Advaned Macroeconomics

Chapter 11: Financial markets

Günter W. Beck

University of Mainz

February 1, 2011

Overview

1 Financial markets: Introduction

2 The bond market

The bond market: Introduction

The bond market: The term structure of interest rates

Objective of financial markets:

- ⇒ Perform the essential function of channeling funds from economic players that have saved surplus funds to those that have a shortage of funds.
- ⇒ Promotes economic efficiency by producing an efficient allocation of capital, which increases production (they allow funds to flow to people with the best investment opportunities).
- \implies Directly improves the well-being of consumers by allowing them to time purchases better.

Source: Mishkin (2009)

- Structure of financial markets (categorization based on essential features of individual markets):
 - Debt and equity markets
 - Primary and secondary markets
 - Money and capital markets
- Debt and equity markets:
 - Direct funding is possible in two ways: By issuing a debt instrument or equities.

5 / 17

- Debt: Debt can be short-term (maturity is less than a year) or long-term (maturity is more than ten years).
- Most common debt instruments:
 - Bonds
 - Mortgages.
- Equity: In the broadest sense, equity means ownership.

- Structure of financial markets (continued):
 - Primary and secondary markets:
 - A primary market is a financial market in which new issues of a security are sold to initial buyers.
 - A secondary market is a financial market in which previously issued stocks are traded.
 - Money and capital markets:
 - Money markets deal in short-term debt instruments.
 - Capital markets deal in longer-term debt and equity instruments.

Günter W. Beck () Advaned Macroeconomics February 1, 2011 6 / 17

Major money market instruments

	Amount Outstanding (\$ billions, end of year)				
Type of Instrument	1980	1990	2000	2008	
U.S. Treasury bills	216	527	647	1060	
Negotiable bank certificates of					
deposit (large denominations)	317	543	1053	2385	
Commercial paper	122	557	1619	1732	
Federal funds and Security					
repurchase agreements	64	387.9	768.2	2118.1	
Sources: Federal Reserve Flow of Funds Accounts; Federal Reserve Bulletin; Economic Report of the					

Sources: Federal Reserve Flow of Funds Accounts; Federal Reserve Bulletin; Economic Report of the President.

Source: Mishkin (2009)

• Major capital market instruments

	Amount Outstanding (\$ billions, end of year)					
Type of Instrument	1980	1990	2000	2008		
Corporate stocks (market value)	1,601	4,146	17,627	19,648		
Residential mortgages	1,106	2,886	5,463	12,033		
Corporate bonds	366	1,008	2,230	3,703		
U.S. government securities	407	1,653	2,184	3,621		
(marketable long-term) U.S. government agency securities	193	435	1,616	8,073		
State and local government bonds	310	870	1,192	2,225		
Bank commercial loans	459	818	1,091	1,605		
Consumer loans	355	813	536	871		
Commercial and farm mortgages	352	829	1,214	2,526		
Sources: Federal Reserve Flow of Funds Accounts; Federal Reserve Bulletin. 2008, 3rd Quarter.						

Source: Mishkin (2009)

The bond market: Introduction

- Credit market instruments:
 - Simple loans: Lender provides the borrower with an amount of funds, which must be repaid to the lender at the maturity date together with an interest rate payment.
 - Fixed payment loan: Lender provides the borrower with an amount of funds, which has to be repaid by making the same payment (interest and part of the principal) every period.
 - Coupon bond: Pays the owner a fixed interest payment (coupon payment) every year until the maturity date, when a specified final amount (face value) has to be repaid.
 - Discount bond (Zero-coupon bond): Bought at a price below its face value, at the maturity the face value is repaid.
- Yield to maturity: Interest rate that equates the present value of cash flow payments received from a debt instrument with its value today.

Günter W. Beck () Advaned Macroeconomics February 1, 2011 9 / 17

- Consider a coupon bond with the following characteristics:
 - n: Number of years until maturity.
 - $P_{n,t}$: Price of the coupon bond
 - c: Yearly coupon payment.
 - F = 1: Face value of the bond.

