e.g., drone loops in addition to done subpaths, a (possibly weight-dependent) drone flying range,
and a maximum number of customers per truck segment. Using the same ideas, our approach is adaptable
to the corresponding VRP-D variants.
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Appendix A. Detailed Results per Instance

Tables A.6–A.13 present detailed computational results for the complete VRP-D instance set. Tables A.6–
A.9 report the results for routing-cost minimization and Tables A.10–A.13 for the duration minimization.

All tables are structured according to the following scheme: The first two columns state the instance
name (Instance) and the number of truck-only customers (#To) considered in the instances. Next, blocks
with three columns each show the following values for β = 1, 3, and 5: The computed upper bound (UB),
lower bound (UB), and the solution time in seconds (Time). Cells filled with ‘TL’ indicate that the time
limit of 3,600 seconds for the BPC algorithm was reached. Cells filled with ‘—’ indicate that the root node
could not be solved within the time limit so that no value for LB is known.

β = 1 β = 3 β = 5

Instance #To UB LB Time UB LB Time UB LB Time

A-n32-k5-20 4 6,700 6,700 1.1 6,618 6,618 2.5 6,398 6,398 1.4
A-n33-k5-20 3 5,900 5,900 0.7 5,597 5,597 0.5 5,266 5,266 3.8
A-n33-k6-20 5 5,980 5,980 34.0 5,292 5,292 1.3 4,816 4,816 55.2
A-n34-k5-20 5 6,200 6,200 8.0 5,596 5,596 10.0 5,185 5,185 47.8
A-n36-k5-20 3 6,560 6,560 12.5 5,937 5,937 355.1 4,852 4,852 247.6
A-n37-k5-20 4 6,120 6,120 82.6 4,947 4,947 2.9 4,576 4,576 6.1
A-n37-k6-20 3 6,557 6,557 34.5 5,808 5,808 52.0 5,075 5,075 32.7
A-n38-k5-20 2 5,880 5,880 2.2 5,266 5,266 8.7 4,813 4,813 131.3
A-n39-k5-20 5 5,040 5,040 24.4 4,336 4,336 13.0 3,983 3,983 43.3
A-n39-k6-20 6 7,040 7,040 5.6 6,169 6,169 14.5 5,580 5,580 24.4
A-n44-k7-20 2 6,000 6,000 0.8 5,565 5,565 3.8 4,796 4,796 2.2
A-n45-k6-20 3 6,780 6,779 168.4 5,937 5,937 57.3 5,220 5,220 25.0
A-n45-k7-20 3 6,840 6,839 132.5 5,769 5,769 4.4 5,154 5,154 44.1
A-n46-k7-20 3 6,280 6,280 2.6 5,326 5,326 137.4 4,850 4,845 TL
A-n48-k7-20 6 7,400 7,399 70.9 6,760 6,760 7.3 6,162 6,162 19.4
A-n53-k7-20 5 6,500 6,500 1.9 6,285 6,285 28.4 5,762 5,761 203.6
A-n54-k7-20 3 6,280 6,280 12.7 5,770 5,769 115.7 5,168 5,168 109.5
A-n55-k9-20 4 5,940 5,940 2.8 5,186 5,186 4.9 4,479 4,479 2.4
A-n60-k9-20 3 5,840 5,840 3.3 5,522 5,522 17.3 4,863 4,862 100.4
A-n61-k9-20 4 5,040 5,040 29.3 4,264 4,264 1.7 3,847 3,847 1.6

Table A.6: Detailed results for instances with m = 19 customers for cost minimization.
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β = 1 β = 3 β = 5

