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In many economic contexts, people need to solve trade-offs between doing an activity
(e.g., solving a task) faster and doing it better. While time choices in speed-accuracy
trade-offs have been extensively studied in cognitive science for motor-response and per-
ception tasks, little evidence is available for more deliberate economic decision-making,
where people’s choices often fail to maximize payoffs. Conversely, the impact of behav-
ioral biases � key explanans of said failure � on time choices has yet to be explored.
We present a theoretical model linking time choices in speed-accuracy trade-offs to an
agent’s abilities, subjective beliefs and uncertainty attitudes. We test the predictions of
the model in an experiment for two distinct (but otherwise identical) environments:
prospective time choices before solving a task and simultaneous time choices while
solving a task. Correlational analyses indicate that overconfidence (in one’s ability) and
uncertainty aversion affect time choices in the prospective but not in the simultaneous
environment. Probabilistic structural estimations, aimed at capturing the optimization
process on the individual level, support this conclusion. This suggests that long-known
behavioral biases influence decisions beyond classical domains like risk and intertem-
poral choice, but may �play out� differently in planned versus actual actions.
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1 Introduction

Humans frequently face trade-offs between doing a taskfaster or better. For example,
imagine an employee in a company working on a task. The faster this employee finishes
their task, the better for them (e.g., to engage in other responsibilities), at the same
time, the more time the employee spends on the task, the higher the quality of the
work, which similarly increases possible rewards. Thus, the worker must decide how
much time they spend on their task to optimally balance the potential reward from
finishing the task fast(er) or with high(er) accuracy.

Such trade-offs between speed and accuracy are of course not restricted to work
settings and prevalent much more generally. Accordingly, extensive literature in psy-
chology and neuroscience investigates human behavior in speed-accuracy trade-offs in
perception and motor-control tasks (see the review in Heitz, 2014). This literature sug-
gests that humans typically optimally trade off speed and accuracy in the presence of
perceptual and motor uncertainty and choose time to maximize expected payoffs. Such
optimal behavior is documented in tasks that require humans to identify the direction
of motion of dots (Bogacz et al., 2006), to hit a target (Dean et al., 2007), to plan
a precise movement (Trommershäuser et al., 2006), or to compare visual magnitudes
(Bogacz et al., 2010; Desender et al., 2019).

However, whether these findings generalize to more complex environments is ques-
tionable. Many economics tasks require cognitively more demanding skills, while per-
ception and motor-control tasks rely on �lower-level� cognitive processes. Thus, while
humans often solve motor-control and perception tasks automatically and instinctively,
their decisions in typical economic tasks are often more deliberate. For such deliber-
ative decision-making, extensive literature in economics has established that humans
seldomly make payoff-maximizing choices if they face risk and uncertainty (Kahneman
& Tversky, 1979; Tversky & Kahneman, 1974, 1992) and often hold biased beliefs, e.g.,
about their ability (Moore & Healy, 2008). Moreover, economic environments often
feature a �second type� of time choice where humans have toplan time prospectively,
i.e., before working on a task. This is stark contrast to speed-accuracy trade-offs in
motor-control tasks, which are solved simultaneouslywhile doing the task. Related, for
such prospective time choices, a literature in economics documents the impact of bi-
ases, such as an overoptimistic forecast of completion time, a phenomenon known as
the �planning fallacy� (see e.g., Buehler & Griffin, 2015; Buehler et al., 1994).

In sum, it thus remains unclear how people resolve speed-accuracy trade-offs in
more complex, deliberate, or prospective decision environments. How does a person
choose time in a cognitively demanding task? Why do two similarly productive persons
spend or plan time differently for the same task? What role do behavioral biases play
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in time decisions in such trade-offs? These questions are only poorly understood so far
and this paper aspires to take a first step to understanding them better.

In this paper, we investigate time choices in speed-accuracy trade-offs in a cog-
nitively demanding task. Specifically, we ask whether time choices in speed-accuracy
trade-offs are affected by individuals’ subjective beliefs about their ability and their
uncertainty attitudes. Furthermore, we investigate if these effects differ between a de-
liberate environment, where time choices are made prospectively, and a simultaneous
decision environment, where time is chosen while working on a task.

To study these questions, we propose a simple theoretical framework where an
agent solves a speed-accuracy trade-off. Building on two-step models (Fox & Tversky,
1998; Wu & Gonzalez, 1999), we incorporate subjective beliefs about performance and
uncertainty attitudes into an agent’s decision-making process. Based on this framework,
we derive hypotheses on how time choices are affected by the cost of time, as well as
participants’ performance, subjective beliefs, and uncertainty attitudes. We addition-
ally derive a hypothesis on the difference between the determinants of time choices in
prospective and simultaneous decision environments based on literature from psychol-
ogy and neuroscience.

To test our predictions, we design a two-part laboratory experiment around a novel
�cognitive visual search task�. In the first part of the experiment, we measure time-
dependent performance, beliefs about performance, and uncertainty attitudes toward
working on the task in incentive-compatible ways. In the second part, we introduce a
speed-accuracy trade-off in the visual search task by implementing a reward scheme
where rewards depend on the correctness of the solutionand time choices. We elicit
participants’ time choices in four situations, which vary along two dimensions (i.e.,
we implement a within-participant 2 � 2 design). The first dimension is the decision
environment. We implement a �prospective� environment, in which participants have
to pre-specify a time before working on the task, and a �simultaneous� environment,
where participants make their time choices while working on the task. The second
dimension is the cost of time, where we change the reward scheme and implement a
high and low cost of time. We, therefore, investigate the influence of subjective beliefs
and uncertainty attitudes along each of our two dimensions of the choice environment.

The main finding of this paper is that subjective beliefs and uncertainty attitudes
(in addition to the cost-of-time and individual performance) predict how people solve
speed-accuracy trade-offs and choose time in the prospective decision environment,
which is in line with the theoretical framework. Conversely, but in line with the
literature-based hypothesis, we do not find an association between either subjective
beliefs or uncertainty attitudes and time choices in the simultaneous decision envi-
ronment, while individual performance and cost-of-time remain significant predictors.
This suggests that humans rely on their subjective beliefs and uncertainty attitudes to
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make prospective time choices in situations with speed-accuracy trade-offs, while these
factors seem to play no significant role when the trade-off is solved simultaneous to
the actual task. In an additional analysis, we investigate how subjective beliefs and
uncertainty attitudes affect participants’ payoffs through their time choices. We find
that uncertainty aversion and underconfidence are associated with lower payoffs in the
prospective high cost-of-time environment.

We derive a second set of results from a structural approach using Bayesian esti-
mation techniques. Complementary to correlating time choices with data on overcon-
fidence and uncertainty aversion, we formulate a Bayesian probabilistic model of solv-
ing the speed accuracy trade-off, i.e., the objective function participants are proposed
to maximize. In a first step, we show how the proposed functional forms for time-
dependent performance, as well as subjective beliefs and uncertainty attitudes reflect
the data from the distinct experimental stages. Based on these functions (and their pa-
rameters), we can then propose, for each individual, a (probabilistic) rational solution
to the speed-accuracy trade-off, i.e., a solution that solely depends on a participant’s
ability and the implemented cost functions as well as a behavioral solution, that addi-
tionally incorporates a participant’s subjective beliefs and uncertainty attitudes into the
objective function.

First, the probabilistic models show that both proposed solutions are reasonable
benchmarks for participants’ time choices across decision environments, validating the
overall approach. Yet, individual predictions of prospectivetime choices can by improved
by the behavioral model compared to the (more parsimonious) rational model. In con-
trast, this is not true for simultaneoustime choices. A Bayesian model comparison that
approximates out-of-sample predictive power between the �rational� and �behavioral�
model supports these conclusions: For prospective time choices, behavioral predictions
are more accurate; yet for simultaneous time choices, rational predictions perform bet-
ter. The probabilistic model therefore directly corroborates the previous findings from
the reduced form analyses.

Overall, our paper and its findings relate to several distinct literatures in economics.
The first literature investigates decision timesin economic choices (see Spiliopoulos &
Ortmann, 2018, for a review). We connect to two distinct sub-branches of this literature.
The first sub-branch connects decision times with economic decision-making under risk
(Kirchler et al., 2017; Kocher et al., 2013; Rubinstein, 2013). This literature so far has
produced mixed results: While Rubinstein (2013) finds that higher risk-taking corre-
lates with lower decision times, Kocher et al. (2013) find no impact of time pressure
on risk attitudes (for lotteries in the gain domain). In contrast to both, Kirchler et al.
(2017) observe that lower decision times decrease risk-taking. While we do not aim to
reconcile these mixed results, we contribute a new angle to this discussion: Our results
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suggest that uncertainty attitudes might not only affect the outcome of decision-making
but that they might already influence the endogenous choice of decision time itself.

The second sub-branch of this literature investigates theallocation of decision time.
Chabris et al. (2009) identify that people allocate decision time according to cost-
benefit principles when making value-based choices between smaller-and-sooner versus
larger-and-later payments and spend less time on their choices when the differences in
value between the options are large. In contrast, Oud et al. (2016) find evidence for
�irrational� time allocation, i.e., that people take too much time for choices between
food options when the options offer similar value. Hausfeld and Resnjanskij (2018),
instead, do not find conclusive evidence for irrational time allocation in lottery choices
and propose that decision-makers trade-off decision quality and decision speed when
the opportunity cost of time is high. We provide two new perspectives to this discus-
sion: First, instead of studying value-based decision-making or choices in lotteries, we
investigate time allocation in a cognitively-demanding task where time is the main
input to arrive at an objectively correct solution. Second, we provide evidence that par-
ticipants seem to act according to rational considerations in a simultaneous decision
environment when deciding how much time to spend to solve a problem.

Our study is also related to a literature investigating the origins of the planning
fallacy. Kahneman and Tversky (1982) propose that the planning fallacy originates in
the human tendency to rely on intuitive �internal judgments� when planning a project.
These intuitive judgments neglect information about other similar projects and their
completion time. In contrast to this view, Brunnermeier et al. (2008) develop a model
where the planning fallacy results from agents’ optimal reaction to their distorted sub-
jective probabilities. They propose a theoretical model, review existing empirical evi-
dence, and largely find support for their model. We provide new evidence that planned
actions indeed depend on subjective and possibly inaccurate estimates of (performance-
based) probabilities and thus support the interpretation by Brunnermeier et al. (2008).
The discussion of the origins of the planning fallacy is also related to a recent inter-
est in economics to understand the differences between planned and actual attention.
Avoyan et al. (2023) find that planned attention (i.e., a pre-specified time budget for
a strategic game) and actual attention (i.e., how long people then look at a specific
game) do not coincide. They investigate this disparity and find that salient features of
the games (e.g., payoff numbers) affect the planned attention, while their actual strate-
gic complexity determines actual attention. We add to this by showing that planned
(time) choices are more likely susceptible to biased, subjective interpretations of the
decision problem, whereas actual time choices are more determined by the (difficulty
of the) task at hand.

Finally, we relate to economic literature, which investigates the time usage of per-
sons (Aguiar & Hurst, 2007; Aguiar et al., 2012, 2013; Becker, 1965; Goldszmidt et
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al., 2020; Juster & Stafford, 1991; Stratton, 2012). This literature highlights the impor-
tance of the opportunity cost or the value of time for decision-making, e.g., in house-
holds’ decisions to substitute between market and non-market activities, for workers
searching for a job or deciding how many hours of labor to supply. To measure the
value of time, this literature often relies on people’s observed choices and subsequently
uses those measures to assess the possible time-saving benefits of policy interventions
(Goldszmidt et al., 2020). Our results suggest that economic agents’ perception of their
opportunity cost or value of time are likely influenced by behavioral factors, such as
overconfidence in their ability to find a job or to earn a certain amount of money given
an input of work hours. Our results � interpreted in a broader sense � suggest that
measures of the value of time solely based on observed choices may provide a skewed
picture of the actual underlying valuation of time.

The remainder of this paper is structured as follows: Section 2 introduces our the-
oretical framework and derives hypotheses. Section 3 describes the experiment, and
Section 4 introduces different measures of performance, subjective beliefs about perfor-
mance, and uncertainty attitudes and provides empirical evidence on their distribution.
The following two sections provide reduced form (section 5) and structural (section 6)
results on the relation between the (behavioral) measures, time choices, and payoffs.
Section 7 concludes.

2 Theoretical Framework

This section presents a simple theoretical model demonstrating the economics of time
choices in a speed-accuracy trade-off. In our model, agents choose how much time they
take to solve a given task to maximize a payoff function. We assume that this payoff
function contains two components. The first component captures an agent’s perfor-
mance (or accuracy) in a given task which we model as the time-dependent probability
p( t) that an agent solves a task correctly. We assume that this probability is concave
and strictly increases in time (i.e., p0( t) > 0 and p00( t) � 0). The second component is a
reward function y( t), which specifies the time-dependent reward for solving the task.
We assume that agents solve the following optimization problem:

t � = argmaxt � ( t) = p( t)y( t) (1)

where t is the main choice variable and t � the optimal amount of time that maxi-
mizes payoffs. This general framework does not yet contain a speed-accuracy trade-off
without a more restricted definition of y( t). In the real world, time is a costly resource,
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and the rewards for solving a task are often only paid if it is solved correctly or to a
sufficient threshold. Therefore, we assume the following simple reward function:1

y( t) =

¤
Y � c( t) if task is solved correctly and Y > c( t)

0 otherwise
(2)

In this reward function, Y describes a fixed maximally possible reward for solving
a task and c( t) the cost of time, which we assume to be concave and strictly increase in
time (i.e., c0( t) > 0 and c00( t) � 0). c( t) can thus be understood to encompass both the
labor or effort cost of solving a task, as well as the opportunity cost of time. This reward
function introduces the central tension: To maximize (expected) payoff, an agent needs
to solve the task as fast as possible, as the reward reduces in time, but as accurately
as possible, as the reward can only be gained by providing an accurate (i.e., correct)
solution. This creates incentives for both fast and accurate solutions, and the optimal
action of an agent is to implement the unique time choice t � that maximizes equation
1.2

How does this optimal time choice change when the cost of timec( t) in equation
2 changes? For ease of exposition, assume that two situations exist such thatc1( t) >
c2( t) 8 t. These different costs of time imply different optimal time choices and generate
the first general prediction 3:

Prediction 1 : If the cost of time is high (low), an agent chooses little (more) time to
solve the task.

How does the optimal time choice depend on an agent’s performancep( t)? Assume
that two (otherwise identical) agents i and j differ in their ability irrespective of time,
such that p( t) i > p( t) j 8 t. Thus agent i has a higher performance than agent j and
equation 2 implies that t �

i < t �
j . This means that the optimal time choice for agent i is

lower compared to agent j and generates the second prediction:
Prediction 2 : A more (less) performant agent chooses less (more) time.
In contrast to the fully optimal decision maker, we now introduce a behavioral

agent with two behavioral characteristics: (1) subjective beliefs and (2) uncertainty
attitudes. These two characteristics are important drivers of choices in decisions over
uncertain events, where objective probabilities are unknown to the decision-maker (see
e.g., Fellner, 1961), and the outcome of any choice is inherently uncertain. We follow
the previous literature on two-step models that incorporate both behavioral character-
istics in the formulation of overall decision weights in the presence of uncertainty (Fox

1 We could also assume an accuracy threshold, which needs to be crossed, or time-dependent
benefits. We focus on the binary outcome of a correctly or incorrectly solved task for simplicity of
exposition.

