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I study altruistic choices through the lens of a cognitively noisy decision-maker. I in-
troduce a theoretical framework that demonstrates how increased cognitive noise can
directionally affect altruistic decisions and put its implications to the test: In a labora-
tory experiment, participants make a series of binary choices between taking and giving
monetary payments. In the treatment, to-be-calculated math sums replace straightfor-
ward monetary payments, increasing the cognitive difficulty of choosing. The Treatment
group exhibits a lower sensitivity towards changes in payments and decides significantly
more often in favor of the other person, i.e., is more altruistic. I explore the origins of
this effect with Bayesian hierarchical models and a number-comparison task, mirroring
the "mechanics" of the altruism choices absent any altruistic preference. The treatment
effect is similar in this task, suggesting that the perception of numerical magnitudes
drives treatment differences. The probabilistic model supports this interpretation. A se-
ries of additional results show a negative correlation between cognitive reflection and
individual measures of cognitive noise, as well as associations between altruistic choice
and number comparison. Overall, these results suggest that the expression of altruistic
preferences – and potentially social preferences more generally – is affected by the
cognitive difficulty of their implementation.
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1 Introduction

Theories of social and other-regarding preferences characterize a crucial advancement
in economics and help to explain the results of various laboratory and field outcomes ir-
reconcilable with traditional assumptions of pure self-interest (Andreoni & Miller, 2002;
Bolton & Ockenfels, 2000; Charness & Rabin, 2002; Fehr & Schmidt, 1999; Fisman et
al., 2007; Levine, 1998), with reviews in Cooper and Kagel (2016), Fehr and Char-
ness (2023), and Fehr and Schmidt (2006). Quantifying the underlying motivations of
prosocial behavior, a growing body of research estimates population- and individual-
level parameters of different social preference frameworks (e.g., Bellemare et al., 2011;
Bruhin et al., 2019; Carpenter & Robbett, 2024; Fisman et al., 2007; Klockmann et
al., 2022 with a meta-analysis of inequality-aversion estimates available in Nunnari &
Pozzi, 2024).
While functional forms and parameter values differ, what these approaches share

is an (implicit) assumption that social preferences are (i) a stable and fixed quantity
and (ii) “fundamental”, i.e., that – in a standard individual utility-maximizing frame-
work – only differences in social preferences explain differences in behavior. While
the first assumption is at odds with within-person inconsistencies typically observed
in experiments, the second assumption contrasts with the advent of a “cognitive turn”
(Enke, 2024) in behavioral economics. There, a growing body of evidence shows how
cognitive imprecision, e.g., in the mental representations of objective decision problem
features such as lottery payoffs and probabilities, can generate risk aversion, probability
weighting and hyperbolic discounting as the result of an optimal adaptation to impre-
cise perceptions. In addition, this literature micro-founds inconsistencies in behavior
beyond ad-hoc solutions as an immediate consequence of such noisy perceptions (Fryd-
man & Jin, 2022; Khaw et al., 2021; Vieider, 2024b; Woodford, 2012, 2020). Similarly,
the complexity of deciding according to one’s preference and “cognitive uncertainty”
can produce behavior previously understood as a choice anomaly and bias (Enke &
Graeber, 2023; Enke et al., 2023; Oprea, 2024).
It is only natural to assume that social preferences are affected by cognitive impre-

cisions and the complexity of their implementation. Tasks involving social preference
require that a decision-maker assesses the (non-trivial) value of different options before
deciding, rendering such operations “complex”.1 If past experiences shape social pref-
erences, a noisy recollection of these experiences will also affect choices (see Polanía
et al., 2019 for the original argument). Additionally, as social preferences are usually
identified via monetary trade-offs, imprecise perceptions of numerical magnitudes – as

1 Oprea (2024, p. 3) writes: “When we say a lottery is “complex,” we mean only that its value is
not transparent to the decision maker because the procedure required to optimally aggregate its
disaggregated components into a value is costly or difficult.”
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in previous work – are a candidate, but not-yet considered driver of choices related to
social preferences.
First indicative evidence that noisy cognition or complexity-related processes can

guide prosocial choice is now starting to amass: For example, Enke et al. (2024) con-
sider the dictator game as one example of how cognitive uncertainty moderates reac-
tions to changes in objective problem features across over 30 experiments. Similarly,
Bao and Pei (2024) find that higher cognitive uncertainty is associated with higher
contributions in the public goods game. Beyond that, empirical evidence for noisy cogni-
tion (or complexity-related effects more generally) on social preferences is still lacking,
however, particularly, in domains with no clear “default-action”.
In this paper, I investigate altruistic choices – a simple form of social preference-

related decisions – through the lens of a cognitively noisy decision-maker. Based on
Vieider (2024b), I develop a model of altruistic choice and show how an increase in cog-
nitive noise can directionally affect altruistic choices. The core intuition is that higher
cognitive noise – either in perceiving monetary payments or altruistic preferences – will
lead an optimal Bayesian decision-maker away from acting upon true preferences and
monetary stakes and instead towards simpler mental default representations (i.e., their
prior beliefs). With increased noise, the decision maker reacts less strongly to changes
in underlying problem features and, depending on the mental default, also chooses
systematically differently.
To test these implications, I implement a laboratory experiment that consists of

two parts: In the first part, each of 300 participants makes a series of binary choices
between taking a payment self for themselves or giving a payment other to another
person. The Treatment group faces the same decision but has the values of self and
other replaced by to-be-calculated sums, i.e., decide between self1 + self2 (= self) and
other1 + other2 (= other). Encasing the stakes in to-be-calculated sums increases the
cognitive difficulty of perceiving the monetary payments and deciding on this task. In
the second part of the experiment, participants face the identical numerical values as
previously but have to judge which of two numbers A (previously self), or B (previously
other) ×1/2 is numerically larger. This task aims to mirror the “mechanics” of the altru-
ism decisions (as participants have to compare two numbers), yet abstracts from any
subjective altruistic preference with 1/2 replacing the individual-specific and subjective
altruistic-preference-dependent decision threshold with an objective and fixed term.
The main results of the experiment are as follows: In the altruism task, participants

in the Treatment group exhibit (i) a flatter association between changes in payments
and behavior (are less sensitive) and (ii) decide significantly more often for other, i.e.,
are more altruistic. The theoretical framework offers multiple explanations for this ef-
fect, which I begin to investigate using a probabilistic (Bayesian hierarchical) model of
participants’ choices. The model indicates a considerable degree of uncertainty around

3



the mechanism of the treatment effect, suggesting that additional data beyond altruis-
tic decisions is necessary to make a precise statement about the origin of the treatment
effect. Herein lies the main contribution of the number comparison task: In this task, al-
though abstracting from altruistic preferences, the treatment effect remains qualitatively
similar: The Treatment group again is less sensitive towards changes in numerical val-
ues and decides significantly less often for A (previously self). Interpreted together, this
implies that the perception of numerical magnitudes, i.e., some intuitive prior default
thatdself<×other and bA< bB, is a candidate driver for the treatment effect in both tasks.
This conclusion is supported by probabilistic models based on both the number com-
parison data and on a combined dataset of behavior in both tasks, indicating a high
probability of such an “intermediate” prior belief of numerical magnitudes.
In additional analyses, I further investigate associations between cognition and al-

truistic preferences more generally. Given identical numerical magnitudes in the altru-
ism and number comparison task, I can closely examine potential relationships between
behavior across domains: Correlation analyses show that choosing self correlates with
choosing A and identifying the correct answer in the number comparison task, suggest-
ing that numerical cognition can play a role when measuring altruistic behavior more
generally. Further, individual parameter estimates (based on the hierarchical models) of
cognitive noise correlate with performance on the Cognitive Reflection Test and Berlin
Numeracy Task, showing that more cognitively able persons are also less cognitively
noisy, providing support for the cognitive motivation of the general framework. More
exploratory analyses show how measures of meta-cognition (e.g., self-reported confi-
dence and attention) and response times – both key informants of choice processes –
are both more strongly affected by the treatment variation and more closely related
to behavior in the number comparison versus the altruism task. This, in turn, suggests
that metacognitive processes could “play out” differently in domains of purely subjec-
tive preference versus domains with more objective benchmarks of choice.
With these findings, this paper predominantly speaks to three strands of litera-

ture: Primarily, the results relate to the recent work of the cognitive turn in behavioral
economics. Most of this work so far focuses on the domain of risk, ambiguity, belief up-
dating and intertemporal choice (Enke et al., 2023; Frydman & Jin, 2022; Khaw et al.,
2021; Vieider, 2024a; Vieider, 2023; Woodford, 2020). This paper shows that the core
theoretical postulate, of a Bayesian decision maker optimally integrating noisy percep-
tions with prior knowledge, is applicable to the domain of social preferences, too and
offers a potential avenue for future work into the direction of cognitive noise and sub-
jective valuations more generally. This paper also makes a methodological contribution
by showing how to causally test the impact of increased noise beyond standard (and
arguably ad-hoc) treatments of cognitive load or time pressure. The to-be-calculated
sums proposed here, inspired by treatments in Enke et al. (2023), provide an easy-
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to-implement method of increasing uncertainty in the perception of objective problem
features that also have proven to be suitable in a more extensive repeated-trials ex-
periment. Employing exogenous manipulations further speaks to a broader ongoing
discussion in this literature: Enke (2024, p. 57) outlines how it is often unclear which
assumptions to make about the (locations of the) prior distributions in the Bayesian
models. Here, I show that typical ignorance assumptions are not necessarily valid (see
also p. 33 Oprea & Vieider, 2024) and demonstrate how a combination of experimen-
tal variations increasing noise, “mirror” tasks isolating parts of the decision-making
process and probabilistic modeling allow inferring the parameters of prior distribution
and likelihood in the Bayesian models.
This paper also relates to the literature on structural estimations of social prefer-

ence parameters (Bellemare et al., 2011; Bruhin et al., 2019; Carpenter & Robbett,
2024; Echeverry et al., 2023; Fisman et al., 2007; Klockmann et al., 2022; Nunnari
& Pozzi, 2024). Here, I show how altruistic behavior (and thereby “revealed altruistic
preferences”) can be affected by an increase in the cognitive difficulty of choosing. In
turn, social preference parameter estimates are thus likely to be biased due to the pres-
ence of unaccounted-for cognitive noise. Accordingly, classifying subjects into distinct
preference types (e.g., as done in Bruhin et al., 2019; Carpenter & Robbett, 2024; Van
Leeuwen & Alger, 2024) or using estimated social preferences are used to predict or
related to real-world outcomes (e.g., as in Graf et al., 2013) potentially suffers from
biases. Furthermore, this paper makes an additional contribution to this literature: In
an additional analysis, I show that the proposed theoretical model of a noisy Bayesian
decision maker outperforms a standard random utility benchmark (McFadden, 1981)
commonly used in this literature. The “noisy cognition” model proposed here thus of-
fers both a theoretically more micro-founded model of altruistic choice and provides
empirical arguments in its favor, motivating its application to social preference model-
ing more generally.
Lastly, this paper relates to an interdisciplinary literature on dual-process models

of cognition, altruism, and social preferences. This literature studies differences in the
level of pro-sociality between fast (more intuitive) and slow (more deliberate) decisions.
For example, Rand et al. (2012) show how cooperation is largest when participants are
put under time pressure, which in turn sparked a debate about whether “fairness is in-
tuitive” (Cappelen et al., 2016) (also “social heuristics hypothesis”). The theoretical
model and empirical evidence presented here add two insights to this literature: First
(i), the model demonstrates that depending on the intuition in a given context, more
intuitive (i.e., more prior-based) decision-making may also lead to more selfish choices,
e.g., if monetary payments are intuitively perceived to be the same in less-for-me vs.
more-for-other types of decisions. Next, while the treatment effect towards more altru-
ism goes in a similar direction as in Rand et al. (2012), the fact that (ii), the perception
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of monetary payments is a likely driver for more altruistic choices in the Treatment
group highlights how experimental manipulations (e.g., including time pressure) may
drive (pro-)social choices through channels other than via a genuine impact on social
preferences per se. Hutcherson et al. (2015) put forward a comparable argument and
highlight how – in light of a drift-diffusion model – individual differences in decision
thresholds (which are related to decision noise) can lead to differences in altruistic
choices independent of altruistic preferences. This paper provides additional evidence
in favor of this line of argument.
The remainder of this paper is structured as follows: Section 2 describes the theo-

retical model that illustrates how an increase in cognitive noise can directionally affect
altruistic choices. Section 3 details the between-subject experimental design and differ-
ences in implementation for the Baseline and Treatment group. Section 4 introduces the
results of the experiment, focusing on the main group differences in altruistic choices
and number comparison, accompanied by details on the structural estimations. Addi-
tional analyses on cognitive ability, noise and the relationship between altruism and
number comparison as well as metacognition and response times, follow. Section 5 dis-
cusses the main results of the paper, outlining potential avenues for future research
while Section 6 briefly concludes, highlighting the limitations of the current paper.

2 Theoretical Framework

The theoretical model modifies models of noisy Bayesian cognition by Vieider (2024b)
and Khaw et al. (2021) and applies them to choices involving altruistic preferences.

Altruistic Preferences Imagine a decision maker (DM) who has to choose between
taking a monetary payment self for themselves or giving an amount other to another
person. They choose self if

(1 − β) × self > β × other (1)

where β is the weight the DM places on the material well-being of the other person
(i.e., an altruism parameter) and its complement, 1− β , is the weight the DM places
on their own well-being (see e.g., Bernheim & Stark, 1988; Levine, 1998). While the
value of β can, in principle, be any real number, a sensible restriction is to expect
β ∈ (0,0.5), i.e., that the DM places a positive weight on the other person’s payment
yet still cares more strongly about their own payment. This choice rule abstracts from
many important notions relevant to social preferences, such as (dis-)advantageous in-
equality aversion (Fehr & Schmidt, 1999), reciprocity concerns (Bellemare et al., 2011;
Falk & Fischbacher, 2006), or social norms (Carpenter & Robbett, 2024) and also does
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not distinguish between (non-)warm-glow giving (Andreoni, 1989). Instead, this rule
focuses on the core trade-off akin to many types of social preference decisions: Trading
off one’s own vs. another person’s material wealth. This rule, in turn, is similar to no-
tions of “pure altruism” (Levine, 1998), “preferences for giving” (Fisman et al., 2007),
and “social welfare preferences” (Andreoni & Miller, 2002; Charness & Rabin, 2002)
assuming a strict positive weight on the payment of the other person.
Rearranging equation 1 and applying the natural log2 to both sides gives:

ln
� self
other

�

> ln
�

β

1 − β

�

(2)

which states that the DM assesses whether the (log) ratio of monetary payments,
ln self
other , is larger than their (log) altruism preference threshold ln β

1−β . This structure
predominantly makes the (computation of the) later model more tractable, yet express-
ing the payments and the preference threshold as (logs of) ratios also has a natural
interpretation: β

1−β is the weight a DM places on the other person’s payment relative
to their own. For example in the case of β = 0.2, which implies β

1−β = 0.25, the DM
values each euro for the other person one-fourth as much compared to a euro for
themselves. Judging monetary payments as ratios further aligns with evidence from
cognitive psychology about numerical judgments (a feature discussed more extensively
below) which in turn will be relevant to many choice rules featuring a comparison of
monetary payments.

Noisy Bayesian Decision Maker Following Vieider (2024b) and Khaw et al. (2021),
I apply a Bayesian perspective to equation 2 to allow cognitive noise to affect altruistic
choices based on an intuition of “perceptual uncertainty”, i.e., that the perception of
problem features – self

other and
β

1−β – gives rise to a noisy mental representation of both.3
Noisily representing monetary payments is a feature well grounded in research

from cognitive psychology: Ample evidence suggests that humans possess an “approx-
imate number sense” for mental representations of numerosity, e.g., judging which
of two boxes on a screen contains more dots (Feigenson et al., 2004). Such approx-
imate behavior is also likely to be at play for symbolic characterizations of numbers,
including that of Arabic numerals (Dehaene, 2011; Nieder & Dehaene, 2009).⁴ This
2 This follows the original model by Vieider (2024b) who demonstrates that logging the choice rule
does not alter the results in a meaningful qualitative manner. See there for a derivation for the
un-logged later (probabilistic) choice rule.

3 The exact origins of this cognitive noise are beyond the scope of this paper. The general motivation
can be linked to the idea of a “Bayesian Brain” (Doya et al., 2006) from neuroscience, i.e., that
the brain optimally combines uncertain sensory evidence with prior knowledge.

4 Electrophysiological recordings of monkeys can single out specific neurons favoring the mental
representation of specific numbers. Crucially, the activations of these neurons are bell-shaped: They
activate strongest at their designated neuron and less pronounced at other numbers while the
activation declines in numerical difference (Diester & Nieder, 2007).
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e.g., manifests in the “numerical ratio effect”: People’s performance in distinguishing
between two Arabic numerals strongly depends on the numerical ratio between both
numbers (Dehaene, 1993). This effect is evident in neuroimaging data and material-
izes during “passive viewing of numerical stimuli without an explicit behavioral task”
(Cantlon et al., 2009, p. 2219). These observations suggest that the famous “Weber’s-
Law”, which states that the necessary increase to detect a difference to a base stimulus
is proportional to the base stimulus, also holds for numerical stimuli. Supporting this
conjecture, studies aiming to map the “mental number line” also find evidence for a
non-linear compressed mental representation of Arabic numerals (Longo & Lourenco,
2007). Furthermore, Prat-Carrabin and Woodford (2022) show that the relationship
between discriminability and bias – a core law of human perception (Wei & Stocker,
2017) and originally formulated for sensory domains – also holds for numerical cogni-
tion.
A noisy mental representation of the preference threshold is plausible as well: Given

that the true preference β remains an entirely subjective quantity, the DM must rely on
introspection to form a belief about their preference. If past experiences shape β , an
imperfect memory could introduce uncertainty around the true preference for the DM,
i.e., introduce noise (see Polanía et al. (2019) for the original argument for subjective
valuations).
To formalize the noisy mental representations of selfother and

β

1−β , assume that the DM
obtains mental signals about the true values from a distribution of possible representa-
tions:

s self
other
| ln

self
other ∼ N

�

ln
� self
other

�

,ν2
self
other

�

, s β
1−β
| ln

β

1 − β
∼ N

�

ln
�

β

1 − β

�

,ν2
β

1−β

�

(3)

where s self
other
and s β

1−β
are the mental signals. Importantly, I do not assume that the

mental signals share a common variance, but instead that ν self
other
characterizes “noise in

monetary payments” and ν β
1−β
characterizes “noise in altruistic preferences”. Cognitive

noise, as understood here, thus consists of two different sources of noise in perceiving
problem features. This departs from previous work, where a common noise variance is
a typical assumption (Vieider, 2024b). The main argument for separately modeling the
noise terms in the present setting is that s self

other
and s β

1−β
do not both refer to an explicitly

stated numerical quantity, like e.g., a lottery payoff and probability, but to monetary
payments and a subjective preference threshold. Assuming that the same (cognitive)
process underlies the perception of both features is thus less justified in the present
setting.
What remains common to both noise terms is the overall log-normal noise struc-

ture. With both means as logarithms, the noise terms become signal-dependent (as the
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variance of the exponentiated values increases in the mean of the original distribution),
matching the intuition of Weber’s Law (see also Barretto-García et al., 2023).
In addition to the mental signals, the Bayesian DM has prior beliefs about both the

ratio of monetary payments and the preference threshold.

ln
self
other ∼ N

�

lnµr̂,σ
2
r̂

�

, ln
β

1 − β
∼ N

�

lnµb̂,σ
2
b̂

�

(4)

where lnµr̂ = ln
dself
×other

and lnµb̂ = ln
bβ

1−bβ
, the default representations of the problem

features (the hat indicating prior values). A common assumption about the prior means
is that they are equal to 0, i.e., lnµr̂ = 0⇔ dself

×other
= 1 and similarly lnµb̂ = 0⇔ bβ = 0.5.