Instance #To UB LB Time UB LB Time UB LB Time

A-n32-k5-30 6 9,540 9,540 226.7 9,124 9,124 930.0 8,343 8,343 37.6
A-n33-k5-30 4 7,680 7,680 245.4 6,961 6,960 651.9 6,377 6,377 472.1
A-n33-k6-30 10 8,880 8,880 68.2 8,423 8,423 355.6 7,690 7,689 1,661.9
A-n34-k5-30 7 8,480 8,480 41.7 7,908 7,908 146.9 7,479 7,479 556.7
A-n36-k5-30 3 8,438 8,438 385.6 7,310 7,310 677.0 6,295 6,295 795.9
A-n37-k5-30 5 7,116 7,116 373.3 6,350 6,350 662.7 5,656 5,656 500.9
A-n37-k6-30 3 9,220 9,220 158.7 8,141 8,141 207.4 7,287 7,286 985.7
A-n38-k5-30 4 7,920 7,920 67.7 7,140 7,139 524.6 6,295 6,295 260.0
A-n39-k5-30 7 7,920 7,920 16.8 7,236 7,235 2,147.7 6,335 6,335 185.9
A-n39-k6-30 8 8,560 8,560 46.2 7,615 7,615 222.2 6,855 6,855 192.5
A-n44-k7-30 4 8,560 8,560 73.2 7,287 7,287 92.8 6,572 6,572 1,468.2
A-n45-k6-30 7 8,380 8,380 36.7 7,903 7,903 26.8 7,233 7,233 727.8
A-n45-k7-30 6 9,720 9,720 83.6 9,128 9,128 326.8 8,397 8,396 82.4
A-n46-k7-30 5 8,320 8,320 52.4 7,589 7,589 871.9 6,740 6,740 2,067.8
A-n48-k7-30 6 9,600 9,600 15.1 9,053 9,038 TL 8,107 8,107 247.9
A-n53-k7-30 6 8,060 8,060 301.9 7,691 7,626 TL 6,852 6,829 TL
A-n54-k7-30 5 9,200 9,200 990.1 8,803 8,760 TL 7,993 7,993 281.7
A-n55-k9-30 8 8,320 8,320 176.2 7,286 7,286 14.5 6,783 6,783 1,522.9
A-n60-k9-30 5 7,960 7,960 171.9 7,480 7,480 2,084.4 6,755 6,705 TL
A-n61-k9-30 5 6,760 6,760 134.0 6,134 6,134 187.6 5,370 5,370 64.2

Table A.7: Detailed results for instances with m = 29 customers for cost minimization.

β = 1 β = 3 β = 5

Instance #To UB LB Time UB LB Time UB LB Time

A-n44-k7-40 7 10,780 10,718 TL 9,800 9,800 1,330.8 8,992 8,979 TL
A-n45-k6-40 9 10,940 10,940 917.8 10,006 10,006 111.5 9,299 9,297 TL
A-n45-k7-40 7 12,080 12,010 TL 11,311 11,310 TL 10,235 10,235 195.4
A-n46-k7-40 6 10,000 10,000 2,157.7 9,054 9,054 772.5 8,287 8,162 TL
A-n48-k7-40 8 11,640 11,640 141.6 10,809 10,809 371.6 10,009 10,008 1,260.7
A-n53-k7-40 9 9,800 9,800 1,379.2 9,285 9,271 TL 8,954 8,703 TL
A-n54-k7-40 5 10,440 10,440 961.4 10,135 10,086 TL 9,418 9,288 TL
A-n55-k9-40 11 10,260 10,224 TL 9,760 9,744 TL 9,129 9,128 1,532.0
A-n60-k9-40 5 10,040 10,039 965.8 9,318 9,182 TL 8,537 8,270 TL
A-n61-k9-40 6 9,360 9,358 TL 8,394 8,394 654.9 7,558 7,503 TL
A-n62-k8-40 4 10,340 10,298 TL 9,501 9,501 TL 8,519 8,439 TL
A-n63-k9-40 9 13,720 13,720 1,003.8 12,882 12,864 TL 11,824 11,794 TL
A-n63-k10-40 11 11,680 11,680 540.9 11,331 11,330 1,302.2 10,531 10,530 1,666.1
A-n64-k9-40 10 11,656 11,395 TL 10,832 10,795 TL 10,047 9,973 TL
A-n65-k9-40 8 10,040 9,872 TL 9,553 9,553 555.7 9,051 9,051 596.3
A-n69-k9-40 5 9,320 9,187 TL 7,962 7,962 610.8 7,116 7,113 TL
A-n80-k10-40 10 13,900 13,777 TL 12,939 12,939 1,511.2 12,098 12,098 473.4
B-n41-k6-40 7 10,220 10,220 750.4 9,846 9,738 TL 9,241 9,140 TL
B-n43-k6-40 8 8,787 8,174 TL 7,853 7,853 1,331.0 7,509 7,509 182.7
B-n44-k7-40 8 10,500 10,481 TL 10,280 10,224 TL 9,796 9,793 TL