2 See Appendix A.3.1 for a formal proof of the uniqueness of the maximum.
3 We discuss the generality of all predictions in Appendix A.3.2.
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& Tversky, 1998; Kilka & Weber, 2001; Tversky & Fox, 1995; Wakker, 2004; Wu &
Gonzalez, 1999). The first step is a translation of events (i.e., how likely is a correct
solution with time t) into subjective probability judgments. The second step is mapping
the subjective probabilities into decision weights. The first step captures our notion of
over-/underconfidence and the second of uncertainty attitudes.

In the first step, a behavioral agent replacesp( t) with a subjective belief b( t). Impor-
tantly, in our task, only two outcomes exist: E a correct solution and : E its complement.
Therefore, we shorten b(Ejt) to b( t) for brevity and define this as the subjective belief
of a correct solution conditional on time t.4 We do not impose any assumptions about
the origin, formation, and shape of subjective beliefs, as many mechanisms and speci-
fications are possible.5.

In the second step, an agent weights the subjective probabilitiesb( t) by a weighting
function w( �), which reflects attitudes towards the time-dependent probabilities with
which the rewards for a correct solution can be obtained (c.f. Fox & Tversky, 1998;
Kilka & Weber, 2001; Tversky & Fox, 1995). Such probability weighting is a well-
established feature in the domains of risk and uncertainty (Abdellaoui et al., 2005;
Gonzalez & Wu, 1999; L’Haridon & Vieider, 2019; Li et al., 2018; Trautmann & van
de Kuilen, 2015; Tversky & Kahneman, 1992; Wakker, 2010), where agents typically
overweight small and underweight large probabilities. 6

Jointly, both subjective beliefs and probability weighting imply that behavioral
agents maximize a modified behavioral version of equation 2:

tB = argmaxt �
B( t) = w(b( t)) y( t) (3)

This implies two new predictions. First, consider an agent who overestimates their
ability, i.e., b( t) > p( t) 8 t. Maximizing 3 results in a behavioral time choice tB < t � . This
is because the agent overestimates their performance at a given task and thus decides
to invest less time. This is Prediction 3:

Prediction 3 : An over(under)estimating agent chooses less (more) time.

4 Similar to Wakker (2004, p. 237) we do not impose additivity as a condition for b( t), i.e., b(Ejt) +
b( : Ejt) 6= b(Sjt), where S represents the sample space of outcomes.

5 For example, one mechanism could be general over- or underconfidence, due to an agent’s ten-
dency to over-/ underestimate their own ability (Moore & Healy, 2008; Moore & Schatz, 2017).
Alternatively, cognitive approaches suggest the potential for insufficient adjustment away from
over- or underoptimistic defaults due to limited attention (e.g., Gabaix, 2019), and psychological
research demonstrates effects of the difficulty of a task on overconfidence (e.g., Lichtenstein &
Fischhoff, 1977)

6 Similar to subjective beliefs, we do not impose any assumptions about the source of probability
weighting, but recent evidence suggests that cognitive factors could determine weighting behavior,
such as a compression of probabilities towards mental defaults of 50:50 due to cognitive noise
(Enke & Graeber, 2023), or a mental coding of probabilities in log-odds (Zhang & Maloney, 2012).
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Similarly, consider an agent who consistently underweights subjective probabili-
ties by some weighting function, i.e., w(b( t)) < b( t) 8 t. Compared to an �uncertainty-
neutral� agent (i.e., for whom w(b( t)) = b( t) 8 t), this agent’s time choice is larger, i.e.,
tB > t � . In other words, an uncertainty-averse agent invests more time to increase the
probability of success, as they undervalue a given subjective probabilityb( t). This is
Prediction 4:

Prediction 4 : An over(under)weighting agent chooses less (more) time

The presented theoretical framework and our hypotheses predict that time choices,
as solutions to the maximization problem, are not directly affected by the decision
environment for otherwise mathematically equivalent trade-offs. However, this might
not be the case. A small literature in cognitive science investigates differences between
motor-tasks and mathematically equivalent economic lottery tasks (Trommershäuser
et al., 2008; Wu et al., 2009). This literature finds that participants can solve motor-
task tasks nearly optimally but are affected by probability weighting and thus fail to
maximize their payoff in the equivalent lottery choices. This suggests that solutions to
maximization problems depend on how trade-offs are being solved and that behavioral
factors could play a more critical role in deliberate choice environments than when
choices are made intuitively.

The exact reasons for this discrepancy are not yet fully explored. One potential
explanation relates to the time available to make choices. In typical lottery tasks, peo-
ple can deliberate and weigh the options before making a choice. In contrast, people
have to make choices more intuitively and respond quickly in typical motor tasks. Re-
search in psychology suggests that humans use simpler decision rules and heuristics
and change their information acquisition patterns under time pressure (Payne et al.,
1996; Rieskamp & Hoffrage, 2008; Wu et al., 2022). This may leave less room for
subjective interpretations of the decision problem and lead to seemingly more rational
choices. A second possible explanation stems from a literature in psychology that shows
that participants choose different amounts of time when planning a task prospectively,
compared to choosing time while working on the task. This is known as the �planning
fallacy� (Buehler et al., 1994) and describes the phenomenon that humans typically
overestimate their future ability and thus underestimate the time required to complete
(or reach a particular performance in) a future task (see the review in Buehler & Griffin,
2015). Overall, this suggests that time choices and their determinants likely depend on
the decision environment. Subjective considerations, such as probability weighting or
assessments of ability, are more likely to affect time choices in environments where
time is planned prospectively. These effects should be weaker when time is chosen
while working on the task. This leads to an additional and literature-based prediction:
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Prediction 5 : Overconfidence and overweighting affect time choices more strongly in
prospective decision environments compared to time choices made while solving a task.

3 The Experiment

We designed an experiment around a �cognitive visual search task� to test our predic-
tions. This task allows us to easily measure the relevant participant-level characteristics
and implement a highly salient speed-accuracy trade-off. We test our theoretical pre-
dictions in a within-subject design for different decision environments and cost-of-time
specifications, which we describe in more detail below.

3.1 Experimental Design

Part 1

Stage 1: Measuring Performance
� Measure performance of participants for each t 2 (2, 3, 4, 5, 6 sec) in 50 rounds per time condition.

Stage 2: Measuring Beliefs
� Elicit beliefs about absolute performance in Stage 1 for each t 2 (2, 3, 4, 5, 6 sec).

Stage 3: Measuring Uncertainty Attitudes
� Elicit certainty equivalents for each t 2 (2, 3, 4, 5, 6 sec). Order randomized.
� Implement decisions for each t in 10 rounds of the task.

Part 2

Stage 4: Time Choices in Speed-Accuracy Trade-o�s

Order of high and low cost-of-time randomized between subjects.
High cost-of-time

(1) Prospective (2) Simultaneous
Low cost-of-time

(1) Prospective (2) Simultaneous

(1) Prospective
a. Elicit subjects’ prospective time choice.
b. Implement time choice in 40 tasks.

(2) Simultaneous
a. Measure time taken in 40 rounds of the simultaneous task.

Stage 5: Questionnaire

Figure 1. Outline of the Experiment

The experiment consists of two parts (see Figure 1). In the first part , we elicit
participants’ time-dependent performance, subjective beliefs about performance, and
uncertainty attitudes. In the second part , we introduce the speed-accuracy trade-off
and observe participants’ time choices in two decision environments and for two cost-
of-time specifications. At the beginning of part one and part two, participants have
training rounds to familiarize themselves with the task. The experiment concludes with
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a questionnaire. We first introduce and describe the main task before describing the
experiment’s structure and the experimental implementation.

Main Task. In the main task of our experiment, participants need to select the two-
digit Arabic number with the highest value in a 4 � 4 table of 16 numbers in a certain
amount of time (see Figure 2). The experimental screen shows the remaining time as a
decreasing bar over the table and the reward for a correct and incorrect solution below.
We sample the numbers in the table such that the task always has similar difficulty
across repetitions.7 Once a participant selects a cell in the table, it is highlighted in yel-
low. Participants can change their selection as long as there is time available. When the
time runs out, the currently selected cell is automatically submitted as the participant’s
answer.8

Figure 2. Main Experimental Task

We designed this task to combine the advantages of classical paradigms used to
investigate speed-accuracy trade-offs with a more cognitively demanding task that cap-
tures relevant aspects of economic decision-making. Similar to classical tasks in cogni-
tive science (such as random-dot kinematograms, motor-control tasks, or goal-directed
movement tasks (see Heitz, 2014, for a review), participants can learn our task ex-
tremely fast and do many repetitions in a reasonably short amount of time, allowing

7 Accordingly, the 16 values in the table are sampled in the following manner: Firstly, we sample a
solution, such that 41 � solution � 90. Secondly, we sample the remaining 15 numbers by simple
random sampling without replacement from [solution � 31,solution � 1] . The 16 values are then
randomly placed on the table. See Appendix A.4 for a more thorough explanation of the sampling
mechanism of the matrices for each experimental stage.

8 This does not yet implement a speed-accuracy trade-off without time costs. We discuss how we
implement the speed-accuracy trade-off in our description of the second part of the experiment.
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us to collect multiple data points and get a robust estimate of their time-dependent
performance. However, our task is distinct from classical paradigms in one crucial area:
Instead of relying on intuition, automatic responses, or hand-eye coordination (requir-
ing very fast time choices within a few milliseconds), our task is cognitively more de-
manding and requires both working memory capacity and (numerical) cognition. Our
task, therefore, requires skills that are essential requirements and determinants of per-
formance on the job in many occupations (Brown et al., 2020; Corgnet et al., 2015;
Hanushek et al., 2015).

Stage 1: Performance. In stage one of the experiment, we measure participants’ time-
dependent performance in the main task. More specifically, we fix the time and reward
scheme and measure participants’ performance in 2, 3, 4, 5, and 6 seconds in 50 tasks
each. Participants get a payoff of 100 points for each correctly solved task and 0 points
if they do not select the correct solution before the allocated time has run out. The
250 tasks are divided into five rounds, and each round is divided into five blocks. Each
block consists of ten tasks with a constant fixed time (i.e., one block contains ten tasks
with either 2, 3, 4, 5, or 6 seconds each). Overall, stage one adheres to the following
structure:

10 tasks with 6 seconds| {z }
Block 1

10 � 5s| {z }
Block 2

10 � 4s| {z }
Block 3

10 � 3s| {z }
Block 4

10 � 2s| {z }
Block 5| {z }

Round 1

10 � 6s| {z }
Block 6

. . . 10 � 2s| {z }
Block 10| {z }

Round 2

. . . . . . 10 � 2s| {z }
Block 25| {z }

Round 5

Before the first task in each block, participants see a countdown, followed by a fix-
ation cross in the middle of the screen (see Figure A14). After each block, participants
take a small break of ten seconds and an extended break of up to two minutes after
each round (i.e., after 50 tasks).

Stage 2: Beliefs. In the second stage, we elicit participants’ belief distribution about
their performance for each fixed time in stage one (2,3,4,5,6 seconds) using aball al-
location task (see Figure A11 for a screenshot of the task).9 In each task, participants
allocate 100 virtual balls into ten bins. Each bin represents an interval of five correctly
solved tasks (e.g., the first bin represents between zero and five correctly solved tasks,
the second bin between six and ten correctly solved tasks, etc.), and each ball repre-
sents one percentage point of the belief distribution. By distributing 100 balls across all
bins, subjects report their belief distribution about their performance in stage one. Par-
ticipants do five ball allocation tasks (one for each fixed time from stage one), which are
unannounced, and the instructions are only presented on-screen. We incentivize each

9 This task was first introduced in surveys by Delavande & Rohwedder (2008, 2011) and recently
applied in incentivized experiments by Drerup et al. (2017), and Chen and Schildberg-Hörisch
(2019).
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of the five ball allocation tasks individually according to the randomized quadratic scor-
ing rule (Hossain & Okui, 2013; Schlag & Van Der Weele, 2013) similar to Chen and
Schildberg-Hörisch (2019). Accordingly, participants can win a fixed amount of 250
points for each ball allocation task in a binary lottery. The probability of winning the
prize increases in the number of balls a participant allocates to the bin that contains
the actual number of correctly solved tasks.10

We chose to elicit belief distributions, as it is unclear how humans rely on their
belief distribution (e.g., on which moments) when asked for a point estimate (Engelberg
et al., 2009). Eliciting the full distribution provides a richer data set and allows us to
investigate different moments and measures of centrality. The approach to elicit belief
distributions instead of point predictions is an increasingly popular feature of recent
experimental papers (Bruhin et al., 2018; Chen & Schildberg-Hörisch, 2019; Crosetto
& De Haan, 2023; Eyting & Schmidt, 2021).

Stage 3: Uncertainty Attitudes. In the third stage, we elicit participants’ certainty
equivalents for each fixed time (2,3,4,5,6 seconds) and the same reward scheme as in
stage one using choice lists. Participants work on ten tasks for each fixed time in this
stage, but they choose thepayment schemefor these tasks themselves. For each fixed
time, participants choose the payment scheme from a table that contains 21 rows (see
screenshot A12 in Appendix A.5.3). In each row, participants choose between payment
scheme A � which is the same as in stage one (i.e., 100 points for a correct answer and
0 otherwise) � and scheme B � which always yields a fixed reward, regardless of the
correctness of their solution. The fixed reward increases by five points from 0 to 100
points in each row. Similar to previous studies (e.g., Enke & Graeber, 2023; Gonzalez
& Wu, 1999; Oprea, 2024), we enforce consistency of choices and allow only a single
switching point in the entire table, i.e., participants can switch at most once between
scheme A and B. In addition, we implement an auto-completion for the choice lists to
ease elicitation further: When a participant chooses scheme B in one row, the computer
fills all preceding rows with scheme A and subsequent rows with scheme B. Participants
can revise the switching point suggested by the computer and have to confirm their
final choice. At the beginning of stage three, participants answered five comprehension
questions about this mechanism.

After participants fill out the choice lists for all fixed times (order randomized),
they solve 50 tasks, 10 for each time. Participants’ reward scheme for each time is de-
termined by randomly drawing one row of the associated choice list and implementing

10 We calculate an integer W =
P 10

j= 1(bj � 100 � 1 j)2 for each individual and every ball allocation task.
bj captures the number of balls in bin j, and 1 j is an indicator function that is equal to 1 if bin j
contains participants’ actual performance. We then draw a random integer (H) from the uniform
distribution with the bounds 0 and 20, 000. If W is higher than H, the participant gains a payoff
of 250 points and 0 otherwise.
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this choice. When participants choose the safe amount in the drawn row, they still see
the ten tasks, but their reward remains independent of their answer. We made this
design decision to minimize the effect of participants wanting to finish the experiment
quicker, not wanting to work on the task, or wanting to relax. 11Participants see the
randomly drawn row, their choice in that row, and the resulting payoff scheme before
working on the ten tasks for each time.

Stage 4: Time Choices in Speed-Accuracy Trade-offs. In the fourth stage, we im-
plement a speed-accuracy trade-off in our task and elicit participants’ time choices.
More specifically, we change the (so far fixed) reward scheme into a time-dependent
reward function, which reduces the reward for a correct answer the longer a partici-
pant chooses to work on a task. Facing this reward function, participants have to solve
a speed-accuracy trade-off, where higher time choices simultaneously decrease � due
to the cost of time � and increase � due to the higher accuracy or performance � their
(expected) reward. We choose the following easily understandable piecewise linear re-
ward function:

y( t) =

¤
150 � � t if task is solved correctly and t < 150

�

0 otherwise
(4)

This function is equal to the reward function in equation 2 with a fixed maximum
payoff Y of 150 points and a linear function for the cost of time c( t), where each second
reduces the reward by � points.12

We implement two cost-of-time parameters � to test Prediction 1 . We predicted
that in situations where the cost of time is low, participants take relatively more time
than in situations where the cost of time is high. We therefore implement a high ( � =
30) and low ( � = 10) cost-of-time. In the low cost-of-time setting, the reward is equal
to the previous stages (i.e., 100 points) when taking 3.33 seconds to answer correctly
and equal to 0 after 15 seconds. In the high cost-of-time setting, these times are shorter,
and participants get a reward of 100 for solving the task in 1.67 seconds and 0 if they
do not select the correct answer within 5 seconds. We randomize the order of the two
cost-of-time settings between participants.

