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The Impact of Working Memory Training on Children’s 

Cognitive and Noncognitive Skills 

Eva M. Berger1,4, Ernst Fehr2, Henning Hermes3, Daniel Schunk4, Kirsten Winkel5

January 9, 2024 

Abstract: Working memory capacity is a key component of executive functioning and is thought to 
play an important role for a wide range of cognitive and noncognitive skills such as fluid intelligence, 
math, reading, the inhibition of pre-potent impulses or more general self-regulation abilities. Because 
these abilities substantially affect individuals’ life trajectories in terms of health, education, and 
earnings, the question of whether working memory (WM) training can improve them is of considerable 
importance. However, whether WM training leads to spillover effects on these other skills is contested. 
Here, we examine the causal impact of WM training embedded in regular school teaching by a 
randomized educational intervention involving a sample of 6–7 years old first graders. We find 
substantial immediate and lasting gains in working memory capacity. In addition, we document positive 
spillover effects on geometry, Raven’s fluid IQ measure, and the ability to inhibit pre-potent impulses. 
Moreover, these spillover effects emerge over time and only become fully visible after 12–13 months. 
Finally, we document that three years after the intervention the children who received training have a 
roughly 16 percentage points higher probability of entering the academic track in secondary school.  
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I. Introduction 

Cognitive and noncognitive skills affect important individual life outcomes such as health, education, and 
earnings (Cunha et al. 2006; Heckman, Stixrud and Urzua 2006; Moffitt et al. 2011; Duckworth et al. 2012; 
Almond, Currie and Duque 2018). Executive functions (Diamond 2013), which are malleable through 
interventions in childhood with long-lasting effects into adulthood (see, e.g., Walker et al. 2022; García, 
Heckman and Ronda 2023), are thought to play a key role in a wide range of abilities. Working memory (WM) 
capacity — the ability to mentally store and process information (Baddeley 1999) — is a key component of 
executive functions and has been shown to be positively associated with math and language skills (Gathercole 
et al. 2004; Alloway and Alloway 2010), general fluid IQ (Kyllonen and Christal 1990; Ackerman, Beier and 
Boyle 2005; Oberauer et al. 2005; de Abreu, Conway and Gathercole 2010), and self-regulation skills such as 
attention and inhibitory ability (Engle 2002; Hofmann et al. 2008; Schmeichel, Volokhov and Dernaree 2008; 
Diamond and Ling 2020). Conversely, individuals with learning problems, self-regulation and attention 
deficits often have low WM capacity (Westerberg et al. 2004; Martinussen et al. 2005; Van Snellenberg et al. 
2016). In view of this relevance of EFs and WM capacity for many important skills, the question is whether 
one can simultaneously improve several of these skills through WM training and whether this can be achieved 
by introducing WM training into the school curriculum. These questions are of fundamental importance for 
human capital formation and its underlying mechanisms as well as for educational policy.  

Previous evidence suggests that WM training can improve performance on untrained WM tasks (direct 
effects). However, the question of whether training-induced improvements in WM capacity lead to 
improvements in other important skills, such as academic and self-regulatory skills (spillover effects), lacks a 
conclusive answer as even meta-analyses and review studies are controversial on this point (Shipstead, Hicks 
and Engle 2012; Karbach and Verhaeghen 2014; Au et al. 2015; Melby-Lervag, Redick and Hulme 2016; 
Aksayli, Sala and Gobet 2019; Sala et al. 2019). This lack of a conclusive answer suggests that WM training 
studies face a number of considerable challenges (see, e.g., Gobet and Sala 2023 and Greene et al. 2019). For 
example, (i) spillover effects are likely to need time to evolve and identifying these effects requires follow-up 
evaluations that go beyond just a few weeks or 3–4 months after the training, (ii) unobservable background 
variation in school environments may swamp potential treatment effects, (iii) training may only lead to 
spillover effects in specific subject pools such as young children. Other difficulties involve (iv) choosing an 
appropriate control group, (v) using or developing appropriate age-adjusted outcome measures, and (vi) sample 
size issues. 

We tackle these challenges with a randomized controlled field experiment—described in more detail 
below—in a sample of 572 typically developing school children in the first grade of primary school. We focus 
on the training of relatively young children at age 6–7 years because evidence from economics indicates that 
training programs for youths in their late adolescence or young adulthood may be less effective than for young 
children (Cunha et al. 2006; Heckman 2006). Young children have higher brain plasticity, which might 
increase the chances of generating positive spillover effects (Heckman 2006; Constantinidis and Klingberg 
2016; Klingberg 2016; Almond, Currie and Duque 2018). In contrast to most other WM training studies in 
typically developing children, we track children’s outcomes for longer than 3–5 months after the training. 



2 
 

Specifically, we measure outcomes also after 6 and after 12–13 months and we examine whether the training 
has an effect on children’s school trajectory three years later.  

In our study, 31 school classes were randomly assigned to a treatment group (15 classes) or a control 
group (16 classes). Since we randomized within schools, we are able to control for unobservable background 
variation in school environments via school fixed effects. The children in the treatment group participated in 
a daily (one lesson per school day) computer-based adaptive WM training over a period of five weeks. We 
find not only substantial direct effects on WM capacity that emerge right after the five-week training period 
and last throughout all evaluation waves; we also find spillover effects on several important skills such as 
geometry, Raven’s fluid IQ measure and children’s ability to inhibit pre-potent impulses. Interestingly, for all 
these abilities there is no significant treatment effect shortly after the training, i.e., the spillover effects do not 
emerge in the short term. Instead, they show an increasing pattern over the course of several evaluation waves 
and are typically highest in the last wave (after 12-13 months) with effect sizes between 0.24 and 0.38 standard 
deviations. These effects are sizeable in view of the intervention’s intensity (25 school hours).  

One important aspect of our field experiment is that the WM training was embedded into the normal 
school routine and was introduced like any other new lesson or sequence of exercises that children experience 
during a school year. Thus, the children in the treatment group did not know that they were part of an 
experiment. The five-week WM training took place during one of the first two morning lessons during which 
children typically have math or German classes. This means that the children in the treatment group missed 25 
school lessons relative to the children in the control group who participated in their normal math and German 
lessons. Our treatment effects therefore already incorporate the opportunity cost of the lost school lessons. This 
means that the children in the treatment group seem to have experienced a net benefit from the WM training 
because the training did not reduce any outcome measure but significantly improved the children’s skill level 
in several dimensions. This interpretation is further corroborated by the finding that three years after the 
training the treatment group had a 16 percentage points higher probability of entering the academic track 
(called Gymnasium) of secondary school. In Germany, the choice of the secondary school track after the 4th 
grade in primary school is one of the most decisive educational choices for a child. This decision typically has 
a large influence on the probability of earning a high school (i.e., Gymnasium) degree and thus on the later 
university enrollment and adult labor market outcomes.1  

Our paper is related to the literature on the role of children’s cognitive and noncognitive skills in human 
capital formation. Research in this area has established that not only cognitive but also noncognitive skills 
have an important influence on individuals’ life outcomes in terms of education, income, and health (Cunha et 
al. 2006; Heckman, Stixrud and Urzua 2006; Conti and Heckman 2010; Moffitt et al. 2011; Duckworth et al. 
2012; Duckworth and Carlson 2013). Furthermore, research discussed in (Borghans et al. (2008), Cunha and 
Heckman (2009), Almond, Currie and Duque (2018); Garcia, Heckman and Ronda (2023) and Garcia and 
Heckman (2023)) has focused on the determinants of children’s cognitive and noncognitive skills, and has 

 
1 Dustmann (2004) finds that individuals with a degree of the academic track of secondary school (Gymnasiumabschluss) earn on 
average 54-73% higher wages at labor market entrance than those with a lower secondary school degree (Hauptschulabschluss, earned 
after 9th grade), and 22-34% higher wages than individuals with an intermediate degree (Realschulabschluss, earned after 10th grade).  
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identified the early family environment and associated parental investments, the school environment, and early 
health shocks as important determinants of adolescent and adult human capital. In addition, researchers 
designed interventions to boost cognitive and noncognitive skills and have conducted randomized controlled 
trials to measure the interventions’ causal effects. This literature examined, among others, the general role and 
malleability of (i) children’s “growth mindset”, i.e., an optimistic belief about the role of effort in individuals’ 
success (Dweck 2006; Yeager et al. 2014; Sisk et al. 2018; Yeager et al. 2019), (ii) children’s perseverance 
and patience (Duckworth et al. 2007; Duckworth 2011; Alan and Ertac 2018), and (iii) children’s trust and 
social preferences (Cappelen et al. 2020; Kosse et al. 2020).  

Our paper differs from these studies by focusing on different outcome measures and by choosing an 
intervention that has rarely, if at all, been considered by economists as a potential mechanism for changing 
children’s cognitive and noncognitive skills: working memory (WM) capacity. WM capacity is a key 
component of executive functioning (Diamond 2013) – with inhibitory control and cognitive flexibility being 
the other two components – and comprises not just the ability to store information in the short term. The use 
of working memory also requires the ability to process information in the presence of distracting impulses and 
competing information that is not conducive for the individual’s goal. Research on executive functioning has 
therefore emphasized that “working memory and inhibitory control need one another and co-occur”, and that 
“working memory supports inhibitory control” (Diamond 2013, p. 143) This is the reason why WM capacity 
may also generate spillover effects on important noncognitive skills by facilitating impulse control and self-
regulation. 

The literature on WM training in typically developing children has mostly measured the impact of WM 
training only immediately after the training or a few weeks or months after the training. There are, however, 
reasons to believe that detecting spillover effects to more complex skills might require follow-up evaluations 
that leave more time for spillover effects to develop. Cunha and Heckman (Cunha and Heckman 2007; Cunha, 
Heckman and Schennach 2010), for example, have pioneered and provided supporting evidence for the view 
that higher skill levels at earlier stages positively affect skill formation at later stages due to ‘self-productivity’ 
(skills attained at one stage augment the skills attained at later stages) and ‘dynamic complementarity’ (skills 
produced at one stage raise the productivity of investment into skills at subsequent stages).2 This is the reason 
why we evaluated outcomes not only shortly after the training but also 6 and 12–13 months after the training. 
Our findings on the time path of treatment effects corroborate the view that spillover effects need time to 
develop: in all cases in which we eventually document a significant spillover effect, the effect is rising over 
time, but in none of these cases the spillover effect is significant already shortly after the training. However, 
after 6 months a spillover effect on geometry skills and Raven’s fluid IQ measure emerges (also visible after 
12–13 months), and after 12–13 months we observe, in addition, a spillover effect on inhibitory control, namely 
the ability to inhibit pre-potent impulses.  

 
2 Several authors in the psychology and education science literature (Holmes, Gathercole and Dunning 2009; St Clair-Thompson et al. 
2010; Nutley and Soderqvist 2017) have also pointed out that, while direct effects of WM training to untrained WM tasks may happen 
in the short run, training-induced improvements in WM capacity need time to affect spillover outcomes.  
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Our paper is also related to the literature in psychology and education science that examines whether EF 
and WM training interventions (and other forms of cognitive training) lead to spillover effects in children (for 
an early contribution, see Klingberg et al. (2005); for reviews, see Diamond (2013), Diamond and Ling (2020), 
Sala and Gobet (2023)). A relevant share of this literature focusses on disadvantaged children, e.g., with 
disorders, very low WM capacity, or from low-educated family backgrounds (e.g., Klingberg et al. (2005); 
Roberts et al. (2016)). For interventions targeting these disadvantaged children, several studies show strong 
positive long-term effects on EFs which also spill over to several other domains, such as health, education, and 
(reduced) crime (Walker et al. 2022; García and Heckman 2023; García, Heckman and Ronda 2023). Our 
paper instead focusses on typically developing children. We contribute to this literature by demonstrating 
positive WM training effects, showing that improvements in one EF domain (working memory) can create 
spillovers in other domains (inhibitory control), which is consistent with a foundational role of WM capacity 
for the dynamic process of skill formation (Cunha and Heckman 2007). Finally, we show that improvements 
in these domains can have causal, long-term effects on educational trajectories.  

We believe that our approach has the advantages that (i) the children in the control group are participating 
in their normal school lessons, i.e., we have a natural control group, (ii) the children in our study are not aware 
of being part of an experiment because the training was introduced like other new topics during normal school 
teaching, (iii) we can also examine a question of high policy relevance, namely whether WM training provides 
additional benefits or costs for the children relative to normal school lessons, and (iv) we have short- and 
longer-run outcome measures that enable us to study how the treatment effect evolves over time. To our 
knowledge, there are only two other studies (St Clair-Thompson et al. 2010; Rode et al. 2014) that implemented 
WM training into the normal school routine such that the effects of training relative to normal school lessons 
could have been assessed. Unfortunately, these two studies experienced large attrition already after a few 
months, and/or did not have long-term follow-up measurements. In the light of our finding that many treatment 
effects only become fully visible after many months, this may have severely limited their ability to discover 
spillover effects.3 

The rest of the paper is organized as follows: Section II describes our study design, the data collection, 
and our outcome measures. In addition, we put forward conjectures about the effect of WM training on our 
outcome measures. In Section III, we describe the estimation method. In Section IV, we present and discuss 
our empirical results in detail. Section V summarizes the results and concludes the paper. 
  

 
3 There are also a number of studies that implement randomized WM training for children outside the school context (see review by 
Sala and Gobet (2020)), i.e., the children know that they are part of a study. Most of these papers measure outcomes between a few 
weeks and three months after the experiment.  
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II. Study Design and Data Description 

The field experiment was conducted in primary schools in Mainz, Germany, in 2013/2014 after receiving 
ethical approval in September 2012.  

A. Participants 

With the aid of the school authorities, we recruited 31 first grade classes from numerous schools in the city of 
Mainz, Germany, for participation in the study. Each school participated with at least two classes. Out of 599 
children in these classes in November 2012, we received the consent from 580 parents (consent rate of 96.8%) 
for four waves of data collection (W1, W2, W3, W4). We were able to collect test data for 572 of these 580 
children at baseline (W1) and shortly (i.e., 4-5 weeks) after the training (W2).4 Randomization was done 
between classes and within schools: 15 classes (279 children, i.e., 49%) were randomly assigned to the 
treatment group and 16 classes (293 children) to the control group. Randomization occurred within schools 
enabling us to control for school fixed effects. Summary statistics are reported in Table 1 below. About 49% 
of the children were male, mean age at the beginning of the year (i.e., on January 1, 2013) was 82 months (6.8 
years, SD = 4.3 months). Attrition over the course of the four evaluation waves (from W1 to W4) was very 
low (only about 7%, with no difference between treatment and control group, see Online Appendix Section 
1.1).  

B. Treatment and Control Condition 

The treatment consisted of a daily WM training session lasting approximately 30 minutes, taking place during 
the first or second lesson of a school day over a period of 25 consecutive school days. The WM training was 
embedded into the classes’ normal school routine. Accordingly, parental consent on their children’s 
participation in the training was not required, and thus all children in the treatment classes participated in the 
training. In each class, a single teacher covers almost all the topics that need to be taught according to the first-
grade curriculum. Thus, the WM training was introduced to the children as a normal sequence of exercises by 
this teacher, similar to when the teacher introduces a new sequence of exercises for math, reading, or writing 
as required by the curriculum. Accordingly, the teacher was present during the lessons when the WM training 
took place, children remained in “their” classroom, and they conducted the training sessions at their usual 
desks. This minimizes Hawthorne or demand effects because it ensures that the children viewed the WM 
training simply as a usual topic of their curriculum, in which the sequential introduction of new learning 
content during the school year is part of normal school routine. In addition, we did not inform parents about 
the treatment assignment of their children, and we also did not provide information that would have enabled 
them to infer the treatment assignment.5  

 
4 Six children completed the W1 tests slightly after the actual start of the WM training (two of them in the control group) because they 
were sick or absent at the original test date. Since the delays were rather small, we kept these children in the sample. Dropping them 
from the sample does not change our results. 
5 For further details on the information received by the parents, see Section 1.2 in the Online Appendix.  
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We used a commercially available WM training software6 providing training on different span tasks, using 
an age-specific user-interface, and adaptive levels of difficulty. Eight out of ten training tasks focus on visuo-
spatial WM, while only two focus on verbal WM, i.e., a much larger variety of WM tasks and more training 
time was allocated to visuo-spatial WM training. The teachers supervised children in each training session, 
and logins for the training software were user-specific and only valid during the intervention period. Thus, the 
children only had access to the training software during their dedicated training sessions (see Online Appendix 
Section 1.2 for further details).  

Table 1: Summary Statistics 
Variable Mean Std. Dev. Min. Max. N 

Working memory training  0.488 0.5 0 1 572 
Male  0.49 0.5 0 1 572 
Children’s age in months on Jan 1, 2013  82.129 4.324 72.222 101.578 572 
Children’s age on test day W1 (in months)  84.247 4.377 74.523 103.485 572 
Children’s age on test day W2 (in months)  87.288 4.355 77.745 106.706 572 
Children’s age on test day W3 (in months)  92.368 4.379 82.774 111.703 544 
Children’s age on test day W4 (in months)  99.582 4.381 90.467 118.836 531 
Migration background  0.451 0.498 0 1 568 
Language problems  0.247 0.431 0 1 572 
Monthly HH-Net Income <750 Euros  0.023 0.149 0 1 441 
Monthly HH-Net Income 750-1500 Euros  0.12 0.326 0 1 441 
Monthly HH-Net Income 1500-2500 Euros  0.209 0.407 0 1 441 
Monthly HH-Net Income 2500-5000 Euros  0.433 0.496 0 1 441 
Monthly HH-Net Income >5000 Euros 0.215 0.412 0 1 441 
Mother university degree 0.446 0.498 0 1 444 
Mother vocational degree  0.423 0.495 0 1 444 
Mother no professional degree 0.131 0.337 0 1 444 
Academic track secondary school 0.692 0.462 0 1 393 
Mixed-track secondary school 0.204 0.403 0 1 393 
Non-academic track secondary school 0.104 0.306 0 1 393 
The table provides socio-demographic information about our sample. The gender and age variables have been reported by the schools 
and are therefore available for all children. The variables ‘Migration background’ and ‘Language problems’ are taken from the teacher 
questionnaire in W1; for four children teachers reported not to know the migration background. Income and maternal education 
variables are taken from the parent questionnaire in W1. The information about secondary school track is taken from a survey 
administered to parents three years after treatment. 

