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Highlights

Electoral Methods and Political Polarization

Salvatore Barbaro

� Voting schemes exert significant influence on candidates’ incentives, potentially foster-
ing either moderation or polarization.

� The commonly-used plurality rule tends to encourage the proliferation of wedge issues.

� Scientifically-proposed voting methods such as the simple-majority rule and the Borda
count serve to deter polarization.

� In a broad framework, the anti-plurality rule emerges as a formidable deterrent against
polarizing candidates or parties. However, its efficacy is somewhat diminished when
embedded within sequential scoring methods.

� Little support is provided for the optimistic view on Approval Voting’s capacity to
hinder polarisation.



Electoral Methods and Political Polarization

Salvatore Barbaroa,
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Abstract

Research from various disciplines has addressed the relationships between electoral systems
and political polarization. The results are inconclusive. This paper systematically examines
how different electoral systems either promote political polarization or render it unattrac-
tive for candidates to distinguish themselves through polarization. We assume a polarized
electorate and investigate Condorcet-consistent voting procedures as well as scoring rules,
both single and two-staged.

Keywords: Elections, Voting Schemes, Political Polarization, Scoring Rules
JEL: D71

1. Introduction

The escalation of political polarization endangers democratic principles and peaceful
coexistence in modern societies (Sen, 2020a).

In this paper, we investigate how voting systems rewards polarising strategies. This
research is motivated by the fact that the often-used plurality rule (PR) has a substan-
tial incentive to polarize. Other voting rules, such as the simple-majority rule (Condorcet
method) and the Borda count (rank-order voting), take into account more accurately the
views of those who shun combative politicians. However, both voting systems accomplish
this in distinct ways.

2. The model

We utilize the standard methods and notations employed in social choice theory. We
assume a continuum of voters, indexed by points on the unit interval [0, 1], although they
are sorted within three groups (see below). The continuum is defined over the Borel set
such that the preference proportions do not fall into some finite exceptional set (because the
Lebesgue measure is not defined for all subsets of the continuum).

For our assessment, we adopt most of the framework developed by Dasgupta and Maskin
(2008, 2020). In particular,

1. we consider a triple of alternatives on a ballot B from which to choose,
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2. voters’ preferences are anti-symmetric (strict), the voters are perfectly informed about
candidates’ policy choice.

3. we compare the three voting systems used in the aforementioned paper: the simple-
majority rule (Condorcet method), plurality rule, Borda count. In Section 4, we will
generalize the results by considering further electoral schemes.

The set of all logically possible voters’ preference orderings over the finite set of alter-
natives, B, is denoted by R. We neglect menu dependency (Sen, 1993, 1994, 1995), such
that voters’ top (best) preference is always identical with their votes under plurality rule
(PR). As in Dasgupta and Maskin (2008) and most of the other related papers, we neglect
strategic considerations of voters.

2.1. Polarized Electorates

Our focus lies on the success of polarizing candidates (PC) in elections. The candidates
are labeled in alphabetical order A,B,C. One among possibly two polarizing contestants is
candidate A.

We adopt an already established model to evaluate electoral outcomes in a polarized
citizenry. In particular, we use the framework of Campante and Hojman (2013) to model a
polarized electorate as a restricted domain on R, where voters have quite different opinions
over (at least) one candidate. A similar approach was first launched by Gehrlein (2005).
In particular, a fraction γ1 of the voters (the ’supporters’) ranks A first. A second group
(fraction γ2), the ’despisers’, ranks A least. Hence, we assume a polarizing alternative,
A, to be judged quite differently within the electorate (see Definition 1 below). A third,
’moderate’, group rank the candidates randomly. The latter group is sized γ3 = 1− γ1 − γ2.
Note that the assessing three groups, as it is usually done in research, does not limit the
generality of our evaluation.

Imposing three groups is senseless if they can have equal preference orderings. Thus, we
impose our first assumption as follows:

Assumption 1. All groups are distinct (i.e., have distinct preference orderings from each
other).

The restricted domain of polarized profiles is denoted by R ⊂ R. Table 1 illustrates the
domain of polarized profiles.

We allow for a second polarizing alternative, B, if s/he is ranked bottom by the supporters
and top-ranked by the despisers.

We assume that both the group of supporters and the group of despisers are large.
This presumption guarantees that the profiles we evaluate accurately reflect a polarizing
electorate. In particular, we will assume that together, supporters and despisers constitute
an absolute majority.

Assumption 2. 1/2 > γ1 > γ3; 1/2 > γ2 > γ3.
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Table 1: The restricted domain of polarized prefer-
ences, R ⊂ R.

Supporters Despisers Moderates
Rank γ1 γ2 γ3

1 A · ·
...

...
...

...
k · A ·

The set of γi-values that are admissible with respect to Assumption 2 will be denoted
S. It is helpful to introduce and define the following four notions for the ongoing.