11 In fact, even for the lowest time (2 seconds), only 3% of participants choose the safe reward in all
rows. This provides evidence that participants try to optimize their payoffs rather than minimize
their time working on the task. Furthermore, in the implementation stage, participants selected an
answer in 86.4% of the tasks in the safe payment scheme (B) (versus 97.9% in payoff scheme A).
This indicates that choices for B are not driven by the desire to relax.

12 While we could use a more complex reward function (e.g., a logarithmic cost-of-time), we chose a
linear function to facilitate participants’ understanding of the trade-off.
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We introduce two different decision environments that vary how participants
choose the time to work on our task. We call the first the �prospective� and the second
the �simultaneous� environment.

(a) Prospective (b) Simultaneous

Figure 3. Experimental Decision Screens: Prospective and Simultaneous

In the prospectiveenvironment, participants choose the amount of time for 40 tasks
ex-ante before working on the tasks. They enter their choice via a slider, which up-
dates a table where participants see the payoffs from a correct (and incorrect) answer.
Additional to the reward table, a �simulation area� below the slider allows participants
to simulate their time choice. The simulation area contains a progress bar � similar
to all previous tasks � that updates live to their chosen time. Participants can start a
timer simulation, where the progress bar simulates the time for one task. We chose this
feature to maximize the salience of the trade-off. The decision screen is presented in
Figure 3 a).

In the simultaneouscondition, participants decide on the amount of time for each
task while solving the task by choosing when to submit their final answer. We alter the
progress bar for this environment to show the remaining points for a correct answer
instead of the remaining time. The speed of the progress bar is determined by the cost
of time and the maximum amount of points. Participants select an answer by clicking
on a cell and submit their answer by clicking on an already selected cell (see Figure 3
b) for a screenshot of the decision screen).

Overall, stage four thus contains four sub-phases (prospective low, prospective high,
simultaneous low, and simultaneous high) with 40 tasks per sub-phase. Participants first
work on the prospective task before working on the simultaneous task within the same
cost-of-time condition.
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Stage 5: Questionnaire and Additional Measures. We collect additional participant-
level data in stage five. First, we measure participants’ reaction time via a modified
version of our main task. Here, participants need to identify a single �X� among 15
�0�s in the familiar 4x4 table (see screenshot A13). The maximum reward they can
earn is 50 points, and the cost-of-time is 10 points per second. Like in the simultane-
ous environment, participants must select and submit their selection with one mouse
click each. In total, participants solve 30 reaction-time-tasks. Secondly, we collect survey
measures of risk and time preferences according to the Global Preference Survey (GPS)
module (Falk et al., 2023), subjective fatigue levels during the week and right after
the study using visual analog scales (Radbruch et al., 2003), competition preferences
(Fallucchi et al., 2020), and participants’ basic socio-demographic information. Further-
more, we elicit subjectively perceived time pressure during the tasks in the prospective
and simultaneous environment.

3.2 Implementation

We pre-registered the experiment in June 2021 (AEA RCT Registry No. 7748) and sub-
sequently conducted sessions at the MABELLA laboratory a the University of Mainz
in June and July 2021. Participants were invited using ORSEE (Greiner, 2015), and
the experiment was programmed in oTree (Chen et al., 2016). 91 participants, all
with (corrected to) normal vision, in 15 sessions participated in the study. Each ses-
sion lasted between 1:45 and two hours. Participants earned 23.70¿ on average (min:
18.90¿; max: 30.40¿), which includes a 5¿ show-up fee. To limit outside influences
on participants’ time choices inside the experiment (e.g., wanting to leave the lab ear-
lier), we instructed participants that they would have to wait until everybody in their
session had finished the experiment and would only receive payment afterward. The
experimental currency was called points during the experiment, and the exchange rate
was 100 points = 0.20 ¿. In each experimental stage, 30% of the tasks were randomly
selected for payoff. After arriving at the lab, we assigned each participant a random
seat in the laboratory, where they received printed instructions about the experiment.
We instructed participants only to read the relevant instructions for each stage. Each
stage at the computer ended with a prompt for participants to read the next part of the
instructions. The elicitation of beliefs was unannounced and explained on screen, not
in the printed instructions. Participants could contact the experimenter via a chatbox
or raise their hands if they had questions. The translated instructions are available in
Appendix A.5.1.
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4 Experimental Measures and Descriptives

This section briefly describes the measures and descriptive data on the three compo-
nents we predicted to impact participants’ time choices: participants’ performance, their
beliefs, and their uncertainty attitudes (see Figure 4).13
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Figure 4. Descriptive Results: Performance, Beliefs and Uncertainty Attitudes This graph plots individ-
ual and average (over individuals) datapoints for average correct solution in stage 1 of the experiment
by available decision time (a), the mean of participants’ belief distribution from the ball allocation
task and their true average correct solution (b), as well as their normalized certainty equivalent from
the multiple price lists given their mean belief (c). We color-code beliefs (b) and normalized certainty
equivalents (c) by the respective time.

4.1 Performance

We measure time-dependent performance for each participant based on the number
of correct solutions for each of the five fixed times (2,3,4,5,6 seconds) in stage one
of the experiment. A first � aggregate � measure is the mean performance of each
participant, i.e., the fraction of correct solutions across all time conditions ( � i). On
average, participants answer 63.6% of the 250 tasks correctly across all fixed times. A
less aggregate approach is to calculate five measures of mean performance, one for each
fixed time ( � i

t). As expected, participants’ performance is worst in 2 seconds (25.3%
correct solutions) and increases with more time (3 sec: 50.6%; 4 sec: 72.2%; 5 sec:

13 Figure A3 in Appendix A.2 provides the empirical cumulative distributions based on the raw data.
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81.1% and 6 sec: 89.1%).14Panel (a) of Figure 4 further reveals a considerable degree
of individual heterogeneity in time-dependent performance.

4.2 Beliefs

We measure participants’ subjective beliefs about their performance based on the data
from the ball allocation task in stage two. We follow a similar approach to Engelberg
et al. (2009) and Delavande & Rohwedder (2008, 2011) to provide a parsimonious
description of subjective beliefs. First, we fit a distribution on the data from each ball
allocation task (2 sec., . . ., 6) and obtain the distribution’s moments and measures
of centrality. More specifically, we fit a two-parameter beta distribution by maximum
likelihood if a participant allocates probability mass (i.e., balls) into more than one bin
and an isosceles trapezoid distribution if a participant allocates all probability mass into
only one bin. We subsequently use the mean of the belief distribution as our measure of
participants’ subjective beliefs for the analysis. The mean � in contrast to the mode or
median � has the advantage that it provides a measure based on the entire distribution
of elicited beliefs.15

Panel (b) of Figure 4 plots the mean belief to the average number of correctly
solved tasks (separated by the available time), both on an aggregate and individual
level. On average, participants’ mean belief is 0.34 with 2 seconds, 0.49 with 3, 0.65
with 4, 0.75 with 5 and 0.8 with 6 seconds, indicating slight overweighting of lower
average performance, yet underweighting of larger average performance. On an indi-
vidual level, we match the mean belief in a given time to the average performance in
that time and again observe a considerable amount of individual differences.

In addition, we can construct a parsimonious measure of over- and underconfi-
dence: We apply a similar approach to Chen and Schildberg-Hörisch (2019) and com-

14 Parametric and non-parametric tests (i.e., t-tests, Mann-Whitney-U tests, and Kolmogorov-Smirnov
tests) confirm that an increase in the available time leads to significant (all pairwise comparisons
p < 0.001) differences (increases) in performance in terms of the mean, mean rank and across the
entire distribution

15 Engelberg et al. (2009) and Kröger and Pierrot (2019) investigate which measure of centrality (i.e.,
the mean, mode, or median) of elicited belief distributions of professional forecasters most strongly
correlates with their point predictions. Engelberg et al. (2009) finds no significant differences,
while Kröger and Pierrot (2019) suggest that the mode or the mean might fit the data better than
a specific quantile (i.e., the median). While reassuring, the implications for our setting are limited
as we inspect retrospective beliefs about own performance rather than beliefs about uncertain
future events. Regardless, we replicate our principle analysis with the median and the mode of
the belief distributions and report the results in the Appendix. We find that estimation results of
the most parsimonious model with the median (see Table A7 to A10) and the mode (Table A11 to
A14) closely match our main results. While all estimates are numerically similar, minor differences
exist in standard errors and p-values. Overall, we conclude that the main results are largely robust
to alternative measures for subjective beliefs.

18



pare participants’ mean subjective beliefs to their estimated 95% performance inter-
val.16We define a participant to have well-calibrated beliefs for time t 2 (2, . . . , 6) if
the mean subjective belief for time t is within the confidence interval, and we assign
a value of 0 to the measure of overconfidence. When the subjective belief is above or
below the confidence interval, we subtract the value of the closest bound. The result-
ing measure is negative for underconfident and positive for overconfident agents and
describes by how many percentage points participants over- or underestimate their
performance. On average, participants slightly overestimate their performance with 2
seconds (by 4.2pp.) and underestimate it for all other fixed times (3 sec: -0.01pp.; 4
sec: -2.6pp.; 5 sec: -2.7pp. and 6 sec: -4.4pp.), matching the aggregate data from panel
(b) of Figure 4. Consequently, the mean mean of these five time-dependent measures
reveals that that participants slightly underestimate their ability on average (by 1.2pp.;
t-test of mean = 0: p = 0.082).

4.3 Uncertainty Attitudes

Finally, we construct the measure of participants’ uncertainty attitudes from the data
gathered in the multiple price lists in stage three of the experiment. We define the
normalized certainty equivalent NCEt,i for each participant i and time t as the midpoint
of the interval between the rows of the multiple price lists where participants switched
from payoff scheme A (100 points for a correct solution, 0 otherwise) to payoff scheme
B (sure payoff). If a subject always chooses payoff scheme A (B), we code their NCE
with 1 (0). 17Assuming linear utility, the NCEt,i correspond to the implied probability
weight (L’Haridon & Vieider, 2019).

However, the normalized certainty equivalents do not have a straightforward inter-
pretation by themselves. In the literature on risk and uncertainty, normalized certainty
equivalents are usually obtained for � and compared to � objective probabilities. In con-
trast, we elicited them for a specific reward scheme and a given amount of time t to
work on our task. In line with the two-step model outlined in Section 2, we, therefore,
relate the NCEi

t data to participants’ subjective beliefs. Specifically, we calculate the dif-
ference between the NCE and the mean of participants’ belief distribution for each time

16 We define upper and lower 95% confidence bounds of performance by an approach similar to
Chen and Schildberg-Hörisch (2019) and calculate 95% Wilson score intervals for the share of
correct solutions for each fixed time and each participant. While Chen and Schildberg-Hörisch
(2019) rely on Wald-type approximations, we use Wilson score intervals, as Brown et al. (2001)
provide evidence that standard Wald-type approximations are often severely biased in the case of
binary outcome data. This is especially the case when the outcome is close to0 or 1, which is
true for the performance of many participants with two or six seconds. In these cases, Brown et al.
(2001) suggests using Wilson score intervals. These upper and lower confidence estimates provide
a more robust performance measure.

17 This occurred in 6.6% (=30) of choices across all 455 multiple price lists.
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t. This provides a measure of over-/ underweighting, which is positive for uncertainty-
averse and negative for uncertainty-seeking agents. On average, participants slightly
overweight subjective beliefs with 2 (by 5.0pp.) and 3 seconds (by 1.9pp.) and un-
derweight it for all other fixed times (4 sec: -2.1pp.; 5 sec: -6.2pp.; 6 sec: -10.3pp.).
We define the mean of these five time-dependent measures as our measure of aver-
age uncertainty aversion and find that our experimental sample is, on average, slightly
uncertainty-seeking (by 2.3pp.; t-test of mean = 0: p = 0.055).

5 Reduced Form Results

We first summarize participants’ time choices in the second stage of the experiment.
Subsequently, we conduct regression analyses to test our experimental hypotheses
about the relationship between our experimental measures and their predicted effects
on time choices.

5.1 Time Choices

Figure 5 plots participants’ time choices in both decision environments and for both
cost-of-time parameters. For the prospective task, we use participants’ time choice di-
rectly and rely on the mean time choice for the simultaneous task. We formulate three
observations based on the raw time choice data.

p < .001 p < .001
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Figure 5. Time Choices across Environments and Cost This graph shows participants’ time choices
in the prospective task and mean time decision in the simultaneous task for both cost-of-time envi-
ronments. The means are calculated for each cost-of-time and decision situation. The brackets and
p-values signify comparisons of two outcomes using two-sided paired t-tests

Firstly, irrespective of the decision environment (i.e., prospective or simultaneous),
participants react to the two cost-of-time parameters in the direction predicted by our
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theoretical framework. 95.6% of participants choose more time (1.20 seconds longer)
in the low cost-of-time situation compared to the high cost-of-time situation in the
prospective environment.18 In the simultaneous choice environment, all participants
have a higher average response time (by0.99 seconds) for the low cost-of-time setting.
These differences confirm that participants choose significantly (both t-tests:p < 0.001)
more time in the low cost-of-time condition compared to the high cost-of-time condi-
tion.

Result 1 : Consistent with prediction 1, participants take more (less) time when the
cost-of-time is low (high).

Secondly, both time choices in the simultaneous environment are strongly cor-
related (Spearman’s � = 0.79, p < 0.001) as well as the average response times in
the prospective environment (Spearman’s � = 0.53, p < 0.001). Conversely, the corre-
lation between the same cost-of-time condition and across decision environments is
smaller (high cost-of-time: Spearman’s � = 0.26, p = 0.012; low cost-of-time: Spear-
man’s � = 0.40, p < 0.001). This indicates that participants’ time choices correlate more
strongly within the same decision environment than within the same cost-of-time con-
dition.

Thirdly, the raw data shows that participant-level heterogeneity exists even within
a single condition. For example, the inter-quartile range in the two high cost-of-time
conditions is 1 (prospective) and 1.16 (simultaneous) seconds and 0.8 and 0.74 in the
two low cost-of-time conditions. This heterogeneity in time choices could result from
individual differences in performance, beliefs, or uncertainty attitudes � the hypothe-
sized channels introduced in Section 2.

We investigate our theoretical predictions in a regression framework, where the
dependent variable is the time choice. Table 1 presents regression results for the two
decision environments and cost-of-time parameters. We estimate one OLS model for
each decision environment and each cost-of-time condition and one pooled model with
individual random effects for each decision environment. We use the most parsimonious
measures of overconfidence and uncertainty attitudes in our main specification, i.e.,
the average overestimation and average uncertainty aversion. In addition, we include
participants’ average performance to control for the effect of ability differences and a
dummy for the order of the cost-of-time conditions to control for order effects.

