Advanced Macroeconomics

Chapter 2: The centralized economy

Günter W. Beck

University of Mainz

November 2, 2010

Overview

- 1 Selected stylized facts of business cycles
- 2 Model setup

Preferences

Production technology

Budget constraint

- 3 The maximization problem
- 4 Model solution

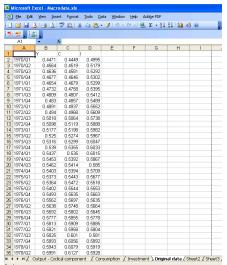
The two-period case

The infinite-horizon case

- **5** Model solution: Long-run equilibrium/Steady state
- 6 Model solution: Model dynamics (graphical solution)
- Model simulation and discussion

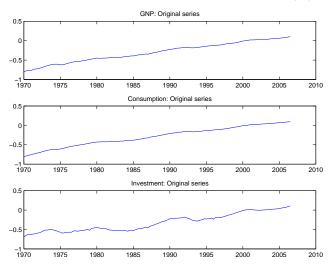
- Stylized facts = empirical regularities.
 - ⇒ Major objective of macroeconomics: Build models which can explain major stylized facts
- In chapter 2: Analyze behavior of consumption and investment.
 - ⇒ Necessary first step: Derive stylized facts concerning the behavior of consumption and investment.
- Procedure:
 - Obtain data (In our case: Euro area data)
 - Filter data (Decompose data into long-run and short-run component).
 - Compute statistics concerning the behavior of macroeconomic time series (Volatility and correlation of time series).

Data for output, consumption and investment: Original data

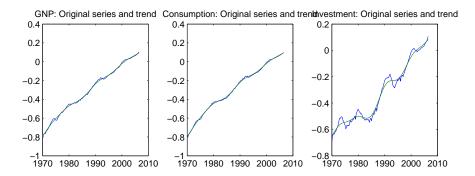


4 / 48

Data for output, consumption and investment: Plot of (In) levels

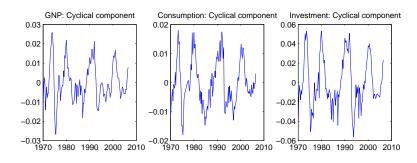


 Data for output, consumption and investment: Plot of level and trend component



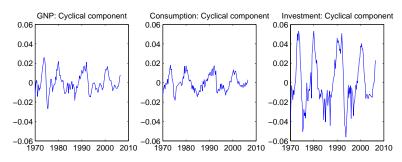
⇒ Observation: Variables exhibit long-run growth

Data for output, consumption and investment: Plot of cyclical component



⇒ Observation: ?

 Data for output, consumption and investment: Plot of cyclical component (identical scale)



- → Observations:
- ⇒ Consumption is less volatile than output, investment is much more volatile than output.
 - ⇒ Consumption and investment are strongly procyclical.

- To decompose the original time series: Filtering of the original data is necessary.
- Basic intuition:
 - Denote by $\{y_t\}_{t=1}^T$ the log of a time series (such as GDP, consumption, investment, ...) that you want to detrend.
 - y_t is considered to be composed of a long-run (y_t^{lr}) and a short-run (y_t^{sr}) component as follows:

$$y_t = y_t^{lr} + y_t^{sr}. (1)$$

 \implies To perform empirical growth or business cycle analysis: "Filtering" of the data is necessary to obtain either y_t^{lr} or y_t^{sr} .

- To filter data: Several possibilities exist.
- Most popular filter: Hodrick-Prescott filter.

- Hodrick-Prescott (HP) filter: Intuition
 - According to the Hodrick-Prescott filter, the long-run (growth or trend) component is obtained as the solution to the following minimization problem:

$$\min_{\left\{y_{t}^{lr}\right\}_{t=1}^{T}} \sum_{t=1}^{T} \left(y_{t} - y_{t}^{lr}\right)^{2} + \lambda \sum_{t=2}^{T-1} \left[\left(y_{t+1}^{lr} - y_{t}^{lr}\right) - \left(y_{t}^{lr} - y_{t-1}^{lr}\right) \right]^{2}$$
(2)

where the parameter λ must be chosen by the researcher.

- The higher the value of λ , the smoother the trend component becomes (Can you see why?).
- For quarterly data, $\lambda = 1600$ is chosen.