Definition 1 (Polarizing candidates). A polarizing candidate (PC) is either

1. ranked best by voter group γ1 and ranked least by γ2 or

2. ranked best by voter group γ2 and ranked least by γ1

Definition 2 (Consensus candidates). A consensus candidate (CC) is a candidate never
ranked bottom.

This definition corresponds to the ’centrist candidate’ by Miller (2013). Gehrlein (2005)
used the term ’unifying candidate’ to describe a similar pattern.

Definition 3 (Daunou-Condorcet winner). A candidate is a Daunou-Condorcet winner
(DCW) if and only if s/he is top-ranked by at least the absolute majority of voters.

Analogously, we define the Daunou-Condorcet loser by

Definition 4 (Daunou-Condorcet loser). A candidate is a Daunou-Condorcet loser (DCL)
if and only if s/he is ranked least by an absolute majority of voters.

2.2. Voting schemes

A voting rule is a collective choice rule that maps preference profiles into an electoral
outcome. Definitions of the various electoral rules can be found in Moulin (1991, Ch. 9) and
other standard references in voting theory.

Our main interest is which voting scheme is most suitable to prevent the electoral victory
of a polarizing candidate. For this purpose, we state the following property.

Property 1 (Property PPC). Property PPC holds if, for a given profile, a voting rule
brings not forth a polarizing candidate as the electoral winner.

A polarizing candidate can be the Condorcet winner. Therefore, it is evident that PPC
conflicts with the claim that the Condorcet winner should be selected to the extent that
such a winner exists (Condorcet consistency).
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3. Polarized Electorates

Given the structure of polarized profiles and bearing in mind that all groups are distinct
from each other (Assumption 1), for any triple sixteen possible profiles can appear. Eight
of them are isomorphic to the other eight profiles since just both B and C are substituted
by each other. Thus, we can focus on eight profiles, depicted in Table 2.

Table 2: Polarised profiles R.

1 2 3 4
Rank γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3

1 A B B A B A A B B A B A
2 B C A B C C C C A C C B
3 C A C C A B B A C B A C

5 6 7 8
Rank γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3

1 A B C A B C A B C A B C
2 B C A B C B C C A C C B
3 C A B C A A B A B B A A

Remark 1 (Characterization of the profiles). The following characterization of the pro-
files are useful for the ongoing analysis.

1. Profiles 1 to 4 fulfill limited favoritism (LF). Thus, applying PR on profiles 1 to
4 comply with the Arrovian IIA requirement such that the plurality winner coincides
with the Condorcet winner. We will refer to profiles 1 to 4 as RLF or simply LF-
profiles.

2. No profile R ∈ R fulfills quasi-agreement (QA). We prove this in Appendix A. Hence,
the Borda winner can potentially defeat the Condorcet winner and even the Daunou-
Condorcet winner.

3. There can be one or even two polarizing candidates. If there are two PCs in an LF-
profile, there cannot exist a consensus candidate (CC) in the same profile. Otherwise,
the profile would fail to comply with Assumption 1. To show this, consider that limited
favoritism requires that C cannot be top-ranked by the moderates. If the latter group
ranks C medium, then their orderings are similar to that of one of the other voter
groups.

4. Profile 5 represents a cyclical pattern (Condorcet paradox).

5. A Daunou-Condorcet loser exists in all profiles 6 to 8 . A Condorcet loser cannot be
a Borda winner (Fishburn and Gehrlein, 1976; Moulin, 1991, Ch. 9).

4



6. A consensus candidate (CC) exits in profiles 6 to 8 . A CC cannot exist in LF-profiles.

It is useful to state the following Lemma regarding consensus candidates in polarized
profiles.

Lemma 1 (Consensus candidate in polarized profiles)
If an alternative is a CC, then s/he is a Condorcet winner. A CC cannot be defeated under
Borda’s rule.

Proof of Lemma (1). By the definition of polarized profiles, the bottom-ranked candi-
dates of the supporters and the despisers must differ. Thus, only candidate C can become
a consensus candidate. By the nature of profiles R /∈ RLF , C must be top-ranked by the
moderates . Therefore, a CC beats each candidate twice in a head-to-head match up. This
part of the proof is an application of Lepelley et al. (2000, Proof of Prop. 1 ) to the domain
of polarized profiles.

Any voter who rank another candidate above the CC, does rank her or him single-spaced
(the CC is never ranked bottom, so the distance to any CC-defeating candidate is one rank
at maximum). On the other hand, a CC beats any of her or his rivals twice (see the previous
paragraph of this proof). Thus, the Borda count requires that a Condorcet winner must be
defeated with a larger rank distance. Since this is impossible, the CC can not be defeated
under the Borda rule.

