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Dichotomous preferences are a widely assumed feature
in social choice theory. Despite their prominence in the-
oretical models, the empirical validity of this assumption
has remained largely unexplored. Nor is it always clear
how dichotomous preferences are defined across different
research contexts. This paper introduces two new con-
cepts that weaken the strict dichotomy assumption and
can each be tested empirically. Using CSES data and three
experimental datasets—two from French presidential elec-
tions and one from a regional election in Austria—we ex-
amine how frequently the different forms of dichotomous
preferences occur. In addition, the paper provides evi-
dence on the relationship between ranking and approval
ballots. The results suggest that while dichotomous pref-
erences do not offer a perfect representation of voter pref-
erences, they constitute an acceptable approximation, par-
ticularly among voters who approve more than two alter-
natives and among respondents with higher educational
attainment levels.

Keywords: Preferences, Dichotomous Preferences, In-
equality Measures, Cluster Analysis
JEL-Code: D71

1 Introduction

Dichotomous preferences are a widely used assumption in
the study of preference aggregation. Under this assump-
tion, elections can be simplified while retaining several
normatively desirable properties (Vorsatz, 2007, 2008; Ju,
2010; Maniquet and Mongin, 2015; Sato, 2019; Brandl and
Brandt, 2020; Brandl and Peters, 2022; Komatsu, 2024).
Approval Voting (AV) is a prime example of a simple and
effective method. Dichotomous preferences also support
normatively appealing designs of parliamentary and com-
mittee representation (Brill et al., 2018, 2022; Skowron
et al., 2016; Brams et al., 2018), feature in the analysis
of randomisation mechanisms (Bogomolnaia et al., 2005),
and are widely applied in computational social choice to
ensure tractability (Elkind and Lackner, 2016).

Many of the advantages of single- and multi-winner ap-

*The authors are indebted to Herrade Iggersheim for valuable com-
ments and Christian Klamler for providing the data from the
Graz experiment.

proval rules can arise even without dichotomous prefer-
ences. Several experimental studies that do not explicitly
test for dichotomous structures in preferences (Alés-Ferrer
and Granié¢, 2012; Gehrlein and Lepelley, 1998; Gehrlein
et al., 2016; Laslier and Van der Straeten, 2008; Alds-
Ferrer et al., 2025) shed light on a general well-functioning
of Approval Voting. However, in theoretical contributions,
a number of desirable properties no longer hold when
the dichotomous preference assumption is dropped (Brams
and Fishburn, 2007, Theorems. 2.3, 2.4).

Given the extensive theoretical and experimental
research—and the early expressed view that dichotomous
preferences are a “critical” assumption (Niemi, 1984; Saari
and Van Newenhizen, 1988)—it is striking that, to our
knowledge, no study has systematically examined the em-
pirical validity of this widely used assumption.

Preferences are considered dichotomous when voters di-
vide the available alternatives (e.g. candidates or parties)
into two groups (Regenwetter and Grofman, 1998; De-
hez and Ginsburgh, 2019), evaluating alternatives within
the same group identically while differentiating between
groups (Brams and Fishburn, 2007, Def. 2.1).! In this
strict form, dichotomous preferences are unlikely to be
observed empirically. A more flexible and widely cited
assumption is that voters can transform a ranking into
an approval ballot by choosing a threshold alternative, as-
signing all candidates above the threshold to the approved
set and all below to the disapproved set (Dehez and Gins-
burgh, 2019; Terzopoulou et al., 2025; Brams and Fish-
burn, 2007, Ch. 2). This assumption is frequently referred
to as the threshold approach. The same concept is also
known as size-independent model of approval voting (Fal-
magne and Regenwetter, 1996; Regenwetter et al., 2002,
Sec. 3). Below, we will investigate how often this require-
ment is met in empirical data.

At the core of this paper we introduce two new concepts,
both representing weakenings of dichotomous preferences
and both amenable to empirical testing. The first, which
we term weakly dichotomous preferences (WDP), arises
when a voter divides the candidates into two groups and

ITo the best of our knowledge, the term dichotomous preferences
originates from Inada (1969). A few years earlier, however, In-
ada (1964) had already described such preferences, though with-
out explicitly coining the term, instead referring to “indifferent
groups of alternatives”.
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the dispersion of ratings within groups is smaller than the
dispersion between groups. This follows a common ap-
proach in the income-inequality research, where overall
dispersion is decomposed into within- and between-group
components. A limitation of this concept is that its em-
pirical assessment requires complex data: for each voter,
information is needed both on how they rate the alter-
natives (ranking ballots®) and on which alternatives they
approve or disapprove (approval ballots). In the empirical
part of our study we rely on three datasets that contain
both types of ballots, collected in different surveys and
described in detail in Section 3.

Our second weakening of dichotomous preferences relies
exclusively on ranking ballots. We refer to this concept
as quasi-dichotomous preferences (QDP). Preferences are
classified as QDP when clustering the rating data (through
cluster-analytical methods) yields an optimal number of
two clusters. In this case, representing preferences by two
groups provides a superior description compared to three
or more groups. We present the analytical methods used
to identify QDP and apply them not only to the three just-
mentioned datasets but also to a large comparative dataset
from CSES (2024), which allows us to analyse ranking
ballots from over 200,000 respondents across 172 elections.

We find that both weakenings of dichotomous prefer-
ences (WDP and QDP) provide good, though not perfect,
representations of individual preferences. WDP can be
identified for around 50-70% of respondents. These num-
ber increase when restricting attention to respondents that
approve more than 2 alternatives. With respect to quasi-
dichotomous preferences, we find that clustering into two
groups offers by far the best approximation for 50-65% of
respondents.

Another line of research closely related to preference
dichotomy concerns the nature of approval preferences,
ranking ballots, and their comparison (Terzopoulou et al.,
2025). Omne question in this context is which alternatives
can become approval winners when (available) ranking
ballots are converted into (non-available) approval ballots
(Regenwetter and Grofman, 1998). Our cluster-analytical
approach, used to assess QDP, is closely related to this
research string. Conversely, when approval ballots are
available, the second question is which alternatives can
become winners under a ranking-based rule once they are
converted into ranking ballots.

On the latter question, Terzopoulou et al. (2025) have
recently provided valuable insights in this journal, while at
the same time leaving the further treatment of the “foun-
dational question” (Terzopoulou et al., 2025) on how ap-
proval and ranking ballots compare to future research.
Since we have access to three datasets containing both
types of ballots, we are able to contribute empirically to
this debate. Specifically, we address the following two
questions:

1. How often do respondents rate at least one disap-

2By “ranking ballots” we mean data on respondents’ preference or-
derings. In most datasets, however, respondents are not asked
to rank but to rate the available alternatives. A large empirical
literature (e.g. Lachat and Laslier (2024)) converts such rating
data into preference orders. For example, if respondent ¢ assigns
+4 to party A, +1 to B, and 42 to C, this yields the ordering
A =; C,C »; B (and, by transitivity, A >; B). Thus the un-
derlying data are typically ratings, but because of the one-to-one
mapping into orderings we refer to as “ranking ballots.”

proved alternative as highly as, or higher than, an
approved alternative?

2. How often does the optimal cluster allocation coincide
with the approval data? We refer to this number as
the matching value.

The first question immediately relates to the ’threshold
approach’. Our data show that, depending on the dataset,
between 10 and 30% of respondents rate a disapproved
candidate at least as highly as an approved candidate.
The figures are considerably lower, however, when only
strictly higher ratings are considered (i.e. excluding ties).
Regarding the second question, we find an average match-
ing value of around 80%. Matching values are particularly
pronounced when respondents evaluate and classify candi-
dates from the extreme right as approved or disapproved.

In addition to its conceptual and methodological con-
tributions, this paper addresses the question of how valid
it is to assume dichotomous preferences. Taken together,
our analyses suggest that dichotomous preferences pro-
vide a generally good approximation of voter preferences.
They can certainly be defended more convincingly than
trichotomous, fourfold, or multichotomous structures. At
the same time, we find that for roughly 30 to 40% of re-
spondents, the assumption of dichotomous preferences—
even in the weaker versions we propose—does not provide
an adequate representation of their preferences.

2 Dichotomous preferences:
conceptions and measurement

We begin by formally defining dichotomous preferences.
Definition 1 follows the formulation of Brams and Fish-
burn (2007, Def. 2.1). Let & = {1, 22,...,2Zmn} denote a
finite set of m alternatives.

Definition 1 (Dichotomous preferences).

A preference relation =; of voter i over % is called di-
chotomous if there exists a partition of % into two dis-
joint sets A; (approved) and D; (disapproved) such that
A;UD; = e@’ A;ND; = g, and Vzx € Ai, Vy eD; x> Y,
while Ve, y € A; :x ~; y andVx,y € D; : x ~; y.

Criticism of the dichotomous preference assumption
dates back to the 1980s. Niemi (1984) demonstrated that
Approval Voting loses several normatively attractive prop-
erties with only minor deviations from this assumption.
Saari and Van Newenhizen (1988) reinforced and extended
this argument. In response, Brams et al. (1988) rejected
their claim that all analyses of Approval Voting depend
on dichotomous preferences, pointing out that much of the
literature “goes well beyond the highly specialised dichoto-
mous case” (Brams et al., 1988, Sec. 2.1). Indeed, it has
often been assumed that voters can translate their pref-
erence orderings into a “compatible approval set” (Brams
and Fishburn, 2007, Ch. 2) by designating a particular
alternative as a threshold (’threshold approach’). Brams
et al. (1988) further argued that this assumption imposes
weaker requirements on voters’ preference structures, since
it does not presuppose the existence of a complete prefer-
ence ordering.



Let r; : Z — R denote a rating function that represents
the preferences 7Z; of voter ¢ over #. For any z,y € B,
we have x 77, y if and only if r;(z) > r;(y).

Definition 2 (Threshold approach).

A preference relation 7; of voter i over A is called
threshold-dichotomous if there exists a partition of % into
two disjoint sets A; and D; such that A; U D; = A,
A;ND; =@, and minge , 7;(x) > maxyep, r;(y).