Model setup: Motivation

- Build up a simple macroeconomic model which allows us to analyze the behavior of aggregate output, consumption and investment.
- Model is microfounded:
 - ⇒ Model household and firm behavior explicitly.
- Behavior of macro variables is obtained by aggregating across households and firms.
 - \implies Simplifying assumptions: All households are equal, all firms are owned by households.
 - \Longrightarrow It is sufficient to solve the decisions problems of the "representative" household/firm.

Model setup: Preferences

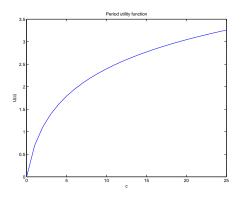
- Economy is inhabited by identical consumers.
 - \implies Individual variables are identical to aggregate variables.
- Consumers have preferences over an infinite stream of consumption $c_t, c_{t+1}, ... = \{c_{t+s}\}_{s=0}^{\infty}$.
- The consumer's lifetime utility function is assumed to be time-separable and given by:

$$V_t = \sum_{s=0}^{\infty} \beta^s U(c_{t+s}) \tag{3}$$

- β is the individual's subjective time discount factor. We assume that $0<\beta<1$ holds.
- \bullet $U\left(.\right)$ denotes the period utility function. We assume that it is strictly increasing and concave.

Model setup: Preferences

• Period utility function: Graphical illustration:



- \implies Positive marginal utility: U'(.) > 0.
- \implies Diminishing positive marginal utility: U''(.) < 0.

Production technology

• Output (GDP) is produced using the following production technology:

$$y_t = F\left(a_t, k_t, n_t\right),\tag{4}$$

with

- y_t: Output
- kt: Capital input
- n_t: Labor input
- at: Level of technology, knowledge, efficiency of work

Production technology

- Assumptions concerning the production function (continued):
 - Constant returns to scale:

$$F(a, ck, cn) = cF(a, k, n) \quad \text{for all } c \ge 0.$$
 (5)

Positive, but declining marginal products of capital and labor

$$\frac{\partial F(\bullet)}{\partial k} > 0 \text{ and } \frac{\partial^2 F(\bullet)}{\partial k \partial k} < 0 \text{ and } \frac{\partial F(\bullet)}{\partial n} > 0 \text{ and } \frac{\partial^2 F(\bullet)}{\partial n \partial n} < 0$$
 (6)

Both production factors are necessary

$$F(a, 0, n) = 0 \text{ and } F(a, k, 0) = 0$$
 (7)

Inada conditions are satisfied:
$$\lim_{k\to 0}\frac{\partial F(\bullet)}{\partial k}\to \infty, \ \lim_{k\to \infty}\frac{\partial F(\bullet)}{\partial k}=0 \ \text{and} \ \lim_{n\to 0}\frac{\partial F(\bullet)}{\partial n}\to \infty, \ \lim_{n\to \infty}\frac{\partial F(\bullet)}{\partial n}=0$$
 (8)

Günter W. Beck () Advanced Macroeconomics November 2, 2010 15 / 48

Production technology

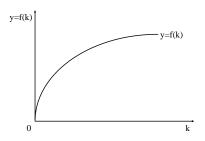
• For the moment, we assume that n_t is constant:

$$n_t = 1. (9)$$

• Then:

$$y_t = F(A_t, k_t, 1) = F(A_t, k_t).$$
 (10)

• Graphical illustration of the production function (A = 1):



Budget constraint

Period t's budget constraint is given by:

$$y_t = c_t + i_t \tag{11}$$

⇒ Budget constraint of a closed economy without government.

 Moreover, the household faces the following condition concerning the evolution of the capital stock:

$$k_{t+1} = k_t + i_t - \delta k_t \iff i_t = k_{t+1} - (1 - \delta) k_t$$
 (12)

 Combining the two above equations, the household's budget constraint can be rewritten as (suppressing the A_t in the production function):

$$c_t + k_{t+1} = F(k_t) + (1 - \delta)k_t.$$
 (13)

The maximization problem

- The household maximizes lifetime utility given the resource constraint:
 Dynamic (constrained) intertemporal optimization problem.
- The intertemporal optimization problem is given by:

$$\max_{c_{t}, c_{t+1}, \dots; k_{t}, k_{t+1}, \dots} V_{t} = \sum_{s=0}^{\infty} \beta^{s} U(c_{t+s})$$
 (14)

s.t.

$$c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1 - \delta)k_{t+s}, \ \forall s > 0.$$
 (15)

- Solution approaches:
 - Transform constrained into unconstrained maximization problem.
 - Lagrange approach.
 - Dynamic programming.