4. Electoral rules and electoral success of polarizing figures

4.1. Condorcet-Consistent Rules

A Condorcet-consistent voting rule is defined by its ability to elect a Condorcet winner
whenever such a candidate exists (Felsenthal and Tideman, 2014; Moulin, 1991, Def. 9.2).
This category encompasses a range of voting schemes all of which are unified by their ad-
herence to the Condorcet principle (for an extensive review, refer to Felsenthal and Tide-
man (2014); Moulin (1991, Ch. 9.2)). The simple-majority rule, often cited as the most
straightforward example of Condorcet-consistency, aptly represents this class by ensuring
the selection of the Condorcet winner when one is identifiable.

It can easily be seen that A is the Condorcet winner in 2 and 4 . In 1 , 3 , and 6
B emerges as the Condorcet winner. In the remaining profiles (except 5 , which exhibits a
cyclical pattern), C will be elected under a Condorcet-consistent voting rule. A PC is only
successful if s/he is a DCW.

However, this congruence in outcome assurance under the umbrella of Condorcet-consistent
voting rules does not extend to scoring methods. Specifically, the plurality rule and the
Borda count, despite both being categorized as scoring rules, diverge significantly in the
results they produce.
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4.2. Single-Stage Scoring Rules

Single-stage scoring rules (SSSR, henceforth we simply use the abbreviated term scor-
ing rules) constitute a class of electoral systems where points are allocated to candidates
based on the order of preference expressed by voters, with the winner being the candidate
accumulating the highest total score. In a contest involving k candidates and assuming anti-
symmetric preferences, a scoring vector is represented as a k-tuple w = (s1, s2, . . . , sk−1, sk),
comprising real numbers that satisfy the conditions s0 ≤ s1 ≤ . . . ≤ sk−1, and s0 < sk−1.
For elections featuring three candidates, the diversity of scoring rules can be encapsulated
by a normalized vector (1, λ, 0), illustrating the spectrum of methodologies within scoring
rules.

For instance, the plurality rule corresponds to the scenario where λ = 0. Conversely,
assigning λ = 1/2 mirrors Borda’s count (Lepelley et al., 2000). The anti-plurality rule (Ba-
harad and Nitzan, 2005; Bossert and Suzumura, 2016) aligns with λ = 1. Furthermore, the
Dowdall System, utilized in Nauru, operates on a descending fractional allocation, awarding
1 point to the first choice, 1/2 to the second, 1/3 to the third, and so on, effectively showcasing
a λ-value of 1/4 for three-candidate elections after an affine transformation (Diss et al., 2023).

As the parameter λ increases within the scoring vector framework, the allocation of points
shifts to favor medium-ranked candidates more prominently. This phenomenon underscores
a critical feature of scoring rules: higher λ values inherently penalize candidates who find
themselves positioned at the lower end of voter preferences. Consequently, this structural
aspect of scoring systems serves as a strategic disincentive for polarizing candidates, who
are likely to be ranked unfavorably by a broader segment of the electorate. This dynamic
illustrates the nuanced manner in which scoring rules, through the choice of λ, can influence
electoral outcomes and potentially moderate or foster political polarization.

In the following, we investigate the λ-values necessary to create a tie between a PC and a
non-PC. We denote by x Iλ y the scenario where candidates x and y receive the same score,

given λ. The λ-value required to achieve this tie is termed the bliss point, denoted as λ̃
p
x,y. It

is defined as follows: Setting this λ-value in profile p ∈
{
1 , . . . , 8

}
results in an equal score

for candidates x and y. Candidate x (the left-mentioned in the binary relation) prevails over

y for given (γ1, γ2) if the electoral rule assigns a λ-value below λ̃
p
x,y. For example, in Table

3 we find that λ̃
1
A,B < 0. It suggests that candidate A cannot surpass candidate B under

a scoring rule. Theoretically, A’s victory would necessitate a negative λ-value, indicating
that a voter’s second-ranked candidate is penalized compared to their last choice. Similarly,

λ̃
p
x,y > 1 implies that x consistently prevails over y across all feasible λ-values, as y would

require a λ-value beyond the viable range to secure victory against x.
A well-established method for visualizing electoral outcomes under scoring rules is through

Saari triangles (Saari, 1995, 1999, 2011), which we will employ for illustrative purposes below
(see Fig. 2, and Appendix B). In this depiction, each candidate is represented by a vertex
of an equilateral triangle. Points on the red vertical lines signify a tie between A and B,
thus a bliss point λ̃p

A,B lies on the vertical line. Similarly, a bliss point between A and C
resides on the green line, while the bliss point between B and C is positioned on the red line.
The electoral outcomes are delineated by the dashed orange-colored ’procedure lines’ (Saari,
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Table 3: Bliss Points

R AIλB AIλ C B IλC PPC

1 λ̃
1
A,B = 2·γ1−1

γ1−γ3
< 0 λ̃

1
A,C = 1−γ2−γ3

γ2−γ3
> 1 λ̃

1
B,C = γ1−1

γ1−γ2
/∈ (0, 1) ∀λ ∈ (0, 1)