 

WM training typically took place in the first or the second lesson in the morning. During this time, the control 
group teachers taught their students the usual content covered in the first and the second lesson of the day for 
first graders in primary school (mostly major subjects such as math and German language). This means that 
students in the treatment group missed 25 such school lessons. Therefore, even if WM training improves some 
math or German skills, this improvement could, in principle, fall short of the improvement that the children in 
the control group experienced because they received more direct training in these subjects. This paper therefore 
analyzes the question of which activity improves skills more. This allows us to address a question of particular 

 
6 We used the WM training software Cogmed. Cogmed and Cogmed Working Memory Training are trademarks, in the U.S. and/or 
other countries, of Cogmed Inc. (www.cogmed.com).  

http://www.cogmed.com/
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importance for education policy, i.e., whether computer-based WM training during school hours is beneficial 
for the children. In other words, when we compare the treatment and the control group children on the various 
skill dimensions, we automatically take the foregone school lessons during WM training, i.e., the opportunity 
cost of the training, into account. This is important for an overall assessment of the desirability of WM training 
for a general school population of young children—the training is not without cost.7    

Compliance with WM training was high in our sample. Only four out of 279 treated children finished less 
than 20 of the 25 daily training sessions. Since classes as a whole participated in the training, children missed 
a training session only when they did not attend school (e.g., for health reasons). 

C. Data Collection

1. Computer-based Tests

Computer-based tests were completed by all children in four evaluation waves: at baseline (i.e., 3–4
weeks) before the training (W1), shortly (i.e., 4-5 weeks) after the training (W2), 6 months after training (W3), 
and 12–13 months after training (W4) (see Online Appendix Section 1.3 for further details). Parents of both 
treatment and control children gave their consent to participate in the data collection (consent rate of 96.8%). 
The tests were highly standardized and developed specifically for the purpose of the present study. The entire 
sequence of tests was computer-based, including auditory explanations (via headphones) and comprehension 
checks. The test items for each evaluation wave were adjusted to the relevant age and school curriculum at the 
different waves. A pretest prior to W1 with a different (smaller) sample of similar aged children served to 
adapt the initial level of difficulty. The input devices for the tests were large touchscreens instead of computer 
mice because we wanted to avoid any bias arising from the fact that children in the treatment group had been 
working with computer mice during the WM training. The testing procedure was run by a professional data 
collection service. The staff administering the tests was blind to treatment conditions. Teachers were not 
present during the tests and did not know their content. The teachers also did not receive any information or 
feedback about the performance of their students in the evaluation tasks. When the children had finished all 
evaluation tasks in a given wave, all children received a small toy for participating in the evaluation waves. 
These rewards were given to all children from the control and the treatment group to avoid any motivational 
differences between them.  

In each evaluation wave, the children completed three (non-trained) WM tasks. WM capacity was 
measured with a verbal simple span task, a verbal complex span task, and a visuo-spatial complex span task 
(for details, see Online Appendix Section 1.4). Importantly, both the verbal complex span task and the visuo-
spatial complex span task clearly differ from the tasks used in the WM training. We included a verbal simple 
span task (but not a visuo-spatial simple span task) in the set of our WM evaluation tasks because the WM 

7 Part of the literature on WM training emphasizes the importance of so-called active control groups. In our case, the control group is 
involved in the normal teaching lessons. It is sometimes also argued that an active control group might perform non-adaptive WM 
training, i.e., the children are not exposed to increasingly challenging tasks when they have solved the less challenging ones. However, 
one disadvantage of non-adaptive training is that the children may become bored and demotivated if they face tasks that constitute no 
real challenge and that, therefore, lead to no improvements. For this reason, and because we were interested in the policy question 
whether WM training enables improvements relative to normal teaching lessons, our control group is involved in normal teaching 
lessons that typically involve increasingly challenging material. 
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training places considerably less weight on verbal compared to visuo-spatial WM. Direct effects may therefore 
be weaker for verbal WM. The verbal simple span task might allow us to capture these presumably weaker 
effects. The three WM tasks mentioned above not only enable us to study direct effects, but they also serve the 
purpose of examining the extent to which WM capacity mediates training-induced improvements in other 
important skills. 

In each evaluation wave, the children also completed a set of tasks that enabled us to measure such 
spillover effects: Educational achievement was measured in three areas: arithmetic, geometry, and reading. 
We included geometry as an outcome measure because—like arithmetic and reading—it plays an important 
role in everyday life (e.g., orientation, reading maps, driving, and parking) as well as in various professions 
(e.g., construction/architecture, fashion/art design, geography, physics, sports, etc.). In addition, we measured 
three other important skills that capture key aspects of executive functions (EFs), such as fluid IQ (higher-
level EFs), the ability to inhibit pre-potent responses (inhibitory control), and the ability to sustain attention 
and display frustration tolerance (attentional stamina). We use Raven's Colored Progressive Matrices test 
(Bulheller and Häcker 2010) as a measure for fluid IQ. The ability to inhibit pre-potent responses (inhibitory 
control) was measured with the go/no-go task (Gawrilow and Gollwitzer 2008), and attentional stamina was 
measured using the bp task (Esser, Wyschkon and Ballaschk 2008). For a detailed description of all these tasks, 
see Online Appendix Section 1.4. 

2. Teacher Ratings 

In each data collection wave (W1–W4), teachers filled out a questionnaire containing items on children’s and 
teachers’ characteristics and behaviors, and (for treated teachers) expectations about the intervention. We 
achieved a 100% return rate for the teacher questionnaire in all four evaluation waves. A key part of the teacher 
questionnaire is a series of questions capturing teachers’ assessment of each child’s self-regulatory abilities 
(for details, see Online Appendix Section 1.4).  

3. Secondary School Track Choice 

In a follow-up survey in spring 2016, we asked parents to report their children’s school track for secondary 
school in fall 2016. Secondary school starts at grade five, i.e., three years after the WM training when the 
children are 10–11 years old. Essentially, there are three different secondary school tracks available: (i) an 
academic track (Gymnasium), (ii) a mixed track (Integrierte Gesamtschule), and (iii) a non-academic track 
(Realschule Plus). In this particular federal state in Germany, 86% of the children in the academic track earn 
a degree that qualifies them for general university enrollment (Abitur), whereas only 25% percent of children 
in mixed-track schools achieve this (Rhineland-Palatinate 2018). Within the non-academic track, students 
cannot earn a degree that qualifies them for general university enrollment. For children in the non-academic 
track, the probability of switching track is small (< 5% per year) (Bellenberg 2012). Moreover, since the early 
school track choice at this age has a decisive influence on the whole educational career path, it also exerts a 
substantial influence on later wages (Dustmann 2004). Thus, the choice of the secondary school track 
constitutes a major educational decision that strongly affects a child’s future outcomes and life-time earnings.  
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D. Conjectures About the Treatment Effect on Outcome Measures

In addition to direct effects on WM capacity, WM training may have positive spillover effects on our 
educational outcome measures, but in varying degrees. Performing arithmetic tasks, such as adding or 
subtracting several numbers, requires children to store and recall “intermediate results” while performing the 
computations, thus requiring WM capacity. Likewise, geometry tasks, such as estimating how many times a 
smaller geometrical object fits into a larger one, and reading comprehension require WM capacity. However, 
in our context it is important to take into account that teaching time in primary school is very unevenly allocated 
between arithmetic and geometry: during the first grade, the curriculum requires that about 70% of the math 
lessons be spent for teaching arithmetic. Because the treatment subjects miss a considerable number of math 
lessons and because our WM training was focusing on visuo-spatial WM (see above), it seems more likely that 
we find positive training effects on geometry than on arithmetic skills. With regard to reading performance, it 
is important to keep in mind that the children gradually learn the various letters of the alphabet during the first 
grade, allowing them to read and understand an increasing number of letters and words over time. We measured 
reading skills by a reading comprehension task that required children to understand and process all words in a 
sentence, and to assign meaning to the full sentence. This is obviously much more difficult when children still 
have problems reading single words. Moreover, correlational evidence suggests (Kibby, Lee and Dyer 2014; 
Nutley and Soderqvist 2017) that WM capacity does not predict word identification, but it seems to be an 
independent predictor of reading comprehension once word reading ability has been acquired. This suggests 
an additional, independent reason—apart from the possibility that spillover effects generally may need time to 
emerge—for why WM training effects in our reading task may only emerge over time.  

Turning to more general cognitive skills, WM capacity has also been shown to be correlated with fluid 
intelligence as measured, for example, by the Raven’s matrices task—a task that requires visuo-spatial WM 
but is nevertheless different from pure WM tasks because it requires (i) reasoning in novel situations without 
prior knowledge, (ii) the ability to generate high-level schemata in order to handle complexity, as well as (iii) 
the ability to absorb, recall, and reproduce information provided in the task (Carpenter, Just and Shell 1990; 
Oberauer et al. 2005; Wiley et al. 2011).8 Therefore, WM training may improve performance in Raven’s 
matrices task. However, the previous empirical literature is in sharp disagreement about whether WM training 
improves fluid IQ measured using Raven's Matrices tasks (Au et al. 2015; Melby-Lervag, Redick and Hulme 
2016). 

Working memory is one of three core components of executive functioning – with inhibitory control and 
cognitive flexibility being the other two (Diamond 2013). The literature on executive functioning hypothesizes 
that “working memory and inhibitory control need one another and co-occur”, and that “working memory 
supports inhibitory control” (Diamonds 2013, p. 143). This is also consistent with the view that working 
memory capacity is crucial for the ability to actively maintain task-relevant and suppress/inhibit task-irrelevant 
information (Engle 2002). WM capacity might thus enhance the ability to avoid distraction, which is consistent 
with the evidence showing that individuals with low WM capacity are less able to suppress salient distractors 

8 Note that Raven’s matrices task does not measure general IQ but is a non-verbal test that is regarded as a measure of fluid 
intelligence based on visuo-spatial capabilities.  
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(Gaspar et al. 2016). Based on this account, WM training may thus generate spillover effects on inhibitory 
control. In the context of the go/no-go task this means that children who undergo WM training should be better 
able to avoid commission errors because the children in this task almost always see symbols that require them 
to press a button within a very short time interval, placing them in the “go-mode”. Occasionally, however, a 
“no-go” symbol is shown that requires them to refrain from pressing the button. In this view, the frequent 
display of “go” symbols distracts individuals and makes it difficult for those with low WM capacity to maintain 
the goal and provide the appropriate behavioral response associated with the “no-go” symbols. We also 
measure children’s attentional stamina with a letter discrimination task, the so-called “bp task”. To our 
knowledge, it is an open question whether WM training improves this aspect of EFs.9   

Finally, in case we find that WM training has spillover effects on academic performance or other 
important skills, it might be possible that WM training also positively affects secondary school track choice 
because that choice is presumably influenced by children’s academic skills, their fluid IQ, and their self-
regulatory skills. 

III. Empirical Results 

To estimate the treatment effect of WM training, we regress outcome scores measured after the training (W2–
W4) on a treatment indicator and a vector of control variables.10 All outcome scores are standardized within 
each evaluation wave to mean 0 and standard deviation 1. We control for the pre-training baseline level of the 
respective outcome score in our regressions. Thus, instead of identifying how WM training changes 
individuals’ outcome scores between pre- and posttreatment waves (i.e., using the difference-in-differences 
estimator), we estimate how the training changes outcome levels and control for the baseline level of the 
respective outcome. The advantage of this method is that the variance of the estimated effect is smaller, i.e., 
the treatment effect is measured with more precision (Frison and Pocock 1992; McKenzie 2012). Finally, in 
order to allow for interdependence of observations within school classes, standard errors are clustered at the 
classroom level. In our robustness analysis we also apply the Romano-Wolf stepdown procedure to control for 
multiple hypothesis testing (Romano and Wolf 2005; Romano and Wolf 2016)—a technique that is 
increasingly used for large-scale intervention studies (see, for example, Cunha et al. (2010), Campbell et al. 
(2014), Gertler et al. (2014))—and, simultaneously, we control for potential biases that may arise when the 
number of clusters is relatively small with the BRL (biased-reduced linearization) correction method (Bell and 
McCaffrey 2002). 

A. Sample Balance  

To examine whether randomization led to a balanced sample across treatment and control group in terms of 
socio-economic characteristics, we regress various socio-demographic characteristics (gender, age, migration 
background, as well as parental income and education) measured prior to the treatment (W1) on the treatment 

 
9 Our WM training may also be viewed from the perspective of prominent interventions that boosted executive functioning (see e.g., 
Walker et al. 2022; Garcia, Heckman and Ronda 2023) and led to long-lasting spillover effects on a wide range of skills. 
10 The vector of control variables consists of school fixed effects, gender, age, age at test days, baseline value of the outcome, and 
indicators for other treatments (unrelated to the WM-training) that were conducted in the same sample. For further details on estimation, 
see Online Appendix Section 1.5).  
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indicator (see Table S1 in the Online Appendix). The results show that the treatment coefficient in all 
regressions is close to zero and insignificant, indicating that there were no significant imbalances between 
treatment and control group with respect to these variables.  

As a further sample balance check, we regressed standardized outcome test scores at baseline (i.e., test 
scores measured prior to the treatment in W1) on the treatment dummy, school fixed effects, and the same 
control variables that are included in the main estimations of the treatment effect. Table S2 in the Online 
Appendix shows that with the exception of the baseline score for the verbal complex span task, none of the 
coefficients related to the treatment dummy is significantly different from zero, indicating that for all other 
baseline test scores there is no evidence for significant imbalances between treatment and control group. With 
regard to the possible imbalance in the baseline score of verbal complex span, we have to take into account 
that we conducted a total of 15 imbalance test regressions. For this reason, we further examined the issue by 
adjusting p-values for multiple hypothesis testing and applying the biased-reduced-linearization clustering 
method (which accounts for small numbers of clusters). This then yields a p-value of 0.332 for the verbal 
complex span outcome, suggesting no significant difference between the treatment and control group once we 
account for the number of tests conducted. In addition, we would like to mention that we control for the 
baseline tests scores in W1 in all our regressions that measure the treatment effect of WM training on outcome 
scores in W2–W4.  

 

B. Treatment Effect on Computer-based Test Outcomes 

To estimate the effect of WM training, we regress outcome scores measured shortly after the training (W2), 6 
months after the training (W3), and 12–13 months after the training (W4) on the treatment indicator. The 
estimated direct effects of WM training on WM capacity are presented in Figure 1 and Table S3 in the Online 
Appendix. We find significantly positive treatment effects for the visuo-spatial complex span task in all three 
post-treatment waves with an effect size (d) of 0.40–0.46 SD (p = 0.00004‒0.006). We also find a significantly 
positive training effect on performance in the verbal simple span task of d = 0.38 SD (p = 0.000008) in W3 
and d = 0.30 SD (p = 0.015) in W4. We do not find any significant treatment effect for performance in the 
verbal complex span task. The stronger effect of training on visuo-spatial WM compared to verbal WM is 
plausible, as the training focused primarily on visuo-spatial WM (see Section II.B).  

Spillover effects of WM training on educational outcomes—arithmetic, geometry, and reading—and Raven’s 
fluid IQ measure are reported in Figure 2 and Table S4 in the Online Appendix. While there is no treatment 
effect on arithmetic in all three post-training waves, we find an effect on geometry skills that is increasing over 
time. The effect size d = 0.17 in W2 is not yet significantly different from zero (p = 0.108), but the effect size 
increases in W3 and W4 to d = 0.24 and d = 0.38, respectively, with significance levels of p = 0.021 in W3 
and p = 0.001 in W4. Thus, it seems that WM training had a positive and increasing spillover effect relative to 
the normal school curriculum on geometry skills but not on arithmetic skills. The significant and relatively 
strong impact on geometry skills is also consistent with the fact that training focused primarily on improving 
visuo-spatial WM capacity. The spillover effects on reading are generally lower than for geometry, but they 
are also rising over time and become significant in W4. There is no positive effect on reading shortly after the 
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training, but we observe a larger, yet still insignificant effect in W3 and an effect size of d = 0.23 at p = 0.037 
in W4. This rising spillover effect on reading is consistent with the view (Nutley and Soderqvist 2017) that 
WM capacity plays a smaller role for reading comprehension when children are still struggling to understand 
words, but eventually becomes relevant for reading comprehension when word identification has progressed 
sufficiently.  

Figure 1: Direct Effect of Training on Working Memory Capacity 

 
The dots show the point estimates (as fractions of a standard deviation) of how WM training changes the performance in the three 
working memory tasks (indicated in the subfigure title) relative to the control group. The bars indicate the 95% confidence intervals. 
All estimates are based on least squares models controlling for school fixed effects, pre-treatment outcome scores, and further controls 
(see Online Appendix Section 1.5 for details). The econometric estimates are shown in Table S3 of the Online Appendix. The 
confidence intervals and the associated significance statements are computed based on the clustering of standard errors at the classroom 
level. Stars refer to significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01. 

 

We also find a significant spillover effect on Raven’s Colored Matrices task six months (d = 0.24, p = 0.004) 
and 12–13 months after the training (d = 0.24, p = 0.002). We emphasize that this finding does not mean that 
WM training increased all dimensions of fluid intelligence, as some research indicates that only 64% of the 
variance in performance in a Raven’s task is attributable to general fluid intelligence (Jensen 1998). However, 
the Raven task measures important dimensions of fluid intelligence which require WM capacity (Carpenter, 
Just and Shell 1990) and its deployment in novel situations (Wiley et al. 2011).  