- To illustrate the basic intuition of the model we first solve it for the simple two-period case.
- In this case, the household's maximization problem is given by:

$$\max_{c_{t}, c_{t+1}, k_{t+1}, k_{t+2}} V_{t} = \sum_{s=0}^{1} \beta^{s} U(c_{t+s}) = U(c_{t}) + \beta U(c_{t+1})$$
 (16)

s.t.

$$c_t + k_{t+1} = F(k_t) + (1 - \delta)k_t$$
 (17)

$$c_{t+1} + k_{t+2} = F(k_{t+1}) + (1 - \delta)k_{t+1}$$
(18)

- To solve the model we employ two different approaches:
 - Approach 1: Transform constrained into unconstrained maximization problem and solve the unconstrained problem.
 - Approach 2: Lagrange approach.

- Solution approach 1: Transform constrained into unconstrained maximization problem and solve the unconstrained problem:
 - Solving the two budget constraint for consumption yields:

$$c_t = F(k_t) + (1 - \delta)k_t - k_{t+1} \tag{19}$$

$$c_{t+1} = F(k_{t+1}) + (1 - \delta)k_{t+1} - k_{t+2}. \tag{20}$$

• Since the household no longer lives in period t+2 it will disinvest its complete capital stock in period t+1 and consume it. That is, we have:

$$k_{t+2} = 0. (21)$$

• Period's t + 1 budget constraint then becomes:

$$c_{t+1} = F(k_{t+1}) + (1 - \delta)k_{t+1}. \tag{22}$$

- Solution approach 1 (continued):
 - Plugging the transformed budget constraints into the objective function yields:

$$\max_{k_{t+1}} V_t = U(c_t) + \beta U(c_{t+1}) =$$

$$= U(F(k_t) + (1 - \delta)k_t - k_{t+1}) + \beta U(F(k_{t+1}) + (1 - \delta)k_{t+1})$$

• The first-order condition is given by (Notation: $U'(.) = \frac{\partial U}{\partial c}$):

$$U'(c_{t})(-1) + \beta U'(c_{t+1}) \left[F'(k_{t+1}) + 1 - \delta \right] \stackrel{!}{=} 0 \iff (23)$$

$$U'(c_{t}) = \beta \left[F'(k_{t+1}) + 1 - \delta \right] U'(c_{t+1})$$

⇒ Intertemporal Euler equation

- Solution approach 1 (continued):
 - Intuition for intertemporal Euler equation:
 - Assume that consumption is reduced by a small amount (denoted by Δc) in Period 0.
 - \Longrightarrow Utility in period 0 is reduced by: $U'(c_t) \Delta c$.
 - The amount Δc is invested in capital. In period t+1 this investment leads to additional output of $F'(k_{t+1}) \Delta c$.
 - Moreover, the household can transform the amount of consumption invested in period t back into consumption goods in period t+1. Since a proportion δ of Δc is lost through appreciation this leads to an increase in consumption by $(1-\delta)\Delta c$ in period t+1.
 - Overall, the household can increase consumption by $f'\left(k_{t+1}\right)+1-\delta$ in period t+1 which in turn leads to an increase in period's t+1 utility by $\left[F'\left(k_{t+1}\right]+1-\delta\right]U'\left(c_{t+1}\right)$.

- Solution approach 1 (continued):
 - Intuition for intertemporal Euler equation (continued):
 - From today's perspective the utility gain tomorrow is "worth": $\beta \left[F' \left[k_{t+1} \right] + 1 \delta \right] U' \left(c_{t+1} \right)$.
 - In the optimum, the utility loss from saving more today must be equal
 to the discounted utility gain tomorrow (why?). Thus, we must have:

$$U'(c_t) = \beta \left[F'(k_{t+1}) + 1 - \delta \right] U'(c_{t+1})$$
 (24)

- Interpretation of the term $F'(k_{t+1}) + 1 \delta$:
 - Assume you invest one unit of consumption in period 0. Then, your consumption in period 1 increases by:

$$F'\left(k_{t+1}\right) + 1 - \delta \tag{25}$$

 \implies $F'(k_{t+1}) + 1 - \delta$ represents the gross real interest rate.