2 λ̃
2
A,B = 1−2·γ2

γ1
∈ (0, 1) λ̃

2
A,C = γ2−1

γ1−1
> 0 λ̃

2
B,C = − γ2

2·γ1−1
> 1 ∀λ > λ̃

2
A,B

3 λ̃
3
B,A = 1−2·γ1

γ3
> 0 λ̃

3
A,C = γ1

γ1+γ2−γ3
∈ (0, 1) λ̃

3
B,C = γ2+γ3

γ2+γ1
∈ (0, 1) ∀λ > max

[
λ̃

3
A,C , λ̃

3
B,C

]
4 λ̃

4
A,B = γ1−γ2

γ3
+ 1 > 0 λ̃

4
A,C = γ1+γ3

γ1+γ2
∈ (0, 1) λ̃

4
B,C = γ2

γ2+γ1−γ3
∈ (0, 1) ∀λ > max

[
λ̃

4
A,C , λ̃

4
B,C

]
5 λ̃

5
A,B = γ1−γ2

γ1−γ3
< 1 λ̃

5
A,C = γ1−γ3

γ2−γ3
> 0 λ̃

5
B,C =| γ2−γ3

γ2−γ1
|> 1 ∀λ > λ̃

5
A,B

6 λ̃
6
A,B = γ1−γ2

γ1+γ3
< 1

3
λ̃

6
A,C = γ1−γ3

γ2
∈ (0, 1) λ̃

6
B,C =| γ2−γ3

γ2−γ1
|> 1 ∀λ > λ̃

6
A,B

7 λ̃
7
B,A = γ2−γ1

γ3
< 1 λ̃

7
A,C = γ1−γ3

γ1−γ3+γ2
< 1

2
λ̃

7
B,C = γ2−γ3

γ1+γ2
< 1

2
∀λ > max

[
λ̃

7
A,C , λ̃

7
B,C

]
8 λ̃

8
A,B = γ1−γ2

γ3
< 1 λ̃

8
A,C = γ1−γ3

γ1+γ2
< 1

2
λ̃

8
B,C = γ2−γ3

γ2−γ3+γ1
< 1

2
∀λ > max

[
λ̃

8
A,C , λ̃

8
B,C

]

1995, Ch. 4.2.3), which indicate the electoral results for fixed (γ1, γ2)-values but varying
λ-values. Note that the position and slope of the respective procedure line depend on the
distribution of γi-values. In Appendix B, we outline a Saari triangle for each of the eight
profile pattern, utilizing identical γ1-values in each case.

Table 3 presents all bliss points. For completeness, we also include those that result in a
tie between two polarizing candidates. These values are crucial for evaluating which of the
polarizing candidates (if two are in contention) poses the greatest challenge for a non-PC.
The final column specifies the range of λ-values required to satisfy the PPC.

Regarding profile 1 , λ̃
1
A,B < 0 indicates that the unique PC is consistently defeated by B.

Consequently, the property PPC holds for all λ-values within the (0, 1)−space. Regarding
profile 2 , the PC can be surpassed by B, or C, or both. However, whenever C prevails over

A, B also triumphs over A, but not vice versa. This is indicated by λ̃
2
B,C > 1. Hence, the

pertinent bliss point is λ̃
2
A,B. By setting λ = 1/2, we precisely obtain the outcomes discussed

earlier: higher γ1-values can hinder the electoral success of the PC. Figure 1a depicts by
the blue points the combinations of γi and λ-values that yield a defeat of the PC. Along
to λ = 1/2, the effect that higher γ1-values can hinder the electoral success of the PC is
depicted. The blue plane illustrates the shape of the bliss points.

In profile 3 , λ̃
3
A,B characterizes the competition among the two PC. Regarding the

possibility to avoid the victory of one of them, the other two bliss points are of interest.
The only not polarizing candidate, C, can win, if s/he gets more scores than A and B,

respectively. Hence λ > max[λ̃
3
A,C , λ̃

3
B,C ]. Figure 2 (left panel) illustrates the electoral

outcomes in a Saari triangle. As an numerical example, we set γ1 = 0.48, γ2 = 0.32, γ3 =
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(a) BPλA vs. APλB in Profile 2 . (b) BPλC vs. CPλB in Profile 8 .

Figure 1: PPC in Profiles 2 and 8

0.20. These numbers yield bliss points λ̃
3
A,B = 0.2, λ̃

3
A,C = 0.8, and λ̃

3
B,C = 0.6875. Candidate

B emerges victorious under plurality rule (λ = 0). The other PC, A, get more scores than
B for λ > 0.2, such that A becomes the Borda winner, as indicated by the orange-colored
circle at λ = 1/2. The Borda rule ranks B also above C. With increasing λ, C eventually
gets more scores than B (λ > 0.6875). For C to emerge as electoral winner, the λ-value

has to exceed not only λ̃
3
B,C , but also λ̃

3
A,C . Hence, PPC is fulfilled for λ > 0.8, indicating

that the anti-plurality rule prevents the victory of a PC within this domain and with this
particular voter allocation. A similar pattern recurs in the case of profile 4 .

