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Abstract

Current option pricing models often assume stochastic volatility price dynamics to
price derivatives. In this paper we prove that under the bivariate diffusion paradigm
options are not traded in equilibrium. We explain that the underlying reason is that
local normality prevents agent’s from setting a premium (price) for the option that
induces them to take different sides of the market. It is conventional wisdom that
options in stochastic volatility models will always be traded such that this problem is
not crucial. Our paper questions the validity of the assumption that price dynamics of
the underlying security is given by a bivariate diffusion stochastic volatility process in
the presence of options.
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1 Introduction

A popular extension of the Black-Scholes-Merton setup for option pricing assumes a price

dynamics of the underlying security that exhibit stochastic volatility. There is an abundance

of empirical literature that claims ARCHmodels and its extensions are successfully describing

financial time series. Appropriately capturing the price dynamics is important for hedging

of options, see, e.g. Bakshi, Cao, and Chen (1997) for a discussion, and for risk-management

purposes. In this paper we calculate the equilibrium allocation in the option market and

point out that the assumption of stochastic volatility is inconsistent with the observed trade

in options.

We first introduce a discrete-time process in which prices are conditionally normal dis-

tributed and calculate agents’ equilibrium allocation and find that in equilibrium options

are not traded even when agents have heterogeneous risk-preferences. The intuitive rea-

son for our no-trade results is that under local normality a two fund separation rule holds:

agents’ holdings differ only in the proportions of the risk-less asset and the market portfolio

they hold. Yet, options are not contained in the market portfolio, since they are in zero

net-supply and therefore they will not be traded; options are not traded because incentives

between buyer and seller are too aligned1 We then shrink the time increments to zero; using

the martingale central limit theorem, see Ethier and Kurtz (1986), as in Duan (1997) we

prove that under suitable assumptions the limit process has the structure of the bivariate

diffusion processes that re used in the literature. Furthermore we prove that options are not

traded in this limit process.

Our results contradict the conventional “wisdom” that an option that is introduced into

an incomplete market would increase agents’ spanning possibilities and that therefore options

would always be traded. In an analysis of the welfare implications in a two period model,

Detemple and Selden (1991) pointed out that this may lead to no trade. However they

proved that generically trade is observed in their setup. Our contribution is to make this

explicit, link it it the continuous-time model used in practice and point out that under this

1Our results could be applied also to GARCH models since our results only depend on local normality.
We do not develop this here as it would obscure the issues at hand.
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assumption the option is not traded generically.

The remainder of the paper is organized as follows: in the following section we look at

the discrete-time setup; in section 4 we take the limit to study the continuous-time bivariate

diffusion model. The paper concludes with section 5.

2 Discrete-time

We fix a probability space (Ω,F , P ) and look at a market populated by I agents, indexed by

i = 1, . . . , I. Agent i initially has wealth Yi0 to invest in the economy and can trade a bond,

a stock and an option on the stock; he holds di,j,t units of security j = 0, 1, 2 from date t to

date t+1. Here we denote the time t price of the (riskless) bond by S0t, that of the stock by

S1t, and that of the option by S2. We also denote Rft the risk-free rate between t and t+1,

St the vector that describes prices of the two risky securities, and dt the demand vector of

the risky securities.

At date t the agent inherits di,j,t−1 from his holdings between dates t− 1 to t; his wealth

is then Yit = di,0,t−1 ·S0t + di,1,t−1 ·S1,t + di,2,t−1 ·S2,t. He trades to hold di,j,t units of security

j = 0, 1, 2 between t and t + 1 and equilibrates the balance through investing/borrowing in

the money market account: di,0,tSi0 = Yit − di,1,t · S1t − di,2,t · S2t. This implies that next

period’s wealth is:

Yi,t+1 = Yit + di,1,t(S1,t+1 −RftS1t) + di,1,t(S1,t+1 −RftS1t) (1)

We call trading strategies that fulfill equation (1) budget-feasible. Each agent derives

utility Ui(YiT ) from terminal wealth and maximizes his expected utility

E[Ui(YiT )]. (2)

The functions Ui are strictly increasing, convex and at least twice differentiable on the

positive real line. The option is a financial security and therefore in zero net-supply.

Agents behave competitively; a general equilibrium analysis would set prices such that

the bond, stock and option markets clear. Our goal in this analysis is, however, to study

whether a particular dynamics for the stock and bond markets is consistent with trade.

For that reason we take the dynamics of the stock and the bond as exogenous and we will
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endogenize the dynamics of the option price and holdings2. A (partial) equilibrium is given

by a price process S2t for the option and each agent’s budget-feasible individual demands dit

in the three assets such that the option market clears, i.e.