Günter W. Beck () Advaned Macroeconomics February 1, 2011 10 / 17

11 / 17

The bond market: The term structure of interest rates

• The price of this coupon bond is given by:

$$P_{n,t} = \frac{c}{1 + R_{n,t}^{c}} + \frac{c}{(1 + R_{n,t}^{c})^{2}} + \dots + \frac{1 + c}{(1 + R_{n,t}^{c})^{n}} =$$

$$= c \sum_{i=1}^{n} \frac{1}{(1 + R_{n,t}^{c})^{i}} + \frac{1}{(1 + R_{n,t}^{c})^{n}} =$$

$$= \frac{1}{1 + R_{n,t}^{c}} c \sum_{i=0}^{n-1} \frac{1}{(1 + R_{n,t}^{c})^{i}} + \frac{1}{(1 + R_{n,t}^{c})^{n}} =$$

$$= \frac{c}{1 + R_{n,t}^{c}} c \sum_{i=0}^{n-1} \frac{1}{(1 + R_{n,t}^{c})^{i}} + \frac{1}{(1 + R_{n,t}^{c})^{n}} =$$

$$= \frac{c}{1 + R_{n,t}^{c}} c \sum_{i=0}^{n-1} \frac{1}{(1 + R_{n,t}^{c})^{n}} + \frac{1}{(1 + R_{n,t}^{c})^{n}} =$$

$$= \frac{c}{1 + R_{n,t}^{c}} c \sum_{i=0}^{n-1} \frac{1}{(1 + R_{n,t}^{c})^{n}} + \frac{1}{(1 + R_{n,t}^{c})^{n}} =$$

$$= \frac{c}{1 + R_{n,t}^{c}} c \sum_{i=0}^{n-1} \frac{1}{(1 + R_{n,t}^{c})^{n}} + \frac{1}{(1 + R_{n,t}^{c})^{n}} =$$

$$= \frac{c}{1 + R_{n,t}^{c}} c \sum_{i=0}^{n-1} \frac{1}{(1 + R_{n,t}^{c})^{n}} + \frac{1}{(1 + R_{n,t}^{c})^{n}} =$$

$$= \frac{c}{1 + R_{n,t}^{c}} c \sum_{i=0}^{n-1} \frac{1}{(1 + R_{n,t}^{c})^{n}} + \frac{1}{(1 + R_{n,t}^{c})^{n}} =$$

$$= \frac{c}{1 + R_{n,t}^{c}} c \sum_{i=0}^{n-1} \frac{1}{(1 + R_{n,t}^{c})^{n}} + \frac{1}{(1 + R_{n,t}^{c})^{n}} =$$

Günter W. Beck () Advaned Macroeconomics February 1, 2011

• For a zero-coupon bond (c = 0) we obtain:

$$P_{n,t} = \frac{c}{R_{n,t}^c} \left(1 - \frac{1}{(1 + R_{n,t}^c)^n} \right) + \frac{1}{(1 + R_{n,t}^c)^n} =$$

$$= \frac{1}{(1 + R_{n,t}^c)^n} = \frac{1}{(1 + R_{n,t}^0)^n}.$$
(2)

- An n-period coupon bond can be considered as a collection of n-1 zero-coupon bonds (due in periods 1, 2, ..., n-1) with face value c and one zero-coupon bond with face value 1 + c (due in period n).
- Then, we can write:

$$P_{n,t} = \frac{c}{1 + R_{1,t}^0} + \frac{c}{\left(1 + R_{2,t}^0\right)^2} + \dots + \frac{1 + c}{\left(1 + R_{n,t}^0\right)^n}.$$
 (3)