A B

C

AIλ B

B Iλ CAIλ C

λ = 0

λ = 1

λ = 1
2

γ1 = 0.48 γ2 = 0.32

γ3 = 0.2

A B

C

AIλB

B IλCAIλC

λ = 0

λ = 1

λ = 1
2

γ1 = 0.44

γ2 = 0.37

γ3 = 0.19

Figure 2: Illustration of electoral outcomes in profiles 3 (left panel) and 5 in Saari-triangles.

In profile 5 , characterized by a cyclical pattern, the sole PC, A, cannot emerge victorious
if γ1 < γ2. However, with increasing λ-values, A gets defeated even when γ1 > γ2. The right
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panel in Figure 2 illustrates this scenario.1

As demonstrated in the previous section, the sole PC in 6 , A, is consistently defeated by

B under the Borda rule. The bliss point λ̃
6
A,B indicates that A can obtain a higher score than

B for λ < 1/3 (encompassing Downdall, and PR). Since B prevails over C across the entire
admissible domain, the competition between A and B is pivotal for determining whether
PPC holds or not.

The findings for profiles 7 and 8 align with the analysis of election results conducted
using the Borda voting method in Section 3. The consensus candidate, C, consistently
emerges victorious when λ > 1

2
. However, for λ values below the bisection point, a polarizing

candidate can secure victory. This suggests, for instance, that according to the Dowdall
method, a polarizing candidate might succeed while failing under the Borda method.

Figure 1b illustrates for profile 8 , using blue points, all combinations of γi and λ values
indicating when the CC prevails. Conversely, the red points indicate when one of the two
PCs succeeds.

The following theorem summarizes our main insight from assessing single-stage scoring
rules.

Theorem 1 (PPC under single-staged scoring rules)
Consider a polarized profile characterized by a particular distribution of γi ∈ S. If a scoring

rule with λ = λ̇ ∈ [0, 1] applied on this profile satisfies PPC, when every scoring rule with
λ > λ̇ satisfies PPC, too.

In words, our analysis in the present subsection has demonstrated that scoring rules
can either promote or hinder political polarization to varying degrees. A higher λ-value
corresponds to greater difficulty in fostering polarization, whereas a lower λ-value increases
the likelihood of a polarizing candidate prevailing. Thus, we have represented the two
extreme cases with the plurality rule and the anti-plurality rule. Both rules share the
characteristic of considering only a minimal portion of voter preferences. While the anti-
plurality rule may seem preferable for mitigating political polarization, it does not appear
universally advisable. At the very least, one may doubt the feasibility of a electoral system
garnering public acceptance if it prevents voters from expressing their preferences for the
candidates or parties they genuinely favor.

4.3. Sequential Scoring Rules

Against this backdrop, sequential scoring rules offer a potential solution. Sequential scor-
ing rules involve the application of a scoring rule initially to generate a social ranking, with
the least preferred option being eliminated. In cases involving more than three alternatives,
this process is iterated until only two alternatives remain for selection. A majority vote is
then conducted to choose between these remaining options (Lepelley and Valognes, 2003).
This approach allows for greater consideration of information derived from voters’ preference
rankings.

1Notice that C cannot defeat B, because this would require λ ·γ2+γ3 > λ ·γ1+γ2 ⇔ (λ−1)γ2−λγ1 > γ3.
The λ-values that allow C to get a higher score than B lie above 1 or must be negative.
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In a three-candidate scenario, we can once again apply the (1, λ, 0) sequence, resulting
in the exclusion of the candidate with the lowest number of votes for λ = 0 (plurality
elimination rule). For λ = 1, we implement the anti-plurality rule in the first stage (anti-
plurality elimination rule), thereby eliminating the candidate ranked last by the fewest
voters. λ = 1/2 describes the Baldwin rule (Borda-elimination rule) (Diss et al., 2023;
Kamwa, 2022, see).

In the subsequent analyses, we must consider a distinction and formulate restrictive
assumptions. Firstly, we differentiate between immediate and temporally sequential stages
of the electoral process. Immediate procedures involve directly connecting the second round
of voting to the first, utilizing the preference rankings conveyed by voters in the initial
stage. In contrast, temporally sequential procedures feature a time gap of two or more weeks
between rounds. During this period, voters may reconsider whether and how they will vote
in the second round. This possibility clearly allows room for strategic considerations. Since
our model neither accounts for decisions to abstain from voting nor strategic deliberations,
we assume that all voters participate in all rounds and vote according to their original
preference rankings.

4.3.1. Plurality-Elimination Rules

Examples of plurality-elimination rules include the Hare system (aka instant runoff aka
Single-Transferable Vote), the plurality-runoff method, and supplementary voting. There are
two reasons why we focus on plurality-elimination rules: firstly, they are widely employed,
and secondly, empirical research suggests that their application reinforces moderate forces
and weakens political polarization.