For some empirical applications, it will be necessary to
adopt a variant of the threshold approach in which the
highest-rated disapproved candidate is strictly lower rated
than the lowest-rated approved candidate. In empirical
data, indifference relations and focal points around par-
ticular values are common, and such clustering can cause
the strict inequality to yield substantially different out-
comes from the weak inequality.

We raise two objections to the threshold approach. The
first concerns its focus: the threshold approach reflects
the consistency of a voter’s decision rather than the ex-
istence of genuinely dichotomous structures. Consider a
voter who evaluates six candidates (z1,...,x¢) on a [0,1]
scale: r(z1) = 0.1, r(z2) = 0.2, r(xz3) = 0.4, r(x4) = 0.6,
r(zs) = 0.8, r(zg) = 0.9. To classify this voter as hav-
ing threshold-dichotomous preferences, it is sufficient that
they place the threshold at some point along the scale
and include all candidates with ratings above this thresh-
old in the approval set. For example, the threshold could
be set between x5 and xg. This satisfies the definition
of threshold-dichotomous preferences, but the example
makes clear that what is being captured is a form of inter-
nal consistency in the approval decision, not dichotomous
structures as such. The disapproved set contains too many
internal dissimilarities for the ratings to be considered a
homogeneous group.

The second, and main objection is that the thresh-
old approach can also classify trichotomous or multi-
chotomous preferences as threshold-dichotomous. Tri-
chotomous (multichotomous) preferences are defined anal-
ogously to Definition 1, except that there are three (more
than three) groups in which the voter is indifferent among
alternatives (Manjunath and Westkamp, 2021; Brams and
Fishburn, 2007, Def. 2.1). This objection can likewise
be illustrated easily. Suppose the voter’s evaluations are
(r(zy) = r(z2) = 0.1,r(z3) = r(xra) = 0.5,r(x5) =
r(zg) = 0.8). If the threshold is set at 0.2, threshold-
dichotomous preferences would be assigned, yet the un-
derlying structure is clearly trichotomous.

In light of these objections, it appears warranted to in-
troduce two alternative definitions of dichotomous pref-
erence structures: weakly dichotomous preferences and
quasi-dichotomous preferences.

Weakly dichotomous preferences are defined as prefer-
ences in which the dissimilarities of ratings within each
group (approved and disapproved alternatives) is lower
than the dispersion between the two groups.

Let 6 : # x # — R denote a dispersion function
that for all z,y € 2 is non-negative (6(x,y) > 0), satisfies
identity (§(z, z) = 0), and is symmetric (6(z,y) = é(y, x)).

Definition 3 (Weakly dichotomous preferences).
A preference relation ¥-; of voter i over A is called weakly

dichotomous if there exists a partition of B into two dis-
joint sets A; and D; such that A;UD; = B, A,ND; =@,
and the overall dispersion of preferences can be decom-
posed into a within-subsets component d,, and a between
component O, with 0, < .

To operationalise the concept of dispersion, one can
choose from a wide range of decomposable inequality mea-
sures (Cowell and Victoria-Feser, 1996). In this context
it is worth noting that inequality comparisons are sensi-
tive to the choice of the inequality measures such that
replacing one measure will almost always change the rel-
ative significance of the within and between components
(Shorrocks, 1980). In our empirical part we mainly rely on
the Gini coefficient as a widely used measure of inequality
and dispersion in social sciences (Fleurbaey et al., 2025).
However, we test the robustness of our results by utilising
three other voting rules.

Let still 7, : # — R denote the rating function of
voter i over the m = || alternatives, with mean rat-
ing p; = =3 cpri(z). The Gini coefficient of voter i
over A is defined as G; = ﬁzz,yegé(:ﬂ,y), where
the dispersion function in this particular case is given by
6(z,y) = [ri(z) —ri(y)]-

Given a partition of £ into the groups A; and D;, the
Gini coefficient can be decomposed into a within-group
component and a between-group component:3

Gi =Guw,i+ Gp,i +wi (1)

G = gz | X S+ X dwn)| @

z,Y€A; z,yeD;

measures the dispersion within the approved and within
the disapproved sets, while

1
Sz, > sy

T€A; yeED;

Gy = (3)

captures the dispersion between approved and disapproved
alternatives.

The within-group inequality captures the weighted sum
of the group rating dispersions. The between-component
measures the dissimilarities between both groups by con-
sidering a smoothed distribution for each group.*

The Gini index is scale-invariant. This is advantageous
for our analysis, as the rating values in the three datasets
were collected on different scales, which we transformed
into a common scale for comparability (see the next sec-
tion). Its drawback is that the decomposition needs not
to be additively decomposable (Shorrocks, 1980), meaning
that the within- and between-group components do not
necessarily sum to the overall Gini. The residual, known
as the “overlapping index” (Yitzhaki and Lerman, 1991),
may bias comparisons between within- and between-group

3Note that, unlike in income distribution research, we focus on
each respondent’s ratings, which allows us to assess whether they
exhibit weakly dichotomous preferences.

4Note that Eq. (2) and Eq. (3) represent a general form of the
Gini decomposition, for which different specifications exist in the
literature (Bhattacharya and Mahalanobis, 1967; Lerman and
Yitzhaki, 1989).



components (Yitzhaki, 1994). The overlap index is de-
noted by w in Eq. (1).

The overlap index equals zero when the observations
of each group are confined to distinct ranges and these
ranges do not overlap (Yitzhaki, 1994; Costa, 2016). Ap-
plying this property to our setting reveals a connection be-
tween the Gini decomposition and the notion of threshold-
dichotomous preferences:

Remark 1 (Threshold-dichotomous preferences and ad-
ditive decomposability.).

If a voter has threshold-dichotomous preferences, then the
Gini decomposition of their preferences is perfectly addi-
tively decomposable into within- and between-group com-
ponents.

As can be seen from Eq. (2) and Eq. (3), the analysis
of weakly dichotomous preferences requires data both on
respondents’ ratings of the available alternatives and on
their assignment of alternatives into two disjoint sets (ap-
proval ballots). While rating data are available in many
datasets, data containing both ranking ballots and ap-
proval ballots are relatively rare. It is therefore useful to
introduce a further concept that relies solely on the more
widely available rating values. We refer to this concept as
quasi-dichotomous preferences and define it as follows:

Definition 4 (Quasi-dichotomous preferences (QDP)).
A preference relation 7; of voter i over A is called quasi-
dichotomous if the optimal clustering of i’s ratings r;
yields exactly two robust clusters.

Beyond its less demanding data requirements, this ap-
proach directly addresses our second critique of the thresh-
old approach. We test explicitly whether two groups pro-
vide a better representation of preferences than three or
more groups.

QDP can be identified empirically using cluster-
analytical methods. Cluster analysis is widely applied
in the social sciences, particularly when observations are
to be grouped—much like the mapping of ranking ballots
onto approval ballots. As we explain in the empirical sec-
tion (Section 6), grouping observations into two clusters
may provide a better representation than grouping into
three or more, while still being insufficiently robust. This
is the aspect captured in the final part of Definition 4,
which we also discuss in detail in Section 6.

Remark 2 (Interrelations between variants of dichoto-
mous preferences).

1. If a woter has dichotomous preferences in the
sense of Definition 1, then these preferences are
also threshold-dichotomous, weakly dichotomous, and
quasi-dichotomous. The converse implications, how-
ever, do not hold.

2. Threshold-dichotomous, weakly dichotomous, and
cluster-analytical dichotomous preferences are mutu-
ally independent of one another.

The first part of Remark 2 is straightforward: if the
preference relation of voter ¢ complies with Definition 1,
then the dispersion within each group is zero and therefore

smaller than the dispersion between A; and D;, so that
WDP holds. In this case a compatible threshold necessar-
ily exists, and if the ratings take only two distinct values,
they can be best represented by exactly two clusters.

Table 1 illustrates the preferences of six voters over m =
6 candidates. The columns labelled “Ap” indicate whether
a voter approves (Ap = 1) or disapproves (Ap = 0) of
a candidate. For instance, Voter 1 approves candidates
Z4,%5,%6. The columns labelled r;(j) display voter i’s
rating of candidate j € % on a [1, 2] scale. Voter 1 exhibits
perfectly dichotomous preferences, as they assign equal
ratings to all approved candidates and equal ratings to all
non-approved candidates.

The preferences of Voter 2 resemble those of Voter 1.
However, they do not comply with Definition 1, as their
ratings vary within the two groups. Nevertheless, each
approved candidate (x4,xs5,26) is rated higher than any
non-approved candidate.

For Voter 3, the rating values indicate that within-
group dispersion is smaller than between-group disper-
sion. Applying the numbers to Eqgs. (2) and (3) yields
Guw,3 = 0.017 < 0.046 = Gy 3, so we classify these prefer-
ences as weakly dichotomous. They also satisfy thresh-
old consistency (Def. 2), since minjea, r3(j) = 1.7 >
max;ecp, 73(j) = 1.6. Although the detailed procedure
for calculating the optimal number of clusters is presented
in Section 6, it suffices here to note that two clusters pro-
vide the best grouping of Voter 3’s ratings. Thus, the
preferences of Voter 3 satisfy all three properties defined
in Definitions 2—4.

Instead of providing a formal proof for Statement 2 in
Remark 2, we illustrate the mutual independence of the
concepts using Voters 4 to 6. The ratings of Voter 4
are best grouped into two clusters, so that QDP is sat-
isfied. However, the within-group dispersion exceeds the
between-group dispersion (0.031 vs. 0.020), meaning that
WDP does not hold. Moreover, the disapproved candi-
date o is rated at 1.9, which is clearly higher than, for
example, xg, an approved candidate.

By contrast, Voter 5 satisfies WDP but not QDP.
Voter 6 satisfies neither WDP nor QDP, but their pref-
erences do meet threshold consistency.