These prior means imply that the DM intuitively does not distinguish between payments
dself=×other and treats the importance of both their own and the other person’s well-
being alike 1− bβ = bβ . This “ignorance assumption” fits a possible interpretation of prior
means by Gabaix (2019, p. 266) as “the value that spontaneously comes to mind with
no thinking”.
Given likelihoods in equation 3 and priors in equation 4, a Bayesian DM will arrive

at the following posterior distributions:

ln
� self
other

�

| s self
other
∼ N





σ2
r̂

σ2
r̂ + ν

2
self
other

× s self
other
+

ν2
self
other

σ2
r̂ + ν

2
self
other

× lnµr̂,
ν2
self
other
σ2

r̂

ν2
self
other
+ σ2

r̂





ln
�

β

1 − β

�

| s β
1−β
∼ N





σ2
b̂

σ2
b̂
+ ν2

β
1−β

× s β
1−β
+

ν2
β

1−β

σ2
b̂
+ ν2

β
1−β

× lnµb̂,
ν2

β
1−β
σ2

b̂

ν2
β

1−β
+ σ2

b̂





with the following expected values:

E
�

ln
� self
other

�

| s self
other

�

= α × s self
other
+ (1 − α) × lnµr̂

E
�

ln
�

β

1 − β

�

| s β
1−β

�

= γ × s β
1−β
+ (1 − γ) × lnµb̂

where α= σ2
r̂

σ2
r̂+ν

2
self
other

and γ= σ2
b̂

σ2
b̂
+ν2

β
1−β

, the Bayesian evidence weights. The lower γ

and α, the more the DM relies on the “intuitive” prior values, treating payments and
persons alike, and the closer γ and α are to 1, the more the DM relies on the (noisy
signals of the) true values of selfother and

β

1−β .
So far, this setup follows a common structure in the noisy cognition literature. In-

corporating a prior belief for monetary payments – with the values self
other varying from

trial to trial in a typical experiment – leads to a regularization in the posterior belief as
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shown above and typically assumed. However, altruistic preferences are again conceptu-
ally somewhat different: First, β

1−β is usually assumed to be a fixed quantity for a given
DM, which in turn makes it difficult (although not impossible) to distinguish between
true and prior preferences. From an empirical perspective, this translates into identifi-
cation challenges and risks of overly parameterizing the later choice model. Therefore,
I adjust this common setup and abstract from any additional influence of the prior be-
lief over preferences on choices. Therefore, throughout, I assume that the prior belief
is maximally uninformative in terms of inference over true preferences. Importantly,
noise in the mental signals s β

1−β
still impacts choices (discussed in more detail below)

and this assumption does not imply that perception of preferences in noiseless, only
that noise in perceiving preferences does not lead to a bias towards some mental de-
fault preference. In terms of the theoretical framework, by setting σb̂→∞, this implies
that limσb̂→∞

γ= 1 and, in turn E
h

ln
�

β

1−β

�

| s β
1−β

i

= s β
1−β
. Therefore, the prior belief re-

garding altruistic preferences does not affect the posterior distribution (or expectation);
only the monetary payment prior fulfills the typical regularizing role.
Notwithstanding, the expectations of both posterior distributions form the basis of

the choice rule. Mirroring equation 2, the Bayesian DM will decide for self if

E
�

ln
� self
other

�

| s self
other

�

> E
�

ln
�

β

1 − β

�

| s β
1−β

�

(5)

and plugging in the above expressions for the posterior expectations results in

α × s self
other
− s β

1−β
> lnδ (6)

where δ = 1
µ1−α

r̂
. The DM decides for self if the difference between the weighted

signal of monetary payments and the signal of their altruistic preference is larger than
a prior-induced threshold. To arrive at a probabilistic choice rule, subtract the z-score
of the random variable α× s self

other
− s β

1−β
∼N (α× ln self

other − ln β

1−β ,ν2
self
other
α2 + ν2

β
1−β

) from the
equivalent z-score of equation 6, which results in the following Probit equation (see
Vieider (2024b) for the original proof):

Pr([self ≻ other]) = Φ





α × ln
� self
other

�

− ln
�

β

1−β

�

− ln(δ)
r

ν2
self
other
α2 + ν2

β
1−β



 (7)

Choosing self is thus the outcome of a probabilistic process in which both noise in
monetary payments – and a potentially invoked bias of a prior belief due to increased
noise – as well as noise in altruistic preferences guide choices.
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The Impact of Cognitive Noise Equipped with the probabilistic choice rule, I can
more closely investigate the (numerical) impact of an increase in noise – both in mone-
tary payments and altruistic preferences – on altruistic choices. Figure 1 simulates both
the impact of increasing noise ν self

other
and ν β

1−β
on the probability of choosing self as a

function of the ratio self
other (equation 7) for varying values of µr̂. Throughout all panels,

I fix β = 0.3 and σr̂ = 1, whereas ν β
1−β
= 0.25 in the top and ν self

other
= 0.25 in the bottom

row.
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Figure 1. Impact of Cognitive Noise on Altruistic Choices This figure plots the impact of changes
in cognitive noise ν self

other
(top) and ν β

1−β
(bottom) on the probabilistic choice function (equation 7)

depending on different values of µr̂ . Throughout all panels β = 0.30 and σr̂ = 1. The plot also includes
average values of choosing self.

Consider the first row of Figure 1. There, I vary ν self
other
∈ [0.25,0.5, 1] with fixed

values of ν β
1−β
= 0.25 and µr̂ = 1 (i.e., lnδ = 0). An increase in noise in perceiving mon-

etary payments increases choices for self. With increased noise, the DM relies more
strongly on their prior knowledge (i.e., α decreases) and ln self

other is attenuated towards
0. Given the log space of the choice rule, an attenuation towards 0 (of ln self

other) implies
an increase towards 1 on the original scale. In other words, smaller values of self

other are
perceived to be larger.
However, differences in the values of the prior mean will lead to different effects

on choices: Consider the second graph in the first row, where µr̂ = 0.5, i.e., an “inter-
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mediate” intuitive perception of monetary payments. Now, an increase in ν self
other

decreases
choices for self as larger values of self

other will be downwards adjusted due to the impact
of the prior. Conversely, if µr̂ = 1.5 (third graph), an increase in ν self

other
(again) increases

choices for self, which is quantitatively larger compared to the first instance. Overall
– in this exercise – an increase in ν self

other
will therefore increase choices for self, unless

µr̂ < 1 (i.e., an “intermediate” payment perception).
In the second row, ν self

other
remains fixed at 0.25, but noise in preferences varies be-

tween ν β
1−β
∈ [0.25, 0.5,1]. Focusing on the first graph, note that an increase in noise

in preferences decreases choices for self. The origin of this effect – recall that equa-
tion 7 abstracts from the impact of a prior over preferences – lies in the log-normal
noise structure of the mental signals s β

1−β
: Due to the concavity of the log-transform,

increasing signal noise leads to stronger attenuation for larger values of the z-score of
the difference between a given trials’ payment ratio self

other and the preference-induced
threshold β

1−β , which in turn, translates into fewer choices for self. Varying µr̂ (second
and third graph in the second row) leads to changes in the overall level of choices for
self, as α < 1, yet the effect of ν β

1−β
on choices remains largely unaffected. Note further

that – across all instances – an increase in ν β
1−β
does not shift the indifference values, as

ν β
1−β
is absent from the numerator of equation 7. The difference in average choices is

thus driven by the asymmetric effect of the log-normal noise structure.⁵
Overall, the simulations show that the impact of increasing noise will depend on

whether increased cognitive noise is primarily in perceiving monetary payments or al-
truistic preferences – circling back to the discussion in Section 2. Due to the Bayesian
regularization towards a prior belief for monetary payments, the impact of noise in
monetary payments will additionally depend on the moments of that prior, as illus-
trated.

Hypotheses Based on these discussions, I can formulate hypotheses that center on the
potential mechanisms of a treatment effect due to increased noise. These hypotheses
remain stylized in nature and should be understood as examples that do not necessarily
apply to the entire parameter range (given the non-linear nature of the model) but help
in organizing the mechanisms of the model nonetheless.⁶ Similar to the exercise above,
they should also be understood ceteris paribus.

5 Accordingly, a linear version of equation 7 with linear encoding and Gaussian priors, i.e., where

Pr(self)= Φ





α× self
other−

β
1−β −δ

√

√ν2
self
other

α2+ν2
β

1−β



 with δ = 1− (1−α)µr̂ does not feature such an asymmetrical effect of

noise.
6 The hypotheses further illustrate the considerable degree of flexibility of the Bayesian model, which
requires a careful interpretation of the empirical results and the exact mechanisms of a potential
treatment effect in the experimental data later on.

12



Hypothesis 1a (Noise in Payments a): An increase in ν self
other
given µr̂ ≥ 1 increases

average choices for self.
Hypothesis 1b (Noise in Payments b): An increase in ν self

other
given µr̂ < 1 decreases

average choices for self.
Hypothesis 1c (Noise in Preferences): An increase in ν β

1−β
decreases average

choices for self, whereas the indifference value remains unchanged.

Additional Hypotheses Outside the impact of an increase in cognitive noise emanat-
ing from the theoretical framework, other hypotheses emerge following a “cognitive
lens” to altruistic choices more generally. Throughout, I do not formulate assumptions
on whether ν self

other
or ν β

1−β
is the more appropriate measure of cognitive noise in a particu-

lar instance, but understand both to be measures of different aspects of cognitive noise.
I therefore refrain from discussing them separately for the additional hypotheses.
A key assumption of the noisy cognition literature is that noisy mental represen-

tations drive choice variability and bias. Crucially, these noisy representations, e.g., of
numerical magnitudes, should thus have comparable effects on behavior across domains
with similar “mechanics” of choice irrespective of the subject of the decision. Further, if
perceiving numerical values (and subjective preferences) is person-specific, individual
measures of cognitive noise should be positively correlated across domains within a
person. Supporting evidence in this direction is presented by Frydman and Jin (2022)
and Frydman and Nunnari (2023), who show how lottery choice and behavior in a co-
ordination game correlates with choices in a “perceptual” number discrimination task.
For altruistic choices, this implies that individual measures of cognitive noise and

overall behavior, more generally, should be positively related to data from a comparable
choice task, e.g., a number comparison task (considered in the experiment).

Hypothesis 2: There is a positive correlation between measures of cognitive noise
and behavior in altruism choices and choices in a number comparison task.

Further, noisy mental representations of problem features are generally assumed
to stem from cognitive processes. In line with this argument, a broad class of work
shows how performance in the Cognitive Reflection Test (Frederick, 2005) – a popular
tool to measure reflective thinking – empirically correlates with various biases and
mistakes in choices: For instance, Augenblick et al. (2022) find that subjects who
score high on the CRT infer more (less) from strong (weak) signals, Oprea (2024)
finds that lower CRT performance is associated with more prospect-theoretic behavior
(i.e., probability weighting and loss-aversion). Assenza et al. (2019) report a negative
correlation between CRT performance and misjudgments in a portfolio valuation task
and Chew et al. (2022) show a negative relationship between CRT performance and
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multiple switching behavior in choice lists. For altruistic choices, this implies that an
association between measures of cognitive ability and individual measures of cognitive
noise ν self

other
and ν β

1−β
– key drivers of choice inconsistency and bias – should emerge,

with more cognitively able people exhibiting lower values of noise.

Hypothesis 3: Individual measures of cognitive noise negatively correlate with
measures of cognitive ability.

3 Experiment

In this section, I describe the setup and implementation of the experiment, which fulfills
four objectives: (i) eliciting altruistic decisions in terms of the choice rule in equation 1.
(ii) Exogenously manipulating cognitive noise during altruistic decisions. (iii) Eliciting
choices in a number comparison task similar to the altruistic decisions, and (iv) gath-
ering additional personal characteristics, especially regarding subjects’ cognitive ability.
Accordingly, the experiment consists of three parts: Part 1 entails the altruistic deci-
sions, where cognitive noise is manipulated in a between-subject treatment condition.
Part 2 introduces the number comparison task, and Part 3 elicits additional behavioral
and survey data. All three parts are described in detail below, and a graphical overview
of the experiment outline is depicted in Figure A2.

3.1 Part 1: Altruistic Choice

Altruistic Choice In line with the theoretical setup, the experiment centers around
the following decision: taking a monetary payment self (and giving nothing) or giv-
ing a monetary amount other to another person (and taking nothing) as depicted in
panel (a) of Figure 2. By varying the respective payments of this choice, I can infer
a subject’s altruistic preference. More specifically, (in the absence of noise) choices
should be characterized by a unique switching point, the maximum amount of self a
participant is willing to forego to increase the other person’s payment by other. I vary
the monetary payments of self and other as follows: I choose four distinct values for
otherk: 6.55 e, 9.26 e, 13.10 e, and 18.52 e⁷ and calculate the indifference value
selfindiff ∼

β

1−β × otherk ∀ β ∈ [0,0.05, ..., 0.55] for all four values of otherk. This results
in 4× 12 unique combinations of self and other (see Figure A3 for an illustration). Each
of these combinations is repeated five times and I call a group of five identical trials
7 Note that these values follow a series similar to the stakes in Khaw et al. (2021) as the ratio
between each adjacent element in the series is a constant, i.e., p2.
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(a) Altruism Baseline (c) Number Comparison Baseline

(b) Altruism Treatment (d) Number Comparison Treatment

Figure 2. Altruistic Choice and Number Comparison Task (a) Decision screen of the Baseline condition
featuring a decision between taking a payment self or giving a payment other. (b) Decision screen of
Treatment condition, in which to-be-calculated sums replace monetary values. (c) Baseline condition in
the number comparison task. (d) Treatment condition number comparison. Participants choose using
the “a” (“You”/“A”) and “l” key (“Other Person”/“B”) on the (German) keyboard.

a “game” throughout. Overall, subjects faced 48 games, i.e., 240 trials, in the altru-
ism choice task of the experiment (with intermediate breaks). Following Khaw et al.
(2021) I use payments including cent values to encourage participants to approach the
decisions more approximatively.⁸
At the end of the experiment, one trial is randomly drawn and implemented. Each

participant is matched to a person in their session to send their chosen payment of
other and to another person to receive the other person’s choice of other. While the
matching of the sender to the recipient is randomly determined, no participant can
send to and receive from the same person and participants are instructed accordingly.
Before making the 240 decisions, participants familiarize themselves with one interac-
tive example of the choice, answer a series of comprehension questions, and encounter
12 practice trials, which are not payoff-relevant and thus remain excluded from the
analyses.

Treatment Condition In the between-subject treatment condition, to-be-calculated
sums replace the monetary payments, as shown in panel (b) of Figure 2. Inspired by a
variation in Enke et al. (2023), the main objective of this condition is to increase the
“cognitive difficulty” of making altruistic decisions. By disaggregating monetary pay-
ments into two components, information processing cost increases, which in turn may
lead to mis-valuation of true incentives (see Oprea (2024) for a discussion originally
about lotteries). This condition thus aims to reduce the informativeness of the mental

8 A critique of this approach could be that this leads participants to only focus on the main digit of
the payments and simply ignore the cent values. While this would be in line with an extreme form
of “left-digit-bias”, more recent psychological research – using eye-tracking techniques – suggests
that people often pay as much attention to cents as they do to euros (Laurent & Vanhuele, 2023).
Note also that e.g., Dehaene and Marques (2002, p. 708) explicitly avoid round numbers in their
stimuli, which are prices of different items.
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signals.⁹ While one could well expect this variation to impact ν self
other
and ν β

1−β
differently,

I leave this as an open empirical question. In terms of the design of the variation, I
choose sums as relatively simple mathematical operations to allow participants to still
reasonably engage in the repeated trials of the experiment and be able to gauge the
values of the monetary payments (i.e., not reducing the informativeness too much).
The to-be-calculated sums are randomly determined but constructed systematically:

I first (uniformly) draw a random number between 0 and the smaller number of the
self, other pair. In the example, I drew self1 = 3.52 e from a range between 0 and
4.66 e. self1 then serves as an upper bound for a second random draw, other1, i.e.,
2.15 e in the example. Both determine self2 and other2, the complements of the sums
(i.e., 1.14 e and 4.17 e). This specific procedure ensures that no matter the underly-
ing numerical relationship between self and other, one component of any of the two
sums is larger than another component of the other sum and vice versa (e.g., in the
example self1 > other1, yet other> self). Furthermore, the position of self1, self2 and
other1,other2 is randomly shuffled for each participant individually. This procedure en-
courages paying attention to all four components in all trials. Further, it hinders the
possibility of gauging the underlying value of self or other by just focusing on the
positions of the components. Table A1 provides the complete overview of all 240 tri-
als, including the values for self1, self2 and other1,other2, which remain fixed for all
participants, yet presented in random order in the experiment.
At the end of Part 1, I gather self-reported data on subjective confidence, how

precisely participants calculated during the decisions, and the attention paid to both
the values of self and other (see Figure A12 for screenshots).