It is also important to mention that none of the treatment effects in geometry, reading, or Raven’s fluid 
IQ measure are driven by a decline in the performance of the control group. Due to cognitive maturation over 
the course of one year, both the treatment and the control group increased their performance over time. As 
such, the treatment effects are due to a differentially larger increase in performance in the treatment group.  
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Figure 2: Spillover Effects on Arithmetic, Geometry, Reading, and Raven’s IQ 

 
The dots show the point estimates (as fractions of a standard deviation) of how WM training changes performance in arithmetic, 
geometry, reading, and Raven’s fluid IQ measure, respectively, relative to the control group. The bars indicate the 95% confidence 
intervals. All estimates are based on least squares models controlling for school fixed effects, pre-treatment outcome scores, and further 
controls (see Online Appendix Section 1.5 for details). The econometric estimates are shown in Table S4 of the Online Appendix. The 
confidence intervals and the associated significance statements are based on the clustering of standard errors at the classroom level. 
Stars refer to significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01. 

Figure 3: Spillover Effects in the Go/No-Go Task and the bp Task 

 
The dots show the point estimates (as fractions of a standard deviation) of how WM training changes the performance in the go/no-go 
task and the bp task relative to the control group. The bars indicate the 95% confidence intervals. All estimates are based on least 
squares models controlling for school fixed effects, pre-treatment outcome scores, and further controls (see Online Appendix Section 
1.5 for details). The econometric estimates are shown in Table S5 of the Online Appendix. The confidence intervals and the associated 
significance statements are computed based on the clustering of standard errors at the classroom level. Stars refer to significance levels: 
* p < 0.1, ** p < 0.05, *** p < 0.01. 
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Finally, we turn to the effects of WM training in the go/no-go task and the bp task (Figure 3 and Table S5 
in the Online Appendix). We find positive spillover effects of WM training on children’s inhibitory control 
measured in the go/no-go task. We measure inhibitory control by multiplying children’s standardized number 
of commission errors with -1, i.e., a reduction in commission errors shows up as a numerical increase in this 
performance measure. Figure 3 indicates a highly significant reduction in commission errors in the treatment 
relative to the control group in W4 (d = 0.33, p < 0.0001).11 Interestingly, while we observe no treatment effect 
on commission errors in W2 and W3, we observe a weakly significant treatment effect on performance in 
terms of a reduction in response times in W2 (d = 0.23, p = 0.053) and W3 (d = 0.37, p = 0.094). Thus, although 
the children in the treatment group did not make fewer mistakes in W2 and W3, they were quicker in delivering 
their responses (without increasing their mistakes) in these evaluation waves.12  

Overall, these data patterns suggest that, similar to the case of geometry, reading, and Raven’s fluid IQ 
measure, spillover effects on inhibitory control emerge over time. This effect supports the theoretical 
conjecture that “working memory supports inhibitory control” (Diamonds 2013, p. 143). Note also, that this 
spillover effect is due to a differentially larger increase in the performance of the treatment group relative to 
the control group in terms of fewer errors. In contrast to the results in the go/no-go task, we cannot detect a 
training-related improvement in performance in the bp task. In fact, the time profile of the treatment effects is 
completely flat and close to zero, suggesting that WM training does not affect attentional stamina.  

C. Treatment Effect on Choice of Secondary School Track  

Our finding that WM training has positive spillover effects on several outcomes relevant for the school context 
suggests the possibility that it might affect children’s further school career. As mentioned previously, one of 
the most consequential school track choices in the German education system is whether the children enter the 
advanced track (academic track, also called Gymnasium) of secondary school. This choice is typically taken 
around age 10, i.e., three years after the children received the WM training.  

Controlling for the same set of variables as for the other treatment effects, we find that children in the 
treatment group are roughly 16 percentage points more likely to choose the advanced track of secondary school 
relative to children in the control group (Table 2, column 1). If we estimate the treatment effect with a probit 
model instead of a linear probability model (Table 2, column 2), the result is very similar—the children in the 
treatment group are again roughly 15 percentage points more likely to be enrolled in the advanced track of 
secondary school. If we take the full range of secondary school choices (advanced track, mixed track, non-

 
11 We also analyzed the standardized (i.e., z-scored) d’-measure of performance in this task—which subtracts the standardized fraction 
of commission errors in the no-go trials from the standardized fraction of correct responses in the go trials—and find a significant 
performance effect in W4 (W2: d = 0.118, p = 0.410; W3: d = 0.071, p = 0.619; W4: d = 0.475, p < 0.0001). If we analyze omission 
errors (i.e., missing to push the button in go-trials, which is often interpreted as a measure for "attention") separately, we also find 
similar positive treatment effects as for inhibitory control, with the strongest and significant improvements in W4 (W2: d = 0.282, p = 
0.109; W3: d = 0.133, p = 0.357; W4: d = 0.416, p = 0.001). 
12 Similarly, when analyzing teacher-reported overall self-regulation as a measure of everyday self-regulatory behavior in the 
classroom, we also find significant positive treatment effects (see Online Appendix, Sections 1.4 and 1.5, and Table S19). 
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academic track13) into account, we again find a sizeable positive treatment effect on enrollment in the advanced 
track (columns 3 and 4). Column 4 of Table 2 also indicates that the increase in advanced track enrollment by 
roughly 14 percentage points is due to a decrease in mixed track enrollment by roughly 7 percentage points 
and a similar decrease in non-academic track enrollment.  

As we measure the secondary school track enrollment three years after the WM training, we naturally observe 
some attrition. This is due to reasons such as families moving away from the city of our study or when the 
parents do not answer the long-run follow-up questionnaire. Importantly, however, we do not observe a 
systematic difference in attrition between treatment and control group. In the treatment group, we still can 
collect data of 68.1% of the sample in W1 and in the control group we have data of 69.3% of the sample in 
W1 (see Online Appendix, Section 1.6 for further robustness checks on attrition).  

 

Table 2: Treatment Effect on Secondary School Choice at Age 10 
Treatment Effect of 
WM training on choice 
of 

(1) 
OLS 

(2) 
Probit 

(3) 
OLS cat var 

(4) 
Ordered Probit 

(5) 
Inverse Prob 
Weighting 

Academic track school 0.157*** 
(0.050) 

0.148*** 
(0.045) 

0.221*** 
(0.078) 

0.136*** 
(0.046) 

0.170*** 
(0.050) 

Mixed track school   
 

 -0.067*** 
(0.025) 

 

Non-academic track 
school 

  
 

 -0.069*** 
(0.023) 

 

N 393 393 393 393 393 

Column 1 reports the effect of the treatment on the probability of being enrolled in an academic track secondary school based on a least 
squares model. When we cluster the standard error using biased reduced linearization (BRL), the standard error in column 1 becomes 
0.070 (which corresponds to a p-value of 0.026). Column 2 reports the marginal treatment effect of the probit estimate on the same 
dependent variable as in column 1. Column 3 reports the least squares effect on a categorical dependent variable. This variable takes 
on value 1 if the child is enrolled in a non-academic track school (Realschule Plus), value 2 if the child is enrolled in a mixed-track 
secondary school (Integrierte Gesamtschule), and value 3 if the child is enrolled in an advanced track school (Gymnasium). Column 4 
reports the marginal treatment effects of the ordered probit estimates on the same dependent variable as in column 3. Column 5 reports 
a similar estimation as in column 1 but accounts for attrition by applying inverse probability weighting. The weights are calculated for 
groups defined based on migration background, high/low academic performance (math and reading performance), and high/low 
cognitive performance (WM capacity and Raven’s fluid IQ measure). All models include school fixed effects and further controls (see 
Online Appendix, Section 1.5, for further details, including our calculation of the inverse probability weights). Standard errors in 
parentheses are clustered at the classroom level. * p<0.10, ** p<0.05, *** p<0.01.  
 

We also address systematic attrition by estimating inverse probability weighting models. To apply these 
models, we compared the sample characteristics in W1 with the sample characteristics at the time of secondary 
school choice. This comparison shows that at the time of secondary school choice there are (i) fewer children 
with a migration background, (ii) more children with higher academic performance (i.e., geometry, arithmetic, 
and reading), and (iii) more children with higher cognitive skills (i.e., working memory capacity and Raven’s 
fluid IQ measure). Therefore, we calculated the inverse probability weights for groups defined on the basis of 
three binary variables: (i) migration background, (ii) high/low academic performance in geometry, arithmetic, 
and reading, and (iii) high/low cognitive skills as measured by WM capacity and Raven’s fluid IQ measure. 

 
13 In Germany, the non-academic track is called “Realschule Plus”, the mixed track is called “Integrierte Gesamtschule”, and the 
academic track is called “Gymnasium”.  
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The result of this model (shown in column 5) indicates that the WM training increases advanced track 
enrollment by roughly 17 percentage points.  

To gauge the size of our effect on school track choice, consider the relationship between parental 
education and school track choice for the control group: for children whose mother has a university degree, 
86% chose the advanced track, for those whose mother does not have a university degree, the number is 54%; 
i.e. a difference of 32 percentage points. This difference reduces to 27 percentage points when controlling for 
children's baseline measure of Raven’s fluid IQ. Thus, the 14–17 percentage point increase in advanced track 
enrollment is substantial when compared with this socio-economic gap.  

D. Heterogenous Treatment Effects? 

Do disadvantaged children benefit particularly strongly from WM training? Existing work has raised this 
question and remains inconclusive (Katz and Shah 2016; Roberts et al. 2016). We examined the heterogeneity 
of treatment effects with regard to initial WM capacity by including a dummy variable for the children who 
are below the 25th percentile in the distribution of WM capacity at baseline (W1), and by interacting this 
dummy variable with the treatment dummy (see Tables S6–S8 in the Online Appendix). The results show that 
children with low baseline WM capacity perform substantially worse in all spillover outcome measures (and 
all data collection waves) with the exception of the bp task. However, the interaction between low WM 
capacity and the treatment dummy is almost never significant (with the exception of geometry in W2, where 
we observe a positive interaction, and the bp task in W2, where the interaction is negative). This suggests that 
the treatment effect is not systematically different for children with low WM capacity. Importantly, however, 
the treatment effect is robust to the inclusion of the low WM capacity dummy and its interaction with the 
treatment dummy for all outcome variables for which we previously found a significant treatment effect.  

E. Robustness Checks 

We perform a series of robustness checks, including checks for attrition, the potential role of computer use, 
Hawthorne or demand type effects, and multiple hypothesis testing corrections. For the multiple hypothesis 
testing, we grouped our outcomes into four families, following the above conjectures for treatment effects: 1) 
working memory outcomes (verbal simple span, verbal complex span, visuo-spatial complex span), 2) 
spillover effects on educational outcomes (arithmetic, geometry, reading), 3) spillover effects on general 
cognitive skills (Raven’s IQ), and 4) spillover effects on general noncognitive skills (Go/No-go task, bp task). 
Note that each family includes three measurements for each outcome (at W2, W3, and W4). Overall, these 
robustness checks confirm our findings, except for the treatment effect on reading in W4, which turns 

insignificant if we correct for multiple testing (see Table S9 in the Online Appendix).14 All details on 

robustness can be found in the Online Appendix, Section 1.6. 

 
14 We also provide further multiple testing analyses in Table S10, using an even more conservative grouping into only two families 
(direct effects and spillover effects). Again, three measurements are included for each outcome in a family (at W2, W3, and W4). 
While we believe that the grouping of families described above (in Section E) is the most reasonable, the choice of families of 
outcomes is always somewhat discretionary. With the very conservative grouping of outcomes into only two families, results remain 
similar to Table S9 but the treatment effects on Raven's IQ are no longer significant at conventional levels (W3: p = 0.136, W4: p = 
0.114). 
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IV. Mechanisms 

In our view, the documented treatment effects on WM capacity and on spillover outcomes have a plausible 
interpretation. For example, it is plausible that WM training has an immediate effect on visuo-spatial WM 
capacity (i.e., the aspect of working memory that received the most emphasis during the training), while 
spillover effects need more time to evolve—which is what we observe in our data. Likewise, the finding that 
WM training does not increase arithmetic but geometry skills may be due to the fact that the training 
emphasized visuo-spatial WM, which may well play a larger role in geometry compared to arithmetic. 
Similarly, visuo-spatial WM capacity is likely to be a basic prerequisite to deploy the problem-solving skill 
that is required to solve Raven’s fluid IQ task.  

To provide a quantitative assessment of the extent to which WM capacity might be a mediating 
mechanism for the observed spillover effects, we performed a mediation analysis by using the method applied 
in Heckman, Pinto and Savelyev (2013), and similarly in, e.g., Kosse et al. (2020) and Carlana, La Ferrara and 
Pinotti (2018). The formal details of this method are described in the Online Appendix, Section 1.5. Intuitively, 
the method provides us with the share of the total treatment effect of the training on each spillover outcome 
that can be explained by the training induced changes in WM capacity.  

The results of our mediation analysis are presented in Figure 4. The figure shows that for geometry, 
reading, and Raven’s fluid IQ measure a large part of the total treatment effect—roughly between 50% and 
66%—is mediated by WM capacity. Interestingly, the mediation effect of WM capacity is much lower for our 
measure of inhibitory control (performance in the go/no-go task). Perhaps this lower mediation effect of WM 
capacity is one reason why the training effect on the ability to inhibit pre-potent impulses took more time to 
develop.  

Overall, this analysis suggests that training-induced changes in WM capacity appear to explain substantial 
parts of the treatment effect on spillover outcomes. In view of the previous literature on WM training (e.g., 
Sala et al 2019, Sala and Gobet 2020), we were, however, surprised by the magnitude of the effects on spillover 
outcomes. Therefore, we point out specificities of our study that are likely to be relevant in this context: First, 
we delivered the WM training in a school context as part of the regular curriculum which ensures high external 
validity. Moreover, the integration of the treatment into regular classroom teaching may have facilitated the 
spillover effects to other school-related skills. The context of regular classroom teaching is also likely to 
minimize placebo or Hawthorne effects. Of course, we cannot completely rule out the possibility that placebo 
effects may have played a role, for example because the children in the treatment group received extra attention 
(e.g., because they used computers in class or due the presence of a research assistant during the training, see 
Online Appendix, Section 1.2). Moreover, by design minor differences between treatment and control group 
inevitably remain that could potentially affect abilities other than WM capacity (e.g., narrow task learning due 
to familiarity with WM tasks).15 However, the facts that (i) we carefully developed outcome measures that are 
different from the training tasks (even with respect to input devices, i.e., touchscreens vs. external mice, see 

 
15 For example, in a computer-based WM training, treated children will automatically become more familiar with WM tasks. Thus, 
they may perform better in subsequent WM tasks merely because they are more familiar with the type of tasks and not because they 
have higher WM capacity. Similarly, they have more screen time than children in the control group, which could potentially improve 
skills such as perceptual speed. 
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Section II.C), and that (ii) we see treatment effects on very specific spillover outcomes that require visuo-
spatial working memory (and no effect on other important educational outcomes) and that (iii) the pattern of 
effects increases over time, suggest that placebo effects or remaining minor group differences are unlikely to 
have played a substantial role.16   

Figure 4: The Relative Importance of Working Memory Capacity for the Treatment 
Effects on Spillover Outcomes 

 
Notes: This figure displays the estimated decomposition of the total treatment effect on those spillover outcomes that are significantly 
improved by the WM training in W4 (12–13 months after treatment). For each outcome, we estimate the effect of the treatment that is 
mediated by WM capacity (see Online Appendix 1.5 for details). The light blue bars show the percentage of the treatment effect that 
is mediated by training-induced increases in WM capacity.  

 

Second, as mentioned previously, our study is better capable of detecting spillover effects because we 
measure the relevant outcomes also 6 and 12-13 months after the treatment while most other studies stop 
collecting spillover outcomes after a few months, and thus cannot identify effects that might take a longer time 
to evolve. Third, because we treated complete classes (class-wise randomization), in addition to effects on 
individual-level skills, the treatment possibly led to various sorts of positive peer group and classroom effects, 

 
16 Note also that our intervention was part of a larger educational study, involving other treatments. However, we control for the other 
treatments in all our estimations, and we conduct various robustness checks, including correction for multiple testing and small number 
of clusters, to minimize the likelihood of false positives or spurious findings (for details see Online Appendix, Sections 1.5 and 1.6). 
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that, in turn, could have affected teachers’ behavior and attitudes. In our setting, such beneficial peer group 
effects seem plausible, given that the children usually stay together in the same class and with the same teacher 
for four years in primary school. Evidentially, these peer group effects constitute an important factor for the 
persistence of treatment effects of interventions at young ages (cf. Bailey et al. (2017)).  

 

V. Summary 

Based on a randomized controlled trial with 572 first graders in primary schools, we found that a five-week, 
one lesson per school day, adaptive WM training during class improves not only children’s WM capacity but 
also has spillover effects on their geometry skills, Raven’s fluid IQ measure, and their ability to inhibit pre-
potent impulses. We observe an increasing pattern of treatment effects on these spillover outcomes over the 
three evaluation waves with effect sizes ranging between 0.24 and 0.38 SD. In addition, the general pattern of 
our results and our mediation analysis suggest that training-induced improvements in WM capacity mediate 
considerable parts of the spillover effects. When assessing the reported effect sizes for the spillover effects, it 
is interesting to compare them with effect sizes observed in other (more intensive) intervention studies such as 
Perry Preschool, the Jamaican supplementation and stimulation study, and others, producing improvements in 
executive functions even in the very long-run of 0.25 to well above 0.5 of a SD (Riggs et al. 2006; Raver et al. 
2011; Heckman, Pinto and Savelyev 2013; Gertler et al. 2014; Walker et al. 2022; García, Heckman and Ronda 
2023). Finally, we document that the WM training has a sizeable impact on one of the most consequential 
school career decisions in the German school system: whether to enroll the child in the advanced track of 
secondary school (Gymnasium). This fact has potentially far-reaching implications for the treated children’s 
probability of entering university and their labor market outcomes, because children who complete the 
Gymnasium are much more likely to go to university and earn significantly higher salaries. The increasing 
pattern of effects on spillover outcomes combined with the effect on long-run educational choices is consistent 
with the idea of self-productivity in the process of skill formation (Cunha and Heckman 2007). Taken together, 
our findings thus provide novel evidence consistent with the dynamic process of skill formation and they 
suggest that our treatment generated substantial benefits for the children.  
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1 Supplementary Text
The study was conducted in primary schools in Mainz, Germany, in 2013/2014. It com-
prised a five-week intervention, four data collection waves, and a long-term follow-up
survey three years after the intervention. Our study received ethical approval from
the Human Subjects Committee of the Faculty of Economics, Business Administra-
tion and Information Technology at the University of Zurich in September 2012. We
confirm that we have complied with all relevant ethical regulations.