Prospective Decision Environment. We present the estimation results for the prospec-
tive decision environment in columns 1, 2, and 3. As predicted by our theoretical frame-
work, higher average overconfidence reduces the time participants choose. More specif-
ically, a 10pp. overestimation (i.e., an agent who believes to solve 10pp. more problems

18 2.2% choose the same time, and only2.2% a (slightly) lower time. Both individuals who chose a
lower time deviated from their previous choice only by 0.1 second.
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Table 1. Time choices

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.262*** -0.476** -0.369*** -0.061 0.076 0.007
(0.088) (0.236) (0.135) (0.079) (0.140) (0.094)

Average Uncertainty Aversion (10pp.) 0.114** 0.274* 0.194** 0.004 -0.115 -0.055
(0.052) (0.142) (0.082) (0.045) (0.086) (0.059)

Average Performance (10pp.) -0.142** -0.448*** -0.295*** -0.374*** -0.607*** -0.490***
(0.060) (0.107) (0.067) (0.058) (0.094) (0.068)

High �rst -0.022 -0.255 -0.138 -0.034 -0.094 -0.064
(0.108) (0.180) (0.121) (0.086) (0.134) (0.099)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R2

Adj. 0.062 0.207 0.574 0.401 0.426 0.702

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective environment and the mean submission time in
the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered
(on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average
Overcon�dence are the measures described in Section 4, Average Performance is the average performance,
Low time cost is a dummy for the low cost-of-time condition, High �rst is a dummy for the order of the two
cost-of-time conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10 percentage
points change. * p < 0.1, ** p < 0.05, *** p < 0.01
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than they do) is associated with a 0.26 seconds(p = 0.004) lower time choice in the
high cost-of-time environment and a 0.48 seconds(p = 0.047) lower time choice in the
low cost-of-time environment and a 0.37 seconds(p = 0.007) lower time choice in the
combined panel model.

The uncertainty aversion results mirror the overestimation results. As predicted,
a higher average uncertainty aversion is associated with a higher time choice. More
specifically, a 10pp. higher uncertainty aversion is associated with a0.11 seconds(p =
0.03) higher time choice in the high cost-of-time environment and a 0.27 seconds(p =
0.057) higher time choice in the low cost-of-time environment and a 0.19 seconds
(p = 0.018) higher time choice in the combined panel model.

Finally, higher performance is associated with a lower time choice. More specifically,
the coefficient on average performance indicates that a 10pp. increase in average perfor-
mance is associated with choosing0.14 seconds less in the low cost of time(p = 0.021),
0.45 seconds less in the high cost of time(p < 0.001) and 0.30 seconds (p < 0.001)
in the panel model. Furthermore, the estimated coefficient on the difference in time
choice between the high and the low cost-of-time settings in the panel model indicates
that participants take roughly 1.2 seconds longer when the cost-of-time is low, pro-
viding additional support for Result 1 . We summarize our results in the prospective
environment as follows:

Result 2a: A higher average performance is associated with a lower time choice in the
prospective decision environment.

Result 3a: A higher average overestimation is associated with a lower time choice in
the prospective decision environment.

Result 4a: A higher average uncertainty aversion is associated with a higher time
choice in the prospective decision environment.

Simultaneous Decision Environment. Conversely, in the simultaneous decision en-
vironment (columns 4, 5, and 6), all estimates for overconfidence and average uncer-
tainty aversion are smaller and insignificant. The coefficients for average performance
are larger than in the prospective decision environment and remain significant. They
indicate that a 10pp. increase in average performance is associated with choosing0.37
seconds less in the low cost of time(p < 0.001), 0.6 seconds less in the high cost of
time (p < 0.001) and 0.49 seconds(p < 0.001) in the panel model. The estimated coef-
ficient for the low time cost dummy in the panel model indicates that participants take
roughly 0.99 seconds longer(p < 0.001) than in the high cost of time environment. We,
therefore, stipulate the following results for the simultaneous decision environment:

Result 2b: A higher average performance is associated with a lower time choice in the
simultaneous decision environment.
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Result 3b: We do not find support for prediction 3 (i.e., that overestimation is associ-
ated with a lower time choice) in the simultaneous decision environment.

Result 4b: We do not find support for prediction 4 (i.e., that uncertainty aversion is
associated with a higher time choice) in the simultaneous decision environment.

Result 5: We find that overestimation and uncertainty aversion are associated with
time choices in the prospective but not in the simultaneous decision environment.

Other than the hypothesized inherent difference between decision environments,
another potential reason for the missing effect of the behavioral factors could be that
participants learn throughout the forty tasks in the simultaneous environment and
adapt their time choices. To test this, we re-estimate our regression in the simultane-
ous environment and use three alternative measures for time choices: (i) the average
submission time of the first ten tasks, (ii) the submission time of only the first task, and
(iii) the submission time in task ten. We show the results in Table A6 in Appendix A.2.
We do not find evidence of any effect of the behavioral factors for any of the alternative
measures, and our results are qualitatively similar to the main results in Table 1.

Controlling the main regression for individual-level characteristics (survey mea-
sures of time, risk and competition preferences, gender, age, perceived time pressure,
fatigue, and the anticipation of more intensive work in the second part of the experi-
ment) does not affect the main regression coefficients in a meaningful way (see Table
A2 in Appendix A.2). Only age has a small negative and significant coefficient in the
panel model for the prospective condition, while all other individual-level characteris-
tics are small and insignificant. We, therefore, conclude that the estimates for our main
measures of interest (overconfidence and uncertainty aversion) are robust to control-
ling for fatigue or depletion effects, perceived time pressure in the second part of the
experiment, the anticipation of more intensive work, or other individual characteris-
tics.19

Finally, using alternative specifications for performance, such as the average perfor-
mance for each fixed time (Table A3) or the estimated structural performance parame-
ters (Table A4) does not substantially change our coefficients of interest.

Overall, the reduced form results support behavioral predictions 3 and 4 in the
prospective decision environment but not in the simultaneous environment, supporting
prediction 5. This suggests that our participants rely on their beliefs and uncertainty at-
titudes when solving speed-accuracy trade-offs in prospective time planning situations.
Conversely, these behavioral measures do not predict their time choices when working
on the task.

19 In Appendix A.1.2, we further investigate whether self-reported effort in part two of the experiment
is correlated with participants’ time choices and do not find any evidence to support this claim.
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5.2 Payo�s

The previous analysis on time choices has revealed that overconfidence and uncertainty
aversion predict time choices in the prospective decision environment but not in the
simultaneous decision environment. What these analyses so far neglected is if these ef-
fects translate into consequences for participants, i.e., if more �behavioral� time choices
actually lead to lower payoffs (and can be appropriately interpreted as deviations from
�rational� choices). One challenge here is that payoffs � given the time-sensitive reward
scheme � depend on time choices, which in turn are determined by participants’ per-
formance, their beliefs and uncertainty attitudes as established above. To model the
impact of these behavioral factors onpayoffs, we therefore can not use a standard OLS
setup, but have to employ a path analysis.20A path analysis allows us to (i) investi-
gate how time choices and participants’ average performance predict payoffs and (ii)
analyze the indirect effects of the behavioral factors on payoffsthrough time choices.

We specify an over-identified recursive path model with two endogenous variables
(see Figure A4). The first endogenous variable is participants’ time choice which � ac-
cording to our theoretical model and equal to the specification in Table 1 � is associated
with overconfidence, uncertainty attitudes, performance, and the dummy for the order
of the decision environment. The second endogenous variable is participants’ payoff.
We model the payoff to be affected by time choices, the general performance measure,
and the order dummy. The results are displayed in Table 2.21The results for the effect
of overconfidence and uncertainty aversion on time choice are qualitatively similar to
the results obtained in Table 1 and confirm that those predict time choices.

Furthermore, the estimates show that time choices affect payoffs significantly in
the high cost-of-time but not in the low cost-of-time condition. In the high cost-of-time
condition, a 1-second higher time choice is associated with a reduction in payoff by 7.5
points (p < 0.001) in the prospective and by 11.2 points (p < 0.001) in the simultaneous

20 Path analysis allows for the estimation of simultaneous equations and multiple endogenous vari-
ables. Akin to mediation analysis, it allows for a straightforward estimation of indirect effects. The
models are estimated using maximum likelihood, and their assumptions are similar to classical
linear regression, including common assumptions of independence of error terms, but extended to
all (intermediate) variables and their disturbances (see Kline (2011) for an extensive discussion of
the different assumptions).

21 We additionally estimate a full model where we allow overconfidence and uncertainty aversion to
affect both time choices and payoffs. Theoretically, an argument for including these paths might
be due to �motivational aspects� of (over)confidence as demonstrated by Chen and Schildberg-
Hörisch (2019). However, our theoretical framework does not allow for this effect. The results
(presented in Table A5 in Appendix A.2) are qualitatively similar to the parsimonious model, and
the additional paths seem to play no role empirically. The modification indices for the two paths
between overconfidence and uncertainty aversion and payoffs in the reduced model are below 2,
indicating that their effect is insignificant and their inclusion would not improve the fit of the
model.
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Table 2. E�ects of overcon�dence and uncertainty aversion on time decisions and payo�s

Prospective Simultaneous

High Low High Low
(1) (2) (3) (4)

Regression Slopes
Time Choice

Average Overcon�dence (10pp.) -0.26 ��� -0.48�� -0.06 0.08
(0.10) (0.23) (0.08) (0.14)

Average Uncertainty Aversion (10pp.) 0.11�� 0.27�� 0.00 -0.11
(0.05) (0.14) (0.04) (0.08)

Average Performance (10pp.) -0.14�� -0.45��� -0.37��� -0.61���

(0.06) (0.10) (0.05) (0.09)
High �rst -0.02 -0.25 -0.03 -0.09

(0.11) (0.17) (0.08) (0.13)

Payo�

Time Choice -7.47��� -0.25 -11.20 ��� -0.59
(1.10) (1.41) (1.11) (1.44)

Average Performance (10pp.) 6.20��� 9.18��� 5.27��� 8.39���

(0.69) (1.33) (0.60) (1.55)
High �rst -0.75 -3.86 �� 0.10 0.08

(0.96) (1.78) (0.83) (1.65)

Intercepts

Time Choice 4.32��� 7.60��� 5.77��� 8.27���

(0.35) (0.67) (0.37) (0.60)
Payo� 12.43 � 26.95�� 35.04��� 35.23��

(6.43) (13.08) (6.54) (15.61)

Indirect E�ects on Payo�

Average Overcon�dence (10pp.) 1.96 �� 0.12 0.69 -0.04
(0.80) (0.71) (0.87) (0.24)

Average Uncertainty Aversion (10pp.) -0.85�� -0.07 -0.04 0.07
(0.41) (0.39) (0.50) (0.21)

Average Performance (10pp.) 1.06�� 0.11 4.19��� 0.36
(0.44) (0.62) (0.72) (0.91)

Total E�ects on Payo�s

Average Performance (10pp.) 7.26��� 9.29��� 9.46��� 8.75���

(0.88) (1.18) (0.81) (1.05)

CFI 1.00 1.00 1.00 1.00
TLI 1.00 1.04 1.02 1.03
RMSEA 0.02 0.00 0.00 0.00

Note: Path analysis estimated by maximum likelihood. The recursive, reduced
and thus over-identi�ed model has two endogenous variables: time choice and
payo� . Time choice has a dual role and has an e�ect on payo� . The exoge-
nous variables are Average Uncertainty Aversion and Average Overcon�dence as
described in Section 4, Average Performance as the average performance, High
�rst is a dummy for the order of the two cost-of-time conditions. (10pp.) indi-
cates that a unit change in the variable corresponds to a 10 percentage points
change. Bootstrapped (n = 1000) standard errors in parentheses. * p < 0.1, **
p < 0.05, *** p < 0.01
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environment. Similarly, participants who have a higher average performance in the task
earn a higher payoff irrespective of their time choice across all decision environments
(all p < 0.001). Finally, we observe a negative coefficient for the high-first environment
in the prospective low cost-of-time environment. This implies that participants who
first encountered the high environment earn less in the prospective low environment;
however, this effect does not seem to be driven by time choices.

We now turn to the indirect effects of behavioral factors on payoffs through time
choices. The results show that overconfidence and uncertainty aversion significantly
affect payoffs through time choices only in the prospective high cost-of-time environ-
ment. More specifically, a 10pp. increase in overconfidence is associated with a 2 points
(p < 0.01) higher payoff � an increase by 7.5% of the average payoff in this decision
and cost-of-time environment. The finding is explained by the fact that overconfidence
decreases time choices, which in turn increases payoffs. Conversely, this implies that
underconfident agents (who select more time) have a lower payoff. For uncertainty
aversion, the estimates imply that an increase of 10pp. is associated with a 0.9 points
(p = 0.034) lower payoff � a reduction in payoff by 3.3%. In all other decision environ-
ments, the behavioral factors do not significantly affect payoffs through time choices.

Overall the results of the path analysis confirm that overconfidence and uncertainty
aversion significantly predict time choices in the prospective environment. However,
they only have an indirect effect on payoffs in the high cost-of-time environment where
underconfidence and uncertainty aversion are associated with longer time choices and,
in turn, lower payoffs.

6 Structural Estimations

We can also adopt a more structural approach to analyzing participants’ time choices,
which yields several additional insights. Beyond the reduced-form results, individual
structural estimates allow us to assess whether participants aimed to optimize their
time choices to maximize payoffs in accordance the theoretical model (i.e., taking
into account their performance, beliefs, and uncertainty attitudes) in a formally more
pre-specified way (compared to the standard linear regression setup). This approach
enables us then to not only correlate time choices with measures of beliefs and un-
certainty attitudes, but also to predict time choices based on the observed data and
assumptions on functional forms. This, in turn, allows for proper model comparisons
between different models of time choice that take model fit and complexity into ac-
count.
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6.1 Performance, Belief and Probability Weighting Function

We start by looking at the individual forms of equations 1 and 3, i.e.,

t �
i = argmaxt � i( t) = p( t) iy( t) (5)

and

tB
i = argmaxt �

B
i ( t) = w(b( t)) iy( t) (6)

The aim of the structural approach is to be able to make justifiable individual-
specific assumptions on (and predictions for) p( t) i and w(b( t)) i. This, in turn, allows
to construct a �rational�, t �

i , and �behavioral�, tB
i , benchmark for the solution of the

trade-off for each person i. To be able to construct these benchmarks, we first need to
formulate both objective functions � i( t) and � B

i ( t). The former requires us to specify
p( t) i. For this, we follow the �workhorse� model from the literature on speed-accuracy
trade-offs in neuroscience and psychology (see Dean et al., 2007; Dosher, 1976; McEl-
ree & Carrasco, 1999; Reed, 1973):

p( t) i = � i(1 � e� ( t� � i ) / � i )) (7)

where � i describes the asymptotic performance level,� i the x-axis onset, and � i

the steepness of the function (see Dean et al., 2007). While other functional forms are
principally plausible, a model comparison in Figure A6 in the appendix shows that this
functional form is superior in (out-of-sample) predictive power to alternative models of
time-dependent performance in stage 1, more specifically to a three-parameter probit
and logit model. Based on estimates for the three parameters� i , � i , � i we can calculate
t �
ic for both cost-of-time conditions c for each individual i.

To obtain behavioral predictions for the optimal time choice tB
ic (and specify � B( t) i

in turn), we additionally need w(b( t)) i, which � in line with the two-step models de-
scribed in the theoretical section � consists of b( t) i and w(b( t)) i. For both b( t) i and
w(b( t)) i, we follow the literature on belief and probability weighting and estimate a
two parameter weighting function. For example, Tversky and Fox (1995) and Fox and
Tversky (1998) estimate a two-parameter weighting function for subjective beliefs and
empirically show the canonical inverse s-shape known from lottery domains. Wu and
Gonzalez (1999) support this finding and demonstrate that a two-parameter weight-
ing function fits subjective beliefs well across multiple considered domains. We follow
these approaches and use the two-parameter weighting function proposed by Goldstein
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and Einhorn (1987) and Gonzalez and Wu (1999), separately for both for beliefs and
uncertainty attitudes. 22The belief weighting function, in turn, reads:

b( t) i =
� b

i p( t)

 b

i
i

� b
i p( t)


 b
i

i + (1 � p( t) i) 
 b
i

(8)

In this equation, � b
i describes the elevation and
 b

i the curvature of the belief weight-
ing function, and p( t) i the time-dependent performance in time t according to equation
7. Elevation and curvature equal to one imply a linear relationship between subjective
beliefs and performance and, thus, unbiased or well-calibrated beliefs.