The Hare system is prevalent in countries with Anglo-Saxon legal and political traditions.
The plurality-runoff (henceforth: p-r) is notably utilized in the French presidential elections
and the election of US senators in Georgia. Supplementary voting stands as the designated
electoral scheme for the selection of directly-elected mayors within England, Wales, and
Norway (van der Kolk, 2008; Christensen and Aars, 2010). These schemes may differ,
particularly with more than three candidates. In the three candidate environment, all have
in common that two best vote-getters face each other in the runoff, where the head-to-head
majority determines the winner. Note that the elimination of one candidate results in all
remaining candidates moving up in the preference rankings of the voters, given that they
were ranked below the removed candidate.

An interesting application of the p-r system is observed in the Italian municipal elections.
Specifically, cities with more than 15,000 inhabitants employ the p-r, while smaller commu-
nities revert to the (single-staged) PR. Bordignon et al. (2016) empirically demonstrate a
diminished influence of extremist voters in larger cities, attributing this effect to the runoff
system’s structure. Similar features were attributed to the Hare system (Grofman and Feld,
2004; Tomlinson et al., 2024).

In our framework examining polarized electoral scenarios, plurality-elimination systems
often lead to the exclusion of consensus candidates from the final round of voting. This
tendency is particularly notable for candidate C, who, despite not being a polarizing figure,
is consistently eliminated in the initial stage. Consequently, this implies a recurring victory
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for polarizing candidates. There are two exceptions, found in profiles 1 and 6 . Profile
6 stands out as the sole case where plurality elimination rules perform better (with regard
to PPC) than the plurality rule. However, the opposite holds true for Profile 5 , where
plurality-elimination rules remove C from contention, leaving the only candidate capable
of defeating the polarizing candidate in a head-to-head comparison. This outcome persists
even in domains where the plurality rule adheres to PPC criteria (viz., γ1 < γ2). Overall,
plurality-elimination rules fail to rectify the recurring deficiencies inherent in the PR.

Although this result was generated within a restricted model framework, it nevertheless
points to a fundamental weakness of plurality-elimination rules. In a polarized electorate,
consensus-oriented and moderate candidates face difficulty in garnering a sufficiently high
number of votes. They may still be Condorcet winners, but this characteristic only becomes
pivotal in the final stage (a Condorcet winner obviously prevails in every two-candidate
runoff). The primary obstacle for consensus-oriented candidates lies in the first stage. Thus,
plurality-elimination rules are highly advantageous for polarizing candidates, as they often
eliminate those candidates whom they cannot defeat in a runoff. Detailed results for each
profile are reported below in Subsection 4.5.

4.3.2. Anti-plurality elimination rules

While plurality-elimination rules are commonly encountered in practice, the sequential
consideration of the anti-plurality rule is more firmly rooted in theory than in practice. In
theoretical contexts, it is known as the Coombs method. According to Chamberlin et al.
(1984, p. 489) it involves eliminating the candidate accruing the highest number of last-
place votes in the initial round (see also Lepelley and Valognes, 2003, Sec. 4.2).2 Subsequent
iterations of this elimination process lead to a head-to-head contest, ultimately determining
the winner by a simple majority. For instance, consider Profile 1 : Candidate C, most-often
ranked at the bottom, is removed from contention. The ensuing head-to-head comparison
results in a victory for candidate B.

The determination of the eliminated candidate in Profiles 2 through 5 hinges on
whether γ1 surpasses γ2 or not. For instance, in Profile 2 , the PC is the deleted candidate
if the faction supporting her or him is outnumbered by her or his detractors (γ1 < γ2).
Analogous to the scenario discussed earlier under Borda’s rule, more fervent supporters can
diminish the electoral prospects of the PC; in this case, C is ousted, leading to A prevail-
ing over B. Notably, Coombs rule fails to satisfy the PPC condition in Profiles 3 and 4 .
Moreover, both Coombs rule and the PR thwart the PC’s victory in Profile 5 when γ2 > γ1;
otherwise, candidate A themselves faces elimination. Finally, Coombs method adheres to
PPC in Profiles 1 and 6 through 8 .

An interesting observation is that the Coombs Rule is by no means better suited than
the Borda Rule for mitigating polarization. On the contrary, the application of the Coombs

2The Coombs Rule shares a close connection with the concept of exhaustive voting by Duncan Black
(1958[1988], p. 86ff) . One notable distinction between these electoral methodologies lies in the tempo-
ral dynamics: Coombs operates instantaneously, whereas Black’s model explicitly allows for temporally
sequential stages.
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Rule in profiles 3 and 4 results in the victory of a PC who would have had no chance of
winning under the Borda Rule. This outcome is even more pronounced when compared to
the anti-plurality rule. While the latter consistently satisfies the PPC condition, this is not
the case under the Coombs Rule. Table 4 in Subsection 4.5 provides a synoptic comparison,
illustrating the results described here.