The study consisted of a pre-intervention data collection wave (W1), the five-week
intervention period, a data collection wave shortly (4–5 weeks) after the intervention
(W2), and two follow-up data collection waves 6 months and 12–13 months after the
intervention (W3 and W4).

We provide supplementary details on participants (Section 1.1), the treatment con-
dition (Section 1.2), the data collection waves (Section 1.3), outcome measures (Sec-
tion 1.4), and the data analysis (Section 1.5). We discuss a range of robustness checks
in Section 1.6. Supplementary figures are provided in Section 2, and all supplemen-
tary tables in Section 3.

1.1 Supplementary Details on Participants
Sampling of Participants

In February 2012, we received the approval from the Federal Ministry for Education
in Rhineland-Palatinate to conduct the study with first graders in the city of Mainz.
The authority responsible for elementary schools in Mainz (ADD) contacted schools
and provided us with a list of elementary schools in May 2012. We selected 12 schools
for participation in the study based on two criteria: being located in the city of Mainz
and the possibility of including at least two school classes per school in the study. The
participating schools agreed that (i) one school lesson per day would be replaced by
a working memory (WM) training lesson for 25 school days and that (ii) the children
would participate in all four planned data collection waves. Importantly, all 12 schools
that we approached for participation agreed to meet the above-mentioned conditions,
including the randomization of classes within schools to treatment and control con-
ditions. In other words, none of the schools that we approached for participation re-
fused to participate, and in all participating schools, the schools (or school principals)
had no influence on the treatment assignment of the participating classes. The high
willingness to participate in the study might have also been due to the fact that the
schools received the IT infrastructure necessary to run the study (a notebook for each
participating child; cases for transportation, charging and storage of the notebooks;
accessories like mice, headphones, and wifi routers) for permanent use.

Final Sample and Attrition

As described above, we recruited 12 schools with 31 classes for the study. The sample
consisted of three schools with four classes, one school with three classes, and eight
schools with two classes. There were 599 children in these classes in November 2012.
We received 580 parental consent forms that allowed us to collect data in evaluation
waves W1–W4, resulting in a consent rate of 96.8%.1 Our sample covers a substantial

1. Among the children for whom we did not receive parental consent, roughly 50% participated in
the working memory training while the other roughly 50% were in the control classes. However, we

1
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fraction of children in the study area (covering more than one-third of a cohort of
first graders, and 46% of primary schools in Mainz). Thus, while our sample is not
representative for the German population, it covers a broad range of typical school
children in Germany and specifically the city in which our study was conducted. We
were able to evaluate 572 children of the 580 for whom we received parental consent to
collect data for our final data set.2 The children we could not evaluate either switched
to non-participating classes or schools, moved away, or were ill for a longer period of
time during data collection; we did not exclude any available data. Among the sample
of 572 children, 292 were girls (51%) and 280 were boys (49%). Mean age prior to the
intervention (Jan 2013) was 6.84 years (SD = 0.36 years).

Our sample decreased from 572 children in W1 (pre-training) to 531 children in W4
due to attrition. This corresponds to an attrition rate of 7.2%. This attrition was due
to children who switched to non-participating classes or schools, moved away, or were
ill for a longer period of time during data collection; we did not exclude any available
data. Attrition did not differ between the treatment and control groups, the sample in
the treatment group shrank from 279 to 259 children (attrition rate of 7.2%), while the
sample in the control group shrank from 293 to 272 children (attrition rate of 7.2% as
well). Furthermore, we find that the estimated treatment effects remain stable when
we restrict the sample to only those children who remain in the sample throughout all
waves. Results for these estimations can be found in Tables S13–S15.

We also tried to conduct another randomized field study in Switzerland but failed
to do so because the relevant school authorities were not able to ensure randomization
of school classes into treatment and control classes: several schools/classes were only
willing to participate under the condition of being assigned to the control group.

1.2 Supplementary Details on the Working Memory Training
Procedures

The treatment in our study consisted of a daily WM training session that primarily
took place during the first or second lesson at school over a period of 25 school days.
The training was embedded into the classes’ normal school routine. In each class,
the teacher who covered the entire curriculum for the first grade also oversaw the
study. The children thus considered the WM training to be a normal exercise unit,
similar to when the teacher introduces new exercise units in a subject such as math,
reading, or writing in the classroom. The teacher was present during the lessons when
the WM training took place. The children also remained in their regular classroom
and conducted the training sessions at their desks. This minimizes Hawthorne type
effects because it ensures that the children viewed the WM training simply as a usual
exercise unit in the context of their daily lessons, in which the sequential introduction
of new learning content during the school year is part of normal school routine.

The first training session had an introductory character during which procedures
and software were explained. The subsequent 24 lessons served as actual WM train-
ing sessions. The time frame for each training session was one school lesson, i.e., 50

could not collect data in W1–W4 for these children. The participation of roughly half of these children
in the working memory training without consent was possible because the school authorities viewed
the training as part of regular teaching.

2. Among the 572 children, 6 children participated in the baseline data collection (W1) somewhat
after the start of the working memory training (because they were not available — due to illness —
when the other children participated in this data collection). All reported effects of working memory
training remain stable if we exclude these children from the data analysis.
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minutes. During that time, every child had to pick up his/her computer as well as an
external mouse and a headphone from the case, start the software, log-in, try to solve
the training exercises, log-out, and put the notebook back to its pre-specified location.
The net time available for training thus amounted to about 30 minutes per lesson.

The class teacher and one trained research assistant per class who helped the
teacher (e.g., in distributing the notebooks, supporting the children during log-in, solv-
ing technical issues, ensuring compliance with the training protocol, and preparing
a documentation of the training, including special events during training sessions)
supervised the children.3 The assistants also helped in preparing a comprehensive
documentation of the training.

Parents’ Information

All parents, regardless of whether their children were in the treatment or the con-
trol group, obtained written information that the study consisted of several building
blocks that involved computer-based and non-computer-based components and that
— for scientific reasons — children undergo different combinations of these building
blocks. The parents did not receive information regarding the children’s assignment
to the specific building blocks, i.e., they were not told whether their child was in the
control or the treatment group. In fact, we did not even speak of treatment or con-
trol group in our information material for the parents, i.e., the parents did not have
the notion of discrete and distinct treatment and control groups in their mind. In
other words, we did not inform parents about the treatment assignment of their chil-
dren, and we also did not provide information that would have enabled them to infer
the treatment assignment. In addition, because we introduced the working memory
training smoothly into the school curriculum such that it appeared as a natural part
of the curriculum, the children were also unaware of whether they were part of a
treatment or control group.

Hardware

Schools were equipped with one notebook for each child in the treatment and the
control groups as well as large wheeled cases for storage, charging, and transportation
of the notebooks. The cases also contained external mice and headphones for each
child. For the treatment classes, each notebook was labeled with the child’s name and
his/her user account for the WM training software. The control group had no access
to the WM training software.

Children only worked with the external mouse to ensure that the training group
could not gain experience of any kind with an input device similar to the touchscreens
used for the outcome measure tests in the data collection phases (see Section 1.3).

Software

The WM training software used for the treatment was “Cogmed RM”4 in an offline
version with German instructions. It provides an age-specific user-interface, adaptive
levels of difficulty, and a built-in incentive game (see below). The software requires

3. The assistants were university students who were familiar with the working memory training
software.

4. Cogmed and Cogmed Working Memory Training are trademarks, in the U.S. and/or other coun-
tries, of Cogmed Inc. (www.cogmed.com).
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the user to fulfill a certain set of tasks that consist of remembering sequences of in-
formation (e.g., numbers, locations) under various conditions. We excluded three of
the thirteen different tasks available in the software because they contain letters or
syllables that require reading abilities and knowledge about alphabetic characters
that had not yet been introduced in all classes at the time of the WM training. Apart
from this change (and the small reduction in trials, see below), we complied with the
software provider’s required protocol.

Of the ten tasks implemented, two consisted of remembering spoken digits and,
hence, focus on verbal WM capacity. These two tasks were very similar backward
digit span tasks. The remaining eight tasks were based on remembering sequences
of locations and visual information, and, thus, focused on visuo-spatial WM capacity.
Due to the stronger emphasis on visuo-spatial relative to verbal WM training, we thus
would expect larger improvements in visuo-spatial WM capacity.

Five of the ten training tasks were simple span tasks, as they only required stor-
ing and recalling information sequences of varying length. The remaining five tasks
were complex span tasks because they contained at least one element of processing of
stored content prior to recalling (e.g., numbers must be recalled in backward order or
locations are moved before they have to be recalled).

The level of task difficulty was adapted based on the child’s previous performance.
After a few correctly (incorrectly) solved trials, the level of difficulty increased (de-
creased). A daily training session consisted of six (varying) modules of 12 trials each
(resulting in 72 trials per day).5 When the children had finished the six modules of a
training session, they played a few trials of a fun game called “RoboRacing”. This is a
feature built into the software and helps motivate children to participate in the WM
training tasks.

Note that the training software was only available for the children during the five
weeks of the intervention period. After this time, the login credentials for the soft-
ware became invalid and no further training was thus possible. The software is, in
principle, commercially available but was not so for the German market at the time
of our intervention. Therefore, a further use of the training software after the time of
our intervention was practically impossible (although the notebooks remained at the
participating schools).

Cost Estimate

We estimate the costs of our intervention in a back-of-an-envelope calculation to be
around US$ 300 per child. Our estimated costs include the cost for a software license
(US$ 20), the cost for notebooks or tablets of around US$ 250 per child, and a budget
for teacher training of US$ 30 per child (assuming an intensive training session for
teachers lasting for four hours costing US$ 600 per teacher and 20 children per teacher
as an average class-size).

1.3 Supplementary Details on the Data Collection
The main data was collected at four points in time: wave 1 took place immediately
before the intervention (W1), wave 2 took place shortly (4–5 weeks) after the inter-
vention (W2), wave 3 took place 6 months after the intervention (W3), and wave 4

5. The usual training protocol of Cogmed recommends 15 trials per module; we decreased the number
of trials to 12 in order to fit the training in one school lesson (taking the time needed for picking up and
bringing back the notebooks into account).
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took place 12–13 months after the intervention (W4). In each wave, we collected sev-
eral computer-based outcomes that served the purpose of measuring the consequences
of WM training on skills. We describe these outcome measures in detail below. In ad-
dition, we administered questionnaires to teachers and parents. In W4, we also asked
the children a few questions after the computer-based tests.

The data collection was run by a professional data collection service provider expe-
rienced with conducting research projects in these settings. The tests were conducted
outside the classroom; both the children from the control and from the treatment
groups participated in the tests. The data collection was conducted by interviewers
experienced in standardized testing procedures and in working with children of that
age. They were trained in an eight-hour training session run by the data collection
service provider together with the authors of this study. Importantly, the interview-
ers involved in administering the tests to the children (i.e., the employees of the data
collection service provider) were blind to the children’s assignment to the treatment
conditions. The teachers were not involved in the design and the conduct of the tests,
and they did not even know the content of the tests, i.e., it was impossible for the
teachers to prepare the children for the tests. Finally, three years after the treatment,
we also conducted a survey on school track choice, details see below. This study reports
all measures in this project up to and including the survey on school track choice.

Testing Procedures

The tests were administered using computers with 22” touchscreens and headphones.
The instructions were auditive via headphones and supported by visual demonstra-
tions shown on the screens. The children entered their responses using touchscreens
that were easy to handle.

The tests were run in two blocks of about 30 minutes, scheduled on two consecutive
days, primarily during the first or second lesson of the school day. Tests were done in
groups of five children supervised by one “interviewer”. Each child sat in front of
a touchscreen positioned in a standardized way on the desk and had headphones to
listen to the instructions. All children started at the same time but could complete the
test at their own pace. The whole testing procedure for a class lasted for about three
to four school days.

Note that (a) our testing procedure guaranteed a high degree of standardization,
especially through the instructions via headphones, and (b) by using large touch-
screens as the method of data input, we ensured that there was no advantage for the
treatment group as the computer-based WM training was run not with touchscreens
but with a smaller notebook and external mice.

All tests were pretested in a primary school that did not participate in the study.
All children received a small toy for participating in the evaluation wave. Over the
four data collection waves, the tasks became generally more difficult to account for the
increase in children’s abilities over time.

Parent Questionnaires

Parent questionnaires were only distributed in the data collection waves W1 and W3,
i.e., before the intervention and 6 months after the intervention. Parent question-
naires included questions on socio-demographic characteristics of the family, parental
behavior (also towards the child as well as educational goals) and parental character-
istics as well as the child’s personality, attitude towards school, general health, and
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everyday behavior (including SDQ). Parents filled out 467 out of 572 parental ques-
tionnaires in W1 (82%) and 419 out of 544 in W3 (77%).

Teacher Questionnaires

In each data collection wave, teachers filled out a questionnaire. These question-
naires contained questions on children’s characteristics and behaviors and teacher
characteristics and behaviors, as well as experience with and expectations about the
intervention (if they were in the treatment group). In particular, we asked the teach-
ers in every data collection wave to assess each child’s self-regulation abilities using
several questions (see Section 1.4). We achieved a 100% return rate for the teacher
questionnaire in all four evaluation waves.

Survey on Secondary School Track Choice

In addition to the main data collection, we administered a short survey to parents
and teachers when children were in the final grade of primary school (grade 4). This
survey was conducted in April 2016, (i.e., three years after the treatment) and asked
parents about the secondary school track the child was enrolled for grade 5. The
questionnaire was sent to participating schools and teachers distributed and collected
questionnaires. Parents submitted their answers in a sealed envelope, so that the
teacher could not see their response. Teachers also provided a recommendation which
school track the child should attend. However, in our study context the school track
decision is taken by the parents, and teachers’ recommendation is not binding for the
children.

We received a total of 393 questionnaires (69% of the sample in W1 or 74% of the
sample in W4). This attrition was due to reasons such as children moving away from
the city of our study or parents not answering our follow-up questionnaire. Impor-
tantly, there was no difference in attrition between treatment and control group: If
we regress participation in the school track choice survey on the treatment condition,
gender of the child, age of the child, and school fixed effects we do not find any signif-
icant treatment effect regardless of whether we use a linear probability regression or
a probit regression. Thus, we conclude that there was no significant difference in at-
trition between treatment and control group. We nevertheless control for any residual
nonsignificant differences in attrition by applying inverse probability weighting when
we analyze the impact of working memory training on secondary school track choice
(see Table 4, column (5), as well as additional analyses in Tables S21–S23).

Data Availability Statement

The data for this publication have been collected in a project that has compiled a large
set (and combination) of children’s abilities, preferences, and family (socio-demographic)
characteristics (see Sections 1.3 and 1.4), and thus represents highly sensitive data.
This dataset cannot be made available for data protection reasons. In addition, parental
consent for data usage only covers strictly scientific purposes. The restriction to sci-
entific purposes was also necessary to comply with data protection requirements and
use of the data for strictly scientific purposes cannot be guaranteed if the dataset is
made (publicly) available. Not all the data collected in this project are analyzed for
this publication, see Section 1.4 for details. Researchers interested in replicating our
findings can get access to the data set after filling out a research agreement with us.
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We confirm that in the paper and the Supplementary Information, we have reported
all measures, conditions, data exclusions, and how we determined our sample sizes.
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1.4 Supplementary Details on Outcome Measures
This section describes the tests that we used to measure the skill-consequences of WM
training. WM capacity was assessed by one simple and two complex span tasks. For
assessing educational achievement, we tested arithmetic skills, geometry skills, and
reading comprehension. To measure important components of children’s IQ, Raven’s
Coloured Progressive Matrices test (Raven 1995) was administered. For the assess-
ment of self-regulation related abilities, we used a go/no-go task (adapted from Gawri-
low and Gollwitzer 2008) and a letter discrimination task (“bp task”, Esser, Wyschkon,
and Ballaschk 2008). We also measured children’s reading habits, and time and risk
preferences using computer-based and non-computer-based tasks, but these measures
are not part of the present study. For the ease of interpretation and comparison, we
standardize all test scores to mean = 0 and SD = 1, separately by test and wave. His-
tograms of the distribution of all raw test scores (i.e., before standardization) for the
evaluation waves W1–W4 are displayed in Figures S12–S15.

Working Memory Tests

We adopted three different tasks for measuring the different facets of children’s WM
capacity. To avoid task-learning effects, we chose tasks distinct from the WM training
tasks. The children’s WM capacity was measured by a verbal simple span task, a
verbal complex span task, and a visuo-spatial complex span task. Especially the verbal
complex span task and the visuo-spatial complex span task clearly differ from the WM
training tasks.

The test scores in a given wave were constructed as follows. We summed up the
number of correctly solved item series weighted by each series’ difficulty, which is
defined by the series’ length (i.e., number of items in the series).6 We standardized
this score to mean = 0 and SD = 1. Because we expected the children to naturally
improve their WM capacity when growing older, we increased the difficulty of the WM
tasks across the four waves W1–W4 in order to avoid ceiling effects.

The verbal simple span task was a simple forward span short-term memory test.
In this test, the child first had to listen to a sequence of one-digit numbers in the range
of 1 to 9. After each sequence, a three by three grid with the digits 1 to 9 appeared
on the screen and the child was asked to indicate the digits heard in the correct order
(see Figure S1). The difficulty level in this task can be increased by increasing the
number of items in the sequence of one-digit numbers that need to be recalled in the
correct order.

In the verbal complex span task, the child first listened to a sequence of words,
each of which described an object. After each object mentioned, the child had to decide
whether the object is an animal or not by pushing a button “Animal” or “No animal”.
Due to these “interruptions”, the task becomes a complex span WM task. After the
sequence was finished, a three by three grid with pictures appeared on the screen.
The pictures show the objects mentioned in the sequence as well as other, irrelevant
objects. The child had to click on the pictures of the objects corresponding to the order
in which the objects were previously mentioned (see Figure S2). The difficulty of this
task was varied by varying the number of objects mentioned in a series.