As stated, we �concatenate� the belief weighting function with an additional two-
parameter weighting function for w(b( t)) that captures uncertainty attitudes:

w(b( t)) =
� wb( t) 
 w

� wb( t) 
 w + (1 � b( t)) 
 w (9)

where � W describes the elevation and
 W the curvature of the �probability� weight-
ing function capturing uncertainty attitudes.

We fit a Bayesian probabilistic model with Numpyro (Bingham et al., 2019; Phan
et al., 2019) to obtain the (posterior) probability of the individual parameter vector
� i = ( � i , � i , � i , � b, 
 b, � w, 
 w). Where necessary, we chose generic, weakly-informative pri-
ors (see Section A.2.1). Bayesian models offer more flexibility compared to traditional
maximum likelihood methods and easily propagate uncertainty from a previous stage
in the model to later sections. Further, excluding specific participants due to numerical
issues during estimation becomes unnecessary, as the prior is given a larger weight for
participants with less informative data.

Figure 6 shows the fitted functions of p( t), b( t) and w(b( t)) . Several insights can
be gained from the structural estimations: First, the structural models (i.e., the chosen
functional forms) are able to capture average behavior of subjects in the performance
stage (panel a), as well as for data on their mean beliefs (b) and uncertainty atti-
tudes (c). The estimation uncertainty around the performance predictions is relatively
small, which is perhaps not surprising given the extensive length of stage 1. In con-
trast, both the predictions of the beliefs and uncertainty attitudes weighting function
remain much more uncertain. Consider for example � i, i.e., the asymptotic level of
performance, which is on average0.921 [0.838 � 0.996] . In contrast, the elevation pa-
rameter of the belief weighting function is on average 1 [0.543 � 1.490] , i.e., there is
more uncertainty around the value of this parameter (see also sd column). The same
applies to the remaining parameters of the belief and uncertainty attitudes weighting

22 Again, see Figures A7 and A8 for model comparisons with alternative weighting functions. Overall
(across domains), the proposed functional form is slightly superior to a Prelec two-parameter
weighting function as well as a Baseline model without any belief or probability weighting.
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(c) Uncertainty Attitudes

mean sd median hdi 2.5% hdi 97.5% �R

Asymptotic Level Performance bi 0.921 0.046 0.926 0.838 0.996 1
Steepness Performance l i 1.762 0.340 1.747 1.117 2.430 1
x-axis onset Performance ai 1.374 0.213 1.402 0.950 1.742 1

Elevation Beliefs db
i 1.000 0.246 0.982 0.543 1.490 1

Curvature Beliefs gb
i 0.996 0.261 0.972 0.522 1.513 1

Elevation NCEdw
i 1.098 0.309 1.075 0.525 1.708 1

Curvature NCEgw
i 1.201 0.333 1.177 0.585 1.858 1

(d) Posterior Parameters Table

Figure 6. Structural Predictions: Performance, Beliefs and Uncertainty Attitudes Average and pre-
dicted choices for Performance (a), Beliefs (b), and Uncertainty Attitudes (c). (d) Estimated parameter
values of equation 9 based on 1000 posterior samples (+ 1000 warmup) per each of four chains.
Parameters are averages over individuals. Mean, median and sd refer to the mean, median and stan-
dard deviation of the posterior distribution samples. HDI 2.5% and HDI 97.5% indicate the borders of
the 95% highest-density interval (HDI). �R is a diagnostic of convergence of the Markov chains Markov
chains (�R = 1 indicating convergence).

function. With most beliefs and uncertainty attitudes related parameters being close to
1, the structural estimates confirm the conclusions drawn from the raw data in Figure
4, that � on average � neither the beliefs nor uncertainty attitudes deviate strongly
from the �well-calibrated� case. However, note that these values remain averagesover
the individual data, conflating potential individual heterogeneity.

6.2 Structural Predictions of Time Choices

Equipped with the estimates of the individual parameters, we can now turn to mod-
eling time choices. Given the individual parameter vector � i = ( � i , � i , � i , � b

i , 
 b
i , � w

i , 
 w
i ),

we can calculate both t �
ic (where � b

i = 
 b
i = � w

i = 
 w
i = 1) and tb

ic. More specifically, the
probabilistic model builds a regression model from the individual predictions, i.e.,
t ice � N ( tB/ � , � B/ � ) where t ice is the implemented time choice of individual i in the cost
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regime c2 H, L (high and low) and environment e2 (P, S) (prospective and simulta-
neous). � B/ � is a participant and environment-invariant variance parameter that indi-
cates the standard deviation of the prediction error (in either the rational or behavioral
model). The probabilisitic model jointly estimates � i and � B/ � and conditions � i on the
data observed in the previous stages of the experiment (i.e., the performance stage, the
ball allocation task as well as the multiple price lists).

However, a particular challenge for estimating the model lies in its �optimization
step� that actually calculates both tB

i and t �
i given � i : Every sample from the posterior

requires to optimize functions 5 and 6 for the individual parameter values. This is com-
putationally very expensive and renders the estimation of the model highly demand-
ing. To circumvent this issue, we follow an approach similar in objective to the one by
Straub et al. (2024): 23Instead of optimizing based on each sample every time, weap-
proximate t � / B

i � �f ( � i ) during sampling with a linear model. More specifically, based on
a �training� data set of different parameter values of � and the corresponding optimal
time choice t � / B, we fit a 8-degree polynomial regression that predicts the optimal solu-
tion (i.e., time choice) based on the parameter values. We fit a polynomial regression
for the rational and behavioral time choice separately with corresponding R2 values of
1 and 0.9998, which highlights the successful approximation of optimal time choices us-
ing this approach (see Figure A10). During sampling, the linear approximations (which
remain differentiable) thus substitute analytically-obtained optimal time choices. The
two models (for the rational and behavioral benchmark) jointly estimate both � i and
� B/ � based on the data from all stages of the experiment.

Table 3. Average predicted rational and behavioral time choices

mean median sd hdi 2.5% hdi 97.5% �R

Rational Prediction:
Low Cost 4.622 4.634 0.24 4.147 5.072 1
High Cost 2.825 2.837 0.1 2.624 3.004 1
Behavioral Prediction:
Low Cost 4.652 4.642 0.336 4.012 5.32 1

High Cost 2.966 2.978 0.252 2.463 3.442 1

Note: The table contains the average (over individuals) summary of the time
prediction posterior for the rational and behavioral prediction, including mean,
sd and median as well as the 95% HDI interval and the �R statistic.

Table 3 contains the average time choices according to the rational and behavioral
prediction. The rational prediction is, on average, t �

L = 4.622 [4.147 � 5.072] (sec.) in

23 Note that Straub et al. (2024) use a neural network to amortize Bayesian actor models in a
sensorimotor task to approximate the optimal motor response given a (non-)quadratic cost function;
For our problem, simpler polynomial regressions remain sufficient.
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the low-cost and t �
H = 2.825 [2.624 � 3.004] in the high-cost regime, whereas the be-

havioral prediction amounts to tB
L = 4.652 [4.012 � 5.32] and tB

H = 2.966 [2.463 � 3.442] .
Based on the posterior samples, we can calculate thatP( tB

L > t �
L) = 0.642, P( tB

H > t �
H) =

0.501, i.e., that only for the high cost there is slight evidence for a larger behavioral
benchmark compared to the rational one. The behavioral prediction is more uncertain
(see sd column), which is unsurprising given that uncertainty in the parameters of
the belief and probability weighting function propagates into uncertainty in the corre-
sponding behavioral time prediction. Recall that the average implemented time choices
are fltL,P = 4.61, fltL,S = 4.37, fltH,P = 3.4, fltH,S = 3.38 (all in sec.; see Figure 5). Both the ra-
tional and behavioral benchmark thus underestimateimplemented time choices in the
high-cost regime, while the predictions are well in line with implemented time choices
in the low-cost of time (for both environments).

However, similar to before, this data masks potential individual heterogeneity.
Therefore, we plot implemented and predicted time choices � both rational and be-
havioral � for each subject in Figure 6:

We start by focussing on the first column, which plots implemented time choices in
the prospective environment versus the rational (top) and behavioral (bottom) bench-
mark for each individual. The rational benchmark positively correlates with plannes
time choices (� = 0.76) and shows how this benchmark already is already reasonable.
One caveat, however, remains in that especially in the high cost regime, the rational
benchmark is less able to accommodate individual differences in planned time choices.
The behavioral benchmark improves upon these predictions: Both the overall correla-
tion with time choices is higher ( � = 0.84) and the predictions in the high-cost regime
are more varied between individuals. This is first tentative evidence that the behavioral
model improves predictions for prospective time choices.

For simultaneous time choices, consider the second column: There, the rational
time choices exhibit a high positive correlation with implemented choices (� = 0.82)
which is similar to the (marginally-smaller) correlation of behavioral time choices ( � =
0.81) in the bottom panel. In turn, both the rational and behavioral benchmark seem
to offer predictions of similar overall quality at first glance. 24

Comparing the correlations within-benchmark and between-environments (i.e.,
within rows), the correlations indicate that the rational model is an overall better
benchmark for simultaneous compared to prospective time choices, while the behav-
ioral model yields better predictions for prospective time choices. Or, in other words,
the behavioral model � which is the more complex model � improves predictions by

24 Note that, if we only consider simultaneous time choices in the high cost environment, the corre-
lation between time choices and the behavioral benchmark may visually appear larger, but remain
close to identical with � = 0.6482 for the behavioral predictions and � = 0.6479 for the rational
predictions.
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Figure 7. Rational, Behavioral and Implemented Time Choices This �gure plots individual predic-
tions (i.e., means of individual posterior distributions) for t � (�rst row) and tb (second row) for both
prospective (�rst column) and simultaneous time choices (second column). r values are rank correla-
tion coe�cients between predicted and implemented choices.

the more parsimonious rational model only for prospective and not for simultaneous
time choices. This, in turn, is similar to the results from the (reduced-form) regression
analyses outlined above.

However, instead of simply comparing point-estimates of correlations, we can also
take a more principled approach and perform a model comparison that accounts for
model complexity and uncertainty: Fig 8 depicts ELPDLOO values which measure the
goodness of fit of a model minus a model complexity penalty and provide a compu-
tationally less demanding approximation to leave-one-out out-of-sample prediction ac-
curacy (Vehtari et al., 2017), while accommodating model complexity (via penalizing
high posterior variance).

The model comparison corroborates the previous finding: For prospective time
choices (panel a) the behavioral model ELPDLOO = � 199.374 is higher compared to
the rational model ELPDLOO = � 217.512. The reverse is true in the simultaneous time
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Figure 8. Model Comparison Time Choices ELPDLOO refers to the expected log predictive density
based on pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV, in short
LOO); A largerELPDLOO indicates better model �t. Error bars show the standard error of the respective
ELPDLOO value and the standard error of the DELPDLOO value, the ELPDLOO di�erence to the best model.
Model comparison done via the arviz -package (Kumar et al., 2019).

choices (panel b), with ELPDLOO = � 187.516 for the rational model and ELPDLOO =
� 200.963 for the behavioral model.25 26

Result 6: The probabilistic models indicates that a �behavioral� model � compared to a
�rational� model � improves time choice predictions in the prospective but not simultaneous
decision environment.

7 Discussion and Conclusion

In this paper, we investigated the influence of subjective beliefs and uncertainty atti-
tudes on time choices in a speed-accuracy trade-off in a cognitively demanding task.
Based on a simple theoretical framework, we designed an experiment that allows
for the incentive-compatible measurement of performance, beliefs about performance,
and uncertainty attitudes toward working on a task. We implemented a simple speed-
accuracy trade-off by reducing the reward participants obtain for a correct solution the
more time they choose. We design a rich choice environment and elicit time choices
in both a low and high cost-of-time condition as well as two distinct decision environ-
ments, choosing time prospectively and simultaneously.

25 A cost-specific model comparison in Figure A9 shows that the differences between rational and
behavioral model is largely driven by the difference in the model fit in the low cost environment,
which in turn fits to the near-identical correlations in the high cost environment described above.

26 Note, further, that the standard errors of the ELPDLOO values are relatively large, which cautions
against interpreting too much from these relatively moderate differences (which in turn fits to the
modest correlation differences from Figure 7).
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We show that overconfidence and uncertainty attitudes affect time choices in
prospective decision-making in the predicted direction: Overconfident agents take less
time, while uncertainty-averse agents take more time. This leads to lower payoffs for
uncertainty-averse and underconfident agents. In contrast, we find no evidence for
the influence of overconfidence and uncertainty aversion in the simultaneous decision
environment. This finding is in line with results from the previous literature, which
highlights different determinants for planned and actual choices.

In summary, this paper provides novel and relevant results about human behav-
ior in cognitively-demanding tasks governed by speed-accuracy trade-offs. At the same
time, our results suggest many open questions and avenues for future research. While
the results of our pre-registered experiment provide suggestive evidence for an asso-
ciation between behavioral measures and prospective time choices, we do not claim
that these results are causal. It would be interesting to investigate treatments that try
to manipulate (or de-bias) beliefs by providing feedback to participants about their
actual performance or their supposed uncertainty attitudes. These treatments should
affect time choices in prospective environments but not in simultaneous ones. While
our experiment featured a rich choice environment, it seems further worthwhile to in-
vestigate time choices under more realistic circumstances, i.e., more complex reward
schemes and tasks with more extended time frames. This will contribute to a better
understanding of how time choices are made in different settings and how they may �
ultimately � be improved.
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A Appendix

A.1 Robustness Analyses

A.1.1 Learning E�ects. One potential problem for our measures of performance could
arise if participants improve throughout the first stage of the experiment. To investigate
potential learning effects, we estimate average marginal effects from a probit model on
the performance data in stage one. The dependent variable is whether a participant
selects the correct solution and the independent variables are the round number, a
third-degree polynomial of available time, as well as participant fixed effects.27Table
A1 presents the estimation results. The coefficient on the round variable is very close
to 0 and insignificant (p = 0.34), indicating that no significant learning takes place.
The average marginal effect suggests that the mean participant performance increases
slightly (by 1.5pp. over all 250 tasks) but insignificantly (p = 0.322). We thus conclude
that participants do not learn throughout stage one and that ability, and thus perfor-
mance, is stable.

A.1.2 Intensive Margin of E�ort. While performance might be stable in the fixed-time
environment of stage one of the experiment, participants might (anticipate to) work
more or less intensely during stage four and thus choose a higher or lower time. We
conduct two analyses to investigate this. The first analysis is based on a self-reported
survey item elicited at the end of the experiment. We asked participants to compare
the intensity, with which they searched for the solution between stage one and stage
four on a slider from 0 (higher intensity in stage one) and 10 (higher intensity in
stage four). The median answer is 5, and the mean 5.5, indicating that participants
on average report to work with similar intensity in the two stages. We additionally
asked participants who selected a value smaller than four or larger than seven whether
they anticipated the change in their effort intensity while making their time decisions.
Twenty-three participants reported working more intensively in stage four and that
they anticipated this while making their time selection. We check whether participants’
self-reported measure of effort intensity correlates with the time they select in stage
four and find no significant correlation between the two variables for either high or
low cost of time in either the prospective or the simultaneous condition28, as well
as insignificant and small effects of the survey variable when included in the main
regression (c.f. Table A2). Furthermore, we find no differences in terms of mean or
mean rank for time choice, performance, and payoff between participants that indicate

27 Using different polynomials for time and a higher degree polynomial for the round does not
change the estimates significantly.