Table A.8: Detailed results for instances with m = 39 customers for cost minimization.
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β = 1 β = 3 β = 5

Instance #To UB LB Time UB LB Time UB LB Time

A-n53-k7-50 13 12,240 12,240 1,681.4 11,996 11,674 TL 11,012 10,847 TL
A-n54-k7-50 7 13,480 13,146 TL 12,734 12,534 TL 11,657 11,616 TL
A-n55-k9-50 13 12,700 12,700 946.8 12,073 12,073 993.8 11,502 11,502 1,505.0
A-n60-k9-50 9 13,880 13,612 TL 12,891 12,621 TL 11,862 11,741 TL
A-n61-k9-50 6 10,880 10,876 TL 9,992 9,992 840.1 9,096 9,020 TL
A-n62-k8-50 9 13,360 13,190 TL 13,003 12,591 TL 12,395 11,581 TL
A-n63-k9-50 12 16,240 16,240 370.0 15,747 15,651 TL 15,043 14,627 TL
A-n63-k10-50 13 13,940 13,840 TL 13,146 12,977 TL 12,453 12,245 TL
A-n64-k9-50 10 13,720 13,134 TL 12,729 12,400 TL 12,218 11,525 TL
A-n65-k9-50 10 11,640 11,639 728.9 11,297 11,226 TL 10,799 10,615 TL
A-n69-k9-50 6 10,600 10,600 737.5 10,030 9,764 TL 8,895 8,716 TL
A-n80-k10-50 12 15,600 15,315 TL 14,982 14,576 TL 13,737 13,681 TL
B-n50-k7-50 9 9,608 9,345 TL 8,626 8,626 367.3 8,304 8,304 482.2
B-n50-k8-50 13 17,200 16,153 TL 15,777 15,685 TL 15,046 14,994 TL
B-n51-k7-50 10 13,220 12,935 TL 12,556 12,120 TL 12,025 11,762 TL
B-n52-k7-50 9 7,980 7,980 3,342.8 7,866 7,849 TL 7,920 7,594 TL
B-n56-k7-50 7 7,734 7,613 TL 8,190 7,278 TL 7,727 6,886 TL
B-n57-k7-50 9 13,154 13,018 TL 12,506 12,115 TL 12,651 11,551 TL
B-n57-k9-50 10 19,220 17,932 TL 19,354 17,256 TL 18,509 16,419 TL
B-n63-k10-50 12 16,072 14,997 TL 14,351 14,183 TL 13,436 13,321 TL

Table A.9: Detailed results for instances with m = 49 customers for cost minimization.

β = 1 β = 3 β = 5

Instance #To UB LB Time UB LB Time UB LB Time

A-n32-k5-20 4 6,042 6,042 248.5 5,139 5,139 89.5 5,100 5,100 1.4
A-n33-k5-20 3 4,932 4,932 23.9 4,320 4,319 1,215.3 4,120 4,119 3.8
A-n33-k6-20 5 4,672 4,672 35.1 3,544 3,544 106.7 3,480 3,480 55.2
A-n34-k5-20 5 5,017 5,017 346.8 4,430 4,410 TL 4,400 4,367 47.8
A-n36-k5-20 3 5,240 5,240 2,932.3 3,653 3,653 1,758.7 3,077 3,077 247.6
A-n37-k5-20 4 4,584 4,584 3,013.8 3,836 3,836 1,707.8 3,742 3,742 6.1
A-n37-k6-20 3 5,380 5,380 618.1 4,089 4,088 150.3 3,848 3,848 32.7
A-n38-k5-20 2 4,560 4,560 23.7 3,295 3,295 55.9 2,942 2,942 131.3
A-n39-k5-20 5 3,945 3,944 398.5 3,240 3,240 17.7 3,208 3,207 43.3
A-n39-k6-20 6 5,630 5,630 604.7 4,627 4,626 252.9 4,218 4,218 24.4
A-n44-k7-20 2 5,017 5,017 85.5 3,512 3,512 9.0 3,480 3,480 2.2
A-n45-k6-20 3 5,219 5,218 1,535.3 3,967 3,967 112.0 3,866 3,866 25.0
A-n45-k7-20 3 5,254 5,254 497.3 3,840 3,840 89.4 3,560 3,559 44.1
A-n46-k7-20 3 4,842 4,779 TL 3,535 3,535 68.4 3,520 3,519 TL
A-n48-k7-20 6 5,994 5,994 62.5 4,689 4,689 209.2 3,934 3,934 19.4
A-n53-k7-20 5 5,757 5,621 TL 4,309 4,308 339.0 4,100 4,100 203.6
A-n54-k7-20 3 5,558 5,235 TL 4,080 4,079 558.8 3,851 3,850 109.5
A-n55-k9-20 4 4,615 4,614 227.7 3,280 3,280 10.8 3,212 3,212 2.4
A-n60-k9-20 3 5,173 5,128 TL 3,470 3,470 159.9 3,082 3,082 100.4
A-n61-k9-20 4 3,869 3,868 565.6 3,080 3,080 5.7 3,080 3,080 1.6

