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Selected stylized facts of business cycles

Selected stylized facts of business cycles

• Stylized facts = empirical regularities.
=⇒ Major objective of macroeconomics: Build models which can
explain major stylized facts

• In chapter 2: Analyze behavior of consumption and investment.
=⇒ Necessary first step: Derive stylized facts concerning the
behavior of consumption and investment.

• Procedure:

• Obtain data (In our case: Euro area data)
• Filter data (Decompose data into long-run and short-run component).
• Compute statistics concerning the behavior of macroeconomic time

series (Volatility and correlation of time series).
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

• Data for output, consumption and investment: Original data
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

• Data for output, consumption and investment: Plot of (ln) levels

1970 1975 1980 1985 1990 1995 2000 2005 2010
−1

−0.5

0

0.5
GNP: Original series

1970 1975 1980 1985 1990 1995 2000 2005 2010
−1

−0.5

0

0.5
Consumption: Original series

1970 1975 1980 1985 1990 1995 2000 2005 2010
−1

−0.5

0

0.5
Investment: Original series

Günter W. Beck () Advanced Macroeconomics November 2, 2010 5 / 48



Selected stylized facts of business cycles

Selected stylized facts of business cycles

• Data for output, consumption and investment: Plot of level and trend
component
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

• Data for output, consumption and investment: Plot of cyclical
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=⇒ Observation: ?
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

• Data for output, consumption and investment: Plot of cyclical
component (identical scale)1970 1980 1990 2000 2010
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=⇒ Observations:
=⇒ Consumption is less volatile than output, investment is much more

volatile than output.
=⇒ Consumption and investment are strongly procyclical.
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

• To decompose the original time series: Filtering of the original data is
necessary.

• Basic intuition:

• Denote by {yt}T
t=1 the log of a time series (such as GDP,

consumption, investment, ...) that you want to detrend.
• yt is considered to be composed of a long-run (y lr

t ) and a short-run
(y sr

t ) component as follows:

yt = y lr
t + y sr

t . (1)

=⇒ To perform empirical growth or business cycle analysis: “Filtering”
of the data is necessary to obtain either y lr

t or y sr
t .

• To filter data: Several possibilities exist.

• Most popular filter: Hodrick-Prescott filter.
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

• Hodrick-Prescott (HP) filter: Intuition

• According to the Hodrick-Prescott filter, the long-run (growth or
trend) component is obtained as the solution to the following
minimization problem:

min
{y lr

t }T
t=1

T
∑
t=1

(
yt − y lr

t

)2
+ λ

T−1
∑
t=2

[(
y lr

t+1 − y lr
t

)
−
(

y lr
t − y lr

t−1

)]2
(2)

where the parameter λ must be chosen by the researcher.
• The higher the value of λ, the smoother the trend component becomes

(Can you see why?).
• For quarterly data, λ = 1600 is chosen.
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Model setup

Model setup: Motivation

• Build up a simple macroeconomic model which allows us to analyze
the behavior of aggregate output, consumption and investment.

• Model is microfounded:

=⇒ Model household and firm behavior explicitly.

• Behavior of macro variables is obtained by aggregating across
households and firms.

=⇒ Simplifying assumptions: All households are equal, all firms are
owned by households.

=⇒ It is sufficient to solve the decisions problems of the
“representative” household/firm.
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Model setup Preferences

Model setup: Preferences

• Economy is inhabited by identical consumers.
=⇒ Individual variables are identical to aggregate variables.

• Consumers have preferences over an infinite stream of consumption
ct , ct+1, ... = {ct+s}∞

s=0.
• The consumer’s lifetime utility function is assumed to be
time-separable and given by:

Vt =
∞

∑
s=0

βsU (ct+s) (3)

• β is the individual’s subjective time discount factor. We assume that
0 < β < 1 holds.