3 Data

The first dataset originates from an in-situ experiment
conducted alongside the 2017 French presidential election
(Bouveret et al., 2019; Baujard et al., 2020). In various
cities, survey participants indicated which of the eleven
candidates they approved or disapproved of. We refer to
these responses as approval data, also known as approval
ballots. In one of these cities, Grenoble, respondents were
additionally asked to rate the candidates on a [0,1] € R
scale. We henceforth denote these numbers as ranking bal-
lots. As a result, we have both approval and rating data
for a total of 1,069 respondents. The dataset also includes
socioeconomic information such as age, gender, and edu-
cational attainment level.

To prevent inconsistencies arising from log-
transformation in the calculation of inequality measures
indices and to avoid asymmetric ratings (Morrisson and
Murtin, 2012), the data were transformed to a [2, 3] scale.



Table 1: Numerical examples of approval preferences.

Candi- Voter 1 Voter 2 Voter 3 Voter 4 Voter 5 Voter 6
date | Ap ri(j) | Ap r2(d) | Ap 73(j) | Ap ra(j) | Ap rs(d) | Ap 7e(d)
T 0 1.3 0 1.2 0 1.3 0 1.3 0 1.1 0 1.07
To 0 1.3 0 1.3 0 1.5 0 1.9 0 1.1 1 1.61
T3 0 1.3 0 1.4 0 1.6 0 1.5 1 1.4 1 1.13
T4 1 1.8 1 1.7 1 1.7 1 1.6 0 1.5 1 1.93
s 1 1.8 1 1.8 1 1.7 1 1.9 1 1.9 0 1.12
Te 1 1.8 1 1.9 1 1.9 1 1.6 1 1.9 1 1.15
Thresh v v v X X v
WDP v v v X v X
QDP v v v v X X

Note: Artificially generated examples illustrating how approval decisions (Ap) relate to individual ratings r;(j) € (0,1). Here, Ap =0
denotes disapproval and Ap = 1 denotes approval. The last three rows report whether the respective profile satisfies threshold-dichotomous
(Thresh), weakly dichotomous (WDP), or quasi-dichotomous (QDP) preferences, indicated by v if satisfied and X if not.

Note that the Gini-decomposition as well as the variance
decomposition are scale-invariant, such that the rescaling
do not affect the results based on these measures. The
rescaling can have an effect on Generalized Entropy
measures, which we introduce in the Section 5. However,
the results are similar with altering the rescaling range.

A descriptive data evaluation leads to conclusions that
align with observations made in several other experi-
ments on Approval Voting (AV), namely that voters han-
dle AV seemingly without being overwhelmed by the task
of categorizing candidates into two groups (Laslier and
Van der Straeten, 2008; Baujard et al., 2014; Alés-Ferrer
and Grani¢, 2012). In the specific Grenoble experiment,
only 21 individuals did not approve any candidate, and
only 10 persons approved more than six out of eleven can-
didates. 187 individuals approved only one candidate, and
the overwhelming majority approved either two or three
candidates. On average, the approved candidates were
rated significantly better than the non-approved ones (2.80
vs. 2.19).

Experimental studies frequently report that the Ap-
proval winner does not coincide with the actual (plurality-
based) winner (e.g., Alés-Ferrer and Grani¢, 2012). This
can also be observed in the Grenoble data: while Em-
manuel Macron emerged as the best vote-getter (plural-
ity winner), Jean-Luc Mélenchon got the second most
votes but had a head-to-head majority against Macron
(i.e., would emerge as plurality run-off winner), the Ap-
proval winner was Benoit Hamon with a significant lead
to Macron. The approval winner coincides with the Borda
winner as well as with the Condorcet winner.

The second data set was conducted by Darmann and
Klamler (2023) during the election day for the state par-
liament in Styria (Austria) in 2019. The data were
collected in the state’s capital, Graz, by exit polls at
nine voting stations. Unlike the Grenoble data, respon-
dents rated six parties instead of candidates. Respon-
dents approved/disapproved parties and rated each on a
[—20,20] € N scale, which we transformed for the reasons
mentioned above and for the sake of comparability to a
[2,3] range. To avoid redundancies, we summarize the
main descriptive summary statistics for this and the other
surveys in Table 2.

The third dataset, which we refer to as France22, closely
resembles the first dataset from Grenoble. This dataset

originates from an open online experiment conducted dur-
ing the French presidential election, this time in 2022
(Delemazure and Bouveret, 2024). In total, twelve candi-
dates ran in the 2022 presidential election, seven of whom
had also competed in 2017. Respondents rated the candi-
dates on a [0,100] € N scale.

Grenoble Graz France22

1000- &

Participant ID

@
]
S

200 225 250 275 300 200 225 250 275 300 200 225 250 275 3.0
Rating

Figure 1: Approval Data and Ratings
Note: Each row corresponds to one survey participant, dis-
playing their ratings on a [2, 3]-scale and approval choices.
Green points mark approved alternatives, blue points mark
disapproved ones.

A vparticular feature of the France22 dataset is the ab-
sence of missing values for candidate ratings. This is due
to the fact that when respondents did not provide a rating,
the dataset records a value of 50. As a result, a rating of
50 may have two distinct interpretations: respondents may
genuinely be indifferent between a positive and a negative
evaluation, or they may simply have no opinion about the
candidate in question. Unfortunately, it is not possible
to distinguish between these two groups. For this rea-
son, in our analyses we employ a variant of the France22
dataset, denoted France22y 4, in which all ratings of 50
are treated as missing values. While this imputation does
not materially affect the results of the weakly dichotomous
preference analysis or the examination of the relationship
between approval and rating ballots, it does have a notice-
able impact on the cluster analysis.

Figure 1 presents the data for the three datasets. Each
survey participant’s ratings and approval data are repre-
sented by a single row. Blue points indicate the rating of
a non-approved candidate/party, while green points repre-



Table 2: Summary statistics for the data sets.

Grenoble Graz France22

Year 2017 2019 2022
# Respondents 1,069 937 1,365
Alternatives Candidates Parties Candidates
# Alternatives 11 6 12
# Approved

1 17.5 % 21.8% 8.5%

2 38.0% 47.9% 22.9%

3+ 42.6 % 28.7% 66.2%
Avg. Rating (7)

Approved 2.80 2.84 2.81

Disapproved 2.19 2.40 2.21

Note: Descriptive statistics for the three datasets used in the analysis. The table reports the number of respondents, the
type and number of alternatives, the distribution of approval decisions, and the average ratings. Rating values were rescaled
from their original formats to a common [2, 3] scale to ensure comparability across datasets.

sent the ratings of approved alternatives. In all panels, we
observe that voters apply distinct cut-off levels—i.e., spe-
cific rating values that serve as thresholds to distinguish
between approved and non-approved alternatives.

Notably, the Graz and France22 datasets over-represent
younger respondents and those with left-leaning political
orientations. Darmann and Klamler (2023), referring to
the Graz dataset, describe this as a “liberal bias.” Our fo-
cus, however, is on dichotomous structures rather than
on predicting electoral outcomes under different voting
rules. For this reason, what respondents would actually
vote for is not of direct relevance here. Drawing on the
CSES dataset, which we also use and introduce below, we
argue that the “liberal bias” does not lead to a systematic
distortion in our context, although it cannot be entirely
ruled out.

We have no indication that the data are distorted by
strategic considerations of survey respondents. As Brams
and Fishburn (2007, Ch. 7) note, misreporting in a sur-
vey requires a reason, and in the context of rating tasks it
is difficult to identify any plausible incentive for respon-
dents to deviate from their genuine views. With regard to
the Graz dataset, Darmann and Klamler (2023) likewise
conclude that sincere preferences were recorded.

As shown in Figure 1, focal points are evident particu-
larly in the French datasets. They occur at the extremes
of the respective scales and at the midpoint. With respect
to the concentration of medium values in the France22
dataset, we have already noted above the issue related to
missing values. The focal points, however, are likely to
be primarily attributable to the way in which the rating
data were collected. In the Grenoble study, respondents
were asked to mark each candidate’s position on a contin-
uous line. At the extremes the labels “contre” and “pour”
were provided, and in the middle “indifférent”. These la-
bels could, and apparently did, serve as focal points. Data
collection for the France22 dataset followed a very simi-
lar design. Here, ratings were recorded via a slider on a
scale illustrated with three icons (“emojis”), representing
hostile, indifference, and ’in favour’. Again, it can be as-
sumed—and the data strongly suggest—that these icons
functioned as focal points.

Such focal points are quite common in experimental
data collection. A standard way of assessing their effect

is to add a random number to the recorded values. For
the France22 dataset, we added to each of the 16,830 rat-
ings a random draw from the interval [-5,+5] € R. This
random-noise procedure shows that the results are essen-
tially robust. The detailed results are provided in the
replication files accompanying this article.

A key advantage of the cluster-analytical approach to
assess QDP is its less demanding data requirements: it
does not require approval data but only respondents’ rat-
ings of the available alternatives. This allows us to use
the CSES (2024) data for the cluster-analytical part of the
analysis. The CSES is a global research programme where
election study teams from participating countries include
a common set of survey questions in their post-election
studies. The research agenda, questionnaires, and study
design are developed by an international committee of ex-
perts and implemented by leading social scientists in each
country. We use this cumulated data set consisting of 172
nationally representative post-election studies fielded in 54
countries from 1996 onwards.

With this dataset, we can analyse the rating values of
212,729 respondents, each of whom evaluated between six
and nine parties or candidates. The cluster-analytical re-
sults based on the CSES data can be compared with those
derived from the three original datasets. In Section 6.2, we
show that the results from the three original datasets fall
within the range of those obtained from the CSES data.
We interpret this as evidence that the socio-economic bias
in the original datasets does not lead to substantial dis-
tortions.

4 Threshold approach

We start the empirical part of this paper by evaluating how
many respondents exhibit threshold-dichotomous prefer-
ences. As depicted in Figures 1, some respondents rate
non-approved parties or candidates higher than approved
alternatives. This can be seen from the green dots appear-
ing to the left of the blue dots.