4.4. Approval Voting

Hardly any electoral procedure has garnered as much attention in recent decades as
Approval Voting (AV). It entails each voter being able to either approve (some) individual
candidates. The candidate with the most approvals is elected. Assuming voters exhibit di-
chotomous preferences, AV possesses a variety of desirable properties (Brams and Fishburn,
1978, 2005). Particularly in comparison to the PR, AV demonstrates superiority in many
respects. For instance, Myerson and Weber (1993, Theorems 3 & 4) demonstrated that AV
is less susceptible to polarization. Gehrlein et al. (2016) showed that the electoral success
of a Condorcet loser is less frequent under AV than under PR.

Results from field studies suggest that voters handle AV effectively, seemingly without
being overwhelmed by the task of categorizing candidates into two camps. Pioneering work
was conducted by (Laslier and Van der Straeten, 2008) during the first round of the 2002
French presidential election. In an in-situ field experiment, voters were briefed on the func-
tioning of AV one week before the election and subsequently asked to approve (or not to
approve) of candidates. Indeed, the far-right candidate fared significantly worse under AV
than under the plurality rule. This finding, along with the broader observation of remarkable
disparities between AV and plurality vote outcomes, was reaffirmed in a subsequent in-situ
experiments Baujard et al. (2014); Alós-Ferrer and Granić (2012).

In light of these investigations, the analysis within the theoretical framework discussed
here does not reveal a clear moderating effect of AV. Conceptually, the challenge lies in
determining voters’ cut-off levels. Initially assuming that all voters approve the same number
of candidates, AV can either significantly favor or significantly hinder polarization. The
election results under AV are identical to those under plurality voting when all voters approve
only one candidate. In this case, AV would frequently produce polarizing candidates as
winners. However, if voters always approve two candidates, the result corresponds entirely
to that of the election under anti-plurality rule, leading to a consistent defeat of polarizing
candidates.

Even when assuming that voters have different cut-off levels, as discussed by Gehrlein
et al. (2016, Sec. 2.2), no uniform picture emerges. AV can even more strongly promote
the electoral success of a polarizing candidate than the PR. This effect occurs when the two
major groups (supporters and despisers) only approve one candidate, while the moderates
approve two. For example, in Profile 1 , if γ1 > γ2. In this case, candidate B wins under
PR, but the polarizing candidate A wins under AV. To see this, consider that A is approved
by γ1+ γ3, whereas B by γ2+ γ3. However, it must be noted here with reservations that the
moderates harm themselves by approving two candidates, as their voting behavior leads to
the electoral victory of candidate A, although candidate B is more preferred by them. This
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situation underscores the notion that the assumption of honest voting may not necessarily
be compelling.

4.5. Section summary

We conclude this section with a synoptic summary of the results. Table 4 indicates when
the condition PPC is met. An upward arrow (↑) signifies that PPC is satisfied for the
entire permissible range of γi values, thereby indicating that a polarizing candidate cannot
succeed. If it is not possible to prevent the electoral success of a polarizing candidate, this
is indicated by a downward arrow (↓). If the fulfillment of PPC hinges on the specific
distribution of group sizes, this is expressed by a rightward arrow (→).

Table 4: Synoptical table

Condorcet Single-Stage Scoring Rules Sequential Rules
Profile Consistent PR Dowdall Borda Anti-PR Plurality- Anti-Plur.

Rules (λ = 0) (λ = 1/4) (λ = 1/2) (λ = 1) elim. rule elim. rule

1 ↑ ↑ ↑ ↑ ↑ ↑ ↑

2 ↓ ↓ → → ↑ ↓ →

3 ↓ ↓ → → ↑ ↓ ↓

4 ↓ ↓ → → ↑ ↓ ↓

5 → → → → ↑ ↓ →

6 ↑ → → ↑ ↑ ↑ ↑

7 ↑ ↓ → ↑ ↑ ↓ ↑

8 ↑ ↓ → ↑ ↑ ↓ ↑

5. Conclusion

We find that polarizing candidates benefit considerably from the plurality rule. In con-
trast, the simple-majority rule offers minimal incentive for polarization, while the Borda
count strongly discourages polarizing campaigns and promotes centripetal outcomes.

The superiority of two electoral procedures originating from the French Revolution era
over the plurality rule is grounded in their incorporation of voters’ comprehensive prefer-
ence orderings. Within a framework involving three candidates, those positioned at the
bottom are at a relative disadvantage. This occurs as candidates in intermediate positions
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receive more attention during the tallying process. Aside from the three well-known elec-
toral systems, we demonstrate that the anti-plurality rule, which significantly emphasizes
the middle position, is particularly effective in mitigating strategies designed to factionalize
the electorate.