• U (.) denotes the period utility function. We assume that it is strictly
increasing and concave.
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Model setup Preferences

Model setup: Preferences

• Period utility function: Graphical illustration:
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=⇒ Positive marginal utility: U ′(.) > 0.
=⇒ Diminishing positive marginal utility: U ′′(.) < 0.
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Model setup Production technology

Production technology

• Output (GDP) is produced using the following production technology:

yt = F (at , kt , nt) , (4)

with
• yt : Output
• kt : Capital input
• nt : Labor input
• at : Level of technology, knowledge, efficiency of work
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Model setup Production technology

Production technology

• Assumptions concerning the production function (continued):
• Constant returns to scale:

F (a, ck, cn) = cF (a, k, n) for all c ≥ 0. (5)

• Positive, but declining marginal products of capital and labor
∂F (•)

∂k > 0 and ∂2F (•)
∂k∂k < 0 and ∂F (•)

∂n > 0 and ∂2F (•)
∂n∂n < 0 (6)

• Both production factors are necessary

F (a, 0, n) = 0 and F (a, k, 0) = 0 (7)

• Inada conditions are satisfied:

lim
k→0

∂F (•)
∂k → ∞, lim

k→∞

∂F (•)
∂k = 0 and lim

n→0

∂F (•)
∂n → ∞, lim

n→∞

∂F (•)
∂n = 0

(8)
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Model setup Production technology

Production technology

• For the moment, we assume that nt is constant:

nt = 1. (9)

• Then:
yt = F (At , kt , 1) = F (At , kt) . (10)

• Graphical illustration of the production function (A = 1):

y=f(k)

k0

y=f(k)

Günter W. Beck () Advanced Macroeconomics November 2, 2010 16 / 48



Model setup Budget constraint

Budget constraint

• Period t’s budget constraint is given by:

yt = ct + it (11)

=⇒ Budget constraint of a closed economy without goverment.

• Moreover, the household faces the following condition concerning the
evolution of the capital stock:

kt+1 = kt + it − δkt ⇐⇒ it = kt+1 − (1− δ) kt (12)

• Combining the two above equations, the household’s budget
constraint can be rewritten as (suppressing the At in the production
function):

ct + kt+1 = F (kt) + (1− δ)kt . (13)
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The maximization problem

The maximization problem

• The household maximizes lifetime utility given the resource constraint:
=⇒ Dynamic (constrained) intertemporal optimization problem.

• The intertemporal optimization problem is given by:

max
ct ,ct+1,...;kt ,kt+1,...

Vt =
∞

∑
s=0

βsU (ct+s) (14)

s.t.
ct+s + kt+s+1 = F (kt+s) + (1− δ)kt+s , ∀s > 0. (15)

• Solution approaches:
• Transform constrained into unconstrained maximization problem.
• Lagrange approach.
• Dynamic programming.
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Model solution The two-period case

Model solution: The two-period case

• To illustrate the basic intuition of the model we first solve it for the
simple two-period case.

• In this case, the household’s maximization problem is given by:

max
ct ,ct+1,kt+1,kt+2

Vt =
1

∑
s=0

βsU (ct+s) = U (ct) + βU (ct+1) (16)

s.t.
ct + kt+1 = F (kt) + (1− δ)kt (17)

ct+1 + kt+2 = F (kt+1) + (1− δ)kt+1 (18)
• To solve the model we employ two different approaches:

• Approach 1: Transform constrained into unconstrained maximization
problem and solve the unconstrained problem.

• Approach 2: Lagrange approach.
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 1: Transform constrained into unconstrained
maximization problem and solve the unconstrained problem:

• Solving the two budget constraint for consumption yields:

ct = F (kt) + (1− δ)kt − kt+1 (19)

ct+1 = F (kt+1) + (1− δ)kt+1 − kt+2. (20)

• Since the household no longer lives in period t + 2 it will disinvest its
complete capital stock in period t + 1 and consume it. That is, we
have:

kt+2 = 0. (21)

• Period’s t + 1 budget constraint then becomes:

ct+1 = F (kt+1) + (1− δ)kt+1. (22)
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 1 (continued):

• Plugging the transformed budget constraints into the objective
function yields:

max
kt+1

Vt = U (ct) + βU (ct+1) =

= U (F (kt) + (1− δ)kt − kt+1) + βU (F (kt+1) + (1− δ)kt+1)

• The first-order condition is given by (Notation: U ′(.) = ∂U
∂c ):

U ′ (ct) (−1) + βU ′ (ct+1)
[
F ′ (kt+1) + 1− δ

] !
= 0 ⇐⇒ (23)

U ′ (ct) = β
[
F ′ (kt+1) + 1− δ

]
U ′ (ct+1)

=⇒ Intertemporal Euler equation
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 1 (continued):
• Intuition for intertemporal Euler equation:

• Assume that consumption is reduced by a small amount (denoted by
∆c) in Period 0.