3.2 Part 2: Number Comparison

Number Comparison Task Part 2 of the experiment features a number comparison
task. Participants have to assess which of two columns is numerically larger, either A
or B ×1/2 (see panel (c) in Figure 2). This task features an objectively correct solution
(A in the example) while aiming to mirror the “mechanics” (or “mental arithmetics”) of
the altruism decisions – comparing two numbers – as closely as possible. The term 1/2

replaces the threshold previously determined by each subject’s β parameter (i.e., their
altruistic preference) with an objective and common factor, which in turn is assumed

9 An analogy to paradigms from cognitive science can also be drawn: For modeling human vision,
models of Bayesian observers that integrate noisy visual perceptions with their prior beliefs are
very successful in explaining behavior. For example, experiments show that people perceive moving
objects as slower if the contrast of the visual stimuli is low compared to stimuli with higher contrast,
while the actual velocity of the object remains unchanged. This, in turn, is interpreted as evidence
that people have a prior belief that things move more slowly (Stocker & Simoncelli, 2006; Weiss
et al., 2002).
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not to give rise to a noisy mental representation, but to remain accurately perceived.
This task is inspired by recent work in economics showing a correlation between ele-
mentary economic behavior and equivalent number perception (Frydman & Jin, 2022;
Frydman & Nunnari, 2023).
Importantly, the values of A (B) are identical to those used previously for self

(other). Again, each unique combination of A,B was repeated five times. To reduce
redundancy, I omit the pairs where A= 0 and A> B in the number comparison task,
such that subjects made 200 decisions in total (in 40 unique games). While the Base-
line group interacts with the task as depicted in panel (c), the Treatment group again
features to-be-calculated sums instead of the numerical values (d).
Similar to the number discrimination task in Frydman and Jin (2022), I incentivize

this task to reward both speed and accuracy: After the end of Part 2, I calculate the
share of correct solutions and the average time in seconds participants took. I then
determine their earnings: 10 e × Avg. correct − Avg. time in seconds. Participants
thus could earn at most 10 e if they solved every task correctly and took 0 seconds on
average. Their reward was reduced for each additional second or a lower percentage
of correct solutions.1⁰
At the end of Part 2, I elicit beliefs about both participants’ number of correct

answers and the average amount of seconds they took. One of the belief elicitations
was drawn randomly and determined if an additional bonus prize of 1 EUR pays out
at the end according to the randomized quadratic scoring rule (Hossain & Okui, 2013;
Schlag & Van Der Weele, 2013).

3.3 Part 3: Additional Data Collection

Finally, Part 3 collects several additional data from participants, which can be grouped
into three different categories: (i) cognitive ability, (ii) norms and excuses, and (iii)
pro-sociality and demographics.
Participants in the experiment have to answer six questions of the extended Cogni-

tive Reflection Test (CRT) by Toplak et al. (2014), which entails the original three CRT
questions of Frederick (2005) and adds questions similar in formulation. Figure A13
shows a screenshot of CRT4. One of the six questions is drawn randomly and awards a

10 I chose to implement a time-sensitive incentivization as the task would be much more trivial to
solve otherwise. Section 4.8.1 shows that the average time participants spent on the number task
and the altruism decisions is identical in the baseline and even larger in the Treatment group. I
read this as evidence against an argument that participants significantly decided much faster in
the number comparison (which might invoke different cognition strategies) than in the altruism
decisions. Note also that while participants were effectively put under time pressure, there was no
active reminder of their current time usage, which should help prevent high levels of perceived
time pressure.
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bonus of 1e if answered correctly. In addition to the CRT, I conduct the three-question
Berlin Numeracy Test (Cokely et al., 2012) (unincentivized) and gather survey data
on the deliberation-intuition scale (Betsch, 2004) and the German short-version of the
Need for Cognition scale (Cacioppo & Petty, 1982) developed by Beißert et al. (2014).
I choose a more extensive set of cognition-related measures to compare the standard
CRT questions to alternative measures related to cognitive ability.11
The next block of additional data measures private and social norms and two addi-

tional survey questions about excuse-taking and (non-)altruistic behavior. I elicit social
and private norms regarding behavior in the altruism task in the style of Krupka and
Weber (2013), albeit in a non-incentivized way.12 I show participants from the Baseline
and Treatment group an example both in the Baseline and Treatment format in ran-
domized order and ask for the subjective appropriateness of the decision (see Figure
A15 for a screenshot). I also elicit survey questions related to excuse-taking (see Figure
A14).13
The third block consists of several additional measures. In a simple dictator game,

each participant decides how to split 10 e between themselves and another randomly
determined person (see Fig A16 for a screenshot). I instruct participants that their
choice is implemented with a chance of 1%. Additionally, I obtain answers to the quali-
tative survey items of the Global Preferences Survey (Falk et al., 2023), a visual-analog
fatigue scale (Radbruch et al., 2003), as well as basic demographic information.

3.4 Implementation

The experiment ran in January 2023 at the MABELLA lab with 300 student subjects.
Each subject was randomly allocated to the Baseline or the Treatment condition within
an experimental session (until 150 were in each condition). As stated, subjects could
earn rewards from all three parts of the experiment, and the average payment was
16.15e. The mean completion time stood at 62 minutes, while the overall session
duration averaged 82 minutes, as participants had to wait until everyone in their
session was finished. Instructions were presented on-screen and key screens are de-
picted in Appendix A.4 (translated from German). The pre-registration is available at
https://aspredicted.org/blind.php?x=5F4_72D. The joint ethics board of Goethe Uni-
versity Frankfurt and JGU Mainz provided the IRB approval.

11 E.g., Schunk and Betsch (2006) show that self-reported measures of a preference for deliberative
versus intuitive reasoning correlate with individual estimates of utility function parameters.

12 König-Kersting (2024) does not identify differences in responses between (non-)incentivizing social
norm elicitation in a large-scale experiment.

13 Based on the arguments in Dana et al. (2007) and Exley and Kessler (2024), the treatment
variation could also introduce a “wiggle-room” which allows participants to make self-serving
miscalculations and thereby justify more selfish behavior.
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4 Results

This section presents the empirical results, first focusing on differences between the
Baseline and Treatment group in altruistic choices and number comparison behavior.
Afterward, I discuss the additional hypotheses next to the impact of increasing cognitive
noise.

4.1 Altruistic Choices: Descriptives

Figure 3 presents the average choice for self for each unique value of self
other featured in

the experiment, separately drawn for the Baseline and Treatment group. The Baseline
data offers several insights into participants’ altruistic preferences: First, unsurprisingly,
the larger the payment self compared to other, the more frequently subjects choose
self: If self= 0, only 1,03 % of choices correspond to self, whereas, if self> other,
98,4 % of choices correspond to self. People positively care about the other person’s
payment, yet more strongly about their own and only very few choices are consistent
with spiteful preferences. A local linear interpolation indicates that the Baseline group
is indifferent (i.e., the average choice for self equalling 50%) if self

other = 0.474, which
implies that participants roughly care twice as much about their payoff compared to
the payoff of another person.
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Figure 3. Altruistic Choices in Baseline and Treatment Group This plot shows the association between
average choice for self and distinct values of the ratio self

other , separately drawn for the Baseline and
Treatment group, with 95% confidence intervals.
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This behavior largely aligns with previous evidence on (structural estimates of) so-
cial preferences, primarily that of advantageous inequality/aheadness aversion. There,
the aheadness aversion parameter can be similarly interpreted as the β parameter in
the present framework as the weight a DM places on the well-being of another person
(given the DM is better off).1⁴ Reviewing over 40 articles, Nunnari and Pozzi (2024)
report a median value for the advantageous inequality aversion of 0.26, indicating
that participants often roughly care thrice as much about their payment compared to
other people’s when ahead, which is in line what, e.g., Bruhin et al. (2019) find. More
similar to participants here, Carpenter and Robbett (2024), Von Schenk et al. (2023)
and Klockmann et al. (2022) estimate values that correspond to their subjects caring
roughly twice as much about their payment compared to that of another participant.
In the Treatment condition, these statements about altruistic preferences remain

largely true, albeit with subtle differences: First, the association between the average
choice for self and changes in the underlying ratio of self

other is flatter compared to the
Baseline condition. For small values of selfother , the Treatment group decides more often for
self, e.g., 3,2 % of choices correspond to self if self= 0, yet less often for larger values
of self

other as only 95,53 % of choices correspond to self if self> other. Furthermore, over
the entire set of trials, the Treatment group behaves less selfishly: While the Baseline
group decided in 45,18% of choices for self, the Treatment group chose self in 42,93 %
of the cases. This difference is statistically significant, as indicated by a two-sided t and
a Fisher exact test (both p< 0.001). The ratio of self

other required for indifference in the
Treatment group corresponds to 0.528, a 5.4 percentage points larger ratio compared to
the Baseline. Using a linear probability model, Table A2 confirms that both the overall
level of choices for self is 2.2 percentage points lower and that an increase in self

other by 1
has a 6.7 percentage points lower effect on choices for self in the Treatment group (for
a Probit model, see Table A3). Although their underlying preference should remain the
same as in the Baseline, the Treatment group shows a dampened reaction to changes in
incentives and chooses self significantly less frequently, i.e., behaves more altruistically.

Result 1: The Treatment group shows both a flatter association between changes in
payments and choices and is more altruistic compared to the Baseline group.

14 Note that the framework developed here does not distinguish between being ahead and being
behind as, by construction, a subject is ahead if they choose self and behind if they choose other.
Thus, the present setup does not allow for separating these two motivations; instead, it comprises
them into one. The fact that subjects overall substantially weigh the other person’s payment could
also be related to how the decision in Figure 2 is displayed, i.e., not including the 0 e consequence
for either person.
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Both a flatter association between varying payments and choices and a bias towards
more altruistic choices can be rationalized in light of the theoretical framework.1⁵ Re-
call Figure 1, which outlines the impact of an increase in noise on the probability of
choosing self (equation 7). The treatment effect could originate from either an increase
in ν self

other
(H1b) or an increase in ν β

1−β
(H1c), i.e., either through an increase in “noise in

payments” coupled with an additional adjustment towards an intermediate payment
prior or a “mechanical” increase in “noise in preferences”.

4.2 Altruistic Choices: Probabilistic Model

I now turn to probabilistic modeling to estimate the (posterior) probability of the pa-
rameter values given the experimental data and investigate the mechanisms of the
treatment effect. Given the choice model formulated in equation 7, this approach al-
lows to (i) inspect whether (an increase in) noise in payments or preferences dominates
the other, (ii) infer the parameters of the prior of monetary payments, and thereby (iii)
test the potential mechanisms of the treatment effect. I use Bayesian estimation tech-
niques, which are gaining popularity in experimental economics (see Bland (2023) for
an overview and the tutorial by Vieider, 2024a). The main reason to use Bayesian tech-
niques lies in their practicality: Because they are more flexible than, e.g., maximum
likelihood estimation, they can deal more easily with more complex models and still
produce meaningful uncertainty estimates of the parameters of the model (Gelman et
al., 2021, p. 4). Here, I estimate a Bayesian Hierarchical Model that determines the prior
for the individual parameter values from the data. In hierarchical models, individual
parameter estimates are partially pooled towards the group mean, which reduces over-
fitting and thus increases out-of-sample performance (Kruschke, 2015). Furthermore,
the hierarchical setup allows us to represent potential treatment differences in spe-
cific parameters by allowing (some) hyper-parameters to differ between conditions c.
More specifically, the hierarchical model assumes that the individual parameter vector
θ i =

�

ν self
other ,i

,ν β
1−β ,i,βi,µr̂,i,

�

of individual i is – on the log-scale – drawn from a multivari-
ate normal distribution:

θ i ∼ N (µ,Σ) (8)

where µ= (µ
ν self
other

c ,µ
ν β

1−β
c ,µ

β
1−β ,µµr̂) is the vector of the population-means of the pa-

rameter distributions. Note that both µ
ν self
other

c and µ
ν β

1−β
c are allowed to differ between

15 Section A.3.3 discusses if the chosen treatment variation might have invoked behavior other than
an increase in cognitive noise. The difference between Treatment and Baseline can not be explained
by (i) an exclusive focus on (and comparison of) the first component of the sums (Figure A9) or
(ii) the treatment only working for larger numbers (Figure A9 and Table A13).
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Baseline and Treatment group µ
ν self
other

B , µ
ν self
other

T , µ
ν β

1−β
B , µ

ν β
1−β

T representing potential treat-
ment differences along both types of cognitive noise. All other hyper-parameters remain
identical across conditions. Σ = diag(τ)Ωdiag(τ), where Ω is the correlation matrix of
individual parameters and τ is a vector of standard deviations. Note that, without loss
of generality, I set σr̂,i = 1∀ i (p. 32 Oprea & Vieider, 2024; Natenzon, 2019). The hi-
erarchical model requires specifying prior distributions for all hyper-parameters and
I choose weakly informative priors (see Section A.3.1 for details and prior predictive
checks, also see Gelman et al., 2015). I estimate the model with Numpyro (Bingham
et al., 2019; Phan et al., 2019).

mean median sd hdi 2.5% hdi 97.5% R̂

Base Parameters:

Altr. Preference β 0.316 0.316 0.008 0.3 0.332 1
Prior Mean Monetary Payments µr̂ 1.049 1.005 0.304 0.533 1.652 1.01

Group Specific:

Noise Baseline ν β

1−β ,B 0.186 0.185 0.022 0.143 0.23 1

Noise Treatment ν β

1−β ,T 0.181 0.18 0.032 0.121 0.243 1

Noise Baseline ν self
other ,B 0.313 0.311 0.028 0.259 0.367 1

Noise Treatment ν self
other ,T 0.399 0.398 0.038 0.325 0.475 1

Weight on Payments Baseline αB 0.911 0.912 0.014 0.882 0.938 1
Weight on Payments Treatment αT 0.862 0.863 0.023 0.817 0.905 1
Prior Threshold Baseline δB 1 1 0.025 0.951 1.05 1.01
Prior Threshold Treatment δT 1 0.999 0.039 0.925 1.076 1.01

(a) Posterior parameter summary
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(b) Average and predicted choices

Figure 4. Summary Probabilistic Model Altruistic Choices (a) Estimated parameter values of equation
7 based on 10000 posterior samples (+ 1000 warmup) per each of four chains. Parameters correspond
to the mean of log-normal hyper-distributions. Mean, median and sd refer to the mean, median and
standard deviation of the posterior distribution samples. HDI 2.5% and HDI 97.5% indicate the borders
of the 95% highest-density interval (HDI). R̂ is a diagnostic of convergence of the Markov chains (R̂ = 1
indicating convergence). (b) Average (over individuals) and predicted choices, including 95% HDI.

The Table in panel (a) of Figure 4 summarizes the parameters of the model and (b)
plots average and predicted choices (including the 95 % HDI). Given the hierarchical
nature of the model, I inspect parameters on the population level, i.e., the mean of
the log-normal hyper-distribution of a given parameter (instead of average individual
parameters that would assign equal weight to each participant).1⁶ The table contains
the mean, median and standard deviation of the posterior samples of the respective
parameter, the 95 % credible interval, the shortest interval containing 95 % of proba-
bility mass as well as the R̂ convergence diagnostic (Vehtari et al., 2021) with R̂< 1.05

often considered as necessary condition.
I first focus on the “base parameters”, i.e., parameters that do not differ by treat-

ment group. First, the altruistic preference parameter β = 0.316 [0.3− 0.332] aligns
with the behavior described previously: on average, participants weigh approximately

16 The accompanying online appendix plots the individual choice curves and the individual data for
each subject: https://nmwitzig.github.io/noise-app.html

22

https://nmwitzig.github.io/noise-app.html


their payment twice as important as the other person’s payment. The probabilistic
model further yields an estimate for the mean of the prior distribution of monetary
payments µr̂ = 1.049 [0.533− 1.652], which corresponds – on average over the poste-
rior distribution – to an “ignorance” intuition as mentioned previously, i.e., that partic-
ipants intuitively do not distinguish between dself and ×other. However, note the large
degree of uncertainty of this estimate with a 95 % probability that µr̂ is between 0.533
and 1.652. This will be important for discussing potential mechanisms of the treatment
effect should noise in monetary payment perception be higher in the Treatment group.
This leads to the analysis of group-specific parameters. Recall that the primary goal

of the chosen treatment variation was to increase noise levels in the Treatment group,
but without pre-specifying if the variation would influence ν β

1−β
or ν self

other
more strongly.

Regarding ν β
1−β
, the probabilistic model does not indicate a difference between the Base-

line and Treatment group with overall very similar levels of ν β
1−β ,B = 0.186 [0.143− 0.23]

and ν β
1−β ,T = 0.181 [0.121− 0.243]. Based on the posterior samples, I can also directly

calculate probabilistic statements about a potential difference, which indicates that
P(ν β

1−β ,B < ν β
1−β ,T)= 0.434, confirming the conclusion of no difference. This is also sup-

ported by the hyper-parameters of the preference noise distribution (on the log scale)
not differing between groups with µ

ν β
1−β

B - µ
ν β

1−β
T = -0.033 [-0.371− 0.301] (see Table

A7). While there is, therefore no group difference, note that both P(ν β
1−β ,B > 0)= 1

and P(ν β
1−β ,T > 0)= 1. This implies that altruistic preferences are not perceived “noise-

lessly”, yet the chosen treatment variation – encapsulating monetary payments in to-
be-calculated sums – did not affect (the noise of) this perception.
This is in contrast to noise in perceiving monetary payments: Here, the probabilistic

model suggests that the treatment variation did, in fact increase noise levels: ν self
other ,B

=

0.313 [0.259− 0.367], ν self
other ,T

= 0.399 [0.325− 0.475] and µ
ν self
other

T - µ
ν self
other

B = 0.244 [0.045−
0.445] (see Table A7). Higher noise levels in the Treatment group translate into lower
values of α, i.e., αT = 0.862 [0.817− 0.905] and αB = 0.911 [0.882− 0.938]. Moreover,
with P(ν self

other ,B
> ν β

1−β ,B)= 0.998 and P(ν self
other ,T

> ν β
1−β ,T)= 0.999, noise in perceiving mon-

etary payments is also generally higher compared to noise in preferences in addition
to the larger group differences.
This leads to a discussion on the origin of the treatment effect, i.e., which hy-

pothesis is most supported by the data. Larger group differences in noise levels in
perceiving monetary payments strongly suggest that the treatment variation – and, in
turn, the mechanism of the observed treatment effect – operates through differences
in monetary payment perception. In particular, higher levels of ν self

other ,T
leading to fewer

choices for self suggest H1b as a candidate hypothesis and a partial adjustment towards
some “intermediate” payment perception as the driver of treatment differences. How-
ever, the probabilistic model does not conclusively support this conclusion: With the

23



large degree of uncertainty surrounding µr̂ and the fact that both δB = 1 [0.951− 1.05],
δT = 1 [0.925− 1.076] and P(δT > δB)= 0.496, i.e., no group difference in the prior-
induced threshold despite higher noise levels in the Treatment group, the experimental
data does not provide sufficient support for a strong claim in favor of H1b.
This becomes more evident following a model comparison in Figure A6. There, I

compare the predictive power of the “full” model (equation 7) with various simpler vari-
ants, each one abstracting from a potential mechanism of the treatment effect.1⁷ While
the “full” model provides the highest goodness-of-fit among all models considered, the
differences compared to the simpler models are relatively minuscule.1⁸ Importantly, the
simpler variants include a model that only incorporates noise in altruistic preferences,
which performs nearly as well as the “full model”. This, in turn, prohibits discarding
H1c entirely.1⁹

Result 2: The exact origin of the treatment effect in altruistic choices, i.e., its mechanism,
cannot be conclusively identified based on the altruism data alone.