28 Spearmans � : simultaneous high (� = � 0.5, p = 0.63); low ( � = � 0.06, p = 0.55); prospective high
( � = � 0.02, p = 0.88); low ( � = � 0.006, p = 0.96)
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Table A1. Learning in stage one

Dependent Variable:
Correct solution

(1)

Raw Regression Estimates

Round 0.000
(0.000)

Time 1.591***
(0.222)

Time2 -0.216***
(0.059)

Time3 0.012**
(0.005)

Average Marginal E�ects

Round 0.000
(0.000)

Time 1.577***
(0.0028)

Individual �xed e�ects X
Observations 22750

Note: Generalized linear e�ects panel logit
model, where the dependent variable is
whether a participant answers the task cor-
rectly. The independent variables are the
round in stage 1, a third-degree polynomial
of the available time to answer the task,
and participant �xed e�ects. Heteroscedas-
ticity robust standard errors clustered on the
individual level. The upper part of the table
contains the raw regression estimates and
the lower the calculated average marginal
e�ects of the variables. * p < 0.1, ** p <
0.05, *** p < 0.01
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to have worked more intensely in stage four and those that do not (all non-paired t-
test and Mann-Whitney-U tests for all cost-of-time and decision environmentsp > 0.25).
This indicates that participants who report having worked more intensely in stage four
have not selected a significantly lower time, performed better, or earned a higher payoff
in stage four.

p < 0.001 p = 0.02 p < 0.001 p < 0.001
m : 0.01 m : - 0.01 m : 0.03 m : 0.01
77% = 0 78% = 0 52% = 0 76% = 0
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Figure A1. Deviations Time Decisions and Con�dence Intervals This graph shows how far away
participants’ actual performance in stage �ve of the experiment is from the closest 95% con�dence
bound. The value is 0 if the performance lies within the predicted con�dence interval. p reports the
p-value of a test that the mean is equal to 0, m reports the mean, and the �nal row reports the
number of observations where the actual performance is contained in the estimated 95% con�dence
bound around the predicted performance.

The second analysis compares the actual performance of participants in stage one
and stage four. We test whether participants’ performance in stage four is contained in
the predicted 95%-confidence bound of the performance function estimated on the data
from stage one. This is true for 70.6% of participants’ (average) performance across all
environments in stage four. In all but the simultaneous condition with a high cost-of-
time, participants are slightly better than the prediction. Figure A2 displays the density
of the difference between the predicted performance and the actual performance in the
prospective and the simultaneous environment for both cost-of-time conditions. Figure
A1 the differences between participants’ performance and the closest confidence bound
when their actual performance is outside the confidence interval. On average, partici-
pants’ performance is significantly29larger than their confidence interval in all but the
prospective condition with a high cost of time. However, participants’ mean distance
from the closest confidence bounds is between -1 and +3 percentage points.

29 Using t-test of the mean being equal to 0. See Figure A1 for the p-values.
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Figure A2. Time Decisions: Robustness Analysis This graph plots density curves of the deviation
between predicted performance and actual performance across both decisions environments and cost-
of-time parameters.

Overall, we conclude that the estimated performance function from stage one is
a reasonable approximation of roughly 70% of participants’ performance in stage four.
Thus, in 30% of the decisions in stage four, our structural performance estimate based
on the data from stage one does not predict performance well. Importantly, we find
that changes in participants’ self-reported effort intensity do not correlate significantly
with the time decisions. Therefore, while performance, and thus our estimates of the
structurally estimated benchmarks, might be slightly biased, the reduced-form analysis
of the selected time seems largely unaffected.
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A.2 Additional Figures and Tables
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Figure A3. Empirical Cumulative Distribution Functions Panel A shows the empirical cumulative dis-
tribution function (ECDF) of mean performance for all participants. Colors indicate the �xed times in
part 1 of the experiment. Panel B shows the ECDF of the mean beliefs, and Panel C the ECDF of the
normalized certainty equivalents. The circles indicate the mean of the respective ECDFs.

Time Choice
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High �rst

Figure A4. Symbolic Representation of Path Analysis Model This graph shows the path analysis model
graphically. The arrows indicate the direction of the relationship. Estimated intercepts and variances
are not displayed. The two endogenous variables Time and Payo� are on the right side of the graph,
and the exogenous variables High �rst , Performance, Overcon�dence , and Uncertainty Aversion on the
left.
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A.2.1 Probabilistic Model.

Priors.
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Figure A5. Rational and Behavioral Objective Functions This plot depicts the average (of individuals’)
rational (�rst row) and behavioral (second row) objective function, for both high (�rst column) and
low (second column) cost, including 95 % HDI.
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Model Choice Function

Dean et al (2006) p(t) = b(1 � e� (t� a)/ l ))
Probit Model p(t) = F

�
b0 + b1 � t + b2 � t2

�

Logit Model p(t) = 1
1+ e� (b0+ b1 � t+ b2 � t2

(a) Candidate Models Time-dependent Performance

Three-parameter Logit Model

Three-parameter Probit Model

Dean et al (2006) Performance Function

-12100 -12050 -12000 -11950 -11900
ELPD_LOO

(b) ELPDLOO values

Figure A6. Model Comparison Correct Choices Stage 1 ELPDLOO refers to the expected log predictive
density based on pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV,
in short LOO); A larger ELPDLOO indicates better model �t. Error bars show the standard error of the
respective ELPDLOO value and the standard error of the DELPDLOO value, the ELPDLOO di�erence to the
best model. Model comparison done via the arviz -package (Kumar et al., 2019).

Model Choice Function

Prelec Belief Weighting b(t) = e� db(� ln p(t))gb

Goldstein-Einhorn Belief Weighting b(t) = dbp(t)g
b

dbp(t)gb + (1� p(t))gb

Baseline (no Belief Weighting) b(t) = p(t)
(a) Candidate Models Belief Weighting

Baseline (no Belief Weighting)

Goldstein-Einhorn Belief Weighting Function

Prelec Belief Weighting Function

200 240 280
ELPD_LOO

(b) ELPDLOO values

Figure A7. Model Comparison Belief Weighting ELPDLOO refers to the expected log predictive density
based on pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV, in short
LOO); A largerELPDLOO indicates better model �t. Error bars show the standard error of the respective
ELPDLOO value and the standard error of the DELPDLOO value, the ELPDLOO di�erence to the best model.
Model comparison done via the arviz -package (Kumar et al., 2019).
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Model Choice Function

Goldstein-Einhorn Probability Weighting w(t) = dwb(t)g
w

dwb(t)gw + (1� b(t))gw

Prelec Probability Weighting w(t) = e� dw(� ln b(t))gw

Baseline (no Probability Weighting) w(t) = b(t)
(a) Candidate Models Probability Weighting

Baseline (no Probability Weighting)

Prelec Probability Weighting Function

Goldstein-Einhorn Probability Weighting Function

200 225 250 275 300
ELPD_LOO

(b) ELPDLOO values

Figure A8. Model Comparison Probability Weighting ELPDLOO refers to the expected log predictive
density based on pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV,
in short LOO); A larger ELPDLOO indicates better model �t. Error bars show the standard error of the
respective ELPDLOO value and the standard error of the DELPDLOO value, the ELPDLOO di�erence to the
best model. Model comparison done via the arviz -package (Kumar et al., 2019).
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(a) Prospective Time Choices: Low Cost
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(b) Prospective Time Choices: High Cost
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(c) Simultaneous Time Choices: Low Cost

Rational Model

Behavioral Model

-100 -95 -90 -85
ELPD_WAIC

(c) Simultaneous Time Choices: High Cost

Figure A9. Model Comparison Time Choices ELPDWAIC refers to the expected log predictive density
based on the widely-applicable information criterion (WAIC) (Watanabe, 2013); A larger ELPDWAIC indi-
cates better model �t. Error bars show the standard error of the respective ELPDWAIC value and the
standard error of the DELPDWAIC value, the ELPDWAIC di�erence to the best model. Model comparison
done via the arviz -package (Kumar et al., 2019).
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Figure A10. Rational and Behavioral Approximation Predictions of 8-degree linear polynomial models
with 495 (rational) and 12870 (behavioral) coe�cients. Plot includes 1,000 random samples from data
set, R2 value based on full sample.
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A.2.2 Additional Regressions.
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Table A2. Time choice and individual characteristics

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.252** -0.543** -0.397*** -0.054 0.093 0.019
(0.096) (0.241) (0.131) (0.087) (0.160) (0.100)

Average Uncertainty Aversion (10pp.) 0.127* 0.309* 0.218** 0.001 -0.114 -0.057
(0.064) (0.157) (0.086) (0.052) (0.110) (0.068)

Average Performance (10pp.) -0.094 -0.450*** -0.272*** -0.351*** -0.583*** -0.467***
(0.082) (0.148) (0.088) (0.062) (0.122) (0.076)

GPS Risk -0.099 -0.110 -0.104 -0.045 0.005 -0.020
(0.066) (0.115) (0.067) (0.046) (0.100) (0.059)

GPS Patience -0.028 -0.039 -0.033 -0.047 -0.005 -0.026
(0.058) (0.091) (0.057) (0.042) (0.083) (0.051)

Fatigue -0.012 -0.011 -0.012 0.000 -0.034 -0.017
(0.022) (0.037) (0.024) (0.015) (0.027) (0.017)

Intensive Work anticipated -0.013 0.001 -0.006 -0.031 0.023 -0.004
(0.133) (0.214) (0.138) (0.095) (0.160) (0.111)

Time Pressure 0.000 -0.002 -0.001 -0.002 -0.003 -0.002
(0.002) (0.004) (0.003) (0.002) (0.004) (0.002)

Competition 0.055 0.096 0.075 -0.003 0.022 0.010
(0.064) (0.111) (0.069) (0.047) (0.081) (0.053)

Female 0.149 -0.070 0.040 0.048 0.003 0.026
(0.156) (0.229) (0.151) (0.110) (0.162) (0.110)

Age -0.033 -0.065 -0.049** -0.009 -0.001 -0.005
(0.020) (0.041) (0.024) (0.016) (0.028) (0.019)

High �rst -0.114 -0.336 -0.225* -0.073 -0.101 -0.087
(0.115) (0.209) (0.130) (0.096) (0.142) (0.102)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R2

Adj. 0.061 0.191 0.575 0.371 0.389 0.697

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective environment and the mean submission time in
the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered
(on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average
Overcon�dence are the measures described in Section 4, Average Performance is the average performance,
GPS Risk, GPS Patience, Fatigue, Intensive Work anticipated, Time Pressure, Competition, Female, and Agethe
individual survey measures elicited in stage 5, Low time cost is a dummy for the low cost-of-time condition,
High �rst is a dummy for the order of the two cost-of-time conditions. (10pp.) indicates that a unit change in
the variable corresponds to a 10 percentage points change. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A3. Time choice with individual performance

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.291*** -0.489** -0.390*** -0.041 0.153 0.056
(0.100) (0.225) (0.128) (0.074) (0.135) (0.087)

Average Uncertainty Aversion (10pp.) 0.134** 0.294** 0.214*** 0.004 -0.129 -0.063
(0.051) (0.145) (0.080) (0.047) (0.089) (0.059)

Performance in 2 sec. -1.510* -2.118 -1.814** -1.844** -1.660 -1.752**
(0.838) (1.381) (0.873) (0.765) (1.103) (0.809)

Performance in 3 sec. 0.653 0.507 0.580 -0.449 -1.411 -0.930
(0.742) (1.098) (0.740) (0.777) (1.193) (0.838)

Performance in 4 sec. -0.492 -1.768 -1.130 -1.041 -2.996*** -2.018***
(0.847) (1.412) (0.853) (0.718) (1.133) (0.771)

Performance in 5 sec. 0.933 0.486 0.709 0.182 1.390 0.786
(1.072) (1.875) (1.231) (0.878) (1.264) (0.927)

Performance in 6 sec. -1.655 -2.190 -1.922 -0.387 -0.282 -0.334
(1.234) (2.349) (1.470) (1.076) (1.568) (1.147)

High �rst -0.034 -0.264 -0.149 -0.033 -0.033 -0.033
(0.113) (0.181) (0.116) (0.092) (0.142) (0.103)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Num.Obs. 91 91 182 91 91 182
Unique Obs 91 91 91 91 91 91
R2

Adj. 0.072 0.196 0.575 0.410 0.457 0.706

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective environment and the mean submission time in
the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered
(on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average
Overcon�dence are the measures described in Section 4, Performance in X sec. is the average performance in
X seconds, Low time cost is a dummy for the low cost-of-time condition, High �rst is a dummy for the order
of the two cost-of-time conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10
percentage points change.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A4. Time choice and performance estimates

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.300*** -0.516** -0.408*** -0.065 0.091 0.013
(0.082) (0.240) (0.131) (0.087) (0.150) (0.101)

Average Uncertainty Aversion (10pp.) 0.152*** 0.309** 0.230*** 0.007 -0.134 -0.064
(0.045) (0.146) (0.078) (0.052) (0.098) (0.066)

Performance: Steepness 0.099 0.547*** 0.323*** 0.477*** 0.843*** 0.660***
(0.096) (0.206) (0.118) (0.125) (0.194) (0.143)

Performance: Asymptotic level -2.635** -3.687 -3.161** -2.041*** -1.570 -1.805**
(1.137) (2.610) (1.527) (0.717) (1.221) (0.783)

Performance: X-axis onset 0.514*** 1.127*** 0.821*** 0.709*** 1.106*** 0.907***
(0.194) (0.398) (0.239) (0.176) (0.224) (0.175)

High �rst -0.066 -0.276 -0.171 -0.028 -0.045 -0.036
(0.105) (0.179) (0.116) (0.091) (0.137) (0.102)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Num.Obs. 91 91 182 91 91 182
Unique Obs 91 91 91 91 91 91
R2

Adj. 0.129 0.214 0.579 0.343 0.414 0.697

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective environment and the mean submission time in
the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered
(on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average
Overcon�dence are the measures described in Section 4, Steepness Perf., Asymptotic level Perf., and X-axis
onset Perf. are the three estimated parameters from the performance �t, Low time cost is a dummy for the
low cost-of-time condition, High �rst is a dummy for the order of the two cost-of-time conditions. (10pp.)
indicates that a unit change in the variable corresponds to a 10 percentage points change. * p < 0.1, ** p <
0.05, *** p < 0.01
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Table A5. E�ects of overcon�dence and uncertainty aversion on time decisions and payo�s

Prospective Simultaneous

High Low High Low
(1) (2) (3) (4)

Regression Slopes
Time Choice

Average Overcon�dence (10pp.) -0.26 ��� -0.48�� -0.06 0.08
(0.09) (0.24) (0.08) (0.14)

Average Uncertainty Aversion (10pp.) 0.11�� 0.27�� 0.00 -0.11
(0.05) (0.14) (0.04) (0.08)

Average Performance (10pp.) -0.14�� -0.45��� -0.37��� -0.61���

(0.06) (0.10) (0.06) (0.09)
High �rst -0.02 -0.25 -0.03 -0.09

(0.10) (0.17) (0.08) (0.13)

Payo�

Time Choice -7.29��� -0.39 -11.20 ��� -0.84
(1.19) (1.37) (1.13) (1.46)