=⇒ Utility in period 0 is reduced by: U ′ (ct )∆c.
• The amount ∆c is invested in capital. In period t + 1 this investment

leads to additional output of F ′ (kt+1)∆c.
• Moreover, the household can transform the amount of consumption

invested in period t back into consumption goods in period t + 1.
Since a proportion δ of ∆c is lost through appreciation this leads to an
increase in consumption by (1− δ)∆c in period t + 1.

• Overall, the household can increase consumption by f ′ (kt+1) + 1− δ

in period t + 1 which in turn leads to an increase in period’s t + 1
utility by [F ′ [kt+1] + 1− δ]U ′ (ct+1).
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 1 (continued):
• Intuition for intertemporal Euler equation (continued):

• From today’s perspective the utility gain tomorrow is “worth”:
β [F ′ [kt+1] + 1− δ]U ′ (ct+1).

• In the optimum, the utility loss from saving more today must be equal
to the discounted utility gain tomorrow (why?). Thus, we must have:

U ′ (ct ) = β
[
F ′ (kt+1) + 1− δ

]
U ′ (ct+1) (24)

• Interpretation of the term F ′ (kt+1) + 1− δ:
• Assume you invest one unit of consumption in period 0. Then, your

consumption in period 1 increases by:

F ′ (kt+1) + 1− δ (25)

=⇒ F ′ (kt+1) + 1− δ represents the gross real interest rate.
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 1 (continued):
• Implications of the Euler equation (1):

• Assume that the subjective discount factor (β) is equal to the market
discount factor ( 1

F ′(kt+1)+1−δ
).

• Then, the Euler equation becomes:

U ′ (ct) = β
[
F ′ (kt+1) + 1− δ

]
U ′ (ct+1)⇐⇒ U ′ (ct) = U ′ (ct+1)

(26)
=⇒ Consumption in the two periods would be equal:

ct = ct+1 (27)

=⇒ Perfect consumption smoothing
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 1 (continued):
• Why do households want to smooth consumption?
• Illustrative example:

• Household has log-utility function (U (ct ) = ln ct).
• Household lives for two periods.
• There is no discounting: β = 1.
• Household can choose between two consumption patterns:

=⇒ Pattern 1: ct = 9, ct+1 = 1.
=⇒ Pattern 2 (smooth pattern): ct = 5, ct+1 = 5.

=⇒ Which consumption pattern do households prefer?
• Lifetime utility from pattern 1:

V 1
t = ln (9) + ln (1) ≈ 2.2 (28)

• Lifetime utility from pattern 2:

V 2
t = ln (5) + ln (5) ≈ 3.2 > 2.2 = V 1

t (29)
=⇒ Households prefer (lifetime-maximizing) smooth pattern 2.
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 1 (continued):
• Implications of the Euler equation (2):

• How does β (= subjective discount factor) influence the consumption
pattern over time?

=⇒ For illustrative purposes, we assume that U (ct ) = ln ct
(U ′ (ct ) =

1
ct
).

• From the Euler equation:

U ′ (ct ) = β
[
F ′ (kt+1) + 1− δ

]
U ′ (ct+1)

we get:

1
ct

= β
[
F ′ (kt+1) + 1− δ

] 1
ct+1

⇐⇒ ct+1 = β
[
F ′ (kt+1) + 1− δ

]
ct

=⇒ A higher value of β (everything else held constant) implies that
ct+1 is relatively higher compared to ct .
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 1: (continued):
• Implications of the Euler equation (2):

• How does F ′ (kt+1) (= marginal product of next period’s capital
stock) influence the consumption pattern over time?
=⇒ For illustration purposes, we again assume that U (ct ) = ln ct
(U ′ (ct ) =

1
ct
).