Recall that a voter is classified as having threshold-
dichotomous preferences if their highest-rated disapproved
candidate is rated lower than their lowest-rated approved
candidate. As discussed in Definition 2, we argued that the
strict criterion is more suitable for empirical applications



due to the presence of focal points and the large share of in-
differences in respondents’ preferences. Table 3 reports the
share of survey respondents with threshold-dichotomous
preferences. Under the strict version (lower part of the
table), the values range from 80 to 90 percent. The val-
ues in square brackets indicate bootstrap-generated confi-
dence intervals (on a 5% confidence level and by applying
the percentile method). These are relatively high figures,
but they should not be over-interpreted. They primar-
ily capture a consistent allocation into approval ballots
and provide limited information about whether respon-
dents genuinely evaluate candidates or parties as either
“good” or “bad.

A related question is where respondents place their
threshold. Saari and Van Newenhizen (1988) showed that
electoral outcomes under AV depend critically on this
choice. In a three-candidate setting, if all voters use the
same threshold, AV coincides with plurality voting when
the cut is between the first- and second-ranked candi-
dates, and with anti-plurality rule when it is between the
second and third. The Condorcet efficiency of AV heav-
ily depends on the threshold-setting behaviour of voters
(Gehrlein et al., 2016), as well the resilience of AV against
the electoral success of polarizing candidates (Barbaro,
2025), also coined ’exclusive candidates’ vs. ’inclusive can-
didates’ (Baujard et al., 2014, 2020)

For the threshold calculation, we use the midpoint be-
tween the lowest rating among approved and the highest
rating among disapproved candidates, defined for each re-
spondent 7 as

ti=3 (;glAn ri(w) + max m(y)) :

Figure 2 depicts the distribution of individual thresholds
across datasets. The violin plots illustrate the density of
observations over the rating scale, while the embedded
boxplots indicate the median and interquartile range.

Three observations from the data analysis are notewor-
thy:

1. The distribution of thresholds lies predominantly in
the upper half of the rating scale (between 2.5 and
3). This corresponds to the observation that individ-
uals generally set their threshold above their median
rating. As shown in Fig. 2, the violins widen between
2.4 and 2.8. Around 90% of respondents in the French
datasets set their threshold above their respective me-
dian rating, while in the Graz dataset the share is
about two thirds.

2. The median values of the thresholds are similar across
all datasets, at around 2.65. In Fig. 2 the median is
indicated by the central vertical line in the boxplots.

3. The distribution of threshold values is also compara-
ble across the datasets. The boxplots display a similar
level and a comparable range.

As noted by Brams et al. (1988), the threshold set-
ting can reflect preference intensities and thus does not
represent a strategically motivated decision that would
render the election outcome idiosyncratic, as claimed by
Saari and Van Newenhizen (1988). In a three-candidate
setting, if the top-ranked candidate is viewed very pos-
itively, the last-ranked very negatively, and the middle

candidate as neutral, then placing the threshold between
the first and second candidate may indicate a stronger
concern with ensuring who is elected. By contrast, set-
ting it between the second and third candidate suggests a
motivation to exclude particularly unsuitable candidates.
Following this perspective, voters appear more inclined to
use their threshold to indicate and reinforce their preferred
candidates.

5 Weakly dichotomous preferences

In this section, we present results on the share of respon-
dents exhibiting weakly dichotomous preferences as de-
fined in Definition 3. Our main focus lies on the Gini
decomposition, which we set out in Section 2.

Table 4 presents the share of survey respondents for
whom the within-group dispersion is smaller than the re-
spective between-group dispersion. The values in square
brackets indicate bootstrap-generated confidence intervals
(on a 5% confidence level and by applying the percentile
method) based on 1,000 replications each.

We find that between 50 and 70 per cent of respondents
can be characterised as having weakly dichotomous pref-
erences. For this majority, the assumption of dichotomous
preferences provides a reasonable approximation of their
actual preferences. However, for 30 to 50 per cent of re-
spondents this assumption does not hold, which may pose
a challenge for theoretical models that rely critically on
dichotomous preferences.

Table 4 also presents the share of respondents with
weakly dichotomous preferences calculated using three al-
ternative inequality measures, in order to strengthen the
robustness of the results obtained with the Gini coefficient
and to address common criticisms of its use. We consider
the additively decomposable Theil’s T-measure (Ebert,
1988, 2010), the Atkinson-measure® (Atkinson, 1970), and
the squared coefficient of variation (Shorrocks, 1980). We
use the weights s, ,;, = %, g € {A;, D;}, which reflect
the relative group shares in voter ¢’s distribution.

The Theil-measure
o=y, sl m(nl) —
> s0iTe

ge{Ai,D;}

D>

ge{A;,D;}

within
. Hg.i
Sg.i ln( o ),

between

5We set the inequality-aversion parameter to € = 1, the limiting
case in which the Atkinson index compares the geometric mean
with the arithmetic mean. This specification gives the measure
particular sensitivity to differences at the lower end of the distri-
bution.



Table 3: Share of survey respondents with threshold-dichotomous preferences (values in %)

Criteria Grenoble Graz France22  France22n 4

min r; (x) > max ri(y) 89.2 67.2 63.7 76.9
[87.6,90.7] [64.8,69.6] [61.8,65.8] [75.3,78.7]

min ri(x) > max ri(y) 90.2 86.0 81.3 85.1
[88.8,91.7] [84.1,87.8] [79.6,82.8] [83.6,86.6]

Note: The table reports the share of respondents with threshold-dichotomous preferences under a weak (top) and a strict
(bottom) definition. Values in square brackets are bootstrap confidence intervals (5% level, percentile method).

Threshold

1 1
Grenoble Graz

2934

1 1
France22 France22NA

Figure 2: Distribution of thresholds set by respondents.
Note: The plot depicts the distribution of individual approval thresholds across datasets. Violin plots show the density of
threshold values, with embedded boxplots marking the median and interquartile range.
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both belong to the class of Generalized Entropy (GE)
measures (Shorrocks, 1980; Cowell and Victoria-Feser,
1996). Their drawback is that the common scaling may
distort the values, as they are not scale-invariant.

As a fourth measure, we use the squared coefficient
of variation (SCV), which through the ANOVA iden-
tity is perfectly additively decomposable into within- and
between-group components (Shorrocks, 1980). For voter

i, let pg; = l_ng (9 € {44, D;}) denote the relative size of

each group in voter ¢’s partition of the alternatives, and let

o?(r) denote the variance of respondent’s i ratings. Then
the SCV is

a2 (r)
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A limitation of the SCV is the absence of an upper bound
(SCV; € [0,00)). This reduces interpretability and can let
extreme observations dominate, in contrast to bounded
measures such as the Gini or GE indices.

The application of the three additional inequality mea-
sures corroborates the overall picture derived from the
Gini decomposition. The share of respondents with weakly
dichotomous preferences generally lies between 50 and 70



Table 4: Share of respondents with weak dichotomous preferences according to the inequality-measure approach.

Values in %.

Index Grenoble Graz France22  France22y4
Gini 68.4 50.8 55.2 68.4
[66.1,70.8] [48.1;54.4] [53.1;57.2]  [66.5;70.3]
Theil-T 73.6 47.2 68.0 75.73
[71.5,75.8] [44.6;49.7] [66.1;69.8]  [74.1;77.2]
Atkinson 70.3 45.1 65.3 73.9
[68.1,72.6] [42.6;47.8] [63.4;67.2] [72.3;75.5]
SCV 73.3 38.6 63.8 72.3
[71.1,75.6) [35.9;41.1] [61.8;65.8]  [77.1;74.5]

Note: Share of respondents with weakly dichotomous preferences based on inequality decompositions (values in per cent).
Within-group dispersion (within approved and disapproved sets) is compared to between-group dispersion. Square brackets
report bootstrap confidence intervals (5% level, percentile method, 1,000 replications). Results are shown for Gini, Theil-T,

Atkinson, and squared coefficient of variation (SCV) indices.

per cent.

The share of respondents to whom we cannot attribute
weakly dichotomous preferences is largely driven by those
who approve only one or two alternatives. The more al-
ternatives a respondent approves, the higher the likelihood
of observing weakly dichotomous preferences. We depict
this observation in Fig. 3. Restricting attention to respon-
dents who approve at least three alternatives, we obtain a
robust share of around three quarters who exhibit weakly
dichotomous preferences.

It should be noted that for the Gini decomposition we
used the procedure proposed by Lerman and Yitzhaki
(1989) (henceforth: YL). The YL approach decomposes
overall inequality into within- and between-group compo-
nents by linking the between-group term to the covariance
between group means and the fractional rank of individ-
uals. An alternative procedure is the decomposition by
Bhattacharya and Mahalanobis (1967) (henceforth: BM),
which differs from YL in that the between-group com-
ponent is defined as the Gini coefficient of group means.
In the BM approach, inequality arising from cross-group
rank overlap is reported separately as an overlap compo-
nent, whereas in the YL approach such overlap is mostly
absorbed into the within-group component.

In our view, the YL procedure is better suited to our
setting. Unlike BM, which defines the between component
solely in terms of differences in group means, YL links the
between component to the rank ordering of individuals
across groups. This makes the decomposition sensitive to
the extent to which approval categories structure the rank-
ing of candidates. In our context, where the key question
is whether approved and disapproved candidates form dis-
tinct strata in respondents’ evaluations, this feature of the
YL approach provides a conceptually meaningful measure
of between-group inequality.

Because of the absorption to the within component,
the YL approach is more conservative in the sense that
it yields lower WDP shares than BM. To assess how sensi-
tive our results are to the choice of decomposition, we also
calculated the WDP shares under the BM approach. The
results are 84.5% for Grenoble, 76.25% for Graz, 77.8% for
France22, and 84.4% for France22n 4.

Both YL and BM belong to the class of additive de-
composition measures and stand in contrast to so-called
path-independent decompositions (Foster and Shneyerov,

2000). In a recent contribution to this journal, Fleur-
baey et al. (2025) emphasise that additive decomposi-
tions attribute part of the between-group variation to
the within component, whereas path-independent decom-
positions attribute part of the within-group variation to
the between component. This implies that the choice of
method should be guided by the analytical focus: studies
concerned with within-group inequality are better served
by a path-independent procedure, while analyses centred
on between-group inequality are more appropriately con-
ducted using an additive decomposition. Since our analy-
sis is concerned with whether approval categories account
for systematic differences in candidate ratings—that is,
with the magnitude of between-group inequality—the ad-
ditive approach is the appropriate choice in our setting.
However, using a path-independent approach to calcu-
late the within component and an additive approach to
the between component, as proposed by Fleurbaey et al.
(2025),5 would cause the WDP shares to drop significantly
(about 49% in the Grenoble dataset, to merely 6% in Graz,
in to about 35% by focusing on the France22 dataset).