Average Overcon�dence (10pp.) 0.91 -1.41 0.49 1.53
(1.12) (1.92) (0.94) (2.09)

Average Uncertainty Aversion (10pp.) 0.15 -0.06 -0.49 -1.07
(0.63) (1.20) (0.40) (1.26)

Average Performance (10pp.) 6.27��� 9.02��� 5.37��� 8.49���

(0.73) (1.40) (0.64) (1.59)
High �rst -0.96 -3.58 �� 0.05 -0.15

(1.03) (1.76) (0.88) (1.83)

Intercepts

Time Choice 4.32��� 7.60��� 5.77��� 8.27���

(0.38) (0.68) (0.38) (0.62)
Payo� 11.56 28.24 �� 34.37��� 35.77��

(7.23) (13.53) (6.70) (15.66)

Indirect E�ects on Payo�

Average Overcon�dence (10pp.) 1.91 �� 0.18 0.69 -0.06
(0.76) (0.72) (0.89) (0.28)

Average Uncertainty Aversion (10pp.) -0.83�� -0.11 -0.04 0.10
(0.40) (0.38) (0.49) (0.22)

Average Performance (10pp.) 1.04�� 0.17 4.19��� 0.51
(0.45) (0.61) (0.72) (0.91)

Total E�ects on Payo�s

Average Overcon�dence (10pp.) 2.82 �� -1.22 1.18 1.47
(1.16) (1.94) (1.41) (2.07)

Average Uncertainty Aversion (10pp.) -0.68 -0.17 -0.53 -0.98
(0.66) (1.21) (0.60) (1.24)

Average Performance (10pp.) 7.31��� 9.19��� 9.56��� 9.00���

(0.91) (1.21) (0.80) (1.17)
CFI 1.00 1.00 1.00 1.00
TLI 1.00 1.00 1.00 1.00
RMSEA 0.00 0.00 0.00 0.00

Note: Path analysis estimated by maximum likelihood. The recursive fully speci-
�ed and thus just-identi�ed model has two endogenous variables: time choice
and payo� . Time choice has a dual role and is allowed to have an e�ect on
payo� . Payo� is the average payo� for each participant calculated based on
their time choice and performance in the respective tasks in stage �ve. The ex-
ogenous variables are Average Uncertainty Aversion and Average Overcon�dence
as described in Section 4, Average Performance as the average performance,
High �rst is a dummy for the order of the two cost-of-time conditions. (10pp.)
indicates that a unit change in the variable corresponds to a 10 percentage
points change. Bootstrapped ( n = 1000) standard errors in parentheses. * p <
0.1, ** p < 0.05, *** p < 0.01 49



Table A6. Time choices in the simultaneous condition

Rounds 1 - 10 Round 1 Round 10

Linear models Panel Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Cost of time High Low Both High Low Both High Low Both

Average Overcon�dence (10pp.) 0.033 -0.012 0.018 0.066 0.146 0.113 -0.119 -0.022 -0.063
(0.052) (0.090) (0.113) (0.100) (0.208) (0.142) (0.132) (0.149) (0.131)

Average Uncertainty Aversion (10pp.) 0.026 0.016 -0.034 0.051 -0.092 -0.076 0.096 -0.070 -0.042
(0.032) (0.063) (0.077) (0.067) (0.134) (0.095) (0.073) (0.085) (0.082)

Average Performance (10pp.) -0.001 -0.064 -0.523*** 0.021 0.006 -0.477*** -0.009 -0.103 -0.547***
(0.030) (0.058) (0.082) (0.072) (0.132) (0.101) (0.082) (0.098) (0.092)

High �rst 0.033 0.215** 0.060 0.034 0.251 0.078 -0.215* 0.221 -0.061
(0.051) (0.088) (0.115) (0.130) (0.209) (0.153) (0.126) (0.171) (0.141)

Low time cost 1.042*** 0.680*** 0.928***
(0.073) (0.122) (0.125)

Random E�ects Yes Yes Yes
Unique Obs 91 91 91 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182 91 91 182
R2

Adj. 0.004 0.041 0.593 -0.019 -0.012 0.248 0.018 -0.002 0.343

Note: Linear OLS regressions in columns 1,2,4,5,7 and 8. Random e�ects panel models in columns 3, 6 and 9. The dependent variable
is the mean submission time in the �rst 10 rounds (columns 1-3), the submission time in round 1 (columns 4-6), and the submission
time in round 10 (columns 7-9) in the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and
clustered (on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average Overcon�dence are the
measures described in Section 4, Average Performance is the average performance, Low time cost is a dummy for the low cost-of-time
condition, High �rst is a dummy for the order of the two cost-of-time conditions. (10pp.) indicates that a unit change in the variable
corresponds to a ten percentage points change. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A7. Time choices: beliefs median

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.340*** -0.619* -0.480*** -0.049 0.038 -0.005
(0.119) (0.331) (0.176) (0.075) (0.127) (0.084)

Average Uncertainty Aversion (10pp.) 0.084 0.225 0.155* 0.004 -0.114 -0.055
(0.052) (0.142) (0.081) (0.046) (0.089) (0.061)

Average Performance (10pp.) -0.139** -0.447*** -0.293*** -0.372*** -0.606*** -0.489***
(0.059) (0.106) (0.065) (0.058) (0.093) (0.068)

High �rst -0.027 -0.256 -0.141 -0.042 -0.095 -0.068
(0.103) (0.175) (0.116) (0.084) (0.133) (0.097)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R2

Adj. 0.107 0.238 0.581 0.398 0.426 0.702

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective condition and the average submission time in the
simultaneous condition. Heteroscedasticity robust standard errors for the linear models and clustered (on the
individual level) standard errors in the panel models. Average Uncertainty Aversion and Average Overcon�dence
are the measures described in Section 4, Average Performance is the average performance, Low time cost is
a dummy for the low cost-of-time condition, High �rst is a dummy for the order of the two cost-of-time
conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10 percentage points change.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A8. Time choice and individual characteristics: beliefs median

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.336*** -0.690** -0.513*** -0.033 0.045 0.006
(0.118) (0.315) (0.162) (0.082) (0.156) (0.095)

Average Uncertainty Aversion (10pp.) 0.095 0.249 0.172** 0.003 -0.117 -0.057
(0.064) (0.153) (0.083) (0.053) (0.113) (0.070)

Average Performance (10pp.) -0.092 -0.447*** -0.269*** -0.346*** -0.583*** -0.464***
(0.079) (0.145) (0.086) (0.064) (0.120) (0.075)

GPS Risk -0.095 -0.102 -0.098 -0.047 0.006 -0.021
(0.065) (0.115) (0.066) (0.047) (0.102) (0.060)

GPS Patience -0.013 -0.015 -0.014 -0.044 0.005 -0.020
(0.059) (0.088) (0.055) (0.043) (0.083) (0.052)

Fatigue -0.011 -0.007 -0.009 -0.001 -0.035 -0.018
(0.020) (0.035) (0.022) (0.015) (0.025) (0.017)

Intensive Work anticipated 0.000 0.024 0.012 -0.034 0.029 -0.003
(0.131) (0.214) (0.137) (0.096) (0.162) (0.112)

Time Pressure 0.000 -0.002 -0.001 -0.002 -0.003 -0.002
(0.002) (0.004) (0.002) (0.002) (0.003) (0.002)

Competition 0.045 0.077 0.061 -0.002 0.023 0.010
(0.061) (0.107) (0.066) (0.048) (0.081) (0.053)

Female 0.138 -0.085 0.027 0.051 -0.008 0.021
(0.149) (0.223) (0.146) (0.111) (0.162) (0.111)

Age -0.034* -0.067* -0.051** -0.008 -0.002 -0.005
(0.020) (0.039) (0.023) (0.016) (0.028) (0.019)

High �rst -0.111 -0.330 -0.220* -0.080 -0.095 -0.087
(0.111) (0.210) (0.129) (0.095) (0.141) (0.100)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R2

Adj. 0.104 0.228 0.582 0.367 0.391 0.697

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective environment and the mean submission time in
the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered
(on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average
Overcon�dence are the measures described in Section 4, Average Performance is the average performance,
GPS Risk, GPS Patience, Fatigue, Intensive Work anticipated, Time Pressure, Competition, Female, and Agethe
individual survey measures elicited in stage 5, Low time cost is a dummy for the low cost-of-time condition,
High �rst is a dummy for the order of the two cost-of-time conditions. (10pp.) indicates that a unit change in
the variable corresponds to a 10 percentage points change. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A9. Time choice with individual performance: beliefs median

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.361*** -0.629** -0.495*** -0.033 0.097 0.032
(0.108) (0.312) (0.159) (0.067) (0.122) (0.077)

Average Uncertainty Aversion (10pp.) 0.103** 0.244* 0.174** 0.004 -0.126 -0.061
(0.051) (0.146) (0.080) (0.049) (0.092) (0.062)

Performance in 2 sec. -1.539* -2.157 -1.848** -1.853** -1.668 -1.760**
(0.818) (1.440) (0.885) (0.762) (1.103) (0.809)

Performance in 3 sec. 0.534 0.285 0.410 -0.443 -1.441 -0.942
(0.711) (1.155) (0.731) (0.776) (1.197) (0.839)

Performance in 4 sec. -0.332 -1.428 -0.880 -1.064 -2.903** -1.984**
(0.810) (1.447) (0.849) (0.706) (1.139) (0.767)

Performance in 5 sec. 0.865 0.372 0.618 0.176 1.412 0.794
(1.012) (1.835) (1.179) (0.874) (1.266) (0.926)

Performance in 6 sec. -1.529 -2.153 -1.841 -0.313 -0.433 -0.373
(1.119) (2.368) (1.438) (1.035) (1.523) (1.097)

High �rst -0.041 -0.268 -0.155 -0.037 -0.027 -0.032
(0.109) (0.177) (0.112) (0.091) (0.141) (0.101)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Num.Obs. 91 91 182 91 91 182
Unique Obs 91 91 91 91 91 91
R2

Adj. 0.113 0.223 0.581 0.409 0.456 0.706

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective environment and the mean submission time in
the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered
(on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average
Overcon�dence are the measures described in Section 4, Performance in X sec. is the average performance in
X seconds, Low time cost is a dummy for the low cost-of-time condition, High �rst is a dummy for the order
of the two cost-of-time conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10
percentage points change.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A10. Time choice and performance estimates: beliefs median

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.365*** -0.647** -0.506*** -0.051 0.047 -0.002
(0.098) (0.324) (0.163) (0.081) (0.129) (0.089)

Average Uncertainty Aversion (10pp.) 0.126*** 0.261* 0.194** 0.007 -0.140 -0.066
(0.047) (0.148) (0.078) (0.055) (0.103) (0.071)

Performance: Steepness 0.098 0.550*** 0.324*** 0.473*** 0.843*** 0.658***
(0.094) (0.207) (0.118) (0.126) (0.194) (0.143)

Performance: Asymptotic level -2.444** -3.390 -2.917* -2.004*** -1.443 -1.723**
(1.108) (2.567) (1.491) (0.724) (1.225) (0.786)

Performance: X-axis onset 0.511*** 1.126*** 0.819*** 0.706*** 1.095*** 0.901***
(0.184) (0.387) (0.229) (0.176) (0.229) (0.178)

High �rst -0.069 -0.273 -0.171 -0.035 -0.042 -0.039
(0.101) (0.175) (0.112) (0.089) (0.136) (0.100)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Num.Obs. 91 91 182 91 91 182
Unique Obs 91 91 91 91 91 91
R2

Adj. 0.163 0.242 0.585 0.339 0.417 0.697

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective environment and the mean submission time in
the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered
(on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average
Overcon�dence are the measures described in Section 4, Steepness Perf., Asymptotic level Perf., and X-axis
onset Perf. are the three estimated parameters from the performance �t, Low time cost is a dummy for the
low cost-of-time condition, High �rst is a dummy for the order of the two cost-of-time conditions. (10pp.)
indicates that a unit change in the variable corresponds to a 10 percentage points change. * p < 0.1, ** p <
0.05, *** p < 0.01
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Table A11. Time choices: beliefs mode

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.235*** -0.502* -0.369*** -0.028 0.058 0.015
(0.070) (0.261) (0.128) (0.058) (0.100) (0.067)

Average Uncertainty Aversion (10pp.) 0.075 0.179 0.127 0.000 -0.132 -0.066
(0.053) (0.141) (0.081) (0.045) (0.088) (0.060)

Average Performance (10pp.) -0.132** -0.433*** -0.283*** -0.369*** -0.597*** -0.483***
(0.058) (0.102) (0.063) (0.058) (0.093) (0.068)

High �rst -0.038 -0.268 -0.153 -0.044 -0.097 -0.070
(0.103) (0.173) (0.114) (0.083) (0.130) (0.095)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R2

Adj. 0.092 0.257 0.583 0.397 0.435 0.703

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective environment and the mean submission time in
the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered
(on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average
Overcon�dence are the measures described in Section 4, Average Performance is the average performance,
Low time cost is a dummy for the low cost-of-time condition, High �rst is a dummy for the order of the two
cost-of-time conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10 percentage
points change. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A12. Time choices and individual characteristics: beliefs mode

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.230*** -0.541** -0.386*** -0.019 0.064 0.023
(0.077) (0.246) (0.116) (0.064) (0.130) (0.078)

Average Uncertainty Aversion (10pp.) 0.087 0.200 0.144* -0.003 -0.141 -0.072
(0.066) (0.156) (0.085) (0.052) (0.115) (0.070)

Average Performance (10pp.) -0.084 -0.432*** -0.258*** -0.344*** -0.575*** -0.460***
(0.080) (0.144) (0.086) (0.064) (0.120) (0.075)

GPS Risk -0.098 -0.103 -0.100 -0.047 0.008 -0.020
(0.065) (0.116) (0.066) (0.047) (0.100) (0.059)

GPS Patience -0.012 -0.005 -0.009 -0.044 0.006 -0.019
(0.060) (0.083) (0.053) (0.042) (0.082) (0.051)

Fatigue -0.010 -0.003 -0.007 -0.001 -0.033 -0.017
(0.021) (0.035) (0.022) (0.015) (0.025) (0.017)

Intensive Work anticipated -0.016 0.003 -0.006 -0.034 0.031 -0.002
(0.131) (0.219) (0.139) (0.096) (0.163) (0.113)

Time Pressure 0.000 -0.003 -0.002 -0.002 -0.003 -0.003
(0.002) (0.004) (0.002) (0.002) (0.003) (0.002)

Competition 0.046 0.072 0.059 -0.003 0.022 0.009
(0.062) (0.107) (0.066) (0.047) (0.080) (0.053)

Female 0.146 -0.084 0.031 0.051 -0.010 0.020
(0.150) (0.226) (0.148) (0.110) (0.162) (0.110)

Age -0.031 -0.061 -0.046* -0.007 0.001 -0.003
(0.020) (0.041) (0.024) (0.017) (0.028) (0.019)

High �rst -0.122 -0.341 -0.231* -0.081 -0.096 -0.089
(0.112) (0.212) (0.130) (0.094) (0.141) (0.100)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R2

Adj. 0.084 0.241 0.582 0.368 0.402 0.698

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective environment and the mean submission time in
the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered
(on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average
Overcon�dence are the measures described in Section 4, Average Performance is the average performance,
GPS Risk, GPS Patience, Fatigue, Intensive Work anticipated, Time Pressure, Competition, Female, and Agethe
individual survey measures elicited in stage 5, Low time cost is a dummy for the low cost-of-time condition,
High �rst is a dummy for the order of the two cost-of-time conditions. (10pp.) indicates that a unit change in
the variable corresponds to a 10 percentage points change.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A13. Time choice with individual performance: beliefs mode