• From above we know that the dynamics of c is then given by:

ct+1 = β
[
F ′ (kt+1) + 1− δ

]
ct (30)

=⇒ A higher value of F ′ (kt+1) implies (everything else held
constant) that ct+1 is relatively higher compared to ct (=
intertemporal substitution effect).
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 2: Lagrange approach:

• The household’s maximization problem is given by:

max
ct ,ct+1,kt+1,kt+2

Vt =
1
∑
s=0

βsU (ct+s) = U (ct) + βU (ct+1) (31)

s.t.
ct + kt+1 = F (kt) + (1− δ)kt (32)

ct+1 = F (kt+1) + (1− δ)kt+1 (33)

where we have used that
kt+2 = 0. (34)
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 2 (continued):

• The associated Lagrange function is given by:

Lt = U (ct) + βU (ct+1) + (35)
+λt [F (kt) + (1− δ)kt − ct − kt+1] +

+λt+1 [F (kt+1) + (1− δ)kt+1 − ct+1]

=
1

∑
s=0
{βsU (ct+s) + λt+s [F (kt+s) + (1− δ)kt+s − ct+s − kt+s+1]}

with kt+2 = 0.
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 2 (continued):
• The first-order conditions of the maximization problem are given by:

• With respect to ct :

∂L
∂ct

!
= 0⇐⇒ U ′ (ct )− λt = 0⇐⇒ βt−tU ′ (ct ) = λt (36)

• With respect to ct+1:

∂L
∂ct+1

!
= 0⇐⇒ βU ′ (ct+1)− λt+1 = 0⇐⇒ βt+1−tU ′ (ct+1) = λt+1

(37)

• With respect to kt+1:

∂L
∂kt+1

!
= 0 ⇐⇒ −λt + λt+1 [F (kt+1) + (1− δ)] = 0 (38)

⇐⇒ λt = λt+1 [F (kt+1) + (1− δ)]
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Model solution The two-period case

Model solution: The two-period case

• Solution approach 2 (continued):
• First-order conditions of the maximization problem (continued):

• With respect to λt :
∂L
∂λt

!
= 0 ⇐⇒ F (kt ) + (1− δ)kt − ct − kt+1 = 0 (39)

⇐⇒ ct + kt+1 = F (kt ) + (1− δ)kt

• With respect to λt+1:

∂L
∂λt+1

!
= 0 ⇐⇒ F (kt+1) + (1− δ)kt+1 − ct+1 = 0 (40)

⇐⇒ ct+1 = F (kt+1) + (1− δ)kt+1.

• Using equations (36) and (37) to replace λt and λt+1 in equation (39)
we obtain the intertemporal Euler equation:

U ′ (ct) = β
[
F ′ (kt+1) + 1− δ

]
U ′ (ct+1) . (41)
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Model solution The infinite-horizon case

Model solution: The infinite-horizon case

• In the infinite-horizon case, the household’s maximization problem is
given by:

max
ct ,ct+1,...;kt ,kt+1,...

Vt =
∞

∑
s=0

βsU (ct+s) (42)

s.t.
ct+s + kt+s+1 = F (kt+s) + (1− δ)kt+s , ∀s > 0. (43)

• To solve the model we employ the Lagrange approach.

• The Lagrange function is given by:

Lt =
∞
∑

s=0
{βsU (ct+s) + λt+s [F (kt+s) + (1− δ)kt+s − ct+s − kt+s+1]}

=⇒ Maximize with respect to {ct+s , kt+s+1,λt+s ; s ≥ 0}.
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Model solution The infinite-horizon case

Model solution: The infinite-horizon case

• The first-order condition with respect to ct+s is given by:
∂L

∂ct+s
= 0⇔ βsU ′(ct+s) = λt+s (44)

• The first-order condition with respect to kt+s+1 is given by:
∂L

∂kt+s+1
= 0⇔ λt+s = λt+s+1

[
F ′(kt+s+1) + 1− δ

]
(45)

• The first-order condition with respect to λt+s is given by:
∂L

∂λt+s
= 0⇔ ct+s + kt+s+1 = F (kt+s) + (1− δ)kt+s (46)