- Solution approach 1 (continued):
 - Implications of the Euler equation (1):
 - Assume that the subjective discount factor (β) is equal to the market discount factor $(\frac{1}{F'(k_{++})+1-\delta})$.
 - Then, the Euler equation becomes:

$$U'(c_{t}) = \beta \left[F'(k_{t+1}) + 1 - \delta \right] U'(c_{t+1}) \iff U'(c_{t}) = U'(c_{t+1})$$
(26)

⇒ Consumption in the two periods would be equal:

$$c_t = c_{t+1} \tag{27}$$

⇒ Perfect consumption smoothing

- Solution approach 1 (continued):
 - Why do households want to smooth consumption?
 - Illustrative example:
 - Household has log-utility function $(U(c_t) = \ln c_t)$.
 - Household lives for two periods.
 - There is no discounting: $\beta = 1$.
 - Household can choose between two consumption patterns:
 - \implies Pattern 1: $c_t = 9$, $c_{t+1} = 1$.
 - \implies Pattern 2 (smooth pattern): $c_t = 5$, $c_{t+1} = 5$.
 - ⇒ Which consumption pattern do households prefer?
 - Lifetime utility from pattern 1:

$$V_t^1 = \ln(9) + \ln(1) \approx 2.2$$
 (28)

• Lifetime utility from pattern 2:

$$V_t^2 = \ln(5) + \ln(5) \approx 3.2 > 2.2 = V_t^1$$
 (29)

⇒ Households prefer (lifetime-maximizing) smooth pattern 2.

- Solution approach 1 (continued):
 - Implications of the Euler equation (2):
 - How does β (= subjective discount factor) influence the consumption pattern over time?

 \Longrightarrow For illustrative purposes, we assume that $U\left(c_{t}\right)=\ln c_{t}$ $\left(U'\left(c_{t}\right)=\frac{1}{c_{t}}\right)$.

• From the Euler equation:

$$U'\left(c_{t}\right)=\beta\left[F'\left(k_{t+1}\right)+1-\delta\right]U'\left(c_{t+1}\right)$$

we get:

$$\frac{1}{c_{t}} = \beta \left[F'\left(k_{t+1}\right) + 1 - \delta \right] \frac{1}{c_{t+1}} \Longleftrightarrow c_{t+1} = \beta \left[F'\left(k_{t+1}\right) + 1 - \delta \right] c_{t}$$

 \implies A higher value of β (everything else held constant) implies that c_{t+1} is relatively higher compared to c_t .

- Solution approach 1: (continued):
 - Implications of the Euler equation (2):
 - How does $F'(k_{t+1})$ (= marginal product of next period's capital stock) influence the consumption pattern over time? \implies For illustration purposes, we again assume that $U(c_t) = \ln c_t$ ($U'(c_t) = \frac{1}{c_t}$).
 - From above we know that the dynamics of c is then given by:

$$c_{t+1} = \beta \left[F'(k_{t+1}) + 1 - \delta \right] c_t$$
 (30)

 \implies A higher value of $F'(k_{t+1})$ implies (everything else held constant) that c_{t+1} is relatively higher compared to c_t (= intertemporal substitution effect).

- Solution approach 2: Lagrange approach:
 - The household's maximization problem is given by:

$$\max_{c_{t}, c_{t+1}, k_{t+1}, k_{t+2}} V_{t} = \sum_{s=0}^{1} \beta^{s} U(c_{t+s}) = U(c_{t}) + \beta U(c_{t+1})$$
(31)

s.t.

$$c_t + k_{t+1} = F(k_t) + (1 - \delta)k_t$$
 (32)

$$c_{t+1} = F(k_{t+1}) + (1 - \delta)k_{t+1}$$
(33)

where we have used that

$$k_{t+2} = 0. (34)$$

- Solution approach 2 (continued):
 - The associated Lagrange function is given by:

$$\mathcal{L}_{t} = U(c_{t}) + \beta U(c_{t+1}) + (35)
+ \lambda_{t} \left[F(k_{t}) + (1 - \delta)k_{t} - c_{t} - k_{t+1} \right] +
+ \lambda_{t+1} \left[F(k_{t+1}) + (1 - \delta)k_{t+1} - c_{t+1} \right]
= \sum_{s=0}^{1} \left\{ \beta^{s} U(c_{t+s}) + \lambda_{t+s} \left[F(k_{t+s}) + (1 - \delta)k_{t+s} - c_{t+s} - k_{t+s+1} \right] \right\}$$

with $k_{t+2} = 0$.