Aside from the unclear mechanisms of the treatment effect, the probabilistic model
nonetheless captures average and individual behavior well. The average predicted
choice curve in panel (b) shows a strong overlap between average and predicted
choices, with comparably tight HDI. In Figure A5, I further plot individual average and
predicted choices with a rank-correlation of ρ = 0.99 between predicted and actual
individual average decisions. Overall, these results thus support the general modeling
approach.

4.3 Number Comparison Task: Theory and Descriptives

As stated, the evidence thus far does not conclusively inform about the origin of the
treatment effect in altruistic choices. Therefore, I further investigate the mechanism of
the treatment variation with the data from the number comparison task. This data is

17 More specifically, I formulate models that either set (i) the payment prior mean µr̂ = 1 or (ii) the
noise in altruistic preferences ν β

1−β
= 0, or (iii) the noise in monetary payments ν self

other
= 0. I also

include a (iv) standard random utility benchmark for reference. I inspect ELPDWAIC values which
measure the goodness-of-fit minus a model complexity penalty (Watanabe, 2013) and provide a
computationally less demanding approximation to leave-one-out out-of-sample prediction accuracy
(Vehtari et al., 2017) while accommodating model uncertainty.

18 With all variants of the “full model” outperforming the standard random-utility benchmark –
supporting the overall modeling approach.

19 More concretely, this result suggests that the possibility remains that the mechanism of the treat-
ment effect still operates through an increase in noise in preferences, yet that this increase cannot
be conclusively identified and separated from an increase in noise in monetary payment perception
in the “full” model. This also fits the relatively small differences in the indifference value between
Baseline and Treatment (Figure 3).
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insightful as the choice in the number comparison task share similar “mechanics” with
the altruistic choices (comparing two numbers), while abstracting from any subjective
altruistic preference. Akin to equation 7, the choices in the number comparison task
can be understood as a result of the following choice function:

Pr[(A ≻ B × 1/2] = Φ

 

α
′ × ln

�A
B
�

− ln(1
2) − ln(δ

′
)

ν2
A
B
α′

!

(9)

where AB is the ratio of numbers A and B (previously self and other), α
′
= 1

1+ν2
A
B

and

δ′ = 1

µ1−α′

r̂′

. Equation 9 assumes that the term 1/2 – an objectively stated constant – is

perceived without noise (as opposed to the term β

1−β in equation 7). Assuming that the
treatment variation works similarly across domains (i.e., that the treatment impacts
ν self
other
and ν A

B
similarly) and that this functional form is appropriate, investigating the

number comparison data allows to compare between H1b and H1c: if H1b is the driver
behind the treatment effect, the treatment effect will be qualitatively similar in the
number comparison task and an “intermediate” perception will lead to fewer choices
for A. If, in contrast, H1c is the appropriate hypothesis (and in turn, an increase in noise
in preferences dominated noise in monetary payments previously), an increase in noise
will increase choices for A, given µr̂′ ≥ 1.
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Figure 5. Number Comparison Baseline and Treatment group This plot shows the association be-
tween average choice for A and distinct values of the ratio A

B , separately drawn for the Baseline and
Treatment group with 95% confidence intervals around mean values.

The group differences in behavior in the number comparison task are shown in
Figure 5, which plots the average choices for A as a function of AB , separately drawn
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for Baseline and Treatment. This data offers several insights: First, the Baseline group
again shows a steeper association between choices and changes in the values of AB
compared to the Treatment group. This translates into the Baseline group identifying
the correct solution in 96,98% of trials compared to 92.26 % in the Treatment group
(p< 0.001).2⁰ The Treatment group also decides less often for A (i.e., thus errs asym-
metrically): ĀB = 0.388, ĀT = 0.351(p< 0.001). Both observations are confirmed by a
linear probability model in Table A4, which tells that the Treatment group decides 3.7
percentage points less for A and an increase in AB by 1 has a 9 percentage points lower
effect in the Treatment group compared to the Baseline (similar conclusions are drawn
based on a Probit model in Table A5). Another apparent observation is that choices
are much more consistent in the number comparison task than altruistic choices. This is
unsurprising given that the common threshold of 1/2 replaces an individual-specific pref-
erence threshold, which eliminates choice differences due to individual heterogeneity
in altruistic preferences and noise in its perception.

Result 3: In the number comparison task, The Treatment group again shows a flatter
association between changes in numerical magnitudes and choices and decides less often
for A.

Transporting these findings to the previous results in altruism choices – and assum-
ing the treatment variation works similarly across tasks – a common explanation for the
treatment effect in both groups would be the mechanism underlying H1b: Participants
rely on an intuition that 0<

bA
bB < 1 (and 0<

dself
×other

< 1), which in particular biases the
perception of larger ratios downwards and turns the Treatment group towards fewer
choices for A and self. I now turn to a closer inspection of the mechanism, again using
a probabilistic model.

4.4 Number Comparison Task: Probabilistic Model

Equivalent to Section 4.2, I can estimate a probabilistic model based on the number
comparison data and investigate the probability of the parameter values of equation 9.
The estimated parameters are shown in panel (a) of Figure 6.
Due to the absence of altruistic preferences in the choice rule, the treatment-group

invariant parameters now consist of only the mean of the prior numerical magni-
tude. The probabilistic model indicates that µr̂′ = 0.483 [0.393− 0.603], which corre-
sponds to an “intermediate” intuitive perception of numerical magnitudes, that intu-
itively bA

bB < 1. Before interpreting the impact of this prior on choices in more detail, it

20 To maximize payoffs, subjects should choose B whenever AB < 0.5 and choose A whenever AB > 0.5
(vertical red dashed line at AB = 0.5).
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mean median sd hdi 2.5% hdi 97.5% R̂

Base Parameters:

Prior Mean Num. Magnitudes µr̂′ 0.515 0.51 0.056 0.411 0.625 1

Group Specific:

Noise Baseline ν A
B ,B 0.198 0.197 0.009 0.18 0.216 1

Noise Treatment ν A
B ,T 0.286 0.286 0.014 0.26 0.315 1

Weight on Payments Baseline α
′

B
0.962 0.962 0.003 0.955 0.969 1

Weight on Payments Treatment α
′

T
0.924 0.924 0.007 0.91 0.937 1

Prior Threshold Baseline δ
′

B
1.026 1.026 0.004 1.017 1.034 1

Prior Threshold Treatment δ
′

T
1.052 1.052 0.01 1.032 1.073 1

(a) Parameters posterior summary
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Figure 6. Model Summary Number Comparison (a) Estimated parameter values of equation 7 based
on 10000 posterior samples (+ 1000 warmup) per each of four chains. Parameters correspond to the
mean of log-normal hyper-distributions. Mean, median and sd refer to the mean, median and standard
deviation of the posterior distribution draws. HDI 2.5% and HDI 97.5% indicate the borders of the 95%
highest-density interval (HDI). R̂ is a diagnostic of convergence of the Markov chains (R̂ = 1 indicating
convergence). (b) Average and predicted choices, including 95% HDI.

is useful to inspect the differences in noise(-related) parameters across groups first:
Again, noise (now in perceiving numerical magnitudes) is larger in the Treatment ver-
sus the Baseline group with ν A

B ,T = 0.286 [0.26− 0.315] and ν A
B ,B = 0.198 [0.18− 0.216]

and P(ν A
B ,T > ν AB ,B)= 1. Note also that µ

ν A
B

T −µ
ν A
B

B = 0.370 [0.236− 0.505] (c.f. Table A8).
Due to larger noise levels in the Treatment group, the weight on payments is conse-
quently smaller with α′T = 0.924 [0.91− 0.937], α′B = 0.962 [0.955− 0.969].
Comparing these parameter estimates to the values in Figure 4, several differences

emerge: First, the values of ν A
B
are smaller compared to the values of ν self

other
, yet the

treatment effect, i.e., µ
ν A
B

T −µ
ν A
B

B is larger compared to µ
ν self
other

T −µ
ν self
other

B . One possible ex-
planation could be that noise in preferences previously counteracted some of the effects
of the noise in number increase, leading to a smaller treatment effect in parameters
and behavior.
The most striking difference, however, is that the mean of the numerical magnitude

prior, i.e., µr̂′ is now much better identified (tighter HDI) and its value allows for a
clear statement on the origin of the treatment effect: Based on the posterior samples,
I calculate that P(µr̂′ < 1)= 1, lending strong support to an “intermediate” intuitive
numerical magnitude perception. Importantly, this translates into P(δ′B > 1)= 1, P(δ′T >

1)= 1, too, which implies strong evidence for a (noise-induced) bias towards fewer
choices for A in both groups (matching the direction of the treatment effect). This bias
is also larger in the Treatment compared to the Baseline group given P(δ′T > δ

′
B)= 1.

Overall, the probabilistic model based on the number comparison data thus yields
a much clearer indication of how the treatment effect operates, namely through a bi-
ased perception of numerical magnitudes. In particular, larger values of AB are being
perceived as smaller under noise, which leads to a bias towards B more generally. This
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more precise interpretation contrasts the more ambiguous explanations for the treat-
ment effect discussed in Figure 4.

Result 4: The probabilistic model of the number comparison behavior indicates a high
probability of an “intermediate” perception of numerical magnitudes as the driver of the
treatment effect.

Furthermore, the individual choice curves depicted in panel (b) of Figure 6 show
that the average choices are close to the HDI areas, indicating that the structural
estimates reasonably recover average behavior. Figure A5 supports this with a rank-
correlation of ρ = 0.94 between average and predicted individual choices for A. How-
ever, especially in the Baseline group, the intervals sometimes do not include the av-
erage behavior, which indicates that the chosen functional form can not fully explain
these data points. However, in comparison with a “pure noise” model that abstracts
from any influence of the numerical magnitude prior, the model specification in equa-
tion 9 is superior as indicated by the ELPDWAIC values (see Figure A7). This strongly
suggests that a single parameter ν A

B
is unable to capture the behavior of participants in

the number comparison task and suggests that an additional driver, here a numerical
magnitude prior with an “intermediate” mean, is at play.
Applying the findings from the number comparison data to the altruistic choices

provides much stronger support for H1b: Under the treatment variation, participants
relied relatively more strongly on an intermediate intuitive perception thatdself<×other,
i.e., that the payment prior mean 0< µr̂ =

dself
×other

< 1. This interpretation also fits to the
nature of the treatment variation: Encasing monetary payments in to-be-calculated
sums instead of showing plain values predominantly biases the perception of mone-
tary payments instead of altruistic preferences. This also matches the previous finding
in Figure 4 that the treatment effect mainly increased noise in perceiving monetary
payments.

4.5 Identification, Noise in Altruism and Nature of the Treatment Effect

However, a caveat to this interpretation is that it requires an explicit “logical transfer”
from the number comparison to the altruism domain, as the altruism data alone did not
allow to uncover the origin of the treatment effect. This is related to the identification of
the model, which is – despite the simplifying assumption of σb̂→∞ (i.e., no influence
of a prior about altruistic preferences) not entirely given and thus may characterize a
weakness of the approach. While identifiability has a different connotation in Bayesian
models compared to a more classical understanding, one way to think about identifi-
ability is the difference between the prior and posterior (parameter) distribution, i.e.,
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how informative the data is (see, e.g., Xie & Carlin, 2006). Prior predictive checks in
Figure A4 show that the parameter values and HDI (and corresponding behavior) based
on the chosen priors differ from the posterior parameters in Figure 4. A notable excep-
tion to this is the mean of the monetary payment prior, where the posterior distribution
is wider, again questioning the full identifiability of the model.
Related is a critique that, in turn, calls into doubt whether (modeling) noise in

altruistic preferences is necessary to explain altruistic behavior in the present setting
and if – instead – assuming only noise in perceiving numerical magnitudes is perhaps
the more appropriate (and parsimonious) assumption. This seems especially pertinent
given that the treatment effect likely operates through biased numerical magnitude
perception as discussed above and that a model that excludes noise in altruistic pref-
erences performs almost as well as the full model in the model comparison in Figure
A6.
To address both critiques—that of a “mere logical transfer” and the possibility

that modeling noise in altruistic preferences may be unnecessary, I now combine the
datasets from both tasks. This approach allows to jointly estimate the parameters of
equations 7 and 9. More specifically, I define a joint monetary payment and numerical
magnitude noise term ν self,A

other,B
that, alongside joint µr̂, is estimated from both number

comparison and altruistic choices, whereas ν β
1−β
and β are estimated from only the

altruistic choice data. For the model estimation, this simply requires to include two
likelihoods, again demonstrating the high flexibility of Bayesian methods.
The resulting parameter values of the combined estimation are shown in the ap-

pended Table A9. The combined model confirms the conclusions drawn previously:
With P(µr̂ < 1)= 1, P(δT > 1)= 1 and P(δB > 1)= 1, the combined model provides
strong support in favor of a (noise-induced) biased ”intermediate” numerical perception
in favor of fewer choices for self and A. Compared to Figure 4, these more assertive
probabilistic statements are due to much tighter posterior distributions, particularly
around the prior mean, and speak in favor of increased identifiability of the jointly
estimated model. The combined model further indicates – similar to above – a larger
treatment effect for noise in monetary payments and numerical magnitudes than altru-
istic preferences (see Table A9).
One notable difference between the model based on the combined dataset and the

original model is that, with P(ν β
1−β ,B > ν self,A

other,B ,B)= 1 and P(ν β
1−β ,T > ν self,A

other,B ,T)= 0.997 the
combined model now indicates a higher level of noise in altruistic preferences. This is
first evidence against the argument that altruistic preferences are perceived without
noise. Further evidence against this argument is provided by the model comparison in
Figure A8. There, I formulate a model that assumes ν β

1−β
= 0, but now use the com-

bined dataset for model estimation. In contrast to Figure A6, such a simpler model
now performs considerably worse in explaining altruistic choices. Accounting only for
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noise in numerical magnitude and monetary payment perception is thus insufficient for
explaining altruistic choices. Finally, a simple linear regression in Table A6 shows that,
given participant and game fixed effects (which account for individual differences in
altruism and cognitive noise), the inconsistency in a given trial is significantly higher
in the altruism compared to the number comparison task, underscoring the previous
line of argument.

4.6 Alternative Explanations for the Treatment Effect

So far, the discussion has centered around the mechanism of the treatment effect oper-
ating through an increase in cognitive noise. On a more critical note, one might argue
that some other (unintended) effect of the chosen variation is responsible for the differ-
ences between treatment groups beyond the mechanisms proposed by the theoretical
model.
I discuss several alternative explanations in Section A.3.3. For example, one argu-

ment could be that the treatment effect (i.e., the aforementioned intuition) is “learned”
over the repeated trials of the experiment, which in turn could limit the external va-
lidity of the results. However, treatment differences towards more altruism already
materialize in the initial 10 (hypothetical) practice trials. Similarly, I find to impact of
the round variable, i.e., in which trial a decision was made, on altruistic choices. I also
do not find evidence for a (growing) difference in fatigue as the driver of the treatment
effect and provide arguments against a purely “mechanical” increase in altruism due
to how I constructed the sums of the Treatment group. Furthermore, in Section A.3.4,
I estimate heterogeneous treatment effects and show that the treatment variation did
not work systematically differently for participants, who, e.g., expect or hold different
norms between the baseline and treatment variants of the altruism task. Most personal
characteristics do not meaningfully contribute to heterogeneity in the treatment effect;
if anything, the treatment effect is slightly weaker for participants scoring high on
self-reported altruism and “Need for Cognition”.
Overall, the best guess on the treatment effect’s origin is that participants quickly

understand how the task works: “less-for-me” vs. “more-for-other”, which is reflected
in their intuitive perception of the respective monetary payments and numerical magni-
tudes. I will return to this point and its potential implications in more detail in Section
5.

4.7 Altruism, Number Comparison and Cognitive Ability

I now explore H2 and H3, i.e., whether behavior in altruistic choices and number com-
parison is correlated and if measures of cognitive ability correlate with individual mea-
sures of cognitive noise.

30



4.7.1 Altruistic Choices and Number Comparison. As stated earlier, if similar cognitive
processes (partly) guide altruistic choices and number comparison, I expect to see
some association between behavior in both tasks. Given that the numbers featured
in the trials of the altruism choices and the number comparison task are identical,
I can closely examine possible relationships. Table 1 contains the results of a linear
probability model that explores if choices for self in the altruism choices correlate with
future choices in the number comparison task in the exact same trial.21 With multiple
iterations per group of trials, I can include both participant- and game- (one game
consisting of the five repetitions of a given trial) fixed effects, with the former including
the treatment effect.

Table 1. Correlation of choices between tasks

(1) (2) (3)

A chosen 0.048*** 0.045***
(0.008) (0.010)

Correct Number Comparison 0.029*** 0.006
(0.009) (0.010)

N 60000 60000 60000
Participant Fixed Effects Yes Yes Yes
Game Fixed Effects Yes Yes Yes
Clustered Standard Erorrs Yes Yes Yes
Unique Obs 300 300 300
R

2 0.001 0.000 0.001

Note: Linear Probability Model. Dependent variable is the choice for self.
Clustered standard errors (participant-level) in parentheses. * p < 0.1, **
p < 0.05, *** p < 0.01.

Column 1 shows that if a person will choose A in a given trial, they are 4.8 percent-
age points more likely to choose self. Moreover, by Column 2, more correct choices in
a given trial also positively correlate with choices for self: A person is 2.9 percentage
points more likely to choose self if they will identify the correct solution in the number
comparison in that trial. This implies that factual errors in the number comparison cor-
respond to more altruistic choices, which is consistent with the Treatment group being
both more altruistic and making more errors in the number comparison task (but re-

21 As I have five repetitions of each unique trial in both tasks, I need to match the data between
tasks on an occurrence variable, which tracks in which order a participant encountered a given
trial in a given game (i.e., a group of identical trials). I thus match the choices of the first altruism
trial of a given game to the first number comparison choice in the same game, and so on.