The visuo-spatial complex span task was a complex span task measuring visuo-
spatial WM capacity. First, the child was presented a sequence of “stimulus screens”.

6. We get similar results if we use the non-weighted sum of the correctly solved items series as a
measure of working memory capacity.
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Figure S1: The Screen to Enter Answers for the Verbal Simple Span Task

Figure S2: The Screen to Enter Answers for the Verbal Complex Span Task

Figure S3: Stimulus and Response Screens in the Visuo-spatial Complex Span Task

A stimulus screen contained three items; the child had to detect the item shaped
differently and click on it (see Figure S3). Then, a new stimulus screen appeared and
the child again had to click on the deviant shape, etc. Figure S3 shows an example
with three different stimulus screens after which the response screen appears which
contains an empty grid. The child had to enter the position of the deviant items on
the previous three stimulus screens in the correct order on the response screen. In
Figure S3, for example, the correct response is to click “center”, “right”, “center” on
the response screen. The difficulty level in this task is varied by varying the number
of stimulus screens before the response screen appears.
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Educational Achievement Tests

Educational achievement was assessed by testing for arithmetic skills, geometry skills,
and reading skills. We increased the difficulty of the educational tasks across the four
evaluation waves W1–W4 to avoid ceiling effects due to children’s development in
scholastic skills with age.

Arithmetic skills: Arithmetic skills were assessed using three different subtasks:
a number sense task, an auditory arithmetic task, and a written arithmetic task.
The children had to infer/compute a correct number from the presented stimuli in all
three arithmetic tasks. Children had to enter the number in an input device on the
computer screen that looked like a pocket calculator (see Figure S4). For example, if
the child thought that the correct number is ‘23’ she had to tap first a ‘2’ so that this
number appeared in the empty top left rectangle of the device; then she had to tap
on the number ‘3’ on the input device so that the number ‘23’ appeared in the top left
rectangle of the device. If the child was satisfied with her answer, she had to confirm
it by tapping on the green arrow on the top right corner. If the child wanted to correct
her answer, she could do so by tapping on the red “X” on the bottom left corner of
the input device. Note that the children also had to identify a correct number in the
geometry task described below, again using the same input screen in that task.

Figure S4: The Input Device for the Arithmetic and Geometry Tasks

Number sense task: In this subtask, the children were presented a number of balls
on a two by ten grid that was only shown for 1.7 seconds (see Figure S5 showing
several different examples with various levels of difficulty). In general, the display
time was too short to count all balls before they disappeared. After the grid had
disappeared, the children had to type the correct number of balls in the grid.

A two by ten grid with the subdivision at 5 is used in the first grade in the par-
ticipating primary schools to teach numbers and calculations. To solve the number
sense task, children need to be familiar with the number range up to 20, and a good
understanding of the logic of the grid is useful. Because the children could not count
the balls due to the short display time, they had to capture the pattern of the balls.
This involves the assessment of structures as well as the detection of possible sub-
groups and the number of balls per subgroup. Children had to sum up the number of
balls from different subgroups or use subtraction in cases where only a few balls were
missing in the grid. For example, consider the first grid below (see Figure S5) with
18 balls: Depending on the child’s mathematical experience, different strategies are
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Figure S5: Number Sense Task, Screenshot Plus Two Further Examples

possible in this grid. A child knowing that 20 balls would fit in the grid and noticing
that 2 balls are missing at the right end of the grid could compute 20−2 = 18 to arrive
at the correct solution. Another child might recognize 10 balls (2 rows with 5 balls
each) in the left half and 8 balls (2 rows with 4 balls each) in the right half of the grid.
This child will reach the correct solution by mentally computing 10 + 8 after the balls
have disappeared. The third grid below (see Figure S5) gives an example of a rather
difficult item. Children had to quickly recognize and structure four groups of balls
containing different numbers of balls each. The children had to capture the number of
balls in each subgroup simultaneously and to correctly sum up 3 + 3 + 1 + 4. As one of
the fundamental steps in mathematical development at this age is to replace counting
strategies by computing strategies, it is important that the display time was too short
to be able to count the balls.

The number of balls and their distribution within the grid varied across the items
and evaluation waves and was adjusted to the development of children’s mathematical
skills. The size of the grid, however, remained constant over time.

Auditory arithmetic task: This subtask measures arithmetic skills for addition and
subtraction of two numbers (see Figure S6). Computational tasks were presented over
the headphone (e.g., “How much is 9 plus 6?”). Children had to enter their answer
into the input matrix. Each item in this task contained two numbers to be added or
subtracted. Each evaluation wave contained 10 of these auditory arithmetic items.

The difficulty level was adapted to the school curriculum, e.g., with regard to the
number range: In W1 and W2 the number range was up to 20, while in W3 and W4 it
expanded to 100. Other major changes across waves are the increase in complexity of
the mental operations and the need for numerical comprehension. Moreover, for the
more difficult items, such as “92 minus 17”, children needed to compute intermediate
steps: First, many children would compute 92 minus 10 and keep the intermediate
result 82 in mind. Then, they would subtract the remaining 7 from 82, leading to the
final result.
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Figure S6: Auditory Arithmetic Task, Screenshot Plus Two Further Examples

Written arithmetic task: In contrast to the auditory task, the arithmetic problems
in this subtask were not presented over the headphones but displayed on the screen.
Most problems contained more than two numbers that needed to be added or sub-
tracted; the reason for this is that we tried to avoid having children draw a result
from their longer-term memory without computing. Each arithmetic problem was vis-
ible on the screen during the whole trial (see Figure S7). Because of this (i.e., because
the subjects did not need to recall the numbers from memory), the difficulty level of
the required mathematical operations was generally set to be higher than in the au-
ditory task. Children were, for example, required to add and/or subtract three or four
numbers. The difficulty level was also adapted to the curriculum, analogously to the
way it was done in the auditory arithmetic task.

Computation of final arithmetic test score: For each of the three subtasks (number
sense, auditory and written arithmetic tasks), we added up the number of correctly
solved items and standardized each subtask score to mean = 0 and SD = 1 within
each wave. We then added up the three standardized subscores and standardized this
composite score to mean = 0 and SD = 1 to achieve comparability to the other test
scores used in our analysis.

Geometry skills: Geometry skills were assessed by a test that required the chil-
dren to assess how many simple-shaped objects—such as triangles, squares, or rect-
angles—fit into a larger geometric object (see Figure S8). Depending on the size and
the shape of the larger geometric object, this task can be made harder or easier.

The task contained 10 items in each evaluation wave. The difficulty level varied
across items and evaluation waves. Difficulty varied along various dimensions. Con-
sider the easy item shown in Figure S8 (the red square): Children could solve the
problem without any mental rotation of the small square. Furthermore, the larger ob-
ject is subdivided into two components, making the task even easier. In contrast, for
the first item shown in Figure S8 (the pink rectangle), children had to mentally rotate
the small object to solve the question. For the difficult item in Figure S8 (the green
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Figure S7: Written Arithmetic Task, Screenshot Plus Two Further Examples

Figure S8: Geometry Task, Screenshot Plus Two Further Examples
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triangle), children hat to mentally rotate the triangle, store the number for subparts
and keep track of which parts were already counted when filling the larger geometric
object.

Reading comprehension skills: Reading comprehension was assessed by a sen-
tence comprehension test in single choice format (we also elicited children’s reading
abilities in the teacher questionnaire, see Section 1.3 — results are generally in line
with the findings for the computer-based test). On the screen (see Figure S9), a sen-
tence with one gap was presented in a line. To fill the gap, the children had to choose
from a list of four alternatives presented below the gap. Tapping on one of the words
in the list made it appear in the gap. Children could correct their choice by using the
red X button below the list. Children had to confirm their choice by tipping on the
green enter-button right beside the sentence.

Figure S9: Reading Comprehension Task, Screenshot Plus Two Further Examples

Generally, there was only one word missing in the sentence. In W3 and W4 there
were also a few gaps to be filled with a combination of two short words. The difficulty
of the items was multidimensional. It varied within a test, and in particular between
the evaluation waves, where it was adjusted to the curriculum. In W1 and W2, the
test contained 10 sentences consisting of 3 to 9 words per sentence. The words only
contained those letters that had already been introduced to the children in earlier
lessons during the school year. As most children become much faster in reading before
W3, the reading comprehension task contained 16 sentences with 4 to 15 words per
sentence in W3, and 16 sentences with 4 to 16 words per sentence in W4.
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Figure S10: The Animals and the “Go-Button” in the Go/No-Go Task

Fluid IQ

Children’s fluid IQ was measured using a set of Colored Progressive Raven’s Matrices
(Raven 1995). While no single measurement tool will cover all aspects of a construct
like fluid IQ, there is probably a broad consensus that the Raven’s Matrices task cap-
tures important aspects of fluid IQ. We used two different sets of 17 items in W1/W3
and W2/W4, respectively. The child was shown a box with a pattern and had to choose
which one out of six smaller patterns would fit into a missing part of the large pat-
tern. The outcome score used in the main analysis is the standardized sum of correctly
solved items.

Go/No-Go Task

To measure inhibitory abilities, we employed a go/no-go task that was adapted from
Gawrilow and Gollwitzer (2008). In this task, the child had to push a red button on the
touchscreen every time one of four different animals appeared on the screen (rooster,
mouse, cat, pig — see Figure S10). However, the children were told not to push the
red button for one other animal (cow). The procedure of the task is as follows: The
red button is displayed on the touch screen throughout the task. In addition, the
children first see an X in the middle of the screen for 0.6–1.2 seconds (these times
randomly vary across items but are equal across waves). Then the picture of an animal
appears with a display time of 1.55 seconds and a time slot for reaction of 1.55 seconds
(the display time for the animal was reduced to 0.65 seconds in W2, W3, and W4.)
In this time window, the children must decide whether to push the button and to
implement the button press. Subsequently, the children again see the X, then the
picture, and so on. In total, 50, 60, 70, and 80 items were presented in W1, W2,
W3, and W4, respectively. In W1 and W3, the pictures were animals as described
above. The pictures were vehicles in W2 and W4 (go = car, train, ship, airplane; no-go
= truck). Because the target animals (or vehicles) occur much more frequently than
the non-target animal, and the time window during which a decision can be made is
short, the children are put in the “go-mode”. In other words, the pre-potent impulse
is to push the red button. A key challenge in this task is, therefore, to inhibit the
pre-potent impulse when a non-target animal appears.

We measure performance in this task in three ways. First, we simply compute the
commission errors (i.e., the number of times a child fails to inhibit the “go-response”
when a no-go item is displayed), multiply by -1, and standardize the score to mean
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= 0 and SD = 1 within each wave. Thus, a higher score indicates better performance
in the task (i.e., fewer mistakes). Second, we compute the d’-measure of performance.
The d’-measure is the standardized fraction of commission errors in the no-go items
subtracted from the standardized fraction of correct responses in the go items. We
again standardize this score to facilitate better interpretation. We find similar treat-
ment effects on the d’-measure, i.e., a significant increase in the performance of the
treatment group relative to the control group in W4 (W2: d = 0.118, p = 0.410; W3: d
= 0.071, p = 0.619; W4: d = 0.475, p < 0.0001). Third, we can analyze the omission
errors (i.e., the number of times a child fails to push the red button when a go item is
displayed) as a measure for “attention”. We multiply the number of omission errors
by -1, and standardize the score to mean = 0 and SD = 1 within each wave. Hence,
a higher score indicates better performance in the task (i.e., fewer mistakes). Again,
treatment effects on omission errors are very similar to those for commission errors,
with large and significant improvements in W4 (W2: d = 0.282, p = 0.109; W3: d =
0.133, p = 0.357; W4: d = 0.416, p = 0.001).

Letter Discrimination Task

Our letter discrimination task (“bp task”) measures attentional stamina and is taken
from Esser, Wyschkon, and Ballaschk (2008). In this task, the child saw three lines
filled with the letters “b”, “d”, “g”, “q”, “h”, and “p”, in total 45 letters on the touch-
screen (see Figure S11 for an example of such a screen). The child had to go through
the letters from left to right, row by row, and tap on all “b”s and “p”s without acciden-
tally marking any other letter. The two target letters “b” and “p” were displayed at
the top of the screen in a salient form so that the child is always reminded of the goal
in this task in every single trial.

The screen emptied after 30 seconds, and a new screen appeared. This was re-
peated for 18 times (only 12 times in W1). To construct the outcome score we add up
standardized scores for both types of errors (i.e., marking a wrong letter and failure
to mark a “b” or a “p”). This score is then again standardized to mean = 0 and SD
= 1 within each wave and multiplied by −1. Thus, a higher score indicates better
performance in the task (i.e., fewer mistakes).

Figure S11: Example of a Screen in the Letter Discrimination Task
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Overall Self-regulation

All above-presented tasks for measuring the skill consequences of WM training are
based on objective tests and not on subjective assessments. One of these tasks — the
go/no-go task — provides a measure of the extent to which the children are able to
inhibit pre-potent impulses. As the ability to inhibit these impulses is often viewed as
a component of self-regulation or self-control, we decided to complement this measure
with teachers’ assessments of the children’s self-regulation skills. We are aware of
the fact that the teachers’ subjective assessments may be a less reliable measure than
objective tests. However, if WM training affects the objective test measure and the
subjective measure in similar ways, our confidence in the reliability of the treatment
effect is strengthened.

In each wave, teachers assessed the self-regulation abilities of each child in their
class by answering the questions listed below in each data collection wave. Questions
1–5 were answered by means of a 7-point Likert-type scale with 1 = “does not apply
at all” and 7 = “fully applies”. The answer options for questions 6 and 7 are indicated
below.

1. The child works in a concentrated and enduring manner.

2. The child makes a large number of mistakes due to inattention (reverse coded).

3. The child has a lot of self-discipline.

4. The child has trouble waiting for his/her turn (reverse coded).

5. The child disturbs class instruction often (reverse coded).

6. Please indicate for each child how often he/she forgot his/her homework or did
not do his/her homework despite having an assignment in the last six months?
(1 = “never forgot homework” to 7 = “forgot homework often”) (reverse coded)

7. How do you rate the child with respect to patience? (1 = “very impatient” to 7 =
“very patient”)

Importantly, teachers had to answer these questions subsequently for each child
in their classroom, i.e., they first rated all children in their class on item 1, then all
children in their class on item 2, etc. This makes it very unlikely that item correla-
tions within child (or improvements on several dimensions for a child) were driven by
teachers just using the same point on the scale for all items for a single child (e.g., by
seeing child A’s name and then clicking on a “6” for each item for this child — this was
not possible in our survey design).

The items above were developed with the purpose of assessing young children’s
overall self-regulation skills in a classroom context. The items are partly based on (or
adapted from) the Strengths and Difficulties Questionnaire (SDQ) proposed by Good-
man (1997) and the Self-Control Scale developed by Tangney, Baumeister, and Boone
(2004), which was translated into German and validated by Bertrams and Dickhäuser
(2009).

We conducted a factor analysis of the items mentioned above (see Table S18). The
results of this analysis show that all items exhibit considerable loadings on a single
factor. All other factors have eigenvalues of less than 1. Table S18 shows this result
for the teachers’ answers in W1; the same results basically hold for all waves.
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We used the standardized sum of the standardized answer values of the seven
questionnaire items listed above as the dependent variable when estimating the effect
of the WM training on overall self-regulation abilities.

1.5 Supplementary Details on the Data Analysis
Details on Descriptive Statistics

Supplementary Table S23 presents descriptive statistics for the whole sample. Over-
all, 15 classes (279 children, i.e., 49%) were assigned to the treatment group and 16
classes (293 children) to the control group. About 49% of the children were male,
mean age at the beginning of the year (i.e., on January 1, 2013) was 82 months (6.84
years, SD = 0.36 years). Gender and age variables are taken from parental consent
forms and are therefore available for all children. The variables migration background
and language problems stem from the teacher questionnaire administered in W1, the
variables household income and mothers’ university degree stem from the parental
questionnaire in W1. The information about secondary school track choice is taken
from a separate parental survey administered three years after the intervention (see
Section 1.3).

Estimating the Treatment Effect

To estimate the treatment effect of the WM training, we regress outcome scores mea-
sured after the training period on a treatment indicator. We also include school fixed
effects (because randomization was conducted within schools) and some basic con-
trol variables (gender, age in months on January 1, 2013, and age in months at the
relevant test days). Furthermore, we conducted other treatments in the same sam-
ple, with a randomly chosen part of the WM treatment group and a randomly chosen
part of the control group, a learning software training and a self-regulation training
(Schunk et al. 2022). The other treatments are unrelated to the WM training. Of the
n = 279 children in the WM treatment group, n = 145 also received self-regulation
training, and n = 134 received only WM training (pure WM training group). Of the
n = 293 children in the control group, n = 133 received only self-regulation training,
n = 22 received learning software training, n = 37 received self-regulation and learn-
ing software training, and n = 101 received regular classroom teaching (pure control
group). We control for the other treatments as well as for their interactions in all our
estimations (cf. Muralidharan, Romero, and Wüthrich 2023). Due to this econometric
specification, the treatment effect of the WM training is identified by the comparison
between the pure control group and the pure WM training group. Finally, in the esti-
mation of each outcome score we also control for the pre-training baseline (W1) level
of that score. This is done instead of using the difference-in-differences estimator. The
justification for this follows from the fact that “our” estimate of the treatment effect
(by controlling for baseline scores) has approximately a variance of

2σ2(1− ρ2)
n

, (1)

while the difference-in-differences estimator has a variance of

4σ2(1− ρ)
n

, (2)
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where ρ is the autocorrelation of the outcome measures and n is the number of obser-
vations. Thus, the advantage of the method we use is that the variance of the estimate
is smaller, i.e., the treatment effect is estimated with higher precision if ρ 6= 1 (Frison
and Pocock 1992; McKenzie 2012).