- Solution approach 2 (continued):
 - The first-order conditions of the maximization problem are given by:
 - With respect to c_t:

$$\frac{\partial \mathcal{L}}{\partial c_{t}} \stackrel{!}{=} 0 \iff U'(c_{t}) - \lambda_{t} = 0 \iff \beta^{t-t}U'(c_{t}) = \lambda_{t}$$
 (36)

With respect to c_{t+1}:

$$\frac{\partial \mathcal{L}}{\partial c_{t+1}} \stackrel{!}{=} 0 \iff \beta U'\left(c_{t+1}\right) - \lambda_{t+1} = 0 \iff \beta^{t+1-t}U'\left(c_{t+1}\right) = \lambda_{t+1} \tag{37}$$

• With respect to k_{t+1} :

$$\frac{\partial \mathcal{L}}{\partial k_{t+1}} \stackrel{!}{=} 0 \iff -\lambda_t + \lambda_{t+1} \left[F(k_{t+1}) + (1 - \delta) \right] = 0 \quad (38)$$

$$\iff \lambda_t = \lambda_{t+1} \left[F(k_{t+1}) + (1 - \delta) \right]$$

- Solution approach 2 (continued):
 - First-order conditions of the maximization problem (continued):
 - With respect to λ_t :

$$\frac{\partial \mathcal{L}}{\partial \lambda_t} \stackrel{!}{=} 0 \iff F(k_t) + (1 - \delta)k_t - c_t - k_{t+1} = 0 \qquad (39)$$

$$\iff c_t + k_{t+1} = F(k_t) + (1 - \delta)k_t$$

• With respect to λ_{t+1} :

$$\frac{\partial \mathcal{L}}{\partial \lambda_{t+1}} \stackrel{!}{=} 0 \iff F(k_{t+1}) + (1 - \delta)k_{t+1} - c_{t+1} = 0 \qquad (40)$$

$$\iff c_{t+1} = F(k_{t+1}) + (1 - \delta)k_{t+1}.$$

• Using equations (36) and (37) to replace λ_t and λ_{t+1} in equation (39) we obtain **the intertemporal Euler equation**:

$$U'(c_t) = \beta \left[F'(k_{t+1}) + 1 - \delta \right] U'(c_{t+1}).$$
 (41)

 In the infinite-horizon case, the household's maximization problem is given by:

$$\max_{c_{t}, c_{t+1}, \dots; k_{t}, k_{t+1}, \dots} V_{t} = \sum_{s=0}^{\infty} \beta^{s} U(c_{t+s})$$
 (42)

32 / 48

s.t.

$$c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1 - \delta)k_{t+s}, \ \forall s > 0.$$
 (43)

- To solve the model we employ the Lagrange approach.
- The Lagrange function is given by:

$$\mathcal{L}_{t} = \sum_{s=0}^{\infty} \left\{ \beta^{s} U(c_{t+s}) + \lambda_{t+s} \left[F(k_{t+s}) + (1-\delta) k_{t+s} - c_{t+s} - k_{t+s+1} \right] \right\}$$

 \implies Maximize with respect to $\{c_{t+s}, k_{t+s+1}, \lambda_{t+s}; s \geq 0\}$.

Günter W. Beck () Advanced Macroeconomics November 2, 2010

• The first-order condition with respect to c_{t+s} is given by:

$$\frac{\partial L}{\partial c_{t+s}} = 0 \Leftrightarrow \beta^s U'(c_{t+s}) = \lambda_{t+s} \tag{44}$$

• The first-order condition with respect to k_{t+s+1} is given by:

$$\frac{\partial L}{\partial k_{t+s+1}} = 0 \Leftrightarrow \lambda_{t+s} = \lambda_{t+s+1} \left[F'(k_{t+s+1}) + 1 - \delta \right] \tag{45}$$

• The first-order condition with respect to λ_{t+s} is given by:

$$\frac{\partial L}{\partial \lambda_{t+s}} = 0 \Leftrightarrow c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1-\delta)k_{t+s} \tag{46}$$

• Additionally, the following transversality condition must be satisfied:

$$\lim_{s \to \infty} \lambda_{t+s} k_{t+s+1} = \lim_{s \to \infty} \beta^s U'(c_{t+s}) k_{t+s+1} = 0. \tag{47}$$

• Putting together the two first-order conditions yields:

$$U'(c_{t}) = \beta \left[F'(k_{t+1}) + 1 - \delta \right] U'(c_{t+1}) \iff \frac{\beta U'(c_{t+1})}{U'(c_{t})} = \frac{1}{1 + F'(k_{t+1}) - \delta}$$
(48)

 \Longrightarrow Intertemporal Euler equation.