31



call that I control for treatment differences with participant fixed effects). However, the
correlation between correct and selfish choices vanishes once I include the choice for
A in column 3. This can be explained by the fact that both the Baseline and Treatment
group errs on the side of A, i.e., chooses A not often enough (see Figure 5).
In addition to choices, inconsistencies across tasks are (moderately) correlated, too:

The average standard deviations in the altruism task and the number comparison are
positively correlated in both the Baseline (ρ = 0.256, p= 0.0015) and the Treatment
(ρ = 0.139, p= 0.089) group. Participants who are more inconsistent in their altruistic
choices are thus also slightly more inconsistent in the number comparison task (yet to
a smaller extent in the Treatment group).
Leveraging the multivariate normal setup of both the base (Section 4.2) and com-

bined probabilistic model (Section 4.5), I can further inspect individual correlations
between the noise in monetary payments (and numerical magnitudes) and altruistic
preferences independent of the treatment effects. The base model yields a high positive
correlation with ρ(ν self

other
,ν β

1−β
)= 0.576 [0.295− 0.845], yet the combined model a very

small and even slightly negative correlation of ρ(ν self,A
other,B

,ν β
1−β

)= -0.096 [-0.218− 0.024].
Overall, this, therefore, only yields mixed evidence in favor of a positive association
between noise across domains.
Alternatively, I can also correlate individual values (i.e., means of posterior distribu-

tions) of ν self
other
from the base model and ν A

B
from the number comparison model (Section

4.4). The overall correlation between these values is ρ = 0.155, p= 0.007, which indi-
cates a small positive association between the two. If I separate the data by treatment
group, I obtain ρ = 0.245, p= 0.002 for the Treatment and ρ = 0.059, p= 0.470 for
the Baseline group, which suggests that noise across tasks is positively related only
within the Treatment variant of the task. Notably, the Treatment correlation coefficient
of 0.245 is very similar in magnitude to the reported rank correlation coefficient of 0.26
in Frydman and Jin (2022). There, a parameter n (that indicates the precision of the
mental representation of monetary payoffs in their model) correlates between a risky
lottery and a “perceptual” choice task in which participants had to identify if a given
number shown is larger or smaller compared to some reference number. The fact that
the correlation is smaller in the Baseline group here could be related to the fact that
the number comparison task is relatively easy given sufficient time which in turn leads
to a high choice consistency that somewhat mutes the impact of individual noise.22 As
Section 4.8.1 shows, thinking times – a common measure of decision difficulty – are
positively correlated across tasks in both the Baseline and Treatment group.

22 Note also that, in the number comparison task, participants know there exists a correct solution and
even though taking longer reduces the eventual payoff, they often invest ample time to find the
correct answer. This is a marked difference compared to the altruism choices, where no objectively
correct solution exists.
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Overall, I evaluate the presented evidence as tentative support for H2 and that pro-
cesses which guide imprecisions in number comparison also partly guide imprecisions
in altruism choices if gathered in a similar way, although the link is not as straightfor-
ward as in previous work.

Result 5: Behavior and choice inconsistency, as well as individual noise measures are
moderately positively correlated between altruistic choices and number comparison.

4.7.2 (Self-reported) Cognitive Ability and Individual Measures of Noise. I now investigate
H3, i.e., test for a negative relationship between individual measures of cognitive ability
and cognitive noise. I compute correlations between the CRT, BNT, and NFC scale
as well as the preferences for intuition and deliberation scale and self-reported math
abilities with individual structural measures of noise, i.e., both ν self

other ,i
and ν β

1−β ,i from the
base model (Section 4.2). For further reference, I also include the altruistic preference
parameter βi as well as more altruism-related measures. Table 2 contains the rank
correlation coefficients between the various measures and structural parameters:

Table 2. Correlation structural parameters and individual characteristics: Cognition and altruism

Noise Altr. Preference
ν β

1−β ,i

Noise Monetary Payments
ν self

other ,i

Altr. Preference
βi

Cognition-related:

No. Correct CRT -0.327*** -0.274*** 0.126*
Berlin Numeracy Test -0.247*** -0.276*** 0.173**
’I am good at math’ -0.197*** -0.149** 0.059
Avg. Need for Cognition -0.150** -0.163** 0.125*
Avg. Deliberation 0.098 0.150** -0.142*
Avg. Intuition 0.066 0.119* -0.097

Altruism-related:

Dictator Game Other -0.120* -0.357*** 0.495***
GPS Donation 0.063 -0.049 0.146*
GPS Value Gift -0.048 -0.107 0.137*

Note: Need for Cognition, Deliberation and Intuition averaged values. Self-reported math abilities are
elicited on a 0-10 scale. Individual parameter estimates taken from model in Section 4.2. p-values
from pairwise rank-correlation tests (n = 300). * p < 0.1, ** p < 0.05, *** p < 0.01.

Focusing on the first column, I observe a negative correlation between the number
of correct items in the Cognitive Reflection Test and individual measures of both ν β

1−β ,i

and ν self
other ,i
. Similarly, the higher the score on the Berlin Numeracy Test, the higher self-

reported math capabilities and “Need for Cognition”, the lower the individual estimate
of both noise terms. These associations – though only correlational – underscore an
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important point: The proposed theoretical model and the ν β
1−β ,i and ν self

other ,i
parameters,

in particular, indeed appear to relate to a cognitive component of the process of making
altruistic choices, which provides validating evidence for the overall approach. This is
in line with the above-mentioned work that shows how CRT performance correlates
with biases and mistakes in choices (Assenza et al., 2019; Augenblick et al., 2022;
Chew et al., 2022; Oprea, 2024). In contrast, self-reported preferences for deliberation
and intuition do not meaningfully correlate with ν β

1−β ,i and only to a slight extent with
ν self
other ,i
.

Result 6: Individual measures of cognitive noise negatively correlate with cognitive
ability as measured by performance in the Cognitive Reflection Test and Berlin Numeracy
Test.

Table 2 further contains correlations with the values of the altruistic preference
parameter βi. These values correlate positively with the amount a participant gave to
another person in the simple dictator game and also, albeit to a much lesser extent,
with the hypothetical donation and gift-giving decision from the GPS. Furthermore,
βi positively correlates with the CRT and BNT performance23, whereas ν β

1−β ,i and even
more so ν self

other ,i
negatively correlates with the amount given in the simple dictator game.

While I abstain from hypothesizing on the origins of this nexus, it could be
related to the particular structure of the hierarchical model: Both the correla-
tion between noise in monetary payments and altruistic preferences, ρ(ν self

other
, β

1−β )=

-0.277 [-0.519− -0.034], as well as noise in altruistic preferences and altruistic prefer-
ences ρ(ν β

1−β
, β

1−β )= -0.768 [-0.868− -0.661] are negatively correlated, which in turn
could explain the above-mentioned patterns.

4.8 Response Times and Metacognition

I now turn to study two core components insightful for choice processes: response
times and measures of “metacognition,” which – as understood here – comprise several
measures of participants’ subjective thinking about their choices.

4.8.1 Response Time. I begin by investigating response times (RT), i.e., the amount
of time a participant took to decide in both tasks. RT is a highly informative variable of
the choice process in psychology and cognitive science (see e.g., Luce, 1991) with the
following “standard results“: for discriminating between stimuli, RT is higher the more
similar the stimuli which is often attributed to a higher trial difficulty. This is true both

23 But note that there is no correlation between CRT performance and the average choice for self:
ρ = −0.089, p= 0.123.
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for physical stimuli, such as the brightness of two lights (see, e.g., Pins & Bonnet, 1996,
“Pierons Law”), as well as for numerical stimuli, such as two Arabic numerals (see, e.g.,
Moyer & Landauer, 1967).
For economic research, arguably the most important insight from RT stems from

its close relationship to the strength of preference. Similar to the perceptual difficulty
described above, the closer a subject is to indifference in an economic choice task, the
longer their RT (see, e.g., Alós-Ferrer & Garagnani, 2022). RT has also been used to
investigate social preferences, especially under the umbrella of dual-process models
with fast (slow) decisions usually attributed to intuitive (deliberate) reasoning. Time
pressure studies concluded that people intuitively tend towards cooperation (Rand &
Kraft-Todd, 2014; Rand et al., 2012) (“Social Heuristics Hypothesis”), and that “fair-
ness is intuitive” (Cappelen et al., 2016).2⁴
In the present setting, I analyze RT and its correlation with behavior from various

angles. First, a straightforward test is to investigate if the treatment variation, aimed at
increasing the cognitive difficulty, actually leads to higher RT in the Treatment group.
This is the case: On average, participants in the Baseline group took 1.33 seconds to
decide on the altruism task, whereas participants in the Treatment condition took 2.02
seconds (p< 0.001). The difference is more pronounced in the number comparison
task, with a mean RT of 1.36 seconds in the Baseline and 2.6 seconds in the Treatment
group (p< 0.001). This supports the treatment intention that the to-be-calculated sums
increased the difficulty of deciding in both tasks. Within individuals, RT between the
two tasks is (moderately positively) correlated both in the Baseline (ρ = 0.25, p< 0.01,)
and Treatment (ρ = 0.238, p< 0.01) group. Participants for which the altruism task was
more difficult thus also had a higher difficulty in identifying the solution in the number
comparison task (equating longer RT with choice difficulty).
I also investigate the distribution of RT and its relationship with the strength of

preference. For this, the individual structural estimates outlined in Section 4.2 and 4.3
can be utilized: These estimates allow to infer the (mean) indifference values, i.e., at
which value a subject is indifferent between self and other (ßselfother i), resp. A and B (eAB i).
I can then calculate the difference of the ratio of a current trial j to that indifference
value (∆àselfother ij =

self
other j −

ßself
other i) and investigate how the RT of participant i in trial j relates

to that difference.
Figure 7 plots the average RT (in a given trial) as a function of the difference to the

individually predicted indifference value. For the data points, I aggregate over individ-
uals according to the value of ∆Þselfother and ∆eAB and scale the size of the data points pro-
portional to their relative frequency. The polynomials are fitted to the non-aggregated

24 This conclusion, however, has been challenged by subsequent work: Krajbich et al. (2015) show
how such claims are often unwarranted once discriminability of choice options is accounted for.
Similar findings are obtained by Merkel and Lohse (2019).
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Figure 7. Distribution of RT and Distance to Predicted Indifference Ratio ∆
Þself
other ij

= self
other j

−Þself
other i

,

where Þself
other i

=
gself

àother i

: Pr(selfi,
Þself
other i

) = 0.5 and eA
B and ∆

eA
B are constructed accordingly. The fit is from

a local polynomial regression (with 95% confidence intervals). In addition, average data points are
depicted with the size of the point proportional to its relative frequency.

data. From this Figure, it becomes apparent that RT follows the usual pattern with its
peak around the indifference value, i.e., that RT is largest at those ratios where the
model predicts indifference.2⁵ I consider this as validating evidence that the probabilis-
tic model and the proposed decision rule in Section 2 (and Section 4.3) are useful in
conceptualizing how subjects made their choices in both tasks and in understanding
the respective decision difficulty.

Result 7: Response Times are larger in the Treatment Group and largest where the
probabilistic model predicts indifference.

25 Vieider (2024b) goes a step further and shows that the distribution of individual predictions of
indifference exhibits a more pronounced pattern with RT compared to the expected value of
lotteries, but in the present setting, such a direct benchmark is not available (at least not for the
altruism data).
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RT and Choices I also investigate correlations of RT with choices. Table 3 contains 4
Probit models that regress choices for self respectively A on the amount of RT. I log-
transform the RT variable to reduce the impact of outliers (see e.g., Alós-Ferrer et al.,
2016). I add participant fixed effects, which contain the treatment effect (columns 1
and 3) as well as game fixed effects (columns 2 and 4). In the first two columns, I ob-
serve a small positive and insignificant coefficient of the RT variable on the probability
of choosing self. I thus do not observe a strong correlation between the amount of time
a person took to decide and the level of altruism (even though the general treatment
effect would also be consistent with a “fairness is intuitive”, i.e., quick, narrative). In
contrast, I observe a pronounced positive relationship between RT and choices for A in
columns 3 and 4. Longer RT is thus associated with a higher probability of choosing
A, which could be interpreted that fast, intuitive answers lead participants to choose B,
while more careful deliberation leads to A more often.

Table 3. Correlation of RT with behavior

(1) (2) (3) (4)

self
other , A

B 5.160*** 7.824***
(0.086) (0.107)

RT (log.) 0.034 0.020 0.482*** 0.320***
(0.021) (0.022) (0.018) (0.019)

Data Altruism Altruism Number Comp. Number Comp.
Participant FE Yes Yes Yes Yes
Game FE No Yes No Yes
N 72000 72000 60000 60000
Clustered Standard Errors Yes Yes Yes Yes
Unique Obs 300 300 300 300

Note: Probit Model. Columns (1) and (2) use data from the altruism choices and
the dependent variable is the choice for self, columns (3) and (4) from the num-
ber comparison with choice for A as dependent variable. Clustered standard errors
(participant-level, “bias-reduced linearization” Pustejovsky and Tipton (2018)) in paren-
theses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Result 8: In the number comparison task, higher RT (i.e., more “deliberate” choices)
corresponds to more choices for A.

4.8.2 “Metacognition”. In addition to RT, I investigate the relationship between behav-
ior and measures of “metacognition”, i.e., measures on how participants think about
their decisions. Recent literature shows how metacognition can play an important role
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in explaining (biases in) economic choices. Enke and Graeber (2023) show how self-
reported cognitive uncertainty, i.e., “people’s subjective uncertainty over which decision
maximizes their expected utility” Enke and Graeber (2023, p. 2021) is predictive of a
compression effect in various domains from risky choice to belief updating. Olschewski
and Scheibehenne (2024) illustrate how information on metacognitive awareness of
one’s cognitive imprecisions improves Bayesian decision models in sample estimation
tasks. Further, Oprea (2024) documents that self-reported measures of attention and
noise correlate with prospect-theoretic behavior.
I can, too, explore the links between (noise in) altruistic choices and number com-

parison and metacognitive self-reports. These comprise of self-reported measures of
confidence (similar to the inverse of cognitive uncertainty), attention, and the precision
of comparison as well as additional belief-based measures from the number comparison
task. I (i) first test for treatment differences in these metacognitive measures, and (ii)
investigate their correlation (on a subject level) with the main choice data.

Table 4. Treatment effects metacognition

Baseline (avg.) Treatment (avg.) p

Altruism:

Negative Confidence 0.304 0.318 0.643
Avg. Attention 0.731 0.698 0.127
Precision 0.364 0.382 0.573

Number Comparison:

Avg. Attention 0.761 0.705 0.007***
Precision 0.568 0.447 <0.001***
|∆ Belief Correct| 0.084 0.163 <0.001***
Belief Correct Confidence 0.785 0.651 <0.001***
|∆ Belief Time Spent| 0.674 0.976 0.01***
Belief Time Spent Confidence 0.638 0.593 0.093*

Note: 7 participants are omitted, where |∆ Belief Time Spent| > 10 in all tests
(i.e., n = 293). p-values from two-sided t-test. * p < 0.1, ** p < 0.05, *** p <
0.01.

Table 4 displays the average values of various measures of metacognition, both
from the domain of altruistic choices as well as number comparison, separately for the
Baseline and Treatment group, alongside the p-value of a two-sided t-test. The first
set of measures in the table contains the negatively-recoded self-reported confidence
(the inverse of how confident subjects are they made the for-them correct decision),
the average attention (a subject paid to the values of self and other), and precision,
(i.e., if participants compared the payments more approximatively or did a precise
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comparison). The negative confidence measure is very similar between both groups
with an average of 0.304 in the Baseline and 0.318 in the Treatment (p= 0.643).2⁶ For
both the self-reported average attention (Baseline: 0.731, Treatment 0.698, p= 0.127)
and precision (Baseline: 0.364, Treatment 0.382, p= 0.573) there is also no group
difference. Overall, there is no evidence of a treatment effect in the metacognitive
measures.
This is markedly different in the number comparison domain: here, participants

in the Treatment group report lower average attention (Baseline: 0.761, Treatment
0.705, p< 0.01) and precision (Baseline: 0.568, Treatment 0.447, p< 0.01). In addition
to these self-reports, the number comparison task offers several additional measures,
which all show clear group differences: in the Treatment group, participants deviate
more strongly in their beliefs from their true performance2⁷, i.e., have a larger |∆ Belief
Correct| (Baseline: 0.084, Treatment 0.163, p< 0.01), report lower confidence in these
belief statements (Baseline: 0.785, Treatment 0.651, p< 0.01), deviated more strongly
in their belief how much time they think they needed in the number comparison (Base-
line: 0.674 sec., Treatment 0.976 sec., p= 0.01) and again report lower confidence in
these estimates (Baseline: 0.638, Treatment 0.593, p= 0.093). Similarly, correlations
between choices, RT, metacognitive measures and choice inconsistencies are overall
more pronounced in the number comparison domain compared to the altruism choices
(see Table A14 in the appendix).

Result 9: Measures of “metacognition” exhibit a strong treatment effect only in the
number comparison task and not in the altruism task. Further, the correlation between
behavior and metacognition is more pronounced for number comparison than for altruism.

5 Discussion of Results and Next Steps

In this paper, I established the following main results: (i) Encasing monetary payments
in to-be-calculated sums causes more altruistic choices in the a simple give vs. take
task. This effect most likely operates through the perception of monetary payment val-
ues, as the effect manifests comparably in the number comparison task. (ii) I observe

26 This, in turn, is similar in magnitude to average cognitive uncertainty measures from typical lottery
or balls-and-urns tasks (see Enke & Graeber, 2023 and Amelio, 2022).

27 See also Figure A11, which plots participants’ beliefs of the average of correct answers (time spent)
and their actual share of correct answers (time spent). Participants consistently underestimate the
amount of correctly solved tasks and overestimate the amount of time spent, which results in a
strong pessimistic bias in the beliefs of the number comparison task.
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correlations in behavior between altruism choices and number comparison, (iii) a pos-
itive association between individual measures of cognitive noise and cognitive ability,
and finally, (iv) a link between RT, metacognition and choices, which however both
reacts more strongly to the treatment variation and is more pronounced in the num-
ber comparison compared to the altruism domain. I discuss each result in more detail,
outlining potential avenues for future research in turn.