While this study primarily focuses on political polarization, it is essential to recognize the
axiomatic properties that electoral procedures either meet or fail to meet. As a scoring rule,
the anti-plurality rule adheres to properties formulated by Young (1975) and further high-
lighted in subsequent literature (Baharad and Nitzan, 2005; Bossert and Suzumura, 2016;
Kurihara, 2018). Despite subjective perceptions, the electorate is likely to reject a voting
system that does not accommodate preferences for preferred candidates or parties. Notably,
Sen (2020b) recently emphasized the significant role of first preferences among voters. Given
this context, sequential voting procedures offer a potential solution by applying the anti-
plurality rule only in the initial stage, followed by a decisive runoff between candidates. This
approach is exemplified by the Coombs Rule. Nevertheless, our findings indicate that it is
less effective than the Borda Rule in curtailing the success of polarizing candidates.

On the other hand, the distinctiveness of the Borda rule among scoring rules has been
recognized since the seminal work by Young (1975, Theorem 3), which highlighted its ap-
pealing characteristics.3 Taking this analysis further, Maskin (2024) demonstrates that the
Borda rule is the unique aggregation method fulfilling three out of four classical Arrovian
conditions, May’s axioms, and a weakened version of Young’s consistency criterion. Al-
though no scoring rule, including the Borda rule, can satisfy Arrow’s I-condition, the Borda
rule adheres to a relaxed version of I, dubbed Modified IIA (MIIA). This adaptation permits
the consideration of preference intensities inferred from ordinal data.

The consideration of preference intensities,4 which often attracts scrutiny from propo-
nents of Condorcet-consistent methods towards the Borda rule, actually supports its superior
resilience against polarization compared to Condorcet methods. When contrasted with the
plurality rule, the Condorcet method exhibits a significantly higher immunity to polarization
and fulfills key axiomatic criteria (Horan et al., 2019).

Within the constraints of our model, we acknowledge that it does not capture two empiri-
cal phenomena. First, the moderating effect observed with the plurality run-off, and second,
a similar effect associated with Approval Voting. Approval Voting has received substantial
support in scholarly research. However, in our three-candidate model where voters operate
with identical cutoff levels, AV behaves similarly to either the PR or the anti-plurality rule.
Relaxing the assumption of uniform cutoff levels reveals that AV could, in certain instances,
intensify support for polarizing candidates more than the frequently criticized plurality rule.
Nevertheless, this aspect should not be exaggerated, as it largely depends on the specific
assumption mentioned earlier.

3A pivotal feature of this rule is its consistency—termed reinforcement by Moulin (1991).
4Arrow’s IIA is violated if, in the collective choice involving two alternatives, anything other than the

individual orderings over the tuple is considered, including the preference intensities (see Sen, 2017, Ch. 7).
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Appendix A. Proof of Remark 1, Second item

Proof (Proof of Remark 1, second item.). We have to show that no candidate is
top-ranked, or medium-ranked, or worse-ranked in all distinct voter groups for any profile
R ∈ R.

1. Top-rank: Candidate A is top-ranked by the supporters but bottom-ranked by the
despisers. Thus, no candidate is top-ranked by all.

2. Bottom-rank: The same as for the top-rank applies to the bottom-rank. Therefore,
no candidate is bottom-ranked by all groups.

3. Medium-rank: If LF holds, a candidate, say C, is never top-ranked. If C is always
medium-ranked, the groups are not distinct (cf. Assumption 1). The moderate group
then has the same preference ordering as either the supporters or the despisers. If LF
does not hold, all candidates are ranked top once, and no one can be ranked medium
or worse by all voters.

Appendix B. Numerical Examples for Scoring-Rule Outcomes

In this appendix section, we provide detailed illustrations of Saari triangles corresponding
to profiles 1 through 8 , utilizing the parameters γ1 = 0.42 and γ2 = 0.35 consistently
across all instances. These parameters are chosen to reflect the distribution of support that
positions the PC A as the plurality winner in profiles 2 and 4 through 8 . The gray shaded
areas specifically denote the areas where polarizing candidate(s) secure a victory.

The λ-values essential to satisfy the PPC condition exhibit significant variation across
different electoral profiles. Notably, in certain cases, such as profiles 3 and 4 , the required
λ-values are so elevated that, in practical terms, only the application of the anti-plurality
rule is effective in precluding the electoral triumph of a PC. This underscores the unique
capability of this rule to counteract the polarization dynamics inherent in specific voting
scenarios.

Conversely, for other profiles, such as 7 , the Borda method demonstrates adequacy in
meeting the PPC. However, it’s noteworthy that the Dowdall method does not achieve the
same level of effectiveness in this context, indicating a nuanced distinction between scoring
rules and their applicability in curbing the success of polarizing figures.

Moreover, the PR predominantly facilitates the electoral victory of a PC, with the ex-
ception of profile 1 . On the other side of the spectrum, the application of the anti-plurality
rule consistently lead to a defeat of the PC(s), indicated by the procedure lines achieving
the unshaded area in each profile at λ = 1.
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Figure B.3: Saari-triangles and respective procedure lines for γ1 = 0.42, γ2 = 0.35, γ3 = 0.23
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