• Alternative interpretation: In the optimum, the marginal rate of substitution between consumption today and tomorrow must be equal to the physical rate of transformation.

- An equilibrium/The optimum of the model is characterized by the following:
 - Consumption levels c_{t+s} and capital stock choices k_{t+s+1} must solve the following coupled system of non-linear difference equations

$$U'(c_{t+s}) = \beta U'(c_{t+s+1}) \left[1 + F'(k_{t+s1}) - \delta \right]$$
 (49)

and

$$c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1 - \delta)k_{t+s}$$
 (50)

- \implies The two equation constitute a system of two nonlinear difference equations in c and k.
- The boundary (nonnegativity) conditions, the given initial conditions k_0 and the transversality condition must be satisfied.

Model solution: Long-run equilibrium

In the long-run equilibrium/steady state we have:

$$c_t = c_{t+1} = c^* (51)$$

and

$$k_t = k_{t+1} = k^*. (52)$$

• For the first-order conditions (equations (49) and (50)) we then obtain:

$$U'(c^*) = \beta U'(c^*) \left[1 + F'(k^*) - \delta \right]$$
 (53)

and

$$c^* + k^* = F(k^*) + (1 - \delta)k^*. \tag{54}$$

Model solution: Long-run equilibrium

• This can be simplified to:

$$1 = \beta \left[1 + F'(k^*) - \delta \right] \tag{55}$$

and

$$c^* = F(k^*) - \delta k^*. \tag{56}$$

37 / 48

- The only unknown variable in the first equation is k^* .
- To obtain the steady-state value of k we thus can simply solve the first equation for k.
- The solution is given by:

$$F'(k^*) = \frac{1}{\beta} - 1 + \delta \Longleftrightarrow k^* = F'^{-1}\left(\frac{1}{\beta} - 1 + \delta\right) \tag{57}$$

Günter W. Beck () Advanced Macroeconomics November 2, 2010

Model solution: Long-run equilibrium

- Thus,
 - a higher degree of patience (a higher value of β) corresponds to a higher value of k and
 - a higher depreciation rate corresponds to a lower steady-state level of k.
- Please note that the steady-state capital stock is independently of consumption.
- The steady-state level of c^* is then given by:

$$c^* = f(k^*) - \delta k^*. \tag{58}$$

Günter W. Beck ()

 As shown above the dynamics of the model is determined by the two difference equations:

$$U'(c_{t+s}) = \beta U'(c_{t+s+1}) \left[1 + F'(k_{t+s+1}) - \delta \right]$$
 (59)

and

$$c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1 - \delta)k_{t+s}$$
 (60)

- To obtain a concrete solution we make specific assumptions concerning the utility and the production function.
- We assume that the consumer's period utility function is given by:

$$U(c_t) = ln(c_t) \tag{61}$$

39 / 48

• The production technology of the economy is Cobb-Douglas and thus given by:

$$y_t = a_t f(k_t) = a_t k_t^{\alpha} \text{ with } 0 < \alpha < 1.$$
 (62)

• The two first-order conditions then become:

$$U'(c_{t+s}) = \beta U'(c_{t+s+1}) \left[1 + F'(k_{t+s1}) - \delta \right] \iff \frac{1}{c_{t+s}} = \beta \frac{1}{c_{t+s+1}} \left[1 + \alpha k_{t+s+1}^{\alpha - 1} - \delta \right] \iff c_{t+s+1} = \beta \left[1 + \alpha k_{t+s+1}^{\alpha - 1} - \delta \right] c_{t+s} \iff c_{t+s+1} - c_{t+s} = \Delta c_{t+s+1} = \beta \left[1 + \alpha k_{t+s+1}^{\alpha - 1} - \delta \right] c_{t+s} - c_{t+s} \iff c_{t+s+1} - c_{t+s} = \Delta c_{t+s+1} = \left\{ \beta \left[1 + \alpha k_{t+s+1}^{\alpha - 1} - \delta \right] - 1 \right\} c_{t+s}$$

and

$$c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1 - \delta)k_{t+s} \iff (64)$$

$$k_{t+s+1} - k_{t+s} = \Delta k_{t+s} = F(k_{t+s}) - \delta k_{t+s} - c_{t+s}.$$