(i) Implications of the Treatment Effect A similar treatment effect in the altruism
and number comparison task demonstrates how an intermediate intuition of bA< bB (and
dself<×other) is a candidate driver of the group differences. The exact origins of this
intuition are less clear, but a possible explanation could be an instinctive understanding
of the “rules” of the task, i.e., “less-for-me” vs. “more-for-other”. Not only does the
altruism task carry such simple (and easy to grasp) ”rules”, it consequently also fits to
the statistical environment of the tasks of the experiment as the empirical average ratio
in the average trial amounts to ¯self

other = 0.466 and Ā
B = 0.437. While it remains possible

that an adaptation to the statistics of both tasks over the course of the experiments
explains the origin of the treatment effect, the early emergence of treatment differences
(in the practice trials) and the absence of strong evidence for learning effects (see
Section 4.6) make a quick, intuitive grasp of the task a more likely explanation.
Either way, this challenges a common assumption in the noisy cognition literature

that perceptions of monetary payments of different choice options are intuitively per-
ceived to be the same (see e.g., Khaw et al., 2021). As in the present tasks, other
tasks inherently imply certain statistical proportions and also allow for an instinctive
understanding of the numerical relationship of stakes, e.g., in intertemporal decision-
making (“smaller-and-sooner” vs. “larger-and-later”), or in lotteries, where risky and
safe payoffs are necessarily different.2⁸ This relates to a point in Oprea and Vieider
(2024, p. 33) who explicitly discuss differences between “naive” versus more sophisti-
cated decision-makers when specifying a prior mean parameter. Here, I provide strong
support for the presence of such non-naive intuitions. This has important implications:
If people quickly grasp the “rules” or statistics of typical tasks, this potentially alters
the direction of an increase in cognitive noise.2⁹ While Khaw et al. (2021) attribute
risk-aversion to higher levels of cognitive noise (and Barretto-García et al. (2023) show
the neurological underpinnings of the model), a causal test of this direction is still to be
performed that identifies how behavior actually reacts to an increase in noise, which

28 However, note that e.g., in Vieider (2024b) the objects of perception are “benefits” and “costs” of
risky and safe payoffs, where an intuitive understanding of them being equal is more convincing.

29 But also note that an “overfitting” of prior intuitions to a given statistical environment is not
necessarily a given and not a good strategy across tasks.
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in turn depends on the prior (mean). The to-be-calculated sums proposed here are a
candidate for such a causal test.
However, I fully acknowledge that the interpretation of an intuition reminiscent of

the “rules” of the task is so far purely speculative and not the result of an empirical test.
Future work could therefore investigate the drivers of a potential adaptation and e.g.,
exogenously manipulate choice environments that induce differences in intuitions (akin
to efficient coding studies such as Frydman and Jin (2022) and Polanía et al. (2019) or
Prat-Carrabin & Gershman, 2024) or explicitly model the noisy learning process (see
Poggi (2021) for a start).
In addition, while I theoretically demonstrate how noise in perceiving altruistic

preferences can affect choices, the implemented to-be-calculated sums likely operate
through monetary payment and numerical magnitude perception. An important next
step would thus be to either design and implement a variation that exclusively affects
the noise in the perception of altruistic preferences without affecting numerical percep-
tion. Another possible next step is to compare the effects of the present treatment to
more standard time pressure or cognitive load treatments, which potentially could also
aid in better-identifying parameters of a more extensive theoretical model (that, e.g.,
includes prior beliefs over preferences).

(ii) Correlation of Altruism and Number Comparison The second set of results
shows a (moderate) correlation between behavior and measures of noise in altruis-
tic choices and number comparison: I both observe an increase in choices for self if
a person chooses A in a future “twin”-trial and also if this person identifies the cor-
rect solution later on. Participants who are more inconsistent in choosing between self
and other are also more inconsistent in the number comparison task. Both facts point
towards some common driver between both domains, for which the noisy representa-
tion of monetary payments is a potential candidate. This is similar to conclusions in
Frydman and Jin (2022) and Barretto-García et al. (2023), although the relationship
between economic choice and numerical perception is weaker in the present setting.3⁰
Nonetheless, common to both domains is the necessity to compare, which in turn could
be related to common cognitive processes. Note that I specifically designed both tasks
to be similar to each other. In turn, if such relationships between economic choice and
numerical perception across domains manifest in other settings or what characteristics

30 Note that, in Frydman and Jin (2022) and Khaw et al. (2021), the probability of the lottery
payoff is not only an objective quantity but remains fixed over all trials. Only differences in the
payoffs are thus important for choices, which could render their lottery choice task into a number
perception task (see (Alós-Ferrer & Garagnani, 2022, p. 313).
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of a chosen setting determine this relationship, remains a largely open question and
seems worthy of future investigation.31

(iii) Cognition and Altruistic Preferences The third result shows a correlation be-
tween measures of cognitive noise and cognitive ability. Cognitive processes are thus
likely to play a role at expressing one’s (subjective) preferences, yet a directional asso-
ciation with different levels of altruism is less clear (recall that I did not observe any
correlation between measures of cognitive noise and altruism per se). Similar to the
present treatment effect, this implies that e.g., across contexts of varying complexity,
differences in cognitive ability could nonetheless lead to systematically different be-
havior. Recall also that the association between changes in payments in the Treatment
group was flatter compared to the Baseline group. This “flatness” (or insensitivity) is
at the center of discussions in Enke and Graeber (2023), Enke et al. (2023) and es-
pecially Enke et al. (2024), who establish cognitive uncertainty as the common driver
of such inattentive behavior across over 30 experiments in various decision domains.
Transporting this argument to the present setting, it speaks in favor of a dampened
expression of selfish preferences in the Treatment group. A similar point is raised by
Enke (2024) – in light of discussions on the link between confusion and public goods
contribution – in that information-processing constraints impact the translation of so-
cial preferences into behavior. Similarly, Bao and Pei (2024) interpret cognitive uncer-
tainty as a complementary driver to social preferences in public goods contributions
(see also the public goods game results in Enke et al. (2024)). What this paper adds to
this discussion is that sheds closer light on the mechanism of the dampened expression,
namely through numerical magnitude perception in the present setting, and uncovering
precise estimates on the location of the prior – in the absence of a clear default option
– that dictates how higher noise leads to differences in behavior. At the same time, self-
reported “meta-cognitive” measures seem less relevant for explaining altruistic choice
in the present setting (see iv below).
Ultimately, a dampened expression as the mechanism also provides a more nuanced

angle on the discussion that investigates associations between cognitive ability and eco-
nomic preferences more generally (Burks et al., 2009; Chapman et al., 2023; Falk et al.,
2018; Stango & Zinman, 2023), especially for associations between social preferences
and cognitive ability (Chen et al., 2013; Hauge et al., 2009; Ponti & Rodriguez-Lara,
2015), which mostly focus on associations between the level of preferences and cog-
nitive ability thus far. In line with the interpretation put forward here, Olschewski et

31 For risk elicitation methods, Holzmeister and Stefan (2021) show that the within-person inconsis-
tency in risk elicitations across different methods is related to the subjectively perceived elicitation
complexity, suggesting that the complexity of a setting could potentially guide the impact of
overarching concepts.
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al. (2018) find that in ultimatum game choices, cognitive load mostly increases choice
variability only and does not impact preferences per se.32

(iv) RT and Metacognition The fourth set of results is related to the link between
behavior, RT and metacognition. The main result is the presence of a treatment effect
in “metacognitive” measures in the number comparison, yet an absence of such an ef-
fect in the altruism domain. Correlational analyses further show that the link between
metacognition, RT and choices is weaker in the altruism domain compared to the num-
ber comparison domain. One possible explanation for this could be that in domains
where an objectively correct solution exists, RT and metacognition (which could be
formed from a recollection of the latter, see Kiani et al., 2014) are better calibrated
because a more direct notion of a “correct” solution is available. In turn, the treat-
ment variation, aimed at increasing cognitive difficulty, could have only an effect on
metacognitive reasoning with a clear indication of what a “correct” choice is. This does
not imply that metacognitive judgments are detached from internal processes (see the
discussion in Fleming (2024) for value-based decisions), yet their determinants and
consequences are possibly different and generally remain less well understood (Brus
et al., 2021). Economic tasks often contain a strong subjective component of what is
“correct” and in turn, could imply that the overall link between metacognition and sub-
jective preferences “plays out” differently compared to settings with more clear notions
of choice correctness. This points towards a difference between lottery choices (which
also remain dependent on subjective preferences) and altruism choices: In the former,
a benchmark choice, i.e., the one that maximizes expected value is available. Such a
“virtually objective” benchmark is lacking when making altruistic choices.

6 Conclusion

In this paper, I study altruistic choices through the lens of a cognitively noisy decision-
maker. I ran an experiment that elicited altruistic choices, i.e., choosing between tak-
ing an amount self or giving an amount other. Crucially, the experiment featured a
between-subject manipulation of the cognitive difficulty of choosing in the Treatment
group, which was shown to-be-calculated sums instead of plain monetary values. I ob-
serve both a flatter association between changes in payments and choices as well as
overall more altruistic choices in the Treatment group. After the altruistic choices, I
repeated the trials of the experiment in a comparable number comparison task, where

32 See also an ongoing discussion regarding risk and time preferences and whether cognitive ability
is related to choice mistakes “only” or preferences (Amador-Hidalgo et al., 2021; Olschewski et al.,
2023).
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participants had to judge which of two numbers was larger. In this task, I observe a
similar treatment effect, which suggests that the perception of numerical magnitudes –
in particular an intuitive “intermediate” perception of numerical values – is responsible
for the observed group differences in both tasks. In addition to these treatment dif-
ferences, I observe (correlational) associations between number comparison, cognitive
ability and altruistic choice.
The expression of altruistic preferences – and social preferences more generally – is

thus not immune to the cognitive difficulty of their implementation. This further implies
that at least part of observed pro-social choices are due to (individual differences in)
cognitive noise, which in turn may be related to cognitive ability. This also suggests
that the expression of social preferences is likely to be context-dependent if different
contexts invoke differences in the “noisiness of perception” or have different complexity.
Ultimately, this is an important implication if social preferences are used as the basis
for welfare calculations.
A caveat of this paper remains in that the treatment effect in the experiment re-

mained relatively small and altruistic behavior did not react that much to increasing
noise. However, this could be related both to the fact that altruism choices as oper-
ationalized here remained relatively simple and that the chosen treatment variation
represents a relatively mild increase in cognitive noise. Both, in turn, imply that the
observed group differences are likely a lower bound on the influence of cognitive noise
on social preferences more generally. Other decisions involving social preferences are
often much more complex to carry out: Both in more involved laboratory environments,
e.g., in choosing between payoff allocations as in the popular binary dictator game and
in real-world scenarios featuring social preferences that often involve multiple trade-
offs, decisions are likely more prone to be affected by cognitive noise. Exploring these
effects is a promising avenue for future research.
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Figure A1. Impact of Cognitive Noise on Number Comparison This shows the impact of changes in
noise ν A
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A.2 Graphs and Figures Experiment

Part 1: Altruistic Choices

•Decide between taking payment self or giving other. 240 total trials with intermediate breaks
possible.

•One decision randomly implemented at the end of the experimental session.

Part 2: Number Comparison

•Judge which of two numbers A (previously self) or B (previously other) ×1/2 is larger. 200 trials
total.

•Final payment = 10 e× avg. correct - avg. time in seconds.

Part 3: Additional Data

•Dictator game featuring 10 e , implemented with 1% probability.

•Social and private norm elicitation for altruistic choices, both for Baseline and Treatment
variant; “Excuses” survey.

•Cognitive Reflection Test, Berlin Numeracy Test.

•Surveys (Preferences for Deliberation and Intuition, GPS Altruism, Need for Cognition,
Machiavellianism).

•Demographics.

Figure A2. Graphical Outline of an Experimental Session
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Figure A3. Payment Combinations in Altruistic Choice Task This graph shows the 48 unique combi-
nations of self and other in the experimental trials. Each combination is repeated five times, totaling
240 decisions, with one decision randomly implemented. Note that I instructed participants precisely
like this, but not each trial had the same chance of being drawn: Instead of drawing from a uniform
distribution across trials, I overweighted trials of smaller stakes (i.e., where the sum of self and other
is small) to be more likely to be drawn. Details and implementation are available upon request. The
indifference threshold for a noiseless decision maker with a β = 0.2 is drawn for illustration purposes.
This DM always decides for other in the trials below and for self above this line. Payments are in
Eurocents.
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Table A1. Overview of 240 trials of the altruism task

Game Identifiers Payments Components of Sums (Treatment)

Game
ID

Game
Group

Other Self Self 1 Self 2 Other 1 Other 2

0 1 655 0 0 0 543 112
0 1 655 0 0 0 629 26
0 1 655 0 0 0 490 165
0 1 655 0 0 0 32 623
0 1 655 0 0 0 540 115

1 1 655 34 14 20 638 17
1 1 655 34 23 11 20 635
1 1 655 34 22 12 643 12
1 1 655 34 15 19 14 641
1 1 655 34 22 12 10 645

2 1 655 72 24 48 627 28
2 1 655 72 35 37 34 621
2 1 655 72 58 14 26 629
2 1 655 72 61 11 40 615
2 1 655 72 37 35 35 620

3 1 655 115 31 84 33 622
3 1 655 115 36 79 621 34
3 1 655 115 39 76 617 38
3 1 655 115 28 87 645 10
3 1 655 115 34 81 585 70

4 1 655 163 62 101 11 644
4 1 655 163 12 151 10 645
4 1 655 163 15 148 643 12
4 1 655 163 13 150 643 12
4 1 655 163 140 23 554 101

5 1 655 218 167 51 47 608
5 1 655 218 164 54 509 146
5 1 655 218 172 46 622 33
5 1 655 218 81 137 41 614
5 1 655 218 18 200 122 533

6 1 655 280 170 110 588 67
6 1 655 280 234 46 60 595
6 1 655 280 90 190 104 551
6 1 655 280 161 119 506 149
6 1 655 280 126 154 15 640

7 1 655 352 107 245 557 98

Continued on next page
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Table A1 – continued from previous page

Game Identifiers Payments Components of Sums (Treatment)

Game
ID

Game
Group

Other Self Self 1 Self 2 Other 1 Other 2

7 1 655 352 161 191 68 587
7 1 655 352 227 125 583 72
7 1 655 352 310 42 645 10
7 1 655 352 170 182 486 169

8 1 655 436 68 368 51 604
8 1 655 436 331 105 97 558
8 1 655 436 425 11 485 170
8 1 655 436 326 110 634 21
8 1 655 436 312 124 158 497

9 1 655 535 199 336 471 184
9 1 655 535 413 122 71 584
9 1 655 535 398 137 27 628
9 1 655 535 426 109 478 177
9 1 655 535 222 313 443 212

10 1 655 655 253 402 79 576
10 1 655 655 277 378 82 573
10 1 655 655 332 323 575 80
10 1 655 655 361 294 565 90
10 1 655 655 156 499 419 236

11 1 655 800 740 60 515 140
11 1 655 800 678 122 260 395
11 1 655 800 503 297 635 20
11 1 655 800 311 489 39 616
11 1 655 800 744 56 244 411

12 2 926 0 0 0 850 76
12 2 926 0 0 0 836 90
12 2 926 0 0 0 254 672
12 2 926 0 0 0 418 508
12 2 926 0 0 0 391 535

13 2 926 48 13 35 10 916
13 2 926 48 11 37 10 916
13 2 926 48 36 12 19 907
13 2 926 48 32 16 26 900
13 2 926 48 30 18 914 12

14 2 926 102 84 18 11 915
14 2 926 102 39 63 32 894

Continued on next page
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Table A1 – continued from previous page

Game Identifiers Payments Components of Sums (Treatment)

Game
ID

Game
Group

Other Self Self 1 Self 2 Other 1 Other 2

14 2 926 102 76 26 909 17
14 2 926 102 35 67 19 907
14 2 926 102 66 36 20 906

15 2 926 163 70 93 69 857
15 2 926 163 138 25 28 898
15 2 926 163 111 52 48 878
15 2 926 163 39 124 114 812
15 2 926 163 25 138 17 909

16 2 926 231 214 17 16 910
16 2 926 231 62 169 53 873
16 2 926 231 35 196 914 12
16 2 926 231 67 164 864 62
16 2 926 231 161 70 126 800

17 2 926 308 90 218 45 881
17 2 926 308 101 207 169 757
17 2 926 308 22 286 905 21
17 2 926 308 84 224 38 888
17 2 926 308 173 135 99 827

18 2 926 396 11 385 10 916
18 2 926 396 184 212 733 193
18 2 926 396 74 322 45 881
18 2 926 396 170 226 896 30
18 2 926 396 325 71 187 739

19 2 926 498 63 435 51 875
19 2 926 498 264 234 879 47
19 2 926 498 330 168 273 653
19 2 926 498 325 173 779 147
19 2 926 498 366 132 50 876

20 2 926 617 486 131 200 726
20 2 926 617 410 207 148 778
20 2 926 617 409 208 775 151
20 2 926 617 416 201 186 740
20 2 926 617 106 511 470 456

21 2 926 757 565 192 171 755
21 2 926 757 604 153 106 820
21 2 926 757 480 277 152 774

Continued on next page
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Table A1 – continued from previous page

Game Identifiers Payments Components of Sums (Treatment)

Game
ID

Game
Group

Other Self Self 1 Self 2 Other 1 Other 2

21 2 926 757 557 200 821 105
21 2 926 757 733 24 470 456

22 2 926 926 224 702 647 279
22 2 926 926 79 847 730 196
22 2 926 926 117 809 83 843
22 2 926 926 46 880 727 199
22 2 926 926 370 556 567 359

23 2 926 1132 827 305 711 215
23 2 926 1132 669 463 146 780
23 2 926 1132 1072 60 863 63
23 2 926 1132 598 534 222 704
23 2 926 1132 867 265 323 603

24 3 1310 0 0 0 963 347
24 3 1310 0 0 0 898 412
24 3 1310 0 0 0 726 584
24 3 1310 0 0 0 876 434
24 3 1310 0 0 0 459 851

25 3 1310 68 35 33 1288 22
25 3 1310 68 28 40 1294 16
25 3 1310 68 31 37 26 1284
25 3 1310 68 26 42 10 1300
25 3 1310 68 29 39 1283 27

26 3 1310 145 121 24 1288 22
26 3 1310 145 42 103 1293 17
26 3 1310 145 79 66 1286 24
26 3 1310 145 121 24 1212 98
26 3 1310 145 14 131 1298 12

27 3 1310 231 80 151 1292 18
27 3 1310 231 140 91 10 1300
27 3 1310 231 34 197 110 1200
27 3 1310 231 35 196 28 1282
27 3 1310 231 127 104 74 1236