Adjusting p-Values for Multiple Testing

We estimate the treatment effect on several outcome variables at several points in
time, i.e., we have a relatively large number of hypotheses. This boosts the probability
of falsely rejecting null hypotheses. If we keep the significance level at 5% for each
null hypothesis we test, this implies that the probability of wrongly rejecting each null
hypothesis (i.e., detecting a “significant” effect even if there is none) is 5%. However,
the probability of rejecting at least one out of many null hypotheses is much larger
than 5%. Thus, the probability of over-rejecting (i.e., rejecting null hypotheses that
should not be rejected, i.e., finding a significant effect where there is none) increases
with the number of hypotheses we test. This has to be corrected in order not to arrive
at wrong conclusions.

We refrain from using simpler multiple testing corrections such as Bonferroni
(1935) or Holm (1979) because the method by Romano and Wolf (2005) is more pow-
erful, since it accounts for the dependence structure of the test statistics (Clarke,
Romano, and Wolf 2020). We apply the Romano-Wolf stepdown procedure to control
the family-wise error rate (FWER, see Romano and Wolf 2005) — a technique which
is increasingly used for large-scale intervention studies (see, for example, Heckman
et al. 2010; Campbell et al. 2014; Gertler et al. 2014). Furthermore, we use an effi-
cient method to adjust p-values according to this stepdown algorithm (Romano and
Wolf 2016). In addition, we also combine this method of controlling the family-wise
error rate (FWER) with the BRL (biased-reduced linearization) correction method, us-
ing code provided by Pustejovsky (2023). This method accounts for potential biases in
estimation of standard errors when the number of clusters is relatively small (Bell
and McCaffrey 2002).

For applying the multiple testing correction, we decided to group our outcomes into
the following natural families, following our main hypotheses for treatment effects
of the working memory training: 1) working memory outcomes (verbal simple span,
verbal complex span, visuo-spatial complex span), 2) educational spillover outcomes
(arithmetic, geometry, reading), 3) spillover effects on general cognitive skills (Raven’s
IQ), and 4) spillover effects on general noncognitive skills (Go/No-go task, bp task). In
addition, we always include all three post-treatment outcome waves (i.e., W2, W3,
and W4) in the respective families, rendering some of these families quite large. The
reasoning behind this partitioning is as follows. First, any spillover effects on other
skills would presumably build on direct improvements of working memory capacity
("near-transfer effects"). Second, these direct improvements in WM capacity could
transfer to skills related to the school curriculum, such as arithmetic, geometry and
reading, simply because children in the treatment group might benefit more from the
regular classroom teaching. Third and fourth, based on the correlational evidence
in the literature, improvements of working memory capacity might also transfer to
more general sets of skills, namely general cognitive skills and general noncognitive
skills. We ran M=10’000 bootstrap repetitions (stratifying on class-level and correcting
standard errors using biased-reduced linearization). Subsequently, we apply the code
to adjust p-values according to the stepdown procedure by Romano and Wolf (2005,
2016). The resulting p-values are reported in Table S9.
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Yet, as our project does not have a pre-analysis plan, the choice of families for out-
comes is apparently ex-post and potentially endogenous. While we believe that our
preferred grouping of families is the most reasonable one, we also provide an addi-
tional multiple testing analysis in Table S10, using an even more conservative group-
ing of families, namely 1) direct effects and 2) (any) spillover effects. In our view,
there should be little doubt that working memory capacity should be a separate fam-
ily (“first stage” for any spillover effects). All spillover outcomes are grouped together
in a second family. Even with this very conservative approach (controlling the FWER
for a group of 6*3 = 18 outcomes), we find significant spillover effects on geometry (p
= 0.073) and inhibitory control in the Go/No-Go task (p = 0.007). Treatment effects on
Raven’s IQ do no longer reach conventional levels of statistical significance but also
remain quite close to the 10%-threshold (p = 0.136 in W3 and p = 0.114 in W4). Over-
all, our multiple testing corrections confirm that the treatment had both substantial
direct effects on working memory capacity, especially in the visuo-spatial domain, as
well as spillover effects on Geometry, the ability to inhibit pre-potent impulses in the
Go/Nogo task, and — slightly less robust — on performance in the Raven’s IQ task.

Treatment Effects on Overall Self-regulation

Working memory capacity is more than just the ability to temporarily store informa-
tion — it also involves the capacity to process information in the presence of distract-
ing impulses that are not conducive for the individual’s goal. As such, WM capacity is
closely related to inhibitory control and impulse control. Like WM capacity, inhibitory
control and the ability to avoid goal-incongruent distractions are conceptualized as
components of executive functions (EFs). Another component of EFs is self-regulation,
which requires maintaining optimal levels of emotional, motivational, and cognitive
arousal. Self-regulation behavior in a classroom context cannot be elicited with the
objective computer-based measures used in our study. However, to obtain a measure
for self-regulation ability in a classroom context, we asked the teachers to assess the
children’s self-regulatory abilities more broadly in a questionnaire using seven self-
regulation items like “The child has problems waiting for his/her turn” or “The child
disturbs class instruction often” (for details, see Section 1.4). A factor analysis on
these items (shown in Table S18) reveals that teachers’ responses can be captured by
one factor — the children’s overall self-regulatory ability. This measure is based on
teachers’ day-to-day experience with the children and thus has an empirical base, but
it is also based on teachers’ subjective perception of their experiences with the chil-
dren. For this reason, we first validated the teacher ratings with the objective test
results observed in the go/no-go task.

To assess the credibility of teachers’ ratings, we computed the correlation between
the performance objectively measured in the go/no-go task (averaged for each child
over W1–W4)—that measures children’s inhibitory abilities, which may well be con-
sidered as one important aspect of self-regulation—and the teachers’ broader assess-
ments of children’s self-regulation skills (again averaged over W1–W4). This is based
on the idea that if teachers’ assessments contain an objective rationale, i.e., if they
have a meaningful objective basis and are not purely subjective impressions, then we
should observe a significantly positive correlation, which is indeed the case; the corre-
lation between children’s inhibitory skills measured in the go/no-go task and teachers’
assessment of their overall self-regulation is 0.45 and 0.40 in the control and treat-
ment group, respectively.
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Based on this validation of teachers’ ratings, it makes sense to examine whether
the children in the treatment group are rated higher in terms of broader self-regulation.
We find indeed that teachers rate the children in the treatment group as significantly
better on “overall self-regulation” in W3 (d = 0.37, p = 0.040) and in W4 (d = 0.27, p
= 0.026). The results of the corresponding regressions can be found in the Table S19.
Thus, it appears that the WM training also led to a broader improvement in self-
regulatory skills.

The Role of Working Memory Capacity for the Treatment Effect
on Far-Transfer Outcomes

The key rationale behind our WM training intervention is that the training-induced
increases in WM capacity will eventually enable the children to perform better in
tasks that require WM capacity. Thus, it is natural to hypothesize that WM capacity
is a mediator of the treatment effects of WM training on far-transfer outcomes. To gain
insights into the quantitative importance of WM capacity as a mediator we conducted
a mediation analysis.

The goal of this analysis is to decompose the total treatment effect of WM training
on far-transfer outcomes into an effect that is due to increases in WM capacity and an
effect that is due to other, unexplained factors. The total treatment effect is estimated
by the equation

T k
i = δk

0 + δk
W MTWMTi + δk

XXi + εk
i , (3)

where T k
i denotes the score of far-transfer outcome k of child i, WMTi is the treatment

indicator, and Xi denotes a vector of control variables such as age, gender, and the
pre-treatment outcome score. The δ-parameters are to be estimated and εk

i is the er-
ror term. We carry out a decomposition analysis of the total treatment effect δk

W MT ,
focusing on those far-transfer outcomes that were significantly affected by the train-
ing: geometry, reading, Raven’s IQ, and inhibitory ability in the go/no-go task.

Following Heckman, Pinto, and Savelyev (2013), and similar applications by Kosse
et al. (2020) and Carlana, La Ferrara, and Pinotti (2022), our analysis is based on a
linear production function for child i’s transfer outcome k, T k

i . Thus, we assume that
T k

i is a function of working memory capacity, WMCi, a vector of unknown mediating
variables, Ui, and a vector of pre-program control variables, Xi:

T k
i = αk

0 + αk
W MCWMCi + αk

UUi + αk
XXi + νk

i (4)

In equation (4), αk
W MC is a parameter vector denoting the effect of WM capacity

(verbal and visuo-spatial) on transfer outcome k; αk
U and αk

X are parameter vectors
related to the unknown mediating variables and pre-program control variables, re-
spectively; νk

i denotes an error term that is independent of the mechanisms and pre-
determined variables.7

In the first step of the decomposition analysis, we estimate equation (4) based on
the control group sample; the results are reported in Table S20 of this online ap-

7. Note that the parameters in equation (4) are not indexed by the treatment indicator. This reflects
the assumption that the parameters are the same for treatment and control group. This is consistent
with the findings by Heckman, Pinto, and Savelyev (2013), Kosse et al. (2020), and Carlana, La Ferrara,
and Pinotti (2022).
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pendix.8 The significantly positive estimates of αk
W MC for all outcomes k suggest that

working memory capacity plays a significant role in children’s far-transfer outcomes.
In the second step of the decomposition analysis, we estimate the treatment effect

of the WM training on WM capacity, our mediation variable, by the following equation:

WMCi = β0 + βW MTWMTi + βXXi + ηi (5)

The results of this regression are discussed in the results section of the paper (see
Figure 1) and are reported in detail in Table S3.

In the third step, the decomposition is carried out in a straightforward way, as-
suming that program-induced increments in working memory capacity (WMCi) and
unmeasured mechanism variables (Ui) are statistically independent conditional on the
controls Xi (following Heckman, Pinto, and Savelyev 2013). Taking the estimated pa-
rameters δk

W MT from equation (3) we decompose it for each transfer outcome k into the
part explained by working memory capacity improvements, [(αk

W MC ∗ βW MT )/δk
W MT ] ∗

100%, and the unexplained part, [1− (αk
W MC ∗ βW MT )/δk

W MT ] ∗ 100%.

Estimation with Inverse Probability Weights

We collected information about secondary school track choice in a follow-up sample
three years after the intervention. Due to attrition in in this sample (see Table S23),
we estimate the secondary school choice outcome with inverse probability weights.
The weights are based on three binary variables, (i) migration background, (ii) educa-
tional achievement, and (iii) cognitive skills. The educational achievement variable is
constructed using the sum of standardized scores in geometry, arithmetic, and read-
ing, and the binary variable is built based on a sample split. The cognitive variable
is constructed using the sum of standardized scores in working memory capacity (all
three working memory tests) and Raven’s IQ, and the binary variable is again built
based on a sample split. Missing values in the weighting variables were imputed us-
ing the modal value of the distribution. For example, the four missing values in the
migration background are set to 0 (no migration background); the four missing values
in the geometry score are set to 0 (which represents the mean due to standardization
to mean = 0 and SD = 1).

1.6 Robustness Checks
We have several outcome measures and we examine the impact of WM training on
them in three post-treatment evaluation waves. For this reason, we deal with the
issue of multiple hypothesis testing below. It is worth emphasizing, however, that the
time patterns of our results are consistent in the sense that they suggest an increasing
impact of the WM training over time on all those variables for which we ultimately
find a significant treatment effect. Furthermore, we observe insignificant treatment
effects (and small point estimates) across all evaluation waves in those cases in which
the treatment had no impact (i.e., arithmetic and bp task). If the observed significant
effects were simply due to randomness and did not reflect true treatment effects, we
would expect a more irregular pattern.

Nevertheless, it makes sense to check the robustness of our findings with respect
to multiple hypothesis testing (Romano and Wolf 2005, 2016). We generate families

8. For the mediation analysis, we focus on those working memory capacity variables that are signif-
icantly affected by the WM training, i.e., the verbal simple span score and the visuo-spatial complex
span score.
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of outcome measures by bundling outcomes in a natural way for the purpose of multi-
ple hypothesis testing. Within a family, we always control the family wise error rate
(FWER) for all outcomes in all three evaluation waves (i.e., W2, W3, and W4). One
family consists, for example, of our WM outcomes (verbal simple span, verbal complex
span, visuo-spatial complex span). When we check for robustness to multiple hypoth-
esis testing, we thus control the FWER for nine outcomes (three outcome measures
at three points in time). In addition, we combine multiple hypothesis testing with
the BRL (biased-reduced linearization) correction method that accounts for potential
biases in the estimation of standard errors when the number of clusters is relatively
small. When we simultaneously apply these two robustness checks, we still find sig-
nificant direct treatment effects on WM capacity and spillover effects on geometry,
Raven’s fluid IQ measure, and the go/no-go task, while the effect on reading in W4 is
no longer significant (see Table S9). We also provide results for a more conservative
grouping of families as a further robustness check (see Section 1.5 and Table S10).
Overall, the thrust of our treatment effects survives these checks, which lends credi-
bility to our results.

Next, we discuss the concern that treated children might have improved their out-
come scores solely because of a Hawthorne or demand type effect (Melby-Lervåg and
Hulme 2013). In our view, several reasons speak against this possibility. First, the
WM training was embedded into the normal school routine and was introduced like
any other new sequence of exercises that children experience during a school year.
Thus, the children in the treatment group did not know that they were part of an
experiment. In addition, both the children in the control and the treatment group
participated in the test tasks, implying that participation in these tasks also cannot
explain differential performance across groups. In fact, both the children in the con-
trol group and the treatment group were highly motivated in performing the tasks
and reported to enjoy taking part in them (see Figures S17–S18). We find neither a
treatment effect on the subjective effort provided in the evaluation tasks nor on the
extent to which children enjoyed these tasks (see Table S17). Second, we did not in-
form parents about the treatment assignment of their children, and we also did not
provide information that would have enabled them to infer the treatment assignment
of their children. Thus, parental behavior is unlikely to be the source of a Hawthorne
type effect. This interpretation is also consistent with the absence of a treatment ef-
fect on parental investment (see Figure S16 and Table S16). Third, the time pattern
of spillover effects speaks against Hawthorne type effects because if participation in
an experiment affects general motivation and expectations, then the effects should be
most visible shortly after the training when motivation and expectation effects are
still fresh. In fact, however, we observe no significant spillover effects shortly after
the training — instead, the effects only arise after 6 or 12–13 months. Finally, the
specificity and plausibility of the pattern of our results across tasks speaks against
Hawthorn type effects. Hawthorn type effects should rather lead to a general and
not a specific change in performance. For example, general Hawthorn effects should
induce effects across all outcome measures, but we observe no treatment effects in
verbal complex span, arithmetic, and the bp task. Thus, taken together, Hawthorne
type effects are unlikely to be the source of the observed treatment effect patterns.

We also conducted a robustness check related to the use of computers in school.
During the computer-based WM training period, the children in the treatment group
naturally used computers more frequently than the children in the control group.
Based on the arguments in the previous paragraph, it is highly unlikely that this
generated a Hawthorne type effect, but perhaps the teachers in the treatment group
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subsequently used computers more often in class and this could have had effects
on the children. To examine this possibility, we asked the teachers in W3 and W4
how frequently computers were used in the classroom, and we use these data to re-
estimate the relevant W3 and W4 treatment effects controlling for computer use (see
Tables S11–S12). We find that computer usage neither significantly affects the out-
come measures, nor does it change the previously estimated training effects.

Finally, we perform robustness checks with respect to attrition: First, we re-estimate
the main results reducing the sample to only those children who are still in the sam-
ple in W4 (see Tables S13–S15), but none of the results changes when doing so. This
is also consistent with the fact that attrition is generally very low across evaluation
waves and not systematically different between treatment and control group. Second,
we turn to the Secondary school track choice sample. If we regress participation in the
long-run follow-up questionnaire for the school track choice on a treatment dummy,
school fixed effects, and further controls, we find that the coefficient related to the
treatment dummy is close to zero and insignificant (p = 0.337). This suggests that
there are no systematic attrition differences between treatment and control group for
the long-run follow-up questionnaire. Third, we examined differential attrition in the
secondary school track choice sample using interactions between treatment status and
socio-demographic variables — such as migration background, language problems, or
mothers’ education — or between treatment status and baseline outcomes measures.
These analyses (see Tables S21–S22) show that there are no significant interaction
effects with regard to participation in the long-run follow-up questionnaire.

Taken together, the evidence shows a consistent time pattern of spillover effects
suggesting that the observed treatment effects do not simply reflect chance findings.
Moreover, most of our spillover effects are robust to multiple hypothesis testing and
the evidence also speaks against substantial placebo or Hawthorne type effects or an
impact of computer use on treatment effects. Finally, attrition does not seem to pose
a challenge for the reported results.
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2 Further Supplementary Figures (S12–S18)

2.1 Distribution of Outcome Scores in W1–W4
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Figure S12: Distribution of Nonstandardized W1 Test Scores
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Figure S13: Distribution of Nonstandardized W2 Test Scores
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Figure S15: Distribution of Nonstandardized W4 Test Scores
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2.2 Parental Investment by Treatment Status

0
.1

.2
.3

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

Control Treatment

F
ra

c
ti
o
n

The figure shows the distribution of an index of parental investment, separately by treatment and control. The index is the sum
of three variables based on questions in the parental questionnaire in W3 (collected 6 months after treatment): (1) “How many
times do you control whether your child has packed the school bag for the next day?”, (2) “How many times do you control
whether your child has done her homework?”, (3) “How many times do you control the content of your child’s homework?”. The
answer options for each question are 1 = “Never”, 2 = “Less than once a week”, 3 = “1–2 times a week”, 4 = “3–4 times a week”, 5
= “Always”. N = 416.

Figure S16: Parental Investment in W3 by Treatment Status
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2.3 Children’s Self-reported Motivation During Evaluation Tests

0
.2

.4
.6

.8

F
ra

c
ti
o
n

0 1 2 3 4 5

N=531

The figure plots children’s answers to the question “How much did you enjoy doing the tasks on the computer just now?” asked
in a computerized short questionnaire immediately after the W4 evaluation. Answer options are a Likert-type scale ranging
from 1 = “very little” to 5 = “very much”.

Figure S17: Children’s Enjoyment in W4 Tasks
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The figure plots children’s answers to the question “How much did you try to do your best on the computer?” asked in a
computerized short questionnaire immediately after the W4 evaluation. Answer options are a Likert-type scale ranging from 1
= “very little” to 5 = “very much”.