- To illustrate the dynamics of the model we can use a phase diagram.
- To construct such a diagram we proceed as follows:
 - First, set the left-hand side of the Euler equation equal to zero and solve for the right-hand side for c_{t+s} . This yields:

$$\left\{\beta \left[1 + \alpha k_{t+s+1}^{\alpha - 1} - \delta\right] - 1\right\} c_{t+s} = 0 \iff (65)$$

$$k_{t+s+1} = k^* = \left(\frac{\alpha}{\frac{1}{\beta} - 1 + \delta}\right).$$

 \implies Plot this "function" in a c-k diagram.

• Secondly, set the left-hand side of the budget constraint equal to zero and solve for the right-hand side for c_{t+s} . This yields:

$$F(k_{t+s}) - \delta k_{t+s} - c_{t+s} \iff c_{t+s} = F(k_{t+s}) - \delta k_{t+s}$$

$$(66)$$

⇒ Plot this "function" in a c-k diagram.

- Construction of a phase diagram (continued):
 - The intersection of both steady-state relations defines the steady state
 of the system. At this steady state, all first-order conditions of
 households and firms as well as the budget and resource constraints are
 satisfied.
 - To characterize the dynamics around steady state, consider the dynamics of capital if consumption is below/above the level that would stabilize k, i.e., \$below/above the steady-state budget constraint:
 - \implies A low/high level of c_t implies that k_t is increasing/falling.
 - Next, consider the dynamics of c_t if k_t is below/above the level that
 would stabilize consumption, i.e., "below/above the steady-state Euler
 equation:"
 - \implies A low/high level of k_t implies that c_t is increasing/falling.
 - Indicate the just derived dynamics of c_t and k_t apart from the zero-movement lines with corresponding arrows.

• Phase diagram for model solution:



Günter W. Beck ()

- To draw quantitative implications the model is simulated.
- Unfortunately, the system of the two nonlinear difference equations in
 c and k which characterize the dynamics of the economy in the
 optimum does not have an analytical solution.
 - ⇒ To simulate the model the nonlinear difference equations are linearly approximated around the long-run equilibrium.
- Basic procedure:
 - First, compute the long-run steady state.
 - Secondly, log-linearize the system around the steady-state (All variables are expressed in terms of percentage deviations from the steady state).
 - Thirdly, calibrate the model (i.e. determine values for the model parameters.)
 - Forthly, simulate the model and compare its dynamic properties with those found in the data.

- Model setup:
 - The consumer's period utility function is given by:

$$U(c_t) = \ln(c_t) \tag{67}$$

• The production technology of the economy is Cobb-Douglas and thus given by:

$$y_t = a_t f(k_t) = a_t k_t^{\alpha}. \tag{68}$$

- We assume that $0 < \alpha < 1$.
- (Log) Total factor productivity is random and follows an AR(1) process

$$\ln\left(a_{t+1}\right) = \rho \ln\left(a_{t}\right) + \varepsilon_{t+1} \tag{69}$$

where $0 < \rho < 1$ and ε_{t+1} is Gaussian white noise with initial realization a_0 given.

- Calibration:
 - We assume that the parameters take the following values:

$$\alpha = 0.33 \tag{70}$$

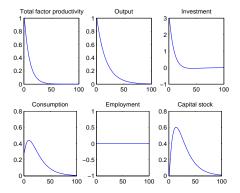
$$\delta = 0.04 \tag{71}$$

$$\beta = 0.99 \tag{72}$$

$$\rho = 0.95 \tag{73}$$

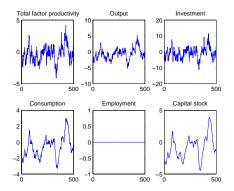
Günter W. Beck ()

• Effects of a one-time increase in total factor productivity:



- ⇒ Positive effect on output, consumption and investment.
- ⇒ Investment reacts stronger than consumption.

• Model simulation over 500 periods:



- \implies Positive comovements: $corr(y, c) \approx 0.73$, $corr(y, i) \approx 0.71$,.
- \implies Relative volatilities: $\frac{\sigma_c}{\sigma_v} \approx$ 0.77, $\frac{\sigma_i}{\sigma_v} \approx$ 2.01.