• Additionally, the following transversality condition must be satisfied:

lim
s→∞

λt+skt+s+1 = lim
s→∞

βsU ′(ct+s)kt+s+1 = 0. (47)
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Model solution The infinite-horizon case

Model solution: The infinite-horizon case

• Putting together the two first-order conditions yields:

U ′ (ct) = β
[
F ′ (kt+1) + 1− δ

]
U ′ (ct+1)⇐⇒ (48)

βU ′(ct+1)

U ′(ct)
=

1
1+ F ′(kt+1)− δ

=⇒ Intertemporal Euler equation.
• Alternative interpretation: In the optimum, the marginal rate of
substitution between consumption today and tomorrow must be equal
to the physical rate of transformation.

Günter W. Beck () Advanced Macroeconomics November 2, 2010 34 / 48



Model solution The infinite-horizon case

Model solution: The infinite-horizon case

• An equilibrium/The optimum of the model is characterized by the
following:

• Consumption levels ct+s and capital stock choices kt+s+1 must solve
the following coupled system of non-linear difference equations

U ′(ct+s) = βU ′(ct+s+1)
[
1+ F ′(kt+s1)− δ

]
(49)

and
ct+s + kt+s+1 = F (kt+s) + (1− δ)kt+s (50)

=⇒ The two equation constitute a system of two nonlinear difference
equations in c and k.

• The boundary (nonnegativity) conditions, the given initial conditions
k0 and the transversality condition must be satisfied.
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Model solution: Long-run equilibrium/Steady state

Model solution: Long-run equilibrium

• In the long-run equilibrium/steady state we have:

ct = ct+1 = c∗ (51)

and
kt = kt+1 = k∗. (52)

• For the first-order conditions (equations (49) and (50)) we then
obtain:

U ′(c∗) = βU ′(c∗)
[
1+ F ′(k∗)− δ

]
(53)

and

c∗ + k∗ = F (k∗) + (1− δ)k∗. (54)
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Model solution: Long-run equilibrium/Steady state

Model solution: Long-run equilibrium

• This can be simplified to:

1 = β
[
1+ F ′(k∗)− δ

]
(55)

and

c∗ = F (k∗)− δk∗. (56)

• The only unknown variable in the first equation is k∗.

• To obtain the steady-state value of k we thus can simply solve the
first equation for k.

• The solution is given by:

F ′ (k∗) = 1
β
− 1+ δ⇐⇒ k∗ = F ′−1

(
1
β
− 1+ δ

)
(57)
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Model solution: Long-run equilibrium/Steady state

Model solution: Long-run equilibrium

• Thus,

• a higher degree of patience (a higher value of β) corresponds to a
higher value of k and

• a higher depreciation rate corresponds to a lower steady-state level of
k.

• Please note that the steady-state capital stock is independently of
consumption.

• The steady-state level of c∗ is then given by:

c∗ = f (k∗)− δk∗. (58)
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Model solution: Model dynamics (graphical solution)

• As shown above the dynamics of the model is determined by the two
difference equations:

U ′(ct+s) = βU ′(ct+s+1)
[
1+ F ′(kt+s1)− δ

]
(59)

and
ct+s + kt+s+1 = F (kt+s) + (1− δ)kt+s (60)

• To obtain a concrete solution we make specific assumptions
concerning the utility and the production function.

• We assume that the consumer’s period utility function is given by:

U (ct) = ln(ct) (61)

• The production technology of the economy is Cobb-Douglas and thus
given by:

yt = at f (kt) = atkα
t with 0 < α < 1. (62)
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Model solution: Model dynamics (graphical solution)

• The two first-order conditions then become:

U ′(ct+s) = βU ′(ct+s+1)
[
1+ F ′(kt+s1)− δ

]
⇐⇒(63)

1
ct+s

= β
1

ct+s+1

[
1+ αkα−1

t+s+1 − δ
]
⇐⇒

ct+s+1 = β
[
1+ αkα−1

t+s+1 − δ
]

ct+s ⇐⇒
ct+s+1 − ct+s = ∆ct+s+1 = β

[
1+ αkα−1

t+s+1 − δ
]

ct+s − ct+s ⇐⇒
ct+s+1 − ct+s = ∆ct+s+1 =

{
β
[
1+ αkα−1

t+s+1 − δ
]
− 1
}

ct+s

and

ct+s + kt+s+1 = F (kt+s) + (1− δ)kt+s ⇐⇒ (64)
kt+s+1 − kt+s = ∆kt+s = F (kt+s)− δkt+s − ct+s .