I∑
i=1

di2t = 0. (3)

We conjecture that over discrete spots of time t = 1, . . . , T the dynamics of the risky

securities is

St+1 − St = νt(St, Vt)∆t+ σt(St, Vt) · Zt with Vt+1 − Vt = .... (4)

where for each t, νt : R
2 → R2, σt : R

2 → R2×2 and Zt is a suitable two-dimensional

normal distributed random variable with mean 0, unit variance in each component and 0

covariance. Here we conjectured that the option price is locally normal distributed. In the

next section we look at the limit when time increments shrink to zero. There we find based

on an application of Itô’s formula that only locally normal option price dynamics are feasible.

(In that setup the premium is set via ν such that the market clears.) We will also prove

that the limit of discrete-time trading strategies gives us the continuous-time ones. With

that purpose in mind our assumption is therefore without loss of generality as it should be

interpreted as a wat to calculate continuous-time option demand.

To match the limit3 we will also assume the dynamics of the option and that all risky

securities are locally normal distributed.

We assume that |σ12| �= σ2
1σ

2
2 or equivalently det(σ) �= 0, i.e. σ is invertible. This

excludes those cases where the financial asset is redundant. The above parametrization can

be summarized as that the price processes Sj1 of asset j = 1, 2 are (conditionally on St)

locally normal, i.e.4 St+1|St ∼ N (ν, σ). At date t we denote

Jit(Yt, S1t, S2t, Vt) = E[Ji(YiT )] (5)

2Our model could obviously be extended to a general equilibrium model: interest rates by allowing
for consumption and stock prices by imposing a fixed positive supply for the stock. Endogenizing the stock
premium and the stock demand would not affect our results since our results are valid for any stock premium.
We refrain from this here for simplicity of exposition.

3Here we will conjecture this and analyze the demand/premia under the assumption. The validity of our
assumptions will become fully clear only in the following section.

4As it is common in the financial innovation literature we do not look at the problem that the support of
the normal distribution is unbounded and that therefore prices could be negative.
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the expected utility over udget feasible trading strategies. We call this the indirect utility

function. According to the Bellman principle of dynamic optimization this problem breaks

down into single-period optimizations using next period’s indirect utility function: in what

follows we restrict ourselves to optimizations over each period t to t+ 1 and maximize

Jit = maxE[Ji,t+1(Yt+1, S1,t+1, S2,t+1, Vt+1)]. (6)

We denote J ′
it = ∂Jit

∂Y
, J ′′

it = ∂2Jit

∂Y 2 the first two derivatives of agent’s indirect utility

function, πjt = E[Sj,t+1]−RfSjt the mean excess gain and

τi = − E[J ′
i,t+1]

E
[
J ′′

i,t+1

] .
We refer to τi(di1, di2) as the risk-tolerance of agent i. This name is a misnomer vis-a-vis

the literature; however the term will play the same role the “usual” risk-tolerance plays in

the literature. Note that this parameter is always positive. In order to ease notation we

will note explicitly write down the dependence of the risk-tolerance on the agent’s portfolio

weights di1, di2 in the remainder of this paper.

Agent’s first-order conditions are then for j = 1, 2:

0 =
∂Jit

∂dij

=
∂Jit

∂Y

∂Yit

∂dij

= E
[
J ′

i,t+1 · (Sj,t+1 −RfSjt)
]
. (7)

It is well-known that agents behave like mean-variance optimizers in an environment

with normally distributed random variables with the implicit tradeoff given through the

risk-tolerance: an application of Stein’s lemma to the first-order condition (7) for asset

j = 1, 2 yields, since Yi,t+1 is conditionally normal distributed, that

0 = E
[
J ′

i,t+1 · (Sj,t+1 −RfSjt)
]

= E
[
J ′

i,t+1

]
πj + E

[
J ′′

i,t+1

]
(di1σ1j + di2σ2j).

We can then rewrite the first-order condition (7) as

0 = σ · dt − τi · πt, or equivalently dt = τi · σ−1πt. (8)

Aggregation of individual demand equations (8) gives

u =

(
I∑

i=1

τi

)
· σ−1π, or equivalently π =

1∑I
i=1 τi

σ · u, and dt =
τi∑I
i=1 τi

· u, (9)
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where u denotes the R2 vector with u1 = 1, u2 = 0. This equation implies that di2 = 0,

i.e. no trade occurs in the financial asset; this result is independent of the market clearing

prices on the bond and stock markets.

πσ
σ2

0
12 2π1
1

Figure 1: Individual demand in the option for different agents

The reasons for this no-trade result are based on the fact that under local normality

agents are “too similar” wven with heterogeneous utility functions to take different sides

of the market for any premium. Calculating out demand equation (8) we get di2t = τi ·
π2σ2

1−π1σ12

σ2
1σ2

2−σ2
12

. Figure 1 depicts agents’ individual demand in the financial asset5 depending on

the premium π2. Since demand is the multiplicative product of the risk-tolerance τi with

the term
π2σ2

1−π1σ12

σ2
1σ2

2−σ2
12

and the risk-tolerance τi > 0 and σ2
1σ

2
2 − σ2

12 > 0 are always positive the

statistical parameter π2σ
2
1 −π1σ12 determines for all agents which side of the market to take:

whenever π2 < π1
σ12

σ2
1
, all agents will want to sell the option; individual demand is zero for

all agents zero if π2 = π1
σ12

σ2
1
; all agents want to buy the option if π2 > π1

σ12

σ2
1
. The price

(premium) for the financial asset can not be set to induce agents to take different sides of

the market.