12 / 17

Günter W. Beck () Advaned Macroeconomics February 1, 2011

- To compute the yields to maturities of the involved zero-coupon bonds (denoted by $R_{i,t}^0$, with $i=1,2,\ldots,n$) we proceed as follows:
 - If the holding period is only one period we have:

$$P_{1,t} = \frac{1+c}{1+R_{1,t}^0}. (4)$$

- \Longrightarrow Equation determines $R_{1,t}^0$.
- If the holding period is two periods we have:

$$P_{2,t} = \frac{c}{1 + R_{1,t}^0} + \frac{1 + c}{\left(1 + R_{2,t}^0\right)^2}.$$
 (5)

- \Longrightarrow Equation determines $R_{2,t}^0$.
- Repeating this steps allows to solve for the remaining zero-coupon interest rates.

Günter W. Beck ()

 If one buys a n-period bond today (t) and sells it in the next period (t+1) the rate of return is given by:

$$1 + h_{n,t+1} = \frac{P_{n-1,t+1}}{P_{n,t}} = \frac{\frac{1}{(1 + R_{n-1,t+1}^0)^{n-1}}}{\frac{1}{(1 + R_{n,t}^0)^n}}$$
(6)

• Taking logs of this equation, observing that $\ln{(1+a)} \approx a$ (for small values of a) and using $p_{n,t} = \ln P_{n,t}$ one can write:

$$h_{n,t+1} \approx p_{n-1,t+1} - p_{n,t} = nR_{n,t} - (n-1)R_{n-1,t+1}.$$
 (7)

• Given that no-arbitrage opportunities exist the expected return $h_{n,t+1}$ must be equal to the interest rate on a risk-free bond (s_t) plus a risk premium, $\pi_{n,t}$, i.e., we must have:

Advaned Macroeconomics

• Combining the two expression for $h_{n,t+1}$ we can write:

$$h_{n,t+1} = nR_{n,t} - (n-1) E_t R_{n-1,t+1} = s_t + \rho_{n,t} \iff (9)$$
$$(n-1) (E_t R_{n-1,t+1} - R_{n,t}) = (R_{n,t} - s_t) + \rho_{n,t},$$

where $(R_{n,t} - s_t)$ denotes the term spread.

• Solving this equation for $R_{n,t}$ yields:

$$R_{n,t} = \frac{n-1}{n} E_t R_{n-1,t+1} + \frac{1}{n} \left(s_t + \rho_{n,t} \right)$$
 (10)

• For $R_{n-1,t+1}$ we obtain:

$$R_{n-1,t+1} = \frac{n-1}{n} E_{t+1} R_{n-2,t+2} + \frac{1}{n} \left(s_{t+1} + \rho_{n-1,t+1} \right) \tag{11}$$

Günter W. Beck () Advaned Macroeconomics February 1, 2011 15 / 17

• Plugging the so obtained expression for $R_{n-1,t+1}$ into the equation for $R_{n,t}$ and repeating these two steps for $R_{n-2,t+2}$, ... we obtain:

$$R_{n,t} = \frac{1}{n} \sum_{i=0}^{n-1} E_t \left(s_{t+i} + \rho_{n-i,t+i} \right). \tag{12}$$

⇒ Interpretation?

The nominal interest rate on the risk-free bond is given by:

$$s_t = r_t + E_t \pi_{t+1} \tag{13}$$

(Fisher equation).

• Plugging this expression into the just derived equation for $R_{n,t}$ yields:

$$R_{n,t} = \frac{1}{n} \sum_{i=0}^{n-1} E_t \left(r_{t+i} + E_t \pi_{t+i} + \rho_{n-i,t+i} \right). \tag{14}$$

Günter W. Beck ()

- Yield curve: A plot of the yield on bonds with differing terms to maturity but the same risk, liquidity and tax considerations is called a yield curve.
- A yield curve can be
 - upward-sloping, i.e. long-term rates are above short-term rates.
 - flat, i.e. short- and long-term rates are the same
 - downward-sloping (inverted), i.e. long-term rates are below short-term rates or
 - shaped more complicated (very rare).

Günter W. Beck ()