Figure S18: Children’s Effort in W4 Tasks
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3 Supplementary Tables (Tables S1–S23)

3.1 Balance Tests

Table S1: Sample Balance: Regressing Socio-demographic Characteristics on the Treatment Indicator

Male Age in Migration Language Income Mother
months Background Problems >2500 EUR Univ Degr

(1) (2) (3) (4) (5) (6)
Working memory training -0.013 -0.772 -0.128 -0.035 0.084 -0.051

(0.034) (0.501) (0.081) (0.071) (0.087) (0.072)
N 572 572 568 572 441 444
The results are based on least squares models including school fixed effects. Standard errors in paren-
theses are clustered at the classroom level. * p<0.10, ** p<0.05, *** p<0.01. The coefficients for ‘working
memory training’ in the first row and the associated standard errors indicate whether there are signif-
icant imbalances between the treatment and control group with respect to the socio-demographic char-
acteristics described in the column titles. In every column, the coefficient for working memory training
is small and insignificant. The sample in column 3 is smaller than the total sample size because the
dependent variable ‘migration background’ is taken from the teacher questionnaire and for four children
teachers reported not to know the migration background. The samples in columns 5 and 6 are smaller
because the dependent variables are taken from the parent questionnaire, which has not been answered
(completely) by all parents.

Table S2: Sample Balance: Regressing W1 Baseline Test Scores on the Treatment Indicator

Verbal Verbal Visuo-spatial Geometry Arithmetic Reading Raven’s Go/No-Go bp task
simple span complex span complex span IQ task

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Working memory training -0.079 0.274** -0.160 0.082 0.102 0.136 0.060 -0.104 0.133

(0.104) (0.128) (0.101) (0.121) (0.102) (0.182) (0.102) (0.136) (0.128)
N 569 566 567 568 549 567 568 567 565
The results are based on least squares models including school fixed effects and further controls (see Section 1.5 for details). All outcome scores are
standardized to mean = 0 and SD = 1. Standard errors in parentheses are clustered at the classroom level. * p<0.10, ** p<0.05, *** p<0.01. The
coefficients in the first row and the associated p-values indicate whether there are significant imbalances between the treatment and control group
regarding the respective baseline outcome measures. It turns out that all coefficients for ‘working memory training’ (except the one for verbal complex
span) are close to zero and insignificant at the 5% level, i.e., there is no evidence for significant imbalances between treatment and control group for
these outcome measures. Because the testing for imbalances involved many hypothesis tests, we further check whether the significant coefficient for
verbal complex span survives multiple hypothesis correction. If we adjust the p-value for multiple hypothesis testing, the coefficient for verbal complex
span turns insignificant (p = 0.332). Note that we control for the baseline (i.e., W1) score of each outcome variable when we estimate the treatment
effect of working memory training.
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3.2 Tables Identifying the Treatment Effect

Table S3: Treatment Effects on Working Memory Capacity

Verbal simple span Verbal complex span Visuo-spatial complex span

W2 W3 W4 W2 W3 W4 W2 W3 W4
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Working memory training 0.057 0.382*** 0.295** -0.144 -0.094 0.032 0.395*** 0.458*** 0.443***
(0.058) (0.062) (0.115) (0.108) (0.059) (0.082) (0.105) (0.078) (0.108)
[0.337] [0.000] [0.015] [0.189] [0.120] [0.702] [0.001] [0.000] [0.000]

N 555 541 528 565 539 526 554 540 527
The results are based on least squares models that regress the various standardized (mean = 0 and SD = 1) working memory
scores on a dummy variable that takes on the value of 1 if the child received ‘working memory training’ and 0 otherwise. The
regression also includes school fixed effects, the baseline outcome score (W1), and further controls (see Section 1.5 for details).
W2, W3, and W4 refer to the evaluation waves shortly after, 6 months after, and 12–13 months after the working memory
training period. Standard errors in parentheses are clustered at the classroom level. Related p-values are reported below in
brackets (* p<0.10, ** p<0.05, *** p<0.01).

Table S4: Treatment Effects on Math, Reading, and Raven’s IQ

Arithmetic Geometry Reading Raven’s IQ

W2 W3 W4 W2 W3 W4 W2 W3 W4 W2 W3 W4
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Working memory training -0.062 -0.034 -0.048 0.166 0.236** 0.384*** 0.022 0.089 0.230** 0.019 0.237*** 0.237***
(0.092) (0.081) (0.086) (0.100) (0.097) (0.101) (0.074) (0.099) (0.105) (0.066) (0.075) (0.070)
[0.506] [0.681] [0.576] [0.108] [0.021] [0.001] [0.765] [0.377] [0.037] [0.780] [0.004] [0.002]

N 535 525 512 554 541 527 564 539 526 567 540 527
The results are based on least squares models that regress the various standardized (mean = 0 and SD = 1) outcome scores on a dummy variable that takes
on the value of 1 if the child received ‘working memory training’ and 0 otherwise. The regression also includes school fixed effects, the baseline outcome score
(W1), and further controls (see Section 1.5 for details). W2, W3, and W4 refer to the evaluation waves shortly after, 6 months after, and 12–13 months after
the working memory training period. Standard errors in parentheses are clustered at the classroom level. Related p-values are reported below in brackets
(* p<0.10, ** p<0.05, *** p<0.01).
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Table S5: Treatment Effects on Performance in the Go/No-Go Task and bp Task

Go/No-Go task bp task

W2 W3 W4 W2 W3 W4
(1) (2) (3) (4) (5) (6)

Working memory training -0.088 -0.021 0.330*** 0.049 0.010 0.073
(0.116) (0.120) (0.061) (0.079) (0.084) (0.124)
[0.454] [0.862] [0.000] [0.539] [0.907] [0.559]

N 566 540 527 552 538 524
The results are based on least squares models that regress the various standardized (mean
= 0 and SD = 1) outcome scores on a dummy variable that takes on the value of 1 if the child
received ‘working memory training’ and 0 otherwise. The regression also includes school fixed
effects, the baseline outcome score (W1), and further controls (see Section 1.5 for details). W2,
W3, and W4 refer to the evaluation waves shortly after, 6 months after, and 12–13 months
after the working memory training period. Standard errors in parentheses are clustered at
the classroom level. Related p-values are reported below in brackets (* p<0.10, ** p<0.05,
*** p<0.01).
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3.3 Heterogeneous Treatment Effects

Table S6: Heterogeneous Treatment Effects on Working Memory Capacity—Interaction with Low WM Capacity (W1)

Verbal simple span Verbal complex span Visuo-spatial complex span

W2 W3 W4 W2 W3 W4 W2 W3 W4
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Working memory training 0.043 0.460*** 0.350*** -0.088 -0.045 0.099 0.354*** 0.474*** 0.441***
(0.067) (0.064) (0.108) (0.117) (0.061) (0.109) (0.107) (0.090) (0.116)

Low WMC W1 (≤ 25-perc.) -0.311*** -0.090 -0.201 -0.560*** -0.702*** -0.444*** -0.265*** -0.052 -0.326***
(0.077) (0.107) (0.136) (0.112) (0.129) (0.084) (0.093) (0.095) (0.109)

Low WMC W1 x WMT 0.119 -0.315** -0.319* 0.056 0.111 -0.072 0.178 -0.073 -0.062
(0.127) (0.149) (0.169) (0.157) (0.157) (0.161) (0.123) (0.144) (0.154)

N 549 535 522 560 535 522 549 535 522
This table examines whether the treatment effect of ‘working memory training’ on the standardized (mean = 0 and SD = 1) outcome scores
for working memory capacity is different for children that are in the lowest quartile of working memory capacity at baseline. For this
purpose, we use a dummy variable ‘Low WMC W1’ which takes on the value of 1 if working memory capacity in wave W1 is below or at the
25th percentile. The cardinal variable used for that is the sum of the three standardized working memory test scores. We interact ‘Low WMC
W1’ with the treatment dummy. Apart from the inclusion of ‘Low WMC W1’ and its interaction with the treatment dummy, the least squares
regressions also include school fixed effects, the respective baseline working memory scores, and further controls (see Section 1.5 for details).
W2, W3, and W4 refer to the evaluation waves shortly after, 6 months after, and 12–13 months after the working memory training period.
Standard errors in parentheses are clustered at the classroom level. * p<0.10, ** p<0.05, *** p<0.01. In this table, the coefficient related to
the treatment dummy shows the treatment effect for children with a baseline working memory score above the 25th percentile. The results
show that the treatment effects for these children are highly significant for verbal simple span in W3 and W4 and for visuo-spatial complex
span in W2, W3, and W4. The coefficients related to the interaction term of ‘Low WMC W1’ with the treatment dummy show the extent
to which the treatment effects are different for children with low working memory capacity at baseline. The table shows that—apart from
the negative interaction effect for verbal simple span—there are no significant interaction effects. Also, for W4, the negative interaction for
verbal simple span is no longer significant at the 5% level.
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Table S7: Heterogeneous Treatment Effects on Math, Reading, and Raven’s IQ—Interaction with Low WM Capacity (W1)

Arithmetic Geometry Reading Raven’s IQ

W2 W3 W4 W2 W3 W4 W2 W3 W4 W2 W3 W4
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Working memory training -0.052 0.018 -0.007 0.118 0.200** 0.384*** 0.088 0.132 0.317*** 0.023 0.254*** 0.263***
(0.094) (0.089) (0.088) (0.109) (0.093) (0.113) (0.073) (0.096) (0.094) (0.068) (0.086) (0.091)

Low WMC W1 (≤ 25-perc.) -0.257* -0.279** -0.334** -0.626*** -0.539*** -0.433** -0.224** -0.358*** -0.254* -0.408*** -0.405*** -0.303**
(0.135) (0.111) (0.126) (0.126) (0.133) (0.205) (0.095) (0.112) (0.148) (0.124) (0.099) (0.123)

Low WMC W1 x WMT 0.023 -0.131 -0.096 0.321** 0.260 0.094 -0.157 -0.034 -0.325 0.072 0.023 -0.175
(0.179) (0.139) (0.156) (0.153) (0.207) (0.257) (0.187) (0.169) (0.215) (0.139) (0.135) (0.166)

N 533 521 508 549 535 521 556 533 520 559 534 521
This table examines whether the treatment effect of ‘working memory training’ on the standardized (mean = 0 and SD = 1) outcome scores for arithmetic, geometry, reading,
and Raven’s IQ is different for children that are in the lowest quartile of working memory capacity at baseline. For this purpose, we use a dummy variable ‘Low WMC
W1’ which takes on the value of 1 if working memory capacity in wave W1 is below or at the 25th percentile. The cardinal variable used for that is the sum of the three
standardized working memory test scores. We interact ‘Low WMC W1’ with the treatment dummy. Apart from the inclusion of ‘Low WMC W1’ and its interaction with the
treatment dummy, the least squares regressions also include school fixed effects, the respective baseline outcome scores, and further controls (see Section 1.5 for details). W2,
W3, and W4 refer to the evaluation waves shortly after, 6 months after, and 12–13 months after the working memory training period. Standard errors in parentheses are
clustered at the classroom level. * p<0.10, ** p<0.05, *** p<0.01. In this table, the coefficient related to the treatment dummy shows the treatment effect for children with
a baseline working memory score above the 25th percentile. The results show that the treatment effects for these children are significant for geometry in W3 and W4, for
reading in W4, and for Raven’s IQ in W3 and W4. The coefficients related to the interaction term between ‘Low WMC W1’ and the treatment dummy show the extent to which
the treatment effects are different for children with low working memory capacity at baseline. The table shows that—apart from the positive interaction effect for geometry
in W2—there are no significant interaction effects.34
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Table S8: Heterogeneous Treatment Effects on Performance in the Go/No-Go Task and bp Task—Interaction with Low WM Capacity (W1)

Go/No-Go task bp task

W2 W3 W4 W2 W3 W4
(1) (2) (3) (4) (5) (6)

Working memory training -0.051 0.084 0.339*** 0.166* 0.068 0.117
(0.136) (0.092) (0.070) (0.090) (0.104) (0.104)

Low WMC W1 (≤ 25-perc.) -0.265* -0.306** -0.357* 0.075 -0.161 -0.296
(0.142) (0.120) (0.199) (0.093) (0.134) (0.200)

Low WMC W1 x WMT -0.058 -0.278 -0.019 -0.443*** -0.189 -0.185
(0.206) (0.254) (0.261) (0.131) (0.185) (0.236)

N 558 533 520 547 532 518
This table examines whether the treatment effect of ‘working memory training’ on the standard-
ized (mean = 0 and SD = 1) outcome scores for performance in the go/no-go task and the bp task
is different for children that are in the lowest quartile of working memory capacity at baseline.
For this purpose, we use the dummy variable ‘Low WMC W1’ which takes on the value of 1 if
working memory capacity in wave W1 is below or at the 25th percentile. The cardinal variable
used for that is the sum of the three standardized working memory test scores. We interact ‘Low
WMC W1’ with the treatment dummy. Apart from the inclusion of ‘Low WMC W1’ and its inter-
action with the treatment dummy, the least squares regressions also include school fixed effects,
the respective baseline outcome scores, and further controls (see Section 1.5 for details). W2, W3,
and W4 refer to the evaluation waves shortly after, 6 months after, and 12–13 months after the
working memory training period. Standard errors in parentheses are clustered at the classroom
level. * p<0.10, ** p<0.05, *** p<0.01. In this table, the coefficient related to the treatment
dummy shows the treatment effect for children with a baseline working memory score above the
25th percentile. The results show that the treatment effect for these children is significant for
performance in the go/no-go task in W4. The coefficient related to the interaction term between
‘Low WMC W1’ and the treatment dummy shows the extent to which the treatment effect is dif-
ferent for children with low working memory capacity at baseline. The table shows that—apart
from the negative interaction effect for the bp task in W2—there are no significant interaction
effects.
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3.4 Corrections for Multiple Hypothesis Testing

Table S9: Corrections for Multiple Hypothesis Testing

W2 W3 W4
(1) (2) (3)

Panel A: Working Memory
Outcomes

Verbal simple span 0.057 0.382*** 0.295
(0.697) (0.001) (0.173)

Verbal complex span -0.144 -0.094 0.032
(0.561) (0.477) (0.747)

Visuo-spatial complex span 0.395** 0.458*** 0.443**
(0.021) (0.001) (0.021)

Panel B: Educational
Far-transfer Outcomes

Arithmetic -0.062 -0.034 -0.048
(0.946) (0.946) (0.946)

Geometry 0.166 0.236 0.384**
(0.543) (0.228) (0.025)

Reading 0.022 0.089 0.230
(0.946) (0.893) (0.302)

Panel C: Far-transfer Outcomes
on General Cognitive Skills

Raven’s IQ 0.019 0.237** 0.237**
(0.809) (0.041) (0.041)

Panel D: Far-transfer Outcomes
on General Noncognitive Skills

Go/No-Go task -0.088 -0.021 0.330***
(0.956) (0.981) (0.004)

bp task 0.049 0.010 0.073
(0.969) (0.981) (0.969)

The results are based on our main specifications reported in Sup-
plementary Tables S3–S5. The coefficients are the point estimates
showing how working memory training changes the outcome score
indicated at the left-hand side of the table (as a fraction of a stan-
dard deviation) relative to the control group. We report p-values cor-
rected for multiple hypothesis testing and small number of clusters
in parentheses below each point estimate (* p<0.10, ** p<0.05, ***
p<0.01). The p-values are adjusted by controlling the family-wise er-
ror rate within each family of outcomes (a family corresponds to all
outcome measures at all three points in time (W2, W3, and W4) in
a given panel) using the step-down procedure by Romano and Wolf
(2005, 2016), and by applying the conservative “biased reduced lin-
earization (BRL) method” of Bell and McCaffrey (2002) to calculate
clustered standard errors. The methods applied here are described in
detail in Section 1.5. W2, W3, and W4 refer to the evaluation waves
shortly after, 6 months after, and 12–13 months after the working
memory training period. All treatment effects remain significant at
the 5-percent level, except for the effect on verbal simple span in W4
(MHT-BRL corrected p-value = .173) and Reading in W4 (MHT-BRL
corrected p-value = .302).
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Table S10: Corrections for Multiple Hypothesis Testing — Direct vs. Spillover Effects

W2 W3 W4
(1) (2) (3)

Panel A: Direct Effects

Verbal simple span 0.057 0.382*** 0.295
(0.697) (0.001) (0.173)

Verbal complex span -0.144 -0.094 0.032
(0.561) (0.477) (0.747)

Visuo-spatial complex span 0.395** 0.458*** 0.443**
(0.021) (0.001) (0.021)

Panel B: Spillover Effects

Arithmetic -0.062 -0.034 -0.048
(0.998) (0.997) (0.997)

Geometry 0.166 0.236 0.384*
(0.768) (0.376) (0.073)

Reading 0.022 0.089 0.230
(0.997) (0.987) (0.489)

Raven’s IQ 0.019 0.237 0.237
(0.997) (0.136) (0.114)

Go/No-Go task -0.088 -0.021 0.330***
(0.996) (0.997) (0.007)

bp task 0.049 0.010 0.073
(0.997) (0.997) (0.997)

The results are based on our main specifications reported in
Supplementary Tables S3–S5. The coefficients are the point
estimates showing how working memory training changes the
outcome score indicated at the left-hand side of the table (as a
fraction of a standard deviation) relative to the control group.
We report p-values corrected for multiple hypothesis testing
and small number of clusters in parentheses below each point
estimate (* p<0.10, ** p<0.05, *** p<0.01). The p-values are
adjusted by controlling the family-wise error rate within each
family of outcomes (a family corresponds to all outcome mea-
sures at all three points in time (W2, W3, and W4) in a given
panel) using the step-down procedure by Romano and Wolf
(2005, 2016), and by applying the conservative “biased reduced
linearization (BRL) method” of Bell and McCaffrey (2002) to
calculate clustered standard errors. The methods applied here
are described in detail in Section 1.5. W2, W3, and W4 refer to
the evaluation waves shortly after, 6 months after, and 12–13
months after the working memory training period.
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3.5 Controlling for Computer Use

Table S11: Treatment Effects on Working Memory Capacity—Controlling for Computer Use in Class

Verbal simple span Visuo-spatial comp.