Figure 2 depicts the aggregate demand. Since agents are always on the same side of the

market it shows that the only market clearing price is where aggregate option demand is

5The risk-tolerance τi(di1, di2) depends on the demand in the two risky assets; therefore this is not a
constant and in figure 1 the individual demand is not a linear function of the premium. Since τi(di1, di2) > 0
whatever the demand di1, di2; the individual demand curve is upward sloping in the premium (downward
sloping in the price).
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Figure 2: Aggregate demand in the option

zero; this means then however also that all agents’ demand is zero.

3 Continuous-Time

The most general version of bivariate diffusion stochastic volatility starts with a description

of the stock S1t via

dVt = κ(ν − Vt)dt+ ϕ(Vt)dW1t, dS1t = µ1(Vt)S1tdt+ ψ(Vt)S1tdW2t. (10)

The parameter κ is supposed to be constant, W1, W2 are two Wiener–processes with

constant correlation ρ, and r denotes the (constant) interest rate.

This bivariate diffusion is an extension of the familiar Black-Scholes (BS) setup: The

stock process is similar to that model with ψ(Vt) as the current volatility. If the function

ψ(V ) = V , then V models volatility; for ψ(V ) =
√
V , V models the variance. The volatility

process is mean–reverting6 to ν at a rate κ; its dispersion coefficient (“volatility of volatility”)

is ϕ(Vt). By specifying ϕ and ψ, the models in the literature can be treated in a unified way

(see table 1) . We will not impose specific functional forms for the functions ϕ and ψ in

(10), (10). We require them only to be twice continuously differentiable and fulfill growth

conditions to ensure the existence of a solution to the system (10, 10). (We refer the reader

to the literature on stochastic differential equations for a detailed treatment of this topic.)

6Many of the original setups did not have this feature, i.e. they set ν = 0, κ ≤ 0.
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Model ϕ(V ) ψ(V )

Hull and White (1987) σ · V √
V

Heston (1993) σ · √V
√
V

Stein and Stein (1991) σ V
Chesney and Scott (1989) σ exp{V }

Table 1: Parameter specifications for different models (σ a constant)

Option pricing theory then conjectures that the option price function C is twice contin-

uously differentiable in the state variables t, Vt, St, see, e.g. Duffie (1992); then Itô’s formula

is applied and gives the dynamics of the option as

dS2t = µ2(Vt, St)dt+
∂C

∂V
· ϕdW1t +

∂C

∂S
StdW2t,

where µ2(Vt, St) =
∂C
∂t

+ ∂C
∂V

· θ + ∂C
∂S

µSt +
1
2
(ψ · St)

2 ∂2C
∂S2 + ρ · ψ · ϕSt

∂2C
∂S∂V

+ 1
2
ϕ2 ∂2C

∂V 2 . We

can then write the entire system as

dSt = ν(St, Vt)dt+ σ(St, Vt)dWt, dVt = θ(Vt)dt+ ϕdW1,t,

where ν =

(
µSSt

µC(Vt, St)

)
, σ =

(
0 ψ
∂C
∂V

· ϕ ∂C
∂S

St

)
.

For each we define a sequence of equidistant trading dates k∆tn with ∆tn = T
n
and then

a sequence n of discrete-time processes (V n, Sn) by taking Zn
k = Wk∆t −W(k+1)∆t and using

equation (4). (Between those dates we use the linear interpolation.)

The Martingale Central Limit Theorem (see Ethier and Kurtz (1986)) tells us that only

the local mean and variance properties matter for convergence in distribution to a diffusion

process (see Nelson and Ramaswamy (1990) and He (1990) for approximations). This implies

that the processes (V n, Sn) converge (in distribution) to (Vt, St) when n → ∞. This justifies

our choice in equation (4).

Furthermore we derive from Kushner and Dupuis (1992) that the optimal control for that

equation converges to that for the optimal control here. Therefore we conclude that options

are not traded in stochastic volatility models.

4 Conclusion

Leland (1980), and Brennan and Solanki (1981) suggest that options introduced into a
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market will always be traded under symmetric information when agents have heterogeneous

risk-preferences. Current pricing theories therefore focus on the implications the absence of

arbitrage has for pricing and ignore links between offer and price. In this paper we argued

that in stochastic volatility models prices of the underlying security and the option are

jointly locally normal distributed and calculated out the equilibrium demand and prices.

We derived that options are not traded under the only market clearing price. Our single

period setup is a typical one within a backward dynamic optimization procedure; therefore

the no-trade result carries over to a multi-period setup. Current prices derived in the option

pricing literature are therefore inconsistent with trade.
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