6 Quasi-dichotomous preferences

In the preceding section, we treated respondents’ group
assignments (approvals and disapprovals) as given and
examined the dissimilarities within and between these
groups. In contrast, the present approach sets aside the
approval data and instead determines the optimal num-
ber of clusters based on respondents’ rating data. While
the previous section relaxed the assumption of indiffer-
ence within each group, the current analysis questions the
expectation that voters categorise the alternatives into ex-
actly two groups. Thus, this approach allows us to deter-
mine whether the ratings are best grouped into two clus-
ters (indicating a dichotomy), three clusters (trichotomy),
or even more. In other words, irrespective of the approval
data, we aim to identify how many respondents express
ratings that can be optimally partitioned into two subsets
(clusters).

Example 1 (Trichotomous preference pattern).

SWe thank Domenico Moramarco, a co-author of Fleurbaey et al.
(2025), for sharing the R code implementing their proposed
method.
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Figure 3: Share of respondents with weakly-dichotomous preferences based on the Gini decomposition
Note: Share of respondents with weakly dichotomous preferences by number of approved alternatives. Categories are {1,2}
(one or two approvals), 3, 4, and > 4 (denoting four or more approvals).

Consider a voter who assigns the following ratings to sixc
candidates on a [1,2] scale: r; = (1.1,1.1,1.5,1.5,1.9,1.9).
Dichotomous preferences are characterised by the ability
of voters to divide the candidates into two groups, with
identical ratings within each group. In this example, how-
ever, the voter appears to divide the candidates more natu-
rally into three rather than two groups. Within each group,
the ratings are indeed identical. The violation of the di-
chotomy assumption therefore does not arise from a lack of
indifference within groups, but rather from the assumption
of exactly two groups.

The approach presented here is related to a line of re-
search concerned with mapping available ranking ballots
onto inferred approval ballots. Our approach is reminis-
cent of the probabilistic model introduced by Regenwetter
and Grofman (1998). According to their model, the prob-
ability that a voter approves the set X C £ equals the
probability that they approve of for |X| candidates multi-
plied by the probability that they rate all alternatives in
X higher than all alternatives in %\ X (Regenwetter and
Grofman, 1998, p. 426). Our approach differs in that we
do not ask which alternatives are approved, but whether
partitioning into two groups provides the best approxima-
tion of preferences.

As indicated by Def. 4, the QDP approach follows two
sequential steps: first, we determine the optimal number of
clusters for each survey participant; second, for those with
an optimal cluster count of two, we assess the quality of
the clustering. With regard to the empirical strategy, both
steps rely on silhouette scores as the evaluation criterion.

The silhouette score (Rousseeuw, 1987) for each data

point r; is defined as:

b(r;) —a(ry)
max{a(r;), b(r;)}

where a(r;) is the average intra-cluster distance, i.e., the
average distance of r;(j) to all other vectors in the same
cluster (cohesion), and b(r;) is the average nearest-cluster
distance (separation).

s(rj) = €[-1,1] CR, (4)

To identify the optimal number of clusters, k, we apply
a k-means clustering analysis’” with the average silhou-
ette width (ASW, Batool and Hennig, 2021, also known as
the ’silhouette coefficient’) as indicator. In particular, we
compute the average silhouette width for different num-
bers of clusters, k = 1,2,..., to evaluate clustering qual-
ity across varying cluster counts. The ASW represents
the mean silhouette score across all observations within a
given clustering solution. The optimal number of clusters,
k, is determined by selecting the value of k that corre-
sponds to the maximum ASW (Kaufman and Rousseeuw,

"By using the k-means clustering algorithm (Hartigan and Wong,
1979), we split each respondent’s rating values into k clusters
based on their distance to the mean value of all ratings of the
respective respondent (hard clustering). The rating values are
moved between clusters, one at a time, based on their closeness
to the mean of each cluster (measured by Euclidean distance).
The algorithm finishes when no rating value can be moved be-
tween clusters without increasing the average Euclidean distance
between rating values and the means of their respective clus-
ters. The PAM ("Partitioning around medoids’) is an alternative
to k-means clustering. Like k-means, it partitions data into k
clusters. But instead of means (centroids), it uses the actual
observations that minimise total dissimilarity to points in their
cluster (’medoids’). On discrete scales with many ties it is sen-
sitive to tie-breaking procedures and tends to over-segment. As
our aim is parsimonious partitioning rather than outlier-robust
clustering, k-means is more appropriate here.
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2005, p. 86).

To illustrate the connection between our QDP (Def. 4)
and the WDP (Def. 3), consider that in Eq. (4) a(r;) de-
notes the within-group dissimilarity, while b(r;) represents
the between-group dissimilarity.

For high silhouette scores (s(r;) — 1), the within-group
dissimilarity is much smaller than the smallest between-
group dissimilarity. In this sense, high silhouette values
indicate strong clustering, as the second-best cluster is
not nearly as close as the actual cluster assignment. Con-
versely, when s(r;) ~ 0, within-group and between-group
dissimilarities are approximately equal, meaning that r;
cannot be sharply assigned to one cluster or another.

Example 2 (Optimal cluster number based on maximum
average silhouette width).

Consider the rating values of Voter 4 in Table 1. We cal-
culate the ASW for different numbers of clusters, k =
1,...,5. The ASW is zero for k = 1, 0.72 for k = 2,
and 0.596 for k = 3. Since the ASW wvalue is highest at
k =2, clustering Voter 4’s rating values into two clusters
s optimal.

Furthermore, the cluster analysis indicates that the two
rating values equal to 1.9 form one cluster (the approved
cluster), while the remaining values constitute the other
(disapproved) cluster.

We depict the example in Table 5. The columns r; =
r4(j) and ’Ap’ are identical to those in Table 1 (column
"Voter 4’). The column ’Opt. Cluster’ indicates the as-
signment of j-values to the two clusters, while the column
‘Silhouette’ provides the corresponding silhouette scores.

For example, the silhouette score is s(i) = 1 for i €
{ra,r5} because the mean rating in their cluster is 1.9,
resulting in a distance to the cluster mean of zero, a(i) =
0. The average distance to the neighbouring cluster (the
disapproved cluster) is b(i) = 0.4. Since b(i) > a(i), the
numerator and denominator of Eq. (4) are equal, yielding
s(i) = 1.

Regarding the disapproved cluster, consider ry. Its
average distance to the other elements in its cluster,
(r3,7r4,76), is |1.3 — 1.566] = 0.266 = a(1).

The distance to the approved-cluster mean is b(1) = 0.6.
Thus, s(ry) = 2659266 — (.556.

Even if k = 2 is the optimal number of clusters for a
survey participant, this alone provides little information
about the quality of the clustering. It merely indicates
that a two-cluster solution offers a better grouping than
three or more clusters. To assess clustering quality, we
once again rely on the silhouette score.

Following the categorization proposed by Kaufman and
Rousseeuw (2005, Tab. 4), we classify a clustering as
“strong” if the silhouette score satisfies s(r;) > 0.70, as
“moderate” if 5(r;) € [0.5,0.7], and as “weak” if the aver-
age silhouette score is below 0.5. For instance, the average
silhouette score for Voter 4 in the above example is 0.723,
which would be categorized as a strong clustering.

We pick the Graz dataset to describe our results in
depth and present all results in Table 6. We find that
k = 2 applies to 78.4% of respondents. An optimal clus-
ter count of three is observed for 20.6%, while only 1% of
respondents exhibit an optimal cluster count of four.

As an intermediate result, we conclude that more than
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two clusters provide a better grouping for roughly one-fifth
of survey participants, suggesting that their preferences
align more closely with trichotomous rather than dichoto-
mous preferences. Among respondents with k& = 2, we find
strong clustering for less than half, while approximately
half of all respondents exhibit only moderate clustering
quality.

Table 6 summarizes the results. The second to fourth
columns ("Optimal Cluster (k)’) denote the share of re-
spondents with 2, 3, or more optimal clusters. The fourth
to sixth columns (’ k=2 ) show the share of observations
within the individuals with an optimal k£ = 2 and subsume
them into three categories according to the respective cat-
egories. The column ’QDP’ finally denotes the share of
respondents holding preferences that align with Def. 4.

The data from the Grenoble experiment indicate a lower
share of respondents with optimal clustering in two groups
compared to the Graz dataset. However, within this
group, for three-quarters this grouping is highly robust.
We find the lowest share of respondents with & = 2 in
the France22 dataset. The number of 46.4% reported in
Table 6 appears underestimated because, as mentioned in
Section 3, respondents who did not report a rating were
recorded with the median value of 50. When we con-
vert all observations with a rating of 50 to missing values
(France22x 1), we came to somehow higher values.

According to our above-described procedure, we denote
the preferences of a respondent as quasi-dichotomous if
they optimally group their ratings in two groups and if
this grouping is strong. In this sense, we assign quasi-
dichotomous preferences to (.618 x .7564 =)46.6% of the
respondents in the Grenoble experiment and to 34% in
Graz. By weakening this requirement by including those
with moderate clustering, we get around 60% in Grenoble
and around 74% in Graz. In any case, a significant share of
the voters we cannot attribute (quasi-)dichotomous pref-
erences.

6.1 Robustness check: fuzzy clustering

To further validate our results, we assess the quality of the
clustering using an alternative approach, known as fuzzy
clustering ((FANNY), Kaufman and Rousseeuw, 2005,
Ch. 4).