28 3 1310 327 182 145 1238 72
28 3 1310 327 167 160 1259 51
28 3 1310 327 62 265 1257 53
28 3 1310 327 242 85 1154 156

Continued on next page
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Table A1 – continued from previous page

Game Identifiers Payments Components of Sums (Treatment)

Game
ID

Game
Group

Other Self Self 1 Self 2 Other 1 Other 2

28 3 1310 327 79 248 1124 186

29 3 1310 436 346 90 1293 17
29 3 1310 436 261 175 153 1157
29 3 1310 436 112 324 1233 77
29 3 1310 436 143 293 215 1095
29 3 1310 436 145 291 72 1238

30 3 1310 561 298 263 1040 270
30 3 1310 561 550 11 10 1300
30 3 1310 561 202 359 1254 56
30 3 1310 561 515 46 934 376
30 3 1310 561 470 91 884 426

31 3 1310 705 655 50 1273 37
31 3 1310 705 442 263 1161 149
31 3 1310 705 665 40 278 1032
31 3 1310 705 627 78 21 1289
31 3 1310 705 597 108 10 1300

32 3 1310 873 849 24 521 789
32 3 1310 873 704 169 1292 18
32 3 1310 873 758 115 1271 39
32 3 1310 873 395 478 62 1248
32 3 1310 873 832 41 783 527

33 3 1310 1071 512 559 416 894
33 3 1310 1071 246 825 217 1093
33 3 1310 1071 942 129 72 1238
33 3 1310 1071 493 578 1262 48
33 3 1310 1071 718 353 656 654

34 3 1310 1310 108 1202 814 496
34 3 1310 1310 63 1247 1149 161
34 3 1310 1310 750 560 219 1091
34 3 1310 1310 944 366 235 1075
34 3 1310 1310 304 1006 254 1056

35 3 1310 1601 1045 556 575 735
35 3 1310 1601 1005 596 637 673
35 3 1310 1601 1465 136 800 510
35 3 1310 1601 1459 142 667 643
35 3 1310 1601 1134 467 587 723

Continued on next page
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Table A1 – continued from previous page

Game Identifiers Payments Components of Sums (Treatment)

Game
ID

Game
Group

Other Self Self 1 Self 2 Other 1 Other 2

36 4 1852 0 0 0 622 1230
36 4 1852 0 0 0 1453 399
36 4 1852 0 0 0 1022 830
36 4 1852 0 0 0 1110 742
36 4 1852 0 0 0 734 1118

37 4 1852 97 85 12 10 1842
37 4 1852 97 34 63 27 1825
37 4 1852 97 43 54 41 1811
37 4 1852 97 27 70 1828 24
37 4 1852 97 37 60 54 1798

38 4 1852 205 54 151 1740 112
38 4 1852 205 91 114 1777 75
38 4 1852 205 57 148 1818 34
38 4 1852 205 83 122 1785 67
38 4 1852 205 122 83 113 1739

39 4 1852 326 216 110 24 1828
39 4 1852 326 109 217 198 1654
39 4 1852 326 45 281 198 1654
39 4 1852 326 64 262 239 1613
39 4 1852 326 222 104 81 1771

40 4 1852 463 74 389 188 1664
40 4 1852 463 293 170 77 1775
40 4 1852 463 385 78 1821 31
40 4 1852 463 150 313 1706 146
40 4 1852 463 259 204 171 1681

41 4 1852 617 367 250 61 1791
41 4 1852 617 331 286 1708 144
41 4 1852 617 85 532 1817 35
41 4 1852 617 414 203 1838 14
41 4 1852 617 302 315 277 1575

42 4 1852 793 50 743 1358 494
42 4 1852 793 649 144 42 1810
42 4 1852 793 698 95 66 1786
42 4 1852 793 431 362 348 1504
42 4 1852 793 245 548 142 1710

43 4 1852 997 239 758 1188 664

Continued on next page
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Table A1 – continued from previous page

Game Identifiers Payments Components of Sums (Treatment)

Game
ID

Game
Group

Other Self Self 1 Self 2 Other 1 Other 2

43 4 1852 997 964 33 960 892
43 4 1852 997 768 229 1774 78
43 4 1852 997 374 623 330 1522
43 4 1852 997 772 225 1442 410

44 4 1852 1235 1069 166 1318 534
44 4 1852 1235 1055 180 759 1093
44 4 1852 1235 103 1132 1781 71
44 4 1852 1235 715 520 1516 336
44 4 1852 1235 307 928 1636 216

45 4 1852 1515 1276 239 1119 733
45 4 1852 1515 1276 239 118 1734
45 4 1852 1515 1237 278 921 931
45 4 1852 1515 1165 350 749 1103
45 4 1852 1515 928 587 1768 84

46 4 1852 1852 566 1286 1161 691
46 4 1852 1852 536 1316 1809 43
46 4 1852 1852 1502 350 441 1411
46 4 1852 1852 454 1398 1820 32
46 4 1852 1852 773 1079 1455 397

47 4 1852 2264 655 1609 1022 830
47 4 1852 2264 1457 807 1310 542
47 4 1852 2264 1287 977 530 1322
47 4 1852 2264 100 2164 176 1676
47 4 1852 2264 107 2157 1339 513

54



A.3 Additional Results

Regressions

Table A2. Altruistic choice treatment effect regression

(1) (2) (3) (4)

Treatment Group -0.022*** -0.022 0.009 -0.014
(0.004) (0.024) (0.030) (0.023)

Ratio self
other 0.900*** 0.867***

(0.018) (0.013)
Treatment Group * Ratio self

other -0.067**
(0.026)

Intercept 0.452*** 0.452*** 0.032 0.052***
(0.003) (0.016) (0.021) (0.019)

Random Effects No No No Yes
Clustered Standard Errors No Yes Yes Yes
N 72000 72000 72000 72000
Unique Obs 300 300 300 300
R

2 0.001 0.001 0.431 0.517

Note: Linear probability model with choice for self as dependent variable. Clus-
tered standard errors (participant-level, “bias-reduced linearization” (Puste-
jovsky & Tipton, 2018)) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A3. Altruistic choice treatment effect regression probit model

(1) (2) (3) (4)

Treatment Group -0.057*** -0.057 0.154 0.663***
(0.009) (0.060) (0.137) (0.171)

Ratio self
other 3.380*** 6.225***

(0.153) (0.065)
Treatment Group × Ratio self

other -0.566*** -1.757***
(0.197) (0.078)

Intercept -0.121*** -0.121*** -1.654*** -3.056***
(0.007) (0.041) (0.100) (0.122)

Random Effects No No No Yes
Clustered Standard Errors No Yes Yes No
Unique Obs 300 300 300 300
pseudo R

2 0 0 0.375 -
N 72000 72000 72000 72000

Note: Probit Model with choice for self as dependent variable. Clustered
standard errors (participant-level, “bias-reduced linearization” (Pustejovsky &
Tipton, 2018)) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A4. Number comparison treatment effect regression

(1) (2) (3)

Treatment Group -0.037*** -0.220*** -0.220***
(0.005) (0.022) (0.022)

Ratio A
B -0.932*** -0.932***

(0.005) (0.005)
Treatment Group × Ratio A

B 0.114*** 0.114***
(0.011) (0.011)

Intercept 0.388*** 1.880*** 1.880***
(0.002) (0.009) (0.009)

Random Effects No No Yes
Clustered Standard Erorrs Yes Yes Yes
N 60000 60000 60000
Unique Obs 300 300 300
R

2 0.001 0.794 0.798

Note: Linear probability model with choice for A as dependent
variable. Clustered standard errors (participant-level, “bias-reduced
linearization” (Pustejovsky & Tipton, 2018)) in parentheses. * p <
0.1, ** p < 0.05, *** p < 0.01.

Table A5. Number comparison treatment effect probit model

(1) (2) (3) (4)

Treatment Group -0.099*** -0.099*** 0.839*** 0.800***
(0.010) (0.012) (0.286) (0.077)

Ratio A
B 8.693*** 9.131***

(0.576) (0.104)
Treatment Group × Ratio A

B -2.298*** -2.259***
(0.639) (0.126)

Intercept -0.284*** -0.284*** -4.431*** -4.643***
(0.007) (0.005) (0.261) (0.060)

Random Effects No No No Yes
Clustered Standard Errors No Yes Yes No
N 300 300 300 300
pseudo R

2 0.001 0.001 0.696 -
Num.Obs. 60000 60000 60000 60000

Note: Probit model with choice for A as dependent variable. Clustered stan-
dard errors (participant-level, “bias-reduced linearization” (Pustejovsky & Tip-
ton, 2018)) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A6. Inconsistencies across tasks regression

(1) (2) (3)

Altruism Task 0.023*** 0.023*** 0.037***
(0.002) (0.002) (0.002)

Intercept 0.079*** 0.073*** -0.015
(0.002) (0.020) (0.021)

N 26400 26400 26400
R

2 0.004 0.070 0.191
Participant FE No Yes Yes
Game FE No No Yes
Clustered Standard Errors No Yes Yes

Note: Linear Probability Model. Dependent variable is the stan-
dard deviation in a particular game. Clustered standard errors
(participant-level) in parentheses. * p < 0.1, ** p < 0.05, *** p
< 0.01.
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A.3.1 Probabilistic Model.

Priors

µ
ν self
other ∼ N (−0.5,0.25)

µ
ν β

1−β ∼ N (−0.5,0.25)

µ
β

1−β ∼ N (−0.5, 0.25)

µµr̂ ∼ N (−0.5,0.25)

µ
ν self
other

B − µ
ν self
other

T ∼ N (0, 0.25)

σ
ν self
other ∼ N +(0,0.25)

σ
ν β

1−β ∼ N +(0,0.25)

σ
β

1−β ∼ N +(0,0.25)

σµr̂ ∼ N +(0,0.25)

µ
ν β

1−β
B − µ

ν β
1−β

T ∼ N (0,0.25)

Ω ∼ LKJ(2)

Prior Summary and Predictive Checks

mean median sd hdi 2.5% hdi 97.5%

Base Parameters:

Altr. Preference β 0.395 0.392 0.111 0.197 0.619
Prior Mean Outcomes µr̂ 0.65 0.619 0.175 0.34 1.004

Group Specific:

Noise Baseline ν β

1−β ,B 0.634 0.616 0.159 0.34 0.911

Noise Treatment ν β

1−β ,T 0.653 0.617 0.229 0.279 1.104

Noise Baseline ν self
other ,B 0.638 0.613 0.169 0.361 1.012

Noise Treatment ν self
other ,T 0.653 0.612 0.24 0.289 1.116

Weight on Payments Baseline αB 0.713 0.727 0.101 0.482 0.872
Weight on Payments Treatment αT 0.708 0.728 0.135 0.445 0.923
Prior Threshold Baseline δB 1.148 1.133 0.111 0.969 1.38
Prior Threshold Treatment δT 1.153 1.127 0.131 0.969 1.443

(a) Prior parameter summary
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(b) Average and prior-predicted choices

Figure A4. Summary Prior Probabilistic Model Altruistic Choices (a) Prior parameter values of equa-
tion 7 based on 10000 prior samples (i.e., before providing experimental data). Parameters correspond
to the mean of log-normal hyper-distributions. Mean, median and sd mean, median and standard de-
viation of the prior distribution samples. HDI 2.5% and HDI 97.5% indicate the borders of the 95%
highest-density interval (HDI). (b) Average and prior-predicted choices, including 95% HDI.

58



Posterior Summaries

Table A7. Posterior parameter summary average individual parameters altruistic choice

mean median hdi 2.5% hdi 97.5% R̂

µ

ν β

1−β
B
− µ

ν β

1−β
T

-0.033 -0.028 -0.371 0.301 1.00

µ

ν self
other

T
− µ

ν self
other

B
0.244 0.245 0.045 0.445 1.00

µ

ν β

1−β -1.783 -1.778 -2.019 -1.554 1.01
µ
ν self

other -1.342 -1.339 -1.523 -1.165 1.00

µ
µ

r̂

-0.316 -0.316 -0.779 0.131 1.01

µ

β

1−β -0.795 -0.795 -0.875 -0.715 1.00

σ

ν β

1−β 0.415 0.405 0.230 0.621 1.00
σ
ν self

other 0.586 0.580 0.434 0.748 1.00

σ

β

1−β 0.206 0.204 0.151 0.265 1.00
σ
µr̂ 0.786 0.781 0.447 1.145 1.00

Table A8. Posterior parameter summary hyper-parameters number comparison

mean median hdi 2.5% hdi 97.5% R̂

µ
ν A

B -1.754 -1.754 -1.844 -1.664 1
µ
µr̂ -1.101 -1.102 -1.269 -0.938 1

µ

ν A
B

T
− µ

ν A
B

B
0.370 0.371 0.236 0.505 1

σ
ν A

B 0.513 0.512 0.465 0.562 1
σ
µr̂ 0.927 0.925 0.800 1.062 1
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(a) Altruism Average and Individually Predicted
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(b) Number Comparison Average and Individually
Predicted

Figure A5. Individual Average and Predicted Behavior: Altruism and Number Comparison Correlation
between average choice for self (a) and A (b) and predicted choice at self

other
and A

B
implemented in the

experiment. Rank-correlations are ρ = 0.999 (a) and 0.939 (b).
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Model Comparisons

Model Choice Function ELPDWAIC

Full Model (equation 7) Pr([self ≻ other]) = Φ(
α×ln( self

other )−ln
�

β

1−β

�

−ln(δ)
s

ν
2

self
other

α2+ν2
β

1−β

) -14,927.47

Payment Prior Mean µr̂ = 1 Pr([self ≻ other]) = Φ(
α×ln( self

other )−ln
�

β

1−β

�

s

ν
2

self
other

α2+ν2
β

1−β

) -14,931.52

Preference Noise ν β

1−β
= 0 Pr([self ≻ other]) = Φ(

α×ln( self
other )−ln

�

β

1−β

�

α×ν self
other

) -14,930.33

Monetary Payment Noise ν self
other
= 0 Pr([self ≻ other]) = Φ(

ln( self
other )−ln

�

β

1−β

�

ν β

1−β

) -14,935.94

Random Utility Pr([self ≻ other]) = e
σ(1−β)self

eσ(1−β)self+eσβother -15,656.30

(a) Models Altruistic Choice

Random Utility Model

Monetary Payment Noise ν self

other

= 0

Payment Prior Mean µr̂ = 1

Preferences Noise ν β

1−β
= 0

Full Model (equation 7)

-15750 -15500 -15250 -15000 -14750
ELPD_WAIC

(b) ELPDWAIC values

Figure A6. Model Comparison Altruistic Choices ELPDWAIC refers to the expected log predictive density
as based on the widely-applicable information criterion (WAIC); A larger ELPDWAIC indicates a better
model fit. Error bars show the standard error of the respective ELPDWAIC value and the standard error
of the ∆ELPDWAIC value, the ELPDWAIC difference to the best model. Model comparison done via the
arviz-package (Kumar et al., 2019).

Model Choice Function ELPDWAIC

Main Model (equation 9) Pr([A ≻ B × 1/2]) = Φ
α
′

log A
B−log 1

2−log δ
′

ν
′×α′

10,470.85

Magnitude Prior Mean µr̂′ = 1 (Pr[(A ≻ B × 1/2]) = Φ
α
′

log A
B−log 1

2

ν
′×α′

-11,523.44

(a) Models Number Comparison

Magnitude Prior Mean µr̂′ = 1

Main Model

-11400 -11000 -10600
ELPD_WAIC

(b) ELPDWAIC values

Figure A7. Model Comparison Number Comparison ELPDWAIC refers to the expected log predictive
density as based on the widely-applicable information criterion (WAIC); A larger ELPDWAIC indicates a
better model fit. Error bars show the standard error of the respective ELPDWAIC value and the standard
error of the ∆ELPDWAIC value, the ELPDWAIC difference to the best model. Model comparison done via
the arviz-package (Kumar et al., 2019).
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Table A9. Parameter summary combined estimation

mean median sd hdi 2.5% hdi 97.5% R̂

Base Parameters:

Altr. Preference β 0.315 0.315 0.012 0.292 0.339 1
Prior Mean Outcomes µr̂ 0.474 0.467 0.062 0.366 0.6 1

Group Specific:

Noise Baseline ν β

1−β ,B 0.339 0.335 0.038 0.27 0.415 1

Noise Treatment ν β

1−β ,T 0.323 0.32 0.035 0.262 0.394 1

Noise Baseline ν self,A
other,B ,B 0.172 0.172 0.008 0.158 0.188 1

Noise Treatment ν self,A
other,B ,T 0.255 0.255 0.012 0.233 0.279 1

Weight on Payments Baseline αB 0.971 0.971 0.003 0.966 0.976 1
Weight on Payments Treatment αT 0.939 0.939 0.005 0.928 0.949 1
Prior Threshold Baseline δB 1.022 1.022 0.004 1.014 1.03 1
Prior Threshold Treatment δT 1.047 1.048 0.009 1.029 1.066 1

Table A10. Posterior parameter summary hyper-parameters combined estimation

mean median hdi 2.5% hdi 97.5% R̂

µ

ν β

1−β
B
− µ

ν β

1−β
T

-0.047 -0.046 -0.251 0.153 1.00

µ

ν self,A
other,B

T
− µ

ν self,A
other,B

B
0.394 0.396 0.260 0.520 1.01

µ

ν β

1−β -1.519 -1.519 -1.667 -1.366 1.00

µ
ν self,A

other,B -1.792 -1.793 -1.878 -1.703 1.00
µ
µr̂ -1.132 -1.133 -1.297 -0.967 1.00

µ

β

1−β -0.980 -0.980 -1.072 -0.894 1.00

σ

ν β

1−β 0.924 0.920 0.752 1.109 1.00

σ
ν self,A

other,B 0.254 0.252 0.206 0.302 1.00

σ

β

1−β 0.638 0.635 0.543 0.745 1.00
σ
µr̂ 0.863 0.859 0.659 1.079 1.00
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Model Combined Choice Functions ELPDWAIC,A ELPDWAIC,NC

Full Model Combined Pr([self ≻ other]) = Φ

 

α×ln( self
other )−ln

�

β

1−β

�

−ln(δ)
s

α2×ν2
self,A

other,B
+ν2

β

1−β

!

; Pr([A ≻ B × 1/2]) = Φ

�

α×ln( A
B )−ln( 1

2 )−ln( 1
µ

r̂1−α
)

α×ν self,A
other,B

�

-15,103.79 -10,519.21

Preferences Noise ν β

1−β
= 0 Combined Pr([self ≻ other]) = Φ

�

α×ln( self
other )−ln

�

β

1−β

�

−ln( 1
µ

r̂1−α
)

α×ν self,A
other,B

�
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Figure A8. Model Comparison Combined Models (a) Altruism Choices (ELPDWAIC,A) and (b) Number
Comparison (ELPDWAIC,NC).