Günter W. Beck () Advanced Macroeconomics November 2, 2010 40 / 48



Model solution: Model dynamics (graphical solution)

Model solution: Model dynamics (graphical solution)

• To illustrate the dynamics of the model we can use a phase diagram.
• To construct such a diagram we proceed as follows:

• First, set the left-hand side of the Euler equation equal to zero and
solve for the right-hand side for ct+s . This yields:{

β
[
1+ αkα−1

t+s+1 − δ
]
− 1
}

ct+s = 0⇐⇒ (65)

kt+s+1 = k∗ =
(

α
1
β − 1+ δ

)
.

=⇒ Plot this “function” in a c-k diagram.
• Secondly, set the left-hand side of the budget constraint equal to zero

and solve for the right-hand side for ct+s . This yields:

F (kt+s)− δkt+s − ct+s ⇐⇒ (66)
ct+s = F (kt+s)− δkt+s

=⇒ Plot this “function” in a c-k diagram.
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Model solution: Model dynamics (graphical solution)

• Construction of a phase diagram (continued):
• The intersection of both steady-state relations defines the steady state

of the system. At this steady state, all first-order conditions of
households and firms as well as the budget and resource constraints are
satisfied.

• To characterize the dynamics around steady state, consider the
dynamics of capital if consumption is below/above the level that would
stabilize k, i.e., Şbelow/above the steady-state budget constraint:
=⇒ A low/high level of ct implies that kt is increasing/falling.

• Next, consider the dynamics of ct if kt is below/above the level that
would stabilize consumption, i.e., “below/above the steady-state Euler
equation:”
=⇒ A low/high level of kt implies that ct is increasing/falling.

• Indicate the just derived dynamics of ct and kt apart from the
zero-movement lines with corresponding arrows.
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Model solution: Model dynamics (graphical solution)

• Phase diagram for model solution:

∆kt+1=0

∆ct+1=0
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Model simulation and discussion

Model simulation and discussion

• To draw quantitative implications the model is simulated.
• Unfortunately, the system of the two nonlinear difference equations in

c and k which characterize the dynamics of the economy in the
optimum does not have an analytical solution.
=⇒ To simulate the model the nonlinear difference equations are
linearly approximated around the long-run equilibrium.

• Basic procedure:
• First, compute the long-run steady state.
• Secondly, log-linearize the system around the steady-state (All variables

are expressed in terms of percentage deviations from the steady state).
• Thirdly, calibrate the model (i.e. determine values for the model

parameters.)
• Forthly, simulate the model and compare its dynamic properties with

those found in the data.
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Model simulation and discussion

Model simulation and discussion

• Model setup:
• The consumer’s period utility function is given by:

U (ct) = ln(ct) (67)

• The production technology of the economy is Cobb-Douglas and thus
given by:

yt = at f (kt) = atkα
t . (68)

• We assume that 0 < α < 1.
• (Log) Total factor productivity is random and follows an AR(1) process

ln (at+1) = ρ ln (at) + εt+1 (69)

where 0 < ρ < 1 and εt+1 is Gaussian white noise with initial
realization a0 given.
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Model simulation and discussion

Model simulation and discussion

• Calibration:

• We assume that the parameters take the following values:

α = 0.33 (70)

δ = 0.04 (71)

β = 0.99 (72)

ρ = 0.95 (73)
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Model simulation and discussion

• Effects of a one-time increase in total factor productivity:
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=⇒ Positive effect on output, consumption and investment.
=⇒ Investment reacts stronger than consumption.
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Model simulation and discussion

• Model simulation over 500 periods:
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=⇒ Positive comovements: corr (y , c) ≈ 0.73, corr (y , i) ≈ 0.71,.
=⇒ Relative volatilities: σc

σy
≈ 0.77, σi

σy
≈ 2.01.
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