Thus far, each observation is assigned to exactly one
cluster (hard clustering, see Footnote 7). This approach
inherently excludes the possibility that voters may eval-
uate individual candidates or parties somewhere between
approval and disapproval. For example, a voter might
strongly agree with certain parts of a party’s platform
while disagreeing with others, leading to an ambiguous
stance between approval and disapproval. To account for
this, we incorporate fuzzy clustering as a robustness check.
In this approach, each rating is distributed across multiple
clusters, and the degree of membership to a cluster is mea-
sured using a membership index® (Dunn, 1973). The more

8Formally, fuzzy clustering involves minimizing the following ob-
jective function:
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i,5=1 Yik “ujd(i, 5)

2 E;:1 u?k

Here, u;; indicates that object ¢ belongs to cluster k&, and each wu;j
is strictly positive, with the constraint that for all ¢ € {1,...,n},
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Table 5: Optimal clustering and silhouette calculations for Voter 4

Ap Opt. Cluster

Cluster mean

r;  Silhouette

1.3 0.556 0
1.9 1.000 0
1.5 0.667 0
1.6 0.556 1
1.9 1.000 1
1.6 0.556 1

0 1.5
1 1.9
0 1.5
0 1.5
1 1.9
0 1.5

Table 6: Cluster Analysis: Distribution of optimal clusters across respondents and robustness.

Optimal Cluster (k) k=2 QDP
Survey 2 3 4+ Strong Moderate Weak
Grenoble 61.8 21.5 16.7 75.4 23.4 1.1 46.6
Graz 78.4  20.6 0.9 43.7 50.9 5.4 34.2
France22 46.4 26.9 26.7 68.8 31.1 0.4 31.9
France22yx4 | 54.8 22.2 23.0 61.0 38.5 0.5 33.4

Robustness check: fuzzy clustering (FANNY)

Grenoble 57.6  28.1 143 74.5 23.7 1.8 42.9
Graz — — — 42.8 50.6 6.7
France22 38.0 26.4 35.5 70.2 28.8 0.9 26.6
France22y4 | 52.05 21.51 26.44 | 56.58 41.92 1.5 36.54

Note: The first three columns report the share of respondents with an optimal number of clusters kE =2,3, or 4+. Columns
under k = 2 classify those cases by strength (strong, moderate, weak). The final column (‘QDP’) shows the share of
respondents whose preferences satisfy the definition of quasi-dichotomous preferences. The lower panel presents robustness

checks using fuzzy clustering (FANNY). All values in per cent.

similar an observation is to others within a given cluster,
the higher its membership value for that cluster. If signifi-
cant overlap is detected, this suggests that the assumption
of strictly separable clusters may be overly rigid.

Example 3 (Ambiguous rating and membership value).
Consider the following tuple of rating values:
(1.1,1.1,1.1,1.5,1.9,1.9,1.9). A woter holding these
ratings would be forced in an Approval Voting environ-
ment to assign the candidate they rated 1.5 to either
the approval or the disapproval group. However, it is
reasonable to assume that this candidate essentially
lies somewhere between these two groups.  This in-
betweenness is measured with the membership values in
fuzzy clustering.

In a second step, we calculate the silhouette wal-
ues—analogous to the previous analysis—for those survey
participants with an optimal cluster number of k& = 2,
but this time based on fuzzy clustering instead of k-means
clustering. The interpretation of these values follows the
same logic as in the previous analysis.

One limitation of fuzzy clustering is that determining
the optimal number of clusters is only valid for k& < n/2.
In the Graz dataset, which includes only six parties, this
restricts the interpretability of the results. To address
this issue, we analyse silhouette values only for those vot-
ers for whom the k-means-based cluster analysis identified
exactly two optimal clusters.

The analysis of the data using fuzzy clustering suggests
a high degree of robustness regarding the previously ob-
tained results. All values essentially correspond to those

Zk u;; = 1 holds (Kaufman and Rousseeuw, 2005, p. 170f).
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obtained in the main analysis. The bottom rows in Table
6 present the respective values. Because of the limitation
mentioned in the preceding paragraph regarding the fuzzy
analysis in Graz, we left the respective cells empty.

With very few exceptions (each around 5%), we observe
high membership values in all three surveys. There is little
evidence to support the previously stated concern regard-
ing intermediate evaluations by the voters.

6.2 Quasi-dichotomous preferences in CSES
data

The less-demanding data requirement of the cluster-
analytical assessment allows us to draw on sources beyond
the three datasets primarily employed. The analysis on a
broader dataset thereby provides indication on whether
the findings obtained in the previous subsection are gen-
eralisable.

We draw on data from the Comparative Study of Elec-
toral Systems (CSES, 2024). The CSES is a collabora-
tive research programme that provides harmonised survey
data from post-election studies conducted in a wide range
of countries. The CSES integrates nationally representa-
tive surveys with contextual information on electoral rules,
political institutions, and party systems, thereby enabling
systematic cross-national comparisons of individual polit-
ical behaviour. Its design ensures both temporal and spa-
tial comparability, making it one of the most widely used
sources for the study of electoral attitudes, preferences,
and participation in comparative politics.

We draw on rating data from 212,729 survey respon-
dents, covering 172 elections across 54 countries. Each
respondent evaluated at least six different parties, and the



elections comprise an average of 1,237 respondents (min-
imum = 150, maximum = 3,611). We apply the same
procedure to this large dataset as to the three original
datasets. For each election, we obtain the number of re-
spondents for whom the optimal number of clusters is two,
three, or four, respectively.

On average across all elections, the optimal number of
clusters is & = 2 for 57.4% of respondents. For one quar-
ter of respondents the optimal number is three, while for
17.8% it is four.

Figure 4 illustrates these results. Each point represents
the share of respondents for whom a given number of clus-
ters is optimal, and the boxplots summarise the corre-
sponding distributions.

Overall, the results derived from the CSES data closely
resemble those presented in Table 6. The CSES data tend
to reveal a lower incidence of individuals for whom the
optimal number of clusters is two. Taken together, these
analyses indicate that the preference ratings in the three
primary datasets do not appear to be systematically bi-
ased.

7 Concordance between reported and
cluster-derived approval ballots

Our cluster-analytical procedures provide a way of map-
ping ranking ballots onto approval ballots, provided that
clustering is reasonable in two subgroups. A natural ques-
tion is how closely the approval sets generated through
cluster analysis correspond to the approval sets reported
in the three datasets. Focusing on respondents who dis-
play QDP, we can ask: how often does an alternative ap-
pear both in the reported approval set (from the datasets)
and in the cluster-analytically generated approval set?
We measure this correspondence by means of a matching
value.

Let m;(j) be a binary variable. It is equal to 1 if an
alternative j € £ is contained both in respondent i’s re-
ported approval set and in the cluster-analytically gener-
ated approval set, and 0 otherwise. The matching value
regarding an alternative j is M(j) = >_, m:())/N, where N
denotes the number of respondents. The matching value
over all respondents and all candidates is then the pro-
portion of candidate—voter pairs for which reported and
cluster-based approval coincide.

Over all candidates, respondents, and data sets we find
a remarkably high coincidence between reported approval
ballots and those resulting from the cluster analysis of
78%. This value is similar across the data sets (80.8%
in Grenoble, 71.8 in Graz, and 78.1% in France22). Given
that around 20% do not comply with threshold-dichotomy
(as shown in Sec. 4), we interpret the high matching values
as indication for a very good approximation of preferences
to approval ballots.

Next we focus on the matching values for each candi-
date or party. We expect the matching values to become
higher for polarizing candidates/parties. Polarizing polit-
ical figures are often either rated very highly or strongly
rejected, leading to their ratings being disproportionately
located at the extremes of the scale (Barbaro, 2025). Ac-
cordingly, voters tend to hold either a very positive or
a very negative opinion of polarizing candidates/parties,
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such that they can be more readily assigned to the cate-
gories of approved or disapproved. A high matching value
therefore reflects polarisation rather than political quality
or the capacities of supporters.

Table 7 reports the matching values for each candidate.
As in the previous analyses, the number in brackets denote
bootstrap confidence intervals.

The matching values differ remarkably across the can-
didates and political parties.”’

As expected, significantly higher matching values are
observed for polarizing candidates and parties on the right
edge of the political spectrum. Both Marine Le Pen in the
2017 presidential election (Grenoble) and the right-wing
FPO in Austria exhibit the highest values. In the 2022
election, Le Pen ran for president again, and the previ-
ously observed high matching value was confirmed. The
only candidate with a higher value was Eric Zemmour,
the candidate of the far-right Reconquéte party. The third
candidate with a matching value above 0.9 was Nicolas
Dupont-Aignan, who also belonged to the group of radical-
right candidates. We also see that — contrary to our ex-
pectation — we cannot assign higher matching values for
candidates from the left edge of the political spectrum.
Examples in this regard are the Communist Party in Aus-
tria (KPO), and candidates from the left like Jean-Luc
Mélenchon, Nathalie Artaud, Philippe Poutou, and Fa-
bien Roussel.

We would, however, like to qualify this relationship be-
tween the matching values and a far-right orientation with
a caveat. As discussed in Sec. 3, the respondents are not
representative in terms of either age or political convic-
tions. Instead, the sample over-represents a younger, left-
leaning population. This may affect the results, and with
the data at hand we are not in a position to control for
this potential bias.

Nota bene: These results do not challenge the well-
documented finding that extreme and polarizing candi-
dates tend to perform worse under Approval Voting than
under plurality rule (Brams and Fishburn, 1978; Laslier
and Van der Straeten, 2008; Aldés-Ferrer and Granié,
2012). Rather, our observations indicate that voters dis-
tinctly classify extreme candidates into approved or disap-
proved categories, whereas lower matching values reflect a
more centrist perception.

Next, we show that respondents with quasi-dichotomous
preferences exhibit a significantly higher coincidence be-
tween reported and cluster-analytically assigned approved
candidates or parties. To measure this coincidence, we
use the Pearson correlation (¢) coefficient for two binary
variables.?

We run OLS regressions with the ¢-values as dependent
variables. The independent variables is a binary variable
indicating whether the respective respondent has QDP or
not. As control variables, we consider socio-demographic
characteristics (age, gender, and educational level achieve-

9Replacing the rating values of 50 by missings in the France22
dataset (France22n 4) does not change the values much (for ex-
ample: Nicolas Dupont-Aignan get 0.942 instead of 0.922, Le Pen
0.953 instead of 0.939, Macron 0.859 instead of 0.842).