A.3.2 Combined Estimation.

A.3.3 Robustness of Treatment Variation.

Learning Effects and Fatigue First, I investigate the role of learning effects on altru-
istic and number comparison behavior. A straightforward way to do so is to augment
the linear probability models of Tables A2 and A4 by a Round variable, which indi-
cates in which of the 300 (200) rounds a decision was made. If the treatment effect
is “learned,” I expect a negative coefficient of the interaction effect between the treat-
ment dummy and the round variable, i.e., a treatment effect that grows over time. The
result of the corresponding linear probability model is depicted in Table A11, where
the first two columns refer to the altruism data and the last to the number comparison
data. In the first two specifications, the coefficient of the interaction effect is indeed
negative (−0.00006) and comparing round 0 to round 300 implies a 1.8 percentage
point difference in selfish choices, which is sizable compared to the overall treatment
effect. However, the coefficient is statistically insignificant (p> 0.1) in both specifica-
tions. In addition, if I take the results of column 1 at face value, already in round 0
the Treatment group decides 1.43 percentage points less often for self, which speaks
against the responsibility of learning effects for the treatment difference. I arrive at a
similar conclusion, albeit with different evidence, for the number comparison data: In
columns 3 and 4, I include the mentioned interaction effect. I observe a statistically
significant positive coefficient of the interaction effect of (0.00013), which implies an
increase in 2.6 percentage points to choose A between round 0 and round 200. Instead
of growing over time, this implies that the treatment effect shrinks. Supporting this
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argument is that in round 0, the treatment effect is sizable and statistically significant
and the Treatment group decides 4.916, respectively 5.84 percentage points less for A.
The columns thus do not provide evidence for a learned treatment effect and instead,
point towards some attenuation over time in the number comparison data.

Table A11. Treatment effect and learning regression

(1) (2) (3) (4)

Treatment Group -0.01430** -0.01430 -0.04916*** -0.05084***
(0.00603) (0.02342) (0.00362) (0.00690)

Ratio self
other / A

B 0.86707*** 0.86707*** -0.87519*** 1.32264***
(0.00372) (0.01323) (0.00184) (0.00736)

Treatment Group * Round No. -0.00006 -0.00006 0.00012*** 0.00013***
(0.00004) (0.00006) (0.00003) (0.00005)

Intercept 0.05165*** 0.05165*** 1.78986*** -0.18654***
(0.00459) (0.01862) (0.00390) (0.00444)

N 72000 72000 60000 60000
Data Altruism Altruism Number Comp. Number Comp.
Clustered Standard Errors No Yes No Yes
Random Effects No Yes No Yes
Unique Obs 300 300 300 300
R

2 0.430 0.517 0.791 0.679

Note: Linear Probability Model. Clustered standard errors (participant-level, “bias-reduced
linearization” (Pustejovsky & Tipton, 2018)) in parentheses. * p < 0.1, ** p < 0.05, *** p
< 0.01.

Two other facts that are insightful for learning over time come from the decision
in the very first illustrative example as well as the 12 consecutive practice trials. At the
very beginning and as part of explaining the study, participants had to make a non-
consequential decision whether to take 2.31 e (= 1.72 e+ 0.59 e ) for themselves or
give 4.66 e (= 1.14 e+ 3.52 e ) to another person. In this decision, there is no treat-
ment difference as ¯selfT = 0.393, ¯selfB = 0.367 (p= 0.6356). However, in the 12 practice
trials33 the Treatment group decides significantly more often for the other person with
an average of ¯selfT = 0.364, ¯selfB = 0.414 (p< 0.01). Thus, during the practice trials,
the Treatment group is much more pro-social. While I acknowledge limits for drawing
conclusions from this data – given it is non-incentivized, only for practice purposes
and contains only 10 decisions – this behavior would be consistent with the following
explanation: Participants quickly understand how the task works, i.e., “less-for-me” vs
33 Recall that in the practice trials, I fixed other = 10.00 e and varied self ∈
[0, 0.52,1.11, 1.76,2.50, 3.33,4.28, 5.38,6.66, 8.18,10.00, 12.22] e , i.e., these trials in principle al-
ready allow to infer something about β .
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“more-for-other”. This, in turn, could translate into the intuition that µr̂ < 1 and thus
a higher pro-sociality of the Treatment group (throughout the experiment). All in all,
this data suggests that the treatment effect is not learned over the repeated trials of the
experiment but that participants formed a quick intuition about the rules of the task.
The treatment variation could also introduce differences in fatigue levels, which

are then responsible for the difference in choices between both groups. If differences
in fatigue are not already present in the very first choices, the above analysis already
provides some evidence against this argument. In addition, I can test both for group dif-
ferences in (i) revealed (effects of) fatigue and (ii) subjectively reported fatigue levels.
Regarding the first, often-discussed consequences of fatigue are more errors in choices
and higher levels choice inconsistency, an argument especially relevant for survey design
(see e.g., Bech et al., 2011; Özdemir et al., 2010; Schwappach & Strasmann, 2006). My
data offers a unique way of analyzing the determinants of choice inconsistency: Recall
that each trial of the altruism and number comparison task was repeated five times
(which is one game), yet the order of trials was randomly determined. This implies
that some participants encountered the fifth iteration of a given game earlier in the ex-
periment compared to other participants, which induces exogenous differences in the
completion rounds of a given trial group. If fatigue (differences) increase throughout
the experiment, later completions should be associated with a higher choice inconsis-
tency.

Table A12. Inconsistency regression on trial level

(1) (2) (3) (4)

Trial Final Round No. -0.00005 -0.00006 -0.00005 -0.00005
(0.00007) (0.00006) (0.00008) (0.00007)

Trial Final Round No. * Treatment Group 0.00000 0.00003 0.00001 0.00006
(0.00009) (0.00009) (0.00011) (0.00010)

Intercept 0.11693*** 0.04352 0.10210*** 0.03006
(0.03063) (0.03111) (0.03079) (0.02785)

Data Altruism Altruism Number Comp. Number Comp.
Trial Group Fixed Effects No Yes No Yes
Participant Fixed Effects Yes Yes Yes Yes
N 14400 14400 12000 12000
R

2 0.131 0.206 0.066 0.309

Note: Clustered standard errors (participant-level, “bias-reduced linearization” (Pustejovsky
& Tipton, 2018)) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A12 performs a linear regression on a dataset with 300 (subject) × 48 (trial
groups, see Figure A3) = 14,400 respectively 200 × 40 = 12,000 observations based
on the Altruism and Number Comparison data. Each row of this dataset contains the
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standard deviation of a given trial group by a given participant alongside its completion
round, i.e., in which round a participant encountered the fifth and last iteration of that
trial group. Crucially, this dataset allows for the inclusion both of participant and trial
group fixed effects. Every specification in Table A12, regardless of the data source, does
neither provide evidence for a growing inconsistency, nor a growing difference in incon-
sistency between both groups. Thus, participants’ choices do not get more inconsistent
over time nor does the choice inconsistency develop differently between the treatment
and control group. In addition to implied fatigue effects, I collected self-reported mea-
sures of fatigue levels using visual analog scales (Radbruch et al., 2003). I asked partic-
ipants both about their current level of fatigue as well as the average during the past 24
hours on a scale of 0-10 using a slider (see Figure A17). The Treatment group indeed
does report slightly higher levels of current fatigue ( ¯fatigueT = 4.775, ¯fatigueB = 4.310,
p= 0.1005). However, it is not obvious that higher levels of self-reported fatigue neces-
sarily translate into different choices. I will pick up this point in more detail in Section
A.3.4 during the estimation of heterogeneous treatment effects.

Mechanical Difference in Choices and Increase in Inconsistency Alternative to the
above-mentioned points, an alternative explanation for the treatment effect could be
a purely “mechanical” one: If participants only focus on the first components of the
sums in the Treatment group and simply pick the larger they would behave both more
variable due to the random placement of the position of the components and behave
less selfish if the first component of the other variable (other1) is larger more often.
If this argument holds, I should observe a higher level of selfishness (compared to
Baseline) if self1 > other1 and a lower level once self1 < other1.
Panel (a) of Figure A9 plots the average choice for self separately depending on the

numerical configuration of the math components, i.e., if self1 > other1 or self1 < other1.
I observe comparable differences to the Baseline group within the Treatment trials
regardless of the relationship between self1 and other1. While indeed other1 > self1
(58.95 %) occurs more frequently than other1 > self1 (41.05 %), the fact that partici-
pants still behave more pro-social compared to Baseline in both groups of trials speaks
against a purely “mechanical” increase in pro-sociality. In the number comparison task
(panel c), I observe virtually no difference in behavior between trials where A1 > B1

and A1 < B1.
Another explanation could be that the treatment variation perhaps only works for

smaller values of self,other where the sums generally contain smaller values. For exam-
ple, one could expect a stronger treatment effect in trials such as self = 3.52 (= 1.61
+ 1.91) vs other = 6.55(=4.86 + 1.69) compared to self = 7.05 (= 4.42 + 2.63)
vs other = 13.1(=10.32 + 2.78) as the components of the sums in the former set of
trials are simply smaller (while the ratio between self and other remains the same).
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Figure A9. Components of to-be-calculated Sums and Stake Sizes Panels (a) and (c) plot the average
choice for self, respectively A as a function of self

other , A
B , for Baseline and Treatment whereas the

latter is divided into cases where the first math component self1 > other1 and self1 < other1, with
self = self1 + self2 and other = other1 + other2. Panels (b) and (d) plot average choices separately for
the different base values of other and B.

Thus, the overall treatment effect could be driven by the impact on trials with gener-
ally smaller math components which are more likely to be disregarded by participants.
Panel (b) of Figure A9 plots the average choice for self separately for the four different
levels of stakes in the trials. Even though there is some difference in behavior between
the different stake groups, the treatment effect is very similar across different stakes.
The same is true for the number comparison task (panel (d)), where I observe similar
treatment effects regardless of the value of the number B. Table A13 performs a regres-
sion analysis akin to the linear probability models in Tables A2 and A4 and shows that
the treatment effect does not systematically depend on the general stakes of the trial
(or the value of other and B), and also shows that larger stakes are associated with
more choices for self and A.

A.3.4 Heterogeneous Treatment Effects. To further investigate the nature of the treat-
ment effect, I analyze heterogeneous treatment effects. To do so, I leverage recent
developments in the causal machine learning literature and employ a Causal Forest
for estimating heterogeneous treatment effects (Wager & Athey, 2018). Causal Forests
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Table A13. Stake-size and choice regression

(1) (2)

Game Group (1-4) 0.03749*** 0.00875***
(0.00233) (0.00249)

Game Group (1-4) * Treatment Group -0.00009 -0.00533
(0.00330) (0.00352)

Treatment Group -0.02222** -0.02400**
(0.00903) (0.00965)

Intercept 0.35806*** 0.36627***
(0.00638) (0.00682)

N 72000 60000
Data Altruism Number Comp.
Clustered Standard Errors Yes Yes
Unique Obs 300 300
R

2 0.008 0.002

Note: Linear Probability Model. Clustered standard errors (participant-
level, “bias-reduced linearization” (Pustejovsky & Tipton, 2018)) in
parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

adapt the logic of tree-based models identifying a split at a given level of a covari-
ate to minimize a loss criterion to the estimation of treatment effects and search for
splits that maximize heterogeneity in the estimated conditional average treatment ef-
fect. Importantly, these methods are “honest”, i.e., use a different set of data points to
propose and evaluate the splits. I use the CausalForest class implemented in the econml
package (Battocchi et al., 2019).3⁴ The main advantage over classical techniques (i.e.,
interaction terms in OLS) is that they – constructed using cross-fitting techniques – are
less prone to overfitting and able to pick up other functional forms beyond linear or
explicitly pre-specified ones.
Figure A10 shows the estimated CATE values for the different personal character-

istics (while holding the remaining characteristics at their median value), sorted in de-
scending order by their importance for the estimated CATE values. The key take-away is
that (i) the variation in most personal characteristics does not contribute meaningfully
to the CATE estimates, and only participants high on the self-reported GPS Altruism
score seem to be slightly less impacted by the treatment compared to lower-scoring in-
dividuals. Similarly, participants high on the Need for Cognition scale are less impacted
by the treatment, but the confidence intervals are relatively large in both cases. For the

34 Note that I can define the treatment propensity model – what usually needs to be estimated from
the data – as a fair coin flip given the exogenous treatment assignment in the experiment.
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Figure A10. Heterogeneous Treatment Effects This plot shows the estimated CATE values for each
personal characteristic (sorted by their importance), estimated at each decile of the feature distribu-
tion, 95 % confidence intervals.

remaining features, most variation corresponds to the average treatment effect (ATE).
This is true for the remaining “cognitive” measures, such as the CRT or BNT perfor-
mance, which do not indicate systematic treatment heterogeneity. Importantly, further
is that personal characteristics that could be related to a tendency to “exploit” poten-
tial side-effects of the chosen treatment variation, i.e., how strongly their self-reported
negative emotions after selfish behavior react to the availability of excuses, the dif-
ference between private and social norms in the treatment and the average score on
the Machiavellianism scale are not major sources of heterogeneous treatment effects.
This is further evidence that the treatment effect – in addition to leading to less selfish
choices – did not invoke motivated “second-order” behavior. Overall, the estimation of
heterogeneous treatment effects leads to the conclusion that the treatment effect does
not operate systematically differently for participants depending on their characteris-
tics and that the present dataset is not large enough to detect minuscule differences in
treatment heterogeneity.

A.3.5 Correlation between Metacognition, RT and Choices. Table A14 shows pairwise
rank correlation coefficients between the various metacognitive measures and aver-
age choices for self, standard deviation (on a game level), and time spent in altruism
choices as well as the average correct choices, standard deviation and time spent in
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the number comparison task. The main finding is that there is a stronger association
between choices, inconsistencies and RT with metacognitive measures in the number
comparison domain compared to the altruism choices.

Table A14. Correlation metacognition altruistic choice and number comparison

Altruism (Avg.) Number Comparison (Avg.)

Choice self Std. Deviation RT Choice Correct Std. Deviation RT

Altruism:

Negative Confidence 0.088 0.317*** 0.080 -0.127* 0.109 0.048
Avg. Attention -0.215*** -0.045 0.115* 0.094 -0.078 -0.066
Precision -0.195*** -0.114 0.126* 0.006 -0.005 -0.040

Number Comparison:

|∆ Belief Correct| -0.057 0.257*** 0.198*** -0.365*** 0.392*** 0.433***
Belief Correct Confidence 0.043 -0.161** -0.203*** 0.309*** -0.285*** -0.365***
|∆ Belief Time Spent| 0.074 0.107 0.125* -0.077 0.040 0.209***
Belief Time Spent Confidence 0.033 0.003 -0.121* 0.025 -0.031 -0.151**
Precision 0.020 -0.017 -0.113 0.254*** -0.256*** -0.150*
Avg. Attention 0.008 -0.131* -0.093 0.223*** -0.231*** -0.058

Note: p-values from pairwise rank-correlation tests (n = 300). * p < 0.1, ** p < 0.05, *** p
< 0.01.

Starting with the upper-left quarter of the table, I observe that subjects who de-
cide less often for self also report higher levels of attention (ρ = −0.215) and precision
(ρ = −0.195), yet there is no apparent correlation of altruistic choices with the confi-
dence measure. Proceeding to the second column, I do observe a positive correlation
between the average standard deviation and confidence (ρ = 0.317): Participants who
report a lower level of confidence are more inconsistent in their altruistic behavior (but
not more or less pro-social on average). The average time spent on making altruistic
choices does not meaningfully correlate with any of the metacognitive measures. No-
tably, these correlations also indicate that the metacognitive measures do not replicate
the treatment effect: One could expect that “less metacognitive” participants also tend
to decide more often for other given the direction of the treatment effect towards fewer
choices for self, but this appears not the be the case. Together with the previous fact
that there are no treatment differences in the altruism metacognitive measures, this
implies that the mechanism through which the treatment effect operates is likely not
via impacts on (conscious) metacognition.
The behavioral data from the altruism domain also correlate to some extent with

measures of metacognition across domain as shown in the lower-left quarter: Partici-
pants with a larger |∆ Belief Correct|, i.e., whose beliefs deviate more from their true
performance and lower confidence in their belief statements are more inconsistent in
their altruism decisions (ρ = 0.257; ρ = −0.161) and take longer to choose between
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self and other (ρ = 0.198; ρ = −0.203). This reiterates the argument in Section 4.7.1
that altruism and number comparisons, at least to some extent, are driven by similar
processes if elicited in comparable settings.
Turning to the upper-right quarter of Table A14, I observe no apparent correla-

tions between the altruism metacognitive measures and number comparison behavior.
Within-domain, this is different: As shown in the lower-right quarter, the fewer cor-
rect choices a participant makes, the more their beliefs deviate from their true perfor-
mance (ρ = −0.365), the less confident they are in their belief estimates (ρ = 0.309),
the lower the self-reported precision (ρ = 0.254) and attention (ρ = 0.223). Inconsis-
tency in the number comparison also correlates with belief deviations (ρ = 0.392), their
confidence (ρ = −0.285), as well as self-reported precision (ρ = −0.256), and atten-
tion (ρ = −0.231). Finally, also the time spent is larger the more a participant deviates
in their belief statements (ρ = 0.433), lower the higher the confidence (ρ = −0.365),
higher the more a participant deviates in their belief statements of decision time
(ρ = 0.209) and higher the lower the confidence in these statements (ρ = −0.151).
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Figure A11. Beliefs Number Comparison This plot depicts the number comparison belief data, in
correctly solved tasks (a) and the average time spent (b) against either objective counterpart.
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A.4 Experimental Screenshots

(a) Confidence (b) Precision

(c) Attention self (d) Attention other

Figure A12. Screenshots: Metacognition Altruistic Choice

Figure A13. Screenshot: CRT4 Question

(a) No Excuses (b) Excuses (reverse formulated)

Figure A14. Screenshots: Excuse-Taking Questions Survey Questions inspired by Lepper (2024). (a)
No excuses (b) Excuses. Order in which questions appear is randomized.
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(a) Baseline (b) Treatment

Figure A15. Screenshots: Social Norms (a) Baseline (b) Treatment. Both variants are shown to all
participants, order in which questions appear is randomized

Figure A16. Screenshot: Dictator Game

Figure A17. Screenshot: Fatigue Visual Analog Scales
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