Table A.10: Detailed results for instances with m = 19 customers for duration minimization.
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β = 1 β = 3 β = 5

Instance #To UB LB Time UB LB Time UB LB Time

A-n32-k5-30 6 8,163 7,974 TL 6,462 6,446 TL 6,215 6,203 37.6
A-n33-k5-30 4 6,390 6,251 TL 5,079 5,052 TL 4,723 4,723 472.1
A-n33-k6-30 10 7,321 7,321 1,400.6 6,028 6,028 838.4 5,866 5,866 1,661.9
A-n34-k5-30 7 7,105 7,087 TL 6,640 6,452 TL 6,600 6,242 556.7
A-n36-k5-30 3 6,759 6,539 TL 4,612 4,599 TL 4,380 4,091 795.9
A-n37-k5-30 5 5,957 5,597 TL 4,598 4,438 TL 4,378 4,214 500.9
A-n37-k6-30 3 7,627 7,382 TL 5,357 5,356 1,645.2 4,932 4,896 985.7
A-n38-k5-30 4 6,400 6,286 TL 4,819 4,819 1,411.3 4,434 4,434 260.0
A-n39-k5-30 7 6,401 6,395 TL 5,493 5,338 TL 5,086 5,017 185.9
A-n39-k6-30 8 6,952 6,787 TL 5,507 5,457 TL 5,276 5,073 192.5
A-n44-k7-30 4 6,982 6,643 TL 4,993 4,874 TL 4,969 4,709 1,468.2
A-n45-k6-30 7 7,287 7,033 TL 5,439 5,398 TL 5,202 5,176 727.8
A-n45-k7-30 6 8,440 8,217 TL 6,814 6,796 TL 6,461 6,414 82.4
A-n46-k7-30 5 7,168 6,574 TL 4,956 4,954 TL 4,880 4,684 2,067.8
A-n48-k7-30 6 8,011 7,872 TL 6,565 6,250 TL 5,730 5,611 247.9
A-n53-k7-30 6 7,424 6,443 TL 5,193 5,089 TL 5,180 4,878 TL
A-n54-k7-30 5 7,708 7,662 TL 6,578 6,578 581.2 6,140 6,140 281.7
A-n55-k9-30 8 6,411 6,410 658.8 5,300 5,287 TL 5,080 5,054 1,522.9
A-n60-k9-30 5 6,654 6,601 TL 4,986 4,849 TL 4,522 4,482 TL
A-n61-k9-30 5 5,437 5,377 TL 4,071 4,070 1,127.2 3,805 3,709 64.2

Table A.11: Detailed results for instances with m = 29 customers for duration minimization.