10For a respondent, let R C % denote the set of approved alterna-
tives and C' C 4 the set of cluster-assigned alternatives. With

PR = |mﬂ, pc = g, and pn = micl, the Pearson correlation

coefficient is ¢(R, C) = \/pRupfp;};Zlfpc)’
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Figure 4: Distribution of average optimal clusters across 172 elections
Note: Each point denotes one of the 172 elections from the CSES dataset, covering rating data from around 210,000
respondents. Each election contributes three points: one in the distribution for k= 2, one for k= 3, and one for k=4. The
boxplots summarise these distributions across elections, showing the median, interquartile range, and overall spread.

ment). Table 8 displays the regression results.

For both surveys conducted during the French presiden-
tial elections, we find significant effects for the dependent
variable. The negative signs indicate that individuals with
a ’beyond-two’ optimal number of clusters less often ex-
hibit that their approved candidates/parties coincide with
the cluster-analytical approval set. The coefficient in the
Graz dataset is also negative but on a lower significant
level.

To further assess the robustness of our results, we con-
ducted four robustness checks (RC). In the first RC, we in-
corporated individual characteristics that exhibit a strong
affinity for alternatives on the extreme right or left. We
categorize a respondent to have such an affinity if they
rated highest a candidate from the political edges.!! In
the second RC, we computed robust standard errors in-
stead of conventional standard errors. This adjustment
was motivated by strong evidence of heteroscedasticity in
the regressions using the French data.

For the third RC, we generated a pooled dataset that
integrates all three surveys. We applied the main model
to this dataset and accounted for survey differences by
including fixed effects and calculating robust standard er-
rors. In the fourth RC, we followed the same approach
but additionally included the dummy variables from the
first RC (affinity to the political extremes).

HSpecifically, we classify respondents as radical right supporters if
they rated the FPO party exceptionally highly in the Graz exper-
iment or reported a plurality vote in favour of one of the afore-
mentioned radical-right candidates in the French experiments.
Similarly, we identify respondents as radical-left supporters if
they rated the Austrian Communist Party (KPO) very highly or
cast a plurality vote for Jean-Luc Mélenchon, Philippe Poutou,
or Fabien Roussel.
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For the main specification and all four robustness
checks, we present the coefficients and corresponding con-
fidence intervals for the variable QDP in Figure 5. As can
be observed, our key finding from the main specification
remains robust: respondents with quasi-dichotomous pref-
erences exhibit a significantly higher coincidence between
reported and analytically generated approval subsets.

8 Dichotomous preferences and
socio-demographic factors

In this final section of the empirical analysis, we exam-
ine which factors may account for the emergence of di-
chotomous preference structures. For example, are quasi-
dichotomous preferences more frequently observed among
female respondents than among males, or do they become
more or less prevalent with increasing age? To inves-
tigate the relationship between dichotomous preferences
and socio-demographic characteristics, we draw on the
CSES dataset introduced in Section 3 and employed in
Subsection 6.2 for the analysis of quasi-dichotomous pref-
erences. From the results presented there, we know whose
preferences are best represented by two clusters and whose
by more than two.

The dataset also records socio-economic characteristics
of respondents, including age, gender, educational attain-
ment (five categories: illiterate, lower secondary, upper
secondary, post-secondary non-university, and university
education), household income (quintiles), ideological self-
placement (Likert scale from 0 = ”left” to 10 = "right”),
and satisfaction with democracy (five categories from 1 =
“not at all satisfied” to 5 = “very satisfied”).



Table 7: Matching values for different candidates and parties

Grenoble Graz France22
Candidate Value / CI  Party Value / CI ~ Candidate Value / CI
Dup.-Aignan 0.819 SPO 0.606 Dup.-Aignan 0.922
[0.791; 0.846] [0.572;0.642] [0.908; 0.935]

Le Pen 0.971 OvP 0.700 Le Pen 0.939
[0.957;0.983] [0.668;0.730] [0.926;0.951]

Macron 0.838 FPO 0.965 Macron 0.842
[0.809; 0.865] [0.952;0.977] [0.822;0.861]

Hamon 0.832 Green 0.798 Hildago 0.628
[0.805; 0.858] [0.771;0.827] [0.601; 0.656]

Arthaud 0.669 KPO 0.670 Arthaud 0.610
[0.634;0.701] [0.638;0.703] [0.586;0.635]

Poutou 0.704 NEOS 0.578 Poutou 0.746
[0.672;0.736] [0.544;0.615] [0.724;0.769]

Cheminade 0.764 Zemmour 0.967
[0.734;0.793] [0.957;0.976]

Lassalle 0.713 Lassalle 0.675
[0.681;0.746] [0.651;0.699]

Mélenchon 0.843 M¢élenchon 0.873
[0.816; 0.870] [0.854; 0.890]

Asselineau 0.809 Pecresse 0.860
[0.779;0.837] [0.841;0.878]

Fillon 0.932 Jadot 0.727
[0.914;0.949] [0.703;0.751]

Roussel 0.585
[0.556;0.610]

Mean .808 718 781

Note: Matching values indicate the degree of coincidence between reported approval ballots and cluster-analytically generated
approval sets. Higher values denote stronger similarity. Numbers in brackets are bootstrap confidence intervals (95% level,

percentile method, 1,000 replications).

Educational attainment can be regarded as a central
variable, as it is linearly correlated with several others.
Income and democracy satisfaction both increase with
higher levels of education. Respondents with higher edu-
cational attainment also tend to position themselves some-
what further to the left on the ideological scale, although
this effect is minimal. Moreover, educational attainment
is associated with two effects in the rating data. First,
the number of parties actually evaluated increases with
education (viz., we observe fewer missing ratings among
more highly educated respondents). Higher levels of edu-
cation thus appear to facilitate, or at least render easier,
the evaluation of the available parties.

A second noteworthy relation is that the propensity to
assign extreme ratings (minimum or maximum values) de-
creases with higher levels of education, while respondents
with higher educational level instead display a greater ten-
dency to use the entire scale for their ratings. The coeffi-
cient of variation stands at 0.80 and 0.75 among the lower
educational groups, compared to 0.71 and 0.69 among
those with higher educational attainment.

We do not expect dichotomous structures to arise in
cases where respondents rate parties as either very poor,
very good, or—out of indifference—at the median value
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(hence exhibiting three focal points). In such instances, it
is difficult to meaningfully divide the observations into ex-
actly two groups. By contrast, the more differentiated the
ratings, the less we observe focal points around a median
rating value, the more we expect dichotomous structures
in preferences. We therefore expect that the likelihood
of observing quasi-dichotomous preferences increases with
rising levels of education. On the other hand, we expect a
rating behaviour with three focal points to be observable
more frequently across individuals with higher dissatisfac-
tion with democracy.

We estimate a series of logistic regression models in
which QDP serves as the dependent variable. Specifically,
D; . denotes the dichotomous-preference value for respon-
dent ¢ in election e (recall that we evaluate data from 172
elections), which takes the value D;. = 1 if a respon-
dent exhibits dichotomous preferences and zero otherwise.
The main explanatory variable of interest is the respon-
dent’s educational level, denoted by Educ.lvl. To assess
the robustness of this relationship, we extend the base-
line specification by including the aforementioned covari-
ates (age, gender, income, ideology, and satisfaction with
democracy). Moreover, to account for unobserved hetero-
geneity across elections, we incorporate election-specific



Table 8: OLS regression results.

Dep. Var.: ¢ Grenoble Graz France22

QDP —0.15 (0.02)***  —0.03 (0.02) —0.06 (0.01)***
Covariates:

Age —0.00 (0.00) —0.02 (0.01)***  —0.00 (0.00)
Gender (Male) 0.02 (0.02) 0.02 (0.02) 0.02 (0.01)

Education Level 0.02 (0.03) 0.01 (0.01) 0.04 (0.02)

Intercept 0.67 (0.08)*** 0.60 (0.04)*** 0.55 (0.07)***
R? 0.09 0.03 0.03
Adj. R? 0.09 0.02 0.03
Num. obs. 692 756 1266

***p < 0.001; **p < 0.01; *p < 0.05

Note: OLS regressions with Pearson’s correlation coefficient (¢) as the dependent variable. ¢ serves as a proxy measure
for coincidence between reported and analytically generated approval ballots. The main independent variable is a dummy
for k > 2 (optimal number of clusters greater than two), with age, gender, and education included as controls. Negative
coefficients indicate that respondents with more than two optimal clusters show lower coincidence between approval ballots

and cluster-analytical approval sets.

fixed effects.

Pr('DLe =1 | Xi,e; ae) —
exp (,@0+B1 Educ-l‘/li,e-l-X;,e'y-i—ae)
1+exp (/5'0-&-[31 Educ‘l"liﬂe"‘X{,e’Y‘i‘Oée)

In the model, formally represented by Eq. (5),
Educ.1vl; . denotes the educational level of respondent
i in election e. X v denotes the inner product of the co-
variate vector X, . and its associated coefficient vector ~.
The covariate vector consists of additional control vari-
ables (or is empty). The term «, captures the election-
specific fixed effects. All coefficients will be presented as
odds ratios (e.g., €?). An odds ratio below one indicates
that an increase in the respective variable reduces the
odds of exhibiting dichotomous preferences, while an odds
ratio above one implies an increase in these odds. The
confidence intervals are calculated with heteroscedasticity-
robust standard errors.

Table 9 reports the regression results. In specifica-
tion (1), the covariate vector is empty, while specifica-
tions (2) to (6) successively introduce additional controls.
An odds ratio of 1.013 for educational attainment, as
reported for model specification (1), implies that mov-
ing from a lower to a higher category of education (illit-
erate, lower secondary, upper secondary, post-secondary
non-university, university) increases the odds of exhibit-
ing quasi-dichotomous preferences by about 1.3 per cent,
holding other factors constant.