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.270*** -0.542** -0.406*** -0.019 0.097 0.039
(0.068) (0.265) (0.127) (0.056) (0.098) (0.064)

Average Uncertainty Aversion (10pp.) 0.095* 0.203 0.149* 0.004 -0.131 -0.064
(0.051) (0.145) (0.080) (0.050) (0.093) (0.062)

Performance in 2 sec. -1.601* -2.270 -1.936** -1.858** -1.667 -1.762**
(0.833) (1.439) (0.885) (0.766) (1.117) (0.817)

Performance in 3 sec. 0.603 0.308 0.456 -0.431 -1.448 -0.940
(0.699) (1.200) (0.748) (0.781) (1.222) (0.851)

Performance in 4 sec. -0.210 -0.997 -0.604 -1.063 -2.736** -1.900**
(0.855) (1.439) (0.848) (0.757) (1.204) (0.827)

Performance in 5 sec. 0.936 0.493 0.715 0.182 1.394 0.788
(1.025) (1.765) (1.148) (0.879) (1.268) (0.929)

Performance in 6 sec. -1.794 -2.811 -2.302 -0.327 -0.623 -0.475
(1.152) (2.327) (1.411) (1.094) (1.606) (1.162)

High �rst -0.056 -0.288 -0.172 -0.039 -0.031 -0.035
(0.108) (0.173) (0.108) (0.090) (0.141) (0.101)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Num.Obs. 91 91 182 91 91 182
Unique Obs 91 91 91 91 91 91
R2

Adj. 0.106 0.247 0.584 0.408 0.459 0.706

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective environment and the mean submission time in
the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered
(on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average
Overcon�dence are the measures described in Section 4, Performance in X sec. is the average performance in
X seconds, Low time cost is a dummy for the low cost-of-time condition, High �rst is a dummy for the order
of the two cost-of-time conditions. (10pp.) indicates that a unit change in the variable corresponds to a 10
percentage points change. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A14. Time choice and performance estimates: beliefs mode

Prospective Simultaneous

Linear models Panel Linear models Panel

(1) (2) (3) (4) (5) (6)

Cost of time High Low Both High Low Both
Average Time 3.40 4.61 4.01 3.38 4.37 3.88

Average Overcon�dence (10pp.) -0.280*** -0.540** -0.410*** -0.030 0.084 0.027
(0.062) (0.262) (0.125) (0.065) (0.113) (0.076)

Average Uncertainty Aversion (10pp.) 0.113** 0.216 0.165** 0.004 -0.148 -0.072
(0.047) (0.146) (0.078) (0.052) (0.100) (0.068)

Performance: Steepness 0.085 0.527** 0.306*** 0.470*** 0.829*** 0.649***
(0.093) (0.204) (0.115) (0.125) (0.192) (0.142)

Performance: Asymptotic level -2.610** -3.609 -3.110** -2.035*** -1.602 -1.819**
(1.183) (2.719) (1.563) (0.736) (1.110) (0.756)

Performance: X-axis onset 0.496*** 1.090*** 0.793*** 0.701*** 1.066*** 0.883***
(0.183) (0.372) (0.218) (0.177) (0.233) (0.179)

High �rst -0.082 -0.289* -0.186* -0.038 -0.050 -0.044
(0.099) (0.172) (0.108) (0.088) (0.134) (0.098)

Low time cost 1.202*** 0.991***
(0.080) (0.053)

Random E�ects Yes Yes
Unique Obs 91 91 91 91 91 91
Num.Obs. 91 91 182 91 91 182
R2

Adj. 0.160 0.261 0.587 0.339 0.421 0.698

Note: Linear OLS regressions in columns 1,2,4, and 5. Random e�ects panel models in columns 3 and 6. The
dependent variable is the time selected in the prospective environment and the mean submission time in
the simultaneous environment. Heteroscedasticity robust standard errors for the linear models and clustered
(on the individual level) standard errors in the panel models. Average Uncertainty Aversion and Average
Overcon�dence are the measures described in Section 4, Steepness Perf., Asymptotic level Perf., and X-axis
onset Perf. are the three estimated parameters from the performance �t, Low time cost is a dummy for the
low cost-of-time condition, High �rst is a dummy for the order of the two cost-of-time conditions. (10pp.)
indicates that a unit change in the variable corresponds to a 10 percentage points change. * p < 0.1, ** p <
0.05, *** p < 0.01
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A.3 Additional Theory

A.3.1 Uniqueness of the Maximum at t � . To prove that t � is unique, start with the
objective function and the reward function:

t � = argmaxt � ( t) = p( t)y( t)

y( t) =

¤
Y � c( t) if task is solved correctly and Y > c( t)

0 otherwise

We define tb as t where Y = c( t) and t0 as t where t = 0. Thus [ t0, tb] is the relevant
interval for the maximization problem.
We assume that performancep( t) and the cost of time c( t) are positive, concave, and
increasing functions, i.e.,

p( t) > 0, p0( t) > 0, p00( t) � 0, 8 t 2 [ t0, tb]

c( t) > 0, c0( t) > 0, c00( t) � 0, 8 t 2 [ t0, tb]

Thus, the overall reward function y( t) is characterized by:

y( t) > 0, y0( t) < 0, y00( t) � 0, 8 t 2 [ t0, tb]

To determine whether � ( t) has a unique maximum, we make the following observa-
tions

� p( t), y( t) are non-negative in [ t0, tb]
� p( t0) = 0 and y( tb) = 0 =) p( t0)y( t0) = p( tb)y( tb)
� p0( t)y0( t) < 0 in [ t0, tb] .

We can then apply Rolle’s theorem since� ( t0) = � ( tb), which states that there exists
at least one stationary point tstat, where � 0( tstat) = 0.
The necessary condition for tstat to be a maximum is that � 00( tstat) < 0. The second
derivative

� 00( t) = p00( t)y( t) + 2p0( t)y0( t) + p( t)y00( t)

is negative in [ t0, tb] , since p00( t)y( t) � 0, p0( t)y0( t) < 0 and p( t)y00( t) � 0. Thus we have a
local maximum at tstat. This maximum is a unique maximum since � 00( t)y( t) � 0 every-
where in [ t0, tb] , and � ( t) is thus a concave function which can only have one unique
maximum. Thus, the maximum at tstat is a unique global maximum, which we call t � .
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A.3.2 Generality of Predictions 1-4. In this section, we discuss the generality of predic-
tions 1-4, while relying on the assumptions from Section A.3.1.

Prediction 1. We define argmaxt � 1( t) = t �
1 and argmaxt � 2( t) = t �

2 and investigate if
t �
1 < t �

2 when c1( t) > c2( t) 8 t.
We rewrite

c1( t) = c2( t) + dc( t)

where dc( t) > 0 8 t describes the difference between the two cost functions. This implies
that

� 1( t) = p( t)( m � c2( t)) and � 2( t) = p( t)( m � (c2( t) + dc( t))

combining the two yields

� 1( t) � � 2( t) = � p( t)dc( t)

and taking the first derivative with respect to t

� 0
1( t) = � 0

2( t) � (p( t)dc( t)) 0

t �
1 < t �

2 requires the first derivative � 0
1( t) evaluated at t �

2 to be negative (as both t �
1 and

t �
2 are unique (see proof above)) and thus

� 0
2( t �

2) � p0( t �
2)dc( t �

2) � p( t �
2)d0

c( t �
2) < 0 (10)

By definition � 0
2( t �

2) = 0, such that the inequality reduces to p0( t �
2)dc( t �

2) > � p( t �
2)d0

c( t �
2).

Remember that by definition p( t) > 0, p0( t) > 0, and d( t) > 0. Therefore, the inequality
is true in the following three cases:

1.if d0
c( t �

2) > 0. This is the case where the change in the difference between cost conditions
evaluated at t �

2 is positive, i.e., where c1( t �
2) and c2( t �

2) �drift apart�.
2.if d0

c( t �
2) = 0. This is the case when the difference between the cost conditions does not

change at t �
2.

3.if d0
c( t �

2) < 0 and p0( t �
2)

p( t �
2) > � d0

c( t �
2)

dc( t �
2) . This means that the (normalized) increase in perfor-

mance at t �
2 is still larger than the decrease in the cost conditions. Intuitively, this

condition implies that the rate of change in the difference between the cost function is
not more extreme that the rate of increase in performance.

In the case of linear cost functions (i.e., as implemented in the experiment), Prediction
1 applies asd0

c( t) > 0 8 t.
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Prediction 2. We again define argmaxt � i( t) = t �
i and argmaxt � j( t) = t �

j and discuss if
t �
i < t �

j when pi( t) > pj( t) 8 t.
Prediction 2 implies that

� i( t) = (p( t) + dp( t))( m � c( t)) = � j( t) + dp( t)( m � c( t))

and thus,

� 0
i ( t) = � 0

j ( t) + (dp( t)( m � c( t)) 0

t �
i < t �

j requires the first derivative � 0
i ( t) evaluated att �

j to be negative. This implies the

inequality
d0

p( t �
j )

dp( t �
j ) <

c0( t �
j )

m� c( t �
j ) . This inequality is satisfied in the following three cases:

1.d0
p( t �

j ) < 0 (difference between performance shrinks),
2.d0
p( t �

j ) = 0 (constant) and

3.d0
p( t �

j ) > 0 and
c0( t �

j )

m� c( t �
j ) >

d0
p( t �

j )

dp( t �
j )

If we assume the functional form proposed for performance in this experiment (equa-
tion 7), and that differences in performance originate in a shift in � (x-axis onset), i.e.,
holding steepness and asymptotic level constant, we define:

d( t) = �
�
1 � e� ( t� � ) / �

�
� �

�
1 � e� ( t� ( � + � )) / �

�

where � is the shift in the x-axis onset. Then the first derivative is clearly negative, i.e.

d0( t) = �
�

�
e� / � � 1

�
e( � � t) / �

�
< 0

Prediction 3-4. We combine the discussions of predictions 3 and 4, which are similar
to the previous discussion in Prediction 2. We define
argmaxt �

b( t) = tb and argmaxt � ( t) = t � and discuss if tb < t � when w(b( t)) > p( t) 8 t.
The relevant inequality is

� b( t)0 = � 0( t) + (db( t)( m � c( t)) 0

where db( t) = w(b( t)) � p( t) and db( t) > 0 8 t.
This inequality is satisfied once:

1.db( t � )0< 0 (difference between subjective performance shrinks),
2.db( t � )0= 0 (constant) and
3.db( t � )0> 0 and c0( t � )

m� c( t � ) > db( t � )0

db( t � )

61



We assume thatdb( t) is similar to dp( t), i.e., that behavioral differences between agents
originate in a constant shift of the subjective performance function. In this case, the
prediction holds. For more complex functional form assumptions (e.g., as in equations 8
and 9), the assessment of cases 1-3 strongly depends on the chosen parameter values.
Overall, we thus conclude that predictions 1 and 2 generally hold for the linear cost
function in this experiment and the proposed functional form for performance. Predic-
tions 3 and 4 hold in case of certain restrictions on the functional form, but alternative
functional forms and certain parameter values might generate opposite predictions.

A.4 Task Generation and Sampling

The tables for the tasks are generated to have similar difficulty across all stages. All
participants see the same tables; however,when the tasks are presented within one
stage is different for participants. The general procedure to sample the number in the
matrix for a single task is as follows:

1.a solution between 41 and 90 is randomly chosen with a uniform probability
2.15 other numbers are randomly chosen without replacement from the interval

[solution � 31,solution � 1] .

Thus, the non-solution numbers are always within a close range of the solution, ensur-
ing similar difficulty across all tasks. Additionally, all numbers have double digits.

Stage 1: 250 tasks. In the main task, 250 tables are generated, with 50 tables for
each of the fixed times (2,3,4,5,6 seconds). All possible solutions from the interval
41, 90 are used for each fixed time. This ensures that the distribution of solutions is
the same across all possible fixed time settings. The order of the tables in the blocks is
randomized, so all participants see the same tables for each fixed time but in a different
order.

Stage 3: 50 tasks. In the implementation of stage 2, the endogenous choice of reward
schemes determines the number of tables that participants have to solve. Since we
were not interested in comparing performance across the different reward schemes,
we generated 50 tables, one for each possible solution. The order (and thus assignment
to the times) is randomized. Participants thus see different tables for different times.

Stage 4: 160 tasks. For stage four, we need 40 tasks for each cost of time and choice
environment combination. We generate tables similar to stage 1. However, we only
sampled 40 solutions instead of all 50. Thus, the tables have similar difficulty to stage 1,
as deterministically changing either the upper or lower interval and applying any other
deterministic rule to select the solutions could have resulted in a biased performance
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estimate. All participants see the same 40 tables within a single environment but in a
different order.
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A.5 Experimental Material

A.5.1 Experimental instructions (translated).
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A.5.2 On-screen instructions for the belief elicitation. This part of the study is about estimating as

accurately as possible how many table screens you have solved correctly. Please read this page very carefully .
The screen on which you will submit your estimate of how many tasks you solved correctly looks like this:

— screenshot of empty task here —

The decision time for which you should provide an estimate is displayed at the top of the page (in this example 20
seconds) and highlighted in yellow. The example above thus relates to an estimate of the number of correctly solved
tables in 20 seconds.
As a reminder: in the last section, you encountered 50 tasks for each decision time.
You will provide your assessment for each decision time individually as follows:
The decision screen has 10 columns . Each column represents a certain number of correctly solved tables. The �rst
column represents 0-5 correctly solved tables, the second column represents 6-10 correctly solved tables, and the last
column represents 46-50 correctly solved tables.
Your task now is to distribute 100 balls in these columns. Each ball represents 1% probability. For example, if you
put 50 balls in the second column, this means that you assume that you have correctly solved between 6 and 10 of the
total of 50 tables with a probability of 50% within the time indicated above the table. If, for example, you place 23 balls
in the ninth column, this means that you assume with a probability of 23% that you have correctly solved between 41 and
45 of the total 50 tables. The more likely you think it is that a column contains the number of tables you solved
correctly, the more balls you should place in that column.
To place balls in a column, please enter the corresponding number in the input �eld above the column or click on the
column. At the bottom left, you will see the number of remaining balls to be distributed among the columns. You can
change the number of balls in a column until you press the “Next” button.
The task is �nished when you have distributed exactly 100 balls among the 10 columns and are satis�ed with the resulting
probability distribution. This means that the distribution of balls in the columns re�ects your estimation of how many tables
you solved correctly. If this is the case, then press the “Next” button at the bottom left.
Overall, the more accurate your estimate - that is, the more balls you have placed in the correct column and the
fewer balls you have placed in the columns that do not apply - the more likely you are to win the 250 points.
(Only) For those who are interested in the exact payout scheme: After you have distributed all 100 balls in the 10 columns,
a number A is calculated as follows:

A =
10X

i= 1

(Balls in columni � 100 � Ii )
2,

where i=1, .. .10 denotes the different columns and Ii is equal to 1 for the column containing the number of table screens
actually solved correctly and 0 otherwise. Thus, the larger the number A, the more your estimate deviates from the
correctly solved table screens.
Then a number X is randomly drawn from the interval [0,20,000]. If A < X, you get the additional 250 points. If A > X, you
will not get any additional points.
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Figure A11. Belief Elicitation

A.5.3 Experimental screenshots.
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Figure A12. Uncertainty Aversion Elicitation
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Figure A13. Screenshot: Task to Measure Reaction Time

Figure A14. Screenshot: Fixation Cross at Beginning of Task
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