β = 1 β = 3 β = 5

Instance #To UB LB Time UB LB Time UB LB Time

A-n44-k7-40 7 8,783 8,714 TL 6,817 6,727 TL 6,440 6,319 TL
A-n45-k6-40 9 9,340 9,095 TL 6,843 6,820 TL 6,488 6,463 TL
A-n45-k7-40 7 10,432 10,241 TL 8,617 8,448 TL 7,611 7,605 195.4
A-n46-k7-40 6 8,446 8,003 TL 6,107 5,956 TL 5,667 5,570 TL
A-n48-k7-40 8 9,903 — TL 7,849 7,733 TL 7,261 7,050 1,260.7
A-n53-k7-40 9 9,240 — TL 6,485 6,457 TL 6,320 6,236 TL
A-n54-k7-40 5 9,843 8,920 TL 7,748 7,396 TL 6,923 6,792 TL
A-n55-k9-40 11 8,808 8,521 TL 7,379 7,320 TL 7,040 7,021 1,532.0
A-n60-k9-40 5 8,800 — TL 6,049 5,936 TL 5,362 5,303 TL
A-n61-k9-40 6 7,912 7,382 TL 5,726 5,678 TL 5,271 5,255 TL
A-n62-k8-40 4 9,020 — TL — 6,378 TL — 5,715 TL
A-n63-k9-40 9 11,931 11,565 TL 10,067 9,573 TL 9,122 8,791 TL
A-n63-k10-40 11 10,654 10,110 TL 8,766 8,724 TL 8,433 8,361 1,666.1
A-n64-k9-40 10 10,270 9,610 TL 7,929 7,736 TL 7,595 7,435 TL
A-n65-k9-40 8 8,736 8,401 TL 7,372 7,316 TL 7,240 7,159 596.3
A-n69-k9-40 5 7,566 — TL 5,426 5,167 TL 5,207 4,764 TL
A-n80-k10-40 10 11,965 — TL 9,665 9,484 TL 9,628 9,285 473.4
B-n41-k6-40 7 9,407 8,861 TL 7,696 7,639 TL 6,724 6,724 TL
B-n43-k6-40 8 8,021 7,397 TL 6,932 6,840 TL 6,609 6,547 182.7
B-n44-k7-40 8 10,480 9,451 TL 8,367 8,323 TL 7,941 7,855 TL

Table A.12: Detailed results for instances with m = 39 customers for duration minimization.
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β = 1 β = 3 β = 5

Instance #To UB LB Time UB LB Time UB LB Time

A-n53-k7-50 13 10,950 — TL 9,001 8,874 TL 8,866 8,573 TL
A-n54-k7-50 7 11,472 — TL 9,481 9,152 TL 8,596 8,440 TL
A-n55-k9-50 13 10,829 10,674 TL 9,598 9,489 TL 9,179 9,124 1,505.0
A-n60-k9-50 9 12,178 — TL 9,474 9,386 TL 9,009 8,721 TL
A-n61-k9-50 6 9,483 — TL 6,999 6,874 TL 6,353 6,223 TL
A-n62-k8-50 9 12,168 — TL 9,518 8,870 TL — 8,167 TL
A-n63-k9-50 12 14,812 — TL 12,181 11,798 TL 11,306 11,003 TL
A-n63-k10-50 13 12,568 11,765 TL 10,517 10,231 TL 10,123 9,768 TL
A-n64-k9-50 10 11,715 — TL 9,182 8,772 TL 8,628 8,348 TL
A-n65-k9-50 10 10,403 9,903 TL 9,032 8,514 TL 8,331 8,255 TL
A-n69-k9-50 6 9,458 — TL 6,631 6,475 TL 6,359 6,116 TL
A-n80-k10-50 12 13,871 — TL 11,693 10,718 TL — 10,178 TL
B-n50-k7-50 9 8,240 — TL 7,326 — TL 7,292 — 482.2
B-n50-k8-50 13 15,523 — TL 13,765 13,214 TL 13,467 12,545 TL
B-n51-k7-50 10 12,260 — TL 10,581 9,915 TL 10,461 9,795 TL
B-n52-k7-50 9 7,563 — TL — — TL 6,042 — TL
B-n56-k7-50 7 7,659 — TL 5,867 5,459 TL 4,943 4,795 TL
B-n57-k7-50 9 13,100 — TL 10,604 10,228 TL — 9,955 TL
B-n57-k9-50 10 18,993 — TL 13,910 13,589 TL 13,533 13,324 TL
B-n63-k10-50 12 13,911 — TL 11,478 10,927 TL 11,091 10,352 TL

Table A.13: Detailed results for instances with m = 49 customers for duration minimization.
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