W3 W4 W3 W4
(1) (2) (3) (4)

Working memory training 0.352*** 0.295** 0.425*** 0.444***
(0.051) (0.118) (0.077) (0.110)

Use of computers in class W3 0.078* 0.085*
(0.040) (0.049)

Use of computers in class W4 0.004 -0.012
(0.075) (0.051)

N 541 528 540 527
This table shows the estimates of the treatment effect of working memory train-
ing on the standardized (mean = 0 and SD = 1) outcome scores for verbal and
visuo-spatial working memory when we additionally control for computer use in
classes. The results are based on least squares models that regress the various
working memory scores on a dummy variable that takes on the value of 1 if the
child received ‘working memory training’ and 0 otherwise. The regression also
includes school fixed effects, the baseline outcome score (W1), and further con-
trols (see Section 1.5 for details). W3 and W4 refer to the evaluation waves 6 and
12–13 months after the working memory training period. The coefficients in the
first row are point estimates showing how working memory training changes the
working memory capacity scores indicated at the top of the table (as a fraction of a
standard deviation) relative to the control group. Standard errors in parentheses
are clustered at the classroom level. * p<0.10, ** p<0.05, *** p<0.01. Compared
to Table S4, the coefficients in the first row of this table remain highly significant
when we control for computer use.
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Table S12: Treatment Effects on Geometry, Reading, Raven’s IQ, and Go/No-Go Task—Controlling for Computer Use in Class

Geometry Reading Raven’s IQ Go/No-Go task

W3 W4 W3 W4) W3 W4 W3 W4
(1) (2) (3) (4) (5) (6) (7) (8)

Working memory training 0.215** 0.377*** 0.106 0.232** 0.269*** 0.234*** -0.045 0.329***
(0.093) (0.096) (0.099) (0.105) (0.064) (0.069) (0.118) (0.063)

Use of computers in class W3 0.052 -0.043 -0.081** 0.060
(0.057) (0.042) (0.035) (0.049)

Use of computers in class W4 0.055 -0.024 0.028 0.011
(0.058) (0.061) (0.048) (0.042)

N 541 527 539 526 540 527 540 527
This table shows the estimates of the treatment effect of working memory training on the standardized (mean = 0 and
SD = 1) outcome scores for geometry, reading, Raven’s IQ and performance in the go/no-go task when we additionally
control for computer use in classes. The results are based on least squares models that regress the various outcome
scores on a dummy variable that takes on the value of 1 if the child received ‘working memory training’ and 0 otherwise.
The regression also includes school fixed effects, the baseline outcome score (W1), and further controls (see Section 1.5
for details). W3 and W4 refer to the evaluation waves 6 and 12–13 months after the working memory training period.
The coefficients in the first row are point estimates showing how working memory training changes the outcome scores
indicated at the top of the table (as a fraction of a standard deviation) relative to the control group. Standard errors in
parentheses are clustered at the classroom level. * p<0.10, ** p<0.05, *** p<0.01. Compared to Tables S4 and S5, the
coefficients in the first row of this table remain highly significant when we control for computer use.
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3.6 Restricting the Analyses to the No-attrition Sample W1–W4

Table S13: Treatment Effects on Working Memory Capacity—Sample Reduced to Children Appearing in All Waves

Verbal simple span Verbal complex span Visuo-spatial complex span

W2 W3 W4 W2 W3 W4 W2 W3 W4
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Working memory training 0.089 0.394*** 0.291*** -0.131 -0.099 0.021 0.459*** 0.454*** 0.430***
(0.063) (0.046) (0.090) (0.129) (0.058) (0.080) (0.110) (0.068) (0.106)

N 515 515 515 525 525 525 515 515 515
This table estimates the treatment effect of working memory training when we constrain the sample to those children that stay
in the sample for all evaluation waves (from W1–W4). The results are based on least squares models that regress the various
standardized (mean = 0 and SD = 1) working memory scores on a dummy variable that takes on the value of 1 if the child
received ‘working memory training’ and 0 otherwise. The regression also includes school fixed effects, the baseline outcome score
(W1), and further controls (see Section 1.5 for details). W2, W3, and W4 refer to the evaluation waves shortly after, 6 months
after, and 12–13 months after the working memory training period. The coefficients in the first row are point estimates showing
how working memory training changes the working memory score indicated at the top of the table (as a fraction of a standard
deviation) relative to the control group. Standard errors in parentheses are clustered at the classroom level. * p<0.10, ** p<0.05,
*** p<0.01.

Table S14: Treatment Effects on Math, Reading, and Raven’s IQ—Sample Reduced to Children Appearing in All Waves

Arithmetic Geometry Reading Raven’s IQ

W2 W3 W4 W2 W3 W4 W2 W3 W4 W2 W3 W4
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Working memory training 0.032 -0.034 -0.048 0.200** 0.263*** 0.356*** 0.037 0.074 0.243** 0.070 0.290*** 0.248***
(0.099) (0.080) (0.077) (0.095) (0.090) (0.101) (0.073) (0.098) (0.102) (0.076) (0.088) (0.072)

N 499 499 499 514 514 514 524 524 524 526 526 526
This table estimates the treatment effect of working memory training on various outcome scores when we constrain the sample to those children that stay
in the sample for all evaluation waves (from W1–W4). The results are based on least squares models that regress the various standardized (mean = 0 and
SD = 1) outcome scores on a dummy variable that takes on the value of 1 if the child received ‘working memory training’ and 0 otherwise. The regression
also includes school fixed effects, the baseline outcome score (W1), and further controls (see Section 1.5 for details). W2, W3, and W4 refer to the evaluation
waves shortly after, 6 months after, and 12–13 months after the working memory training period. The coefficients in the first row are point estimates showing
how working memory training changes the outcome score indicated at the top of the table (as a fraction of a standard deviation) relative to the control group.
Standard errors in parentheses are clustered at the classroom level. * p<0.10, ** p<0.05, *** p<0.01.
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Table S15: Treatment Effects on Performance in the Go/No-Go Task and bp Task—Sample Reduced to Children Appearing in All Waves

Go/No-Go task bp task

W2 W3 W4 W2 W3 W4
(1) (2) (3) (4) (5) (6)

Working memory training -0.109 0.033 0.329*** 0.103 0.002 0.062
(0.121) (0.109) (0.061) (0.083) (0.075) (0.130)

N 526 526 526 512 512 512
This table estimates the treatment effect of working memory training when we constrain
the sample to those children that stay in the sample for all evaluation waves (from W1–
W4). The results are based on least squares models that regress the various standardized
(mean = 0 and SD = 1) outcome scores on a dummy variable that takes on the value of 1 if
the child received ‘working memory training’ and 0 otherwise. The regression also includes
school fixed effects, the baseline outcome score (W1), and further controls (see Section 1.5
for details). W2, W3, and W4 refer to the evaluation waves shortly after, 6 months after,
and 12–13 months after the working memory training period. The coefficients in the first
row are point estimates showing how working memory training changes the outcome score
indicated at the top of the table (as a fraction of a standard deviation) relative to the control
group. Standard errors in parentheses are clustered at the classroom level. * p<0.10,
** p<0.05, *** p<0.01.
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3.7 Treatment Effect on Parental Investment

Table S16: Treatment Effect on Parental Investment W3

Parental investment
Working memory training 0.084

(0.626)
N 416
The table reports results based on a least-squares
model. The dependent variable is an index of
parental investment. The index is the sum of three
variables based on questions in the parental ques-
tionnaire in W3 (6 months after treatment): (1)
“How many times do you control whether your child
has packed the school bag for the next day?”, (2)
“How many times do you control whether your child
has done her homework?”, (3) “How many times
do you control the content of your child’s home-
work?”. The answer options for each question are
1 = “Never”, 2 = “Less than once a week”, 3 = “1–2
times a week”, 4 = “3–4 times a week”, 5 = “Always”.
The regressions include school fixed effects and fur-
ther controls (see Section 1.5 for details). Standard
errors in parentheses are clustered at the classroom
level. * p<0.10, ** p<0.05, *** p<0.01.

3.8 Treatment Effects on Children’s Self-reported Motivation

Table S17: Treatment Effects on Children’s Self-Reported Motivation (W4)

Enjoyment (W4) Effort (W4)
(1) (2)

Working memory training -0.078 0.128
(0.104) (0.156)

N 531 530
This table examines whether children who received ‘working
memory training’ exert different effort in the evaluation tasks or
enjoy them differently compared to children in the control group.
The dependent variables used here are taken from the children’s
answers to the two following questions that were asked imme-
diately after completing the computer tasks 12–13 months after
treatment: “How much did you enjoy doing the tasks on the com-
puter just now?” (1 = “very little” to 5 = “very much”) and “How
much did you try to do your best on the computer?” (1 = “very
little” to 5 = “very much”). The results are based on least squares
regressions including school fixed effects and further controls
(see Section 1.5 for details). Standard errors in parentheses are
clustered at the classroom level. * p<0.10, ** p<0.05, *** p<0.01.
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3.9 Factor Analysis of Overall Self-regulation Items

Table S18: Factor Analysis of Overall Self-regulation Items (W1)

Eigenvalue
Factor 1 3.492459
Factor 2 .7630324
Factor 3 .0389734
Factor 4 -.0677124
Factor 5 -.0840027
Factor 6 -.1307162
Factor 7 -.134754

Factor 1 Factor 2
The child works in a concentrated and enduring manner. -.8003659 .3931277
The child makes a large number of mistakes due to inattention. .4946404 -.1795061
The child has a lot of self-discipline. -.8409723 .2673741
The child has trouble waiting until it is his/her turn. .6540294 .4583938
The child disturbs class instruction often. .7583489 .3070454
Please indicate for each child how often he/she forgot his/her homework or did
not do his/her homework despite having an assignment in the last six months.
(1 = “never forgot homework” up to 7 = “forgot homework often”) .5795479 -.2831417
How do you rate the child with respect to patience?
(1 = “very impatient” up to 7 = “very patient”) -.7491641 -.3466996
This table shows the factor analysis for the items that were used to construct the overall self-regulation score
W1. Questions 1–5 were answered by means of a 7-point Likert-type scale where 1 = “is not at all the case”
and 7 = “is completely so”. The answer options for the questions 6 and 7 are indicated behind the question.
The factor analysis shows that it is appropriate to extract only one factor. This factor has an eigenvalue > 1
and all survey items display strong factor loadings on this factor, while for all other factors the eigenvalue is
clearly below one and factor loadings are small.
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3.10 Treatment Effects on Overall Self-regulation

Table S19: Treatment Effects on Overall Self-regulation

W2 W3 W4
(1) (2) (3)

Working memory training 0.224* 0.369** 0.269**
(0.111) (0.171) (0.114)

N 555 527 517
This table reports the results of least squares regressions
of the standardized (mean = 0 and SD = 1) overall self-
regulation scores in the different evaluation waves on a
dummy variable that takes on the value of 1 if the child re-
ceived ‘working memory training’ and 0 otherwise. The re-
gression also includes school fixed effects, the baseline out-
come score (W1), and further controls (see Section 1.5 for de-
tails). W2, W3, and W4 refer to the evaluation waves shortly
after, 6 months after, and 12–13 months after the working
memory training period. The coefficients in the first row
are point estimates showing how working memory training
changes overall self-regulation scores in the various evalua-
tion waves (as a fraction of a standard deviation) relative to
the control group. Standard errors in parentheses are clus-
tered at the classroom level. * p<0.10, ** p<0.05, *** p<0.01.
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3.11 Decomposing the Treatment Effect of Working Memory
Training

Table S20: The Relevance of Working Memory Capacity in Geometry, Reading, Raven’s IQ, and Go/No-
Go Task

Geometry Reading Raven’s IQ Go/No-Go task
Visuo-spatial complex span W4 0.332*** 0.099* 0.226*** -0.015

(0.078) (0.047) (0.056) (0.052)
[0.001] [0.052] [0.001] [0.783]

Verbal simple span W4 0.208*** 0.226*** 0.188*** 0.211***
(0.068) (0.068) (0.041) (0.052)
[0.008] [0.005] [0.000] [0.001]

N 271 270 269 269
The results are based on least squares models that regress the various standardized (mean
= 0 and SD = 1) far-transfer outcome scores from W4 (i.e., evaluation wave 12–13 months
after the working memory training period) on the standardized outcomes scores for vari-
ous working memory scores W4. All models additionally include school fixed effects, the
pre-training baseline (W1) level of the respective far-transfer outcome score, gender, age,
and age at test day. The sample is restricted to the control group. Standard errors in
parentheses are clustered at the classroom level. Related p-values are reported in brack-
ets. * p<0.10, ** p<0.05, *** p<0.01.
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3.12 Analyzing Attrition for Secondary School Choice Sample

Table S21: Treatment Effect on Probability of Being in Sample of Secondary School Choice—
Interactions between Socio-Demographic Characteristics and Treatment Status

(1) (2) (3) (4) (5) (6)
Working memory training -0.080 -1.193 -0.094 -0.113 -0.000 0.079

(0.082) (0.815) (0.077) (0.070) (0.110) (0.082)
Male × WMT 0.018

(0.074)
Age × WMT 0.014

(0.010)
Migration background × WMT -0.005

(0.086)
Language problems × WMT 0.128

(0.100)
Income Eur 2500+ × WMT -0.013

(0.106)
Mother university × WMT -0.114

(0.072)
N 572 572 568 572 441 444
The table reports results based on least-squares models. The dependent variable is a dummy variable
taking on the value one if the child is in the secondary school choice sample and zero otherwise. All
models include school fixed effects and further controls (see Section 1.5 for details) as well as the main
effects of the variables interacted. Standard errors in parentheses are clustered at the classroom level.
* p<0.10, ** p<0.05, *** p<0.01.

Table S22: Treatment Effect on Probability of Being in Sample of Secondary School Choice—
Interactions between Outcome Scores at Baseline and Treatment Status

(1) (2) (3) (4) (5) (6) (7) (8) (9)
WMT -0.080 -0.102 -0.062 -0.101 -0.092 -0.101 -0.098 -0.078 -0.099

(0.075) (0.080) (0.082) (0.074) (0.080) (0.075) (0.076) (0.081) (0.082)
VSS×WMT 0.028

(0.035)
VCS×WMT 0.027

(0.038)
VSCS×WMT -0.027

(0.038)
Arithmetic×WMT 0.049

(0.034)
Geometry×WMT 0.046

(0.033)
Reading×WMT 0.035

(0.047)
Raven’s ×WMT 0.052

(0.032)
Go/No-Go×WMT -0.046

(0.034)
bp task ×WMT 0.077*

(0.042)
N 569 566 567 549 568 567 568 567 565
The table reports results based on least squares models. The dependent variable is a dummy variable taking on
the value one if the child is in the secondary school choice sample and zero otherwise. WMT is the treatment
indicator (working memory training); VSS is the verbal simple span score from W1; VCS is the verbal complex
span score from W1; VSCS is the visuo-spatial complex span score from W1. All models include school fixed
effects and further controls (see Section 1.5 for details) as well as the main effects of the variables interacted.
Standard errors in parentheses are clustered at the classroom level. * p<0.10, ** p<0.05, *** p<0.01.
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3.13 Sample Composition at W1, W4, and at the Time of
Secondary School Track Choice

Table S23: Sample Composition at W1, W4, and at the Time of Secondary School Track Choice

Mean for Mean for Mean for Sample
Sample at W1 Sample at W4 at School Track Choice

Working memory training 0.488 0.488 0.483
Male 0.490 0.493 0.455
Children’s age in months on Jan 1, 2013 82.129 82.177 81.943
Children’s age on test day W1 (in months) 84.247 84.295 84.022
Children’s age on test day W2 (in months) 87.288 87.335 87.101
Children’s age on test day W3 (in months) 92.368 92.427 92.184
Children’s age on test day W4 (in months) 99.582 99.582 99.336
Migration background 0.451 0.446 0.381
Language problems 0.247 0.241 0.183
Monthly HH-Net Income <750 EUR 0.023 0.017 0.012
Monthly HH-Net Income 750–1500 EUR 0.120 0.107 0.087
Monthly HH-Net Income 1500–2500 EUR 0.209 0.209 0.193
Monthly HH-Net Income 2500–5000 EUR 0.433 0.439 0.477
Monthly HH-Net Income >5000 EUR 0.215 0.228 0.231
Mother university degree 0.446 0.464 0.488
Mother vocational degree 0.423 0.413 0.422
Mother no professional degree 0.131 0.123 0.090
Verbal simple span W1 0 0.062 0.127
Verbal complex span W1 0 0.043 0.137
Visuo-spatial complex span W1 0 0.060 0.130
Arithmetic W1 0 0.056 0.138
Geometry W1 0 0.034 0.157
Reading Test W1 0 0.070 0.177
Raven’s IQ W1 0 0.050 0.135
Go/No-Go task W1 0 0.014 0.064
bp task W1 0 0.033 0.082
The table provides socio-demographic information about our sample at different points in time. Column (1)
provides means for the sample at W1 (baseline, with a gross sample of n = 572). Column (2) reports the means
for the sample at W4 (12–13 months after treatment, with a gross sample of n = 531). Column (3) provides
the means for the sample at school track choice (three years after treatment, with a gross sample of n = 393).
The gender and age variables have been reported by the schools and are therefore available for all children.
The variables ‘migration background’ and ‘language problems’ are taken from the teacher questionnaire in
W1; for four children teachers reported not to know the migration background. The income and maternal
education variables are taken from the parent questionnaire in W1. We standardized the working memory
scores (verbal simple span, verbal complex span, visuo-spatial complex span), educational scores (arithmetic,
geometry, reading), and other outcome scores (Raven’s IQ, Go/No-Go task score, bp task score) to mean = 0
and SD = 1 in the W1 sample. Thus, the increased means of these variables in W4 and at the time of
secondary school track choice indicate low-score-specific attrition. We control for attrition effects with inverse
probability weighting and other analyses.
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