A striking finding is the highly robust effect of educa-
tional level. The odds-ratio estimator exceeds unity in
all model specifications and statistically significant at the
95 per cent level. We thus find consistent evidence of
a slightly, but robustly positive association between ed-
ucational attainment and dichotomous preference struc-
tures, in line with our prior expectations. A second ef-
fect arises from the variable measuring satisfaction with
democracy. When included, it shows a statistically sig-
nificant, albeit weak, association: lower satisfaction with
democracy is linked to a higher likelihood of dichotomous

16

preferences. This result can be explained by rating be-
haviour observed among respondents with high levels of
dissatisfaction. Such individuals tend disproportionately
to evaluate candidates either very positively, very nega-
tively, or not at all. To illustrate with descriptive figures:
respondents who report being dissatisfied with democracy
assign, on average, twice as many best or worst ratings
(i.e., lowest and highest possible rating values) compared
with those who declare themselves satisfied. By contrast,
none of the remaining covariates—age, gender, income,
and ideology—show statistically significant effects. This
strengthens the conclusion that educational level is the
principal explanatory factor.
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all datasets and estimates a fixed-effects (within) model with dataset fixed effects. RC4 adds the ideological dummies to RC3.
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Table 9: Logistic regression results with QDP as dependent variable. Data: CSES

(1) (2) (3) (4) (5) (6)
Educ.lvl 1.013* 1.013* 1.012% 1.014* 1.012* 1.018*
[1.003, 1.022]  [1.004, 1.023] [1.002, 1.022] [1.004, 1.023] [1.002, 1.023]  [1.004, 1.032]
Satisfaction.Dem 0.988* 0.990* 0.981*
[0.979, 0.998] [0.980, 0.999] [0.968, 0.994]
Ideology 1.002 1.002 1.003
[0.998, 1.006] [0.998, 1.007] [0.997, 1.009]
Age 1.000 1.000
[1.000, 1.001] 0.999, 1.001]
Gender(Male) 1.014 1.017
[0.993, 1.035] [0.989, 1.047]
Income Qunitile 0.994
[0.983, 1.005]
Num.Obs. 155544 150571 139967 153050 136261 83076
AIC 208222.0 201649.3 187336.3 204903.3 182455.7 110835.0
BIC 209964.1 203365.9 189040.2 206632.6 184135.4 112028.9

Note: Odds ratios are reported. Educational level shows a consistent and statistically significant positive association with dichotomous
preferences across all model specifications (1) to (6). Satisfaction with democracy has a weak but significant effect, indicating that lower
satisfaction is linked to a higher likelihood of dichotomous preferences. Age, gender, income, and ideology display no significant effects.
Heteroscedasticity-robust standard errors are used to calculate the confidence intervals (exponentiated values, in square brackets). A '*’
denotes that the respective confidence interval does not overlap unity.



The strong positive effect of educational attainment
remains robust if we replace the variable capturing the
self-assessed position on a ideological left-right [0,10]-
scale (Ideology) with a variable that captures the self-
perceived distance to the ideological centre. Specifically,
we replaced 'Ideology with ¢ = |Ideology — 5|. Thus, ¢
is high if someone self-declares to belong to the radical
left or right. We re-run all six regressions and find that
the odds ratio for the educational level attainment remain
significantly positive across all model specification. The
same applies when considering ¢? to stronger emphasize
a distance to the ideological centre. However, ¢ and (2
both are statistically significant across the model speci-
fication with odds ratios consistently around 1.05. We
regard these regressions more as a robustness check than
as an alternative, because ( is highly correlated to the
dissatisfaction-with-democracy measure.

We obtain similar results when applying a closely
related model specification to the three experimental
datasets. In these cases, fewer covariates and, naturally,
fewer observations are available. Age and gender are in-
cluded as covariates, as these variables are jointly available
and comparable across all three datasets. Educational
attainment is also recorded in each dataset, though not
perfectly comparable by construction (for instance, the
Austrian education system differs from the French one).
Nonetheless, it is possible to distinguish between lower
and higher levels of education in all datasets and to code
them accordingly.

We estimated five logistic regression models differing in
the dependent variable to investigate the relationship be-
tween weakly and quasi-dichotomous preferences on one
hand, and key socio-demographic factors on the other
side. The first three models measure weak dichotomy us-
ing Theil’s T, Gini, and the Atkinson index. The fourth
model includes all respondents for whom the optimal num-
ber of clusters is two (denoted by k = 2|all). The fifth
model employs quasi-dichotomy as the dependent variable.
Given that the data originate from three different surveys,
we included survey fixed effects. The results are presented
in Table 10. Again, the reported values represent odds
ratios, while the values in square brackets indicate the
corresponding ranges of 95% confidence intervals.

The analysis reveals that educational attainment has a
positive explanatory effect in the weak dichotomous pref-
erence models (WDP.Theil, WDP.Gini, WDP.Atkinson).
This suggests that higher levels of education are asso-
ciated with a greater likelihood of exhibiting weak di-
chotomous preferences. However, the effect size dimin-
ishes in the cluster-analytical models and loses statistical
significance in the specification using the QDP (column
'k = 2|strong?).

9 Conclusion

This paper has revisited the widely used assumption of
dichotomous individual preferences. Empirically, strictly
dichotomous preferences are virtually absent—a finding
that is hardly surprising.

For many applications, strictly dichotomous preferences
are not required. It is sufficient to view them as an ap-
proximation of actual preferences, though the nature of
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this approximation has often remained vague. We contend
that the threshold approach—the standard approximation—
is better seen as an indicator of decision consistency than
as a model of dichotomous structures. This paper ad-
vances two alternative definitions of dichotomous prefer-
ences, each relaxing strict dichotomy in a different and
independent way. Both are empirically testable, and we
demonstrate how data can be connected to these concepts.

Many theoretical contributions rely on simplified rep-
resentations of complex preferences. A central finding of
our analysis is that dividing preferences into two groups
provides a closer approximation than representations with
three or more groups. Depending on the method, weak-
ened forms of dichotomous preferences plausibly describe
between 50 and 70 per cent of respondents’ ratings.

There is mounting evidence that a significant share of in-
dividuals exhibit preferences that do not comply with the
fundamental transitivity requirement (Anand, 1993), par-
ticularly when they are confronted with complex, multi-
attribute alternatives (Fishburn, 1982), as is the case in
political elections. Given that even transitivity often fails
to hold, this result may be seen in the proper light. More-
over, it lies in the very nature of normative assumptions
and models that they capture only part of observable re-
ality—after all, one would not reject a model simply be-
cause, within a regression analysis, its R? falls short of
unity.

If, however, key results in normative work pivot on the
assumption of strict dichotomous preferences, the evidence
presented here poses a genuine challenge. In microeco-
nomic theory it has been shown that central economic
results remain robust when the assumption of transitiv-
ity is slightly relaxed (Gale and Mas-Colell, 1975). It may
therefore be fruitful to examine the extent to which models
with dichotomous structures retain their robustness once
weakened forms of dichotomous preferences are taken into
account.

In recent years, experimental studies have become in-
creasingly prominent and have attracted considerable at-
tention. Most of this work examines behaviour under ap-
proval voting and the resulting electoral outcomes. Such
studies typically generate complex data that permit in-
ferences about underlying preference orders, thus offer-
ing richer information than the approval ballots usu-
ally collected alongside them. This paper encourages fu-
ture experimental research to focus more closely on these
underlying preference structures. Outcomes may differ
substantially between respondents with weakly or quasi-
dichotomous preferences and those without such patterns.
Analysing these differences would deepen our understand-
ing of how sensitive experimental findings are to the nature
of the underlying preferences.

We observe in 10 to 20 per cent of respondents that
their approval ballots do not comply with the threshold ap-
proach, which is commonly regarded as a fundamental re-
quirement of choice consistency (Terzopoulou et al., 2025).
Since Tversky (1969), it has been known that respondents
often wish to revise their answers once confronted with
intransitivities in their own judgements. Our findings, to-
gether with this early research on intransitivity, suggest
that future experiments should give respondents the op-
portunity to revise their assignments into approval and
disapproval ballots in case it conflicts with their ratings.



Table 10: Dichotomy and socio-demographic factors (Ezperiment-data)

(1)

(2)

(3)

(4)

(5)

WDP.Theil WDP.Gini WDP.Atkinson  k=2[all & = 2|strong
Educ.lvl 1.18* 1.15* 1.18* 1.07* 0.98

[1.01;1.31]  [1.05;1.26] [1.07; 1.30] [1.025;1.18]  [0.89;1.07]
Age 0.85* 0.87 0.86 0.99 1.04

[0.73;0.98]  [0.71;1.06]  [0.74;1.009) [0.91;1.08]  [0.98;1.10]
Gender 1.23* 1.15 1.20 1.19* 0.96
(Male) [1.09;1.39]  [0.98;1.34] [1.01;1.43] [1.04;1.36]  [0.91;1.03]
Num. obs. 3120 2995 3120 3195 3195
AIC 3861.03 3972.73 3978.19 4304.78 3973.65
BIC 3897.30 4008.76 4014.46 4341.20 4010.07

* Null hypothesis value outside the confidence interval.

Note: Logistic regression models with different operationalisations o

f dichotomous preferences as dependent variables. Models

(1)—(3) use weak dichotomy measured by Theil’s T, Gini, and the Atkinson index. Model (4) includes all respondents with

an optimal number of clusters k= 2, while Model (5) employs the

quasi-dichotomy (QDP). Explanatory variables are age,

gender (male), and educational attainment. Coefficients are reported as odds ratios with 95% confidence intervals in square

brackets.

It would be highly interesting to see whether such an revi-
sion option leads to results that differ from those presented
here.

In this paper, we have employed several empirical ap-
proaches, both to ensure robustness and to illustrate the
breadth of available methods. The choice of method
should always depend on the research question at hand
and, above all, on the characteristics of the data. To fa-
cilitate further work, we provide replication files and in-
vite future research to build on them—whether to extend,
refine, or challenge our findings. In this way, we hope
to advance a more precise understanding of dichotomous
preferences and their role in the analysis of social choice.
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