
Network Random Keys - A Tree

Representation Scheme for Genetic and

Evolutionary Algorithms

Franz Rothlauf∗ rothlauf@uni-bayreuth.de
Department of Information Systems, University of Bayreuth, Universitätsstr. 30,
D-95440 Bayreuth, Germany

David E. Goldberg deg@illigal.ge.uiuc.edu
Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign,
117 Transportation Building, 104 S. Mathews Av. Urbana, IL 61801, USA

Armin Heinzl heinzl@uni-bayreuth.de
Department of Information Systems, University of Bayreuth, Universitätsstr. 30, D-
95440 Bayreuth, Germany

Abstract
When using genetic and evolutionary algorithms for network design, a good choice of
the representation scheme for the construction of the genotype is important for the
performance of the algorithms. One of the most common representation schemes for
networks is the characteristic vector representation. However, with encoding trees,
and using crossover and mutation, invalid individuals occur that are either under- or
over-specified. When constructing the offspring, or repairing the invalid individuals
that do not represent a tree, it is not possible to distinguish between the importance
of the links which should be used. These problems can be overcome by transferring
the concept of random keys from scheduling and ordering problems, to the encod-
ing of trees. This paper investigates the performance of a simple genetic algorithm
(SGA) using network random keys (NetKeys) for the one-max tree and a real-world
problem. The comparison between the network random keys, and the characteristic
vector encoding, shows that despite the effects of stealth mutation, which favors the
characteristic vector representation, selectorecombinative SGAs with NetKeys have
some advantages for small and easy optimization problems. As soon as it comes to
more complex problems, SGAs with network random keys significantly outperform
SGAs using characteristic vectors.

This paper shows that random keys can be used for the encoding of trees, and that
genetic algorithms using network random keys are able to solve complex tree problems
much faster than when using the characteristic vector. Users should therefore be
encouraged to use network random keys for the representation of trees.

Keywords
network random keys, characteristic vector encoding, tree network, representation,
stealth mutation, random keys.

1 Introduction

Random keys (RKs) are an efficient method for encoding ordering and scheduling prob-
lems. They were introduced by Bean (1994) and are advantageous when used for prob-
lems where the relative ordering of tasks is important.

∗Visiting student at the Illinois Genetic Algorithms Laboratory.

c©2002 by the Massachusetts Institute of Technology Evolutionary Computation 10(1): 75-97

F. Rothlauf, D.E. Goldberg and A. Heinzl

In this paper the use of random keys is extended to a different class of problems.
Random keys should be used for the encoding of the topology of trees. A tree is is an
undirected, fully connected graph with no cycles. Finding good solutions for tree network
problems is important in many fields like telecommunication, electric, gas, computer,
and transportation networks. The performance of genetic and evolutionary algorithms
(GEAs) used with a traditional encoding scheme (characteristic vector) is compared to
the network random key encoding (NetKey). Both representations have the same length
and similar construction complexity. However, when using characteristic vectors (CVs)
the genetic operators mutation and crossover produce invalid solutions which are under-
or over-specified. A repair mechanism is necessary that restores valid solutions, but
because genetic algorithms (GAs) with CVs cannot distinguish between the importance
of links, the repair mechanism must rely on random link insertion or deletion. Using
NetKeys means a transition from binary and hard decisions of establishing a link in the
CV, to describing the importance of a link with a continuous value [0, 1] in the NetKeys.
The information about the individual is not stored with discrete values {0, 1}, but by
the relative ordering of the positions in a sequence of keys. In this paper we want to
investigate whether RKs are a good solution to use for encoding trees. We also want
to examine both theoretically and empirically the performance of the NetKey encoding
on some test and real world problems, and show the differences in comparison to the
characteristic vector encoding.

The paper is structured as follows. In section 2 we take a closer look at the charac-
teristics of random keys. This is followed by an illustration on how to use the character-
istic vector encoding, and how the problems of invalid solutions, and the missing ability
of GAs to distinguish between the importance of links, can be overcome when using
NetKeys. In section 4 we present the one-max tree problem and some real-world sce-
narios. A theoretical investigation into population sizing for the one-max tree problem,
and SGAs using NetKeys in section 5 is followed by a comparison of the performance
of the NetKeys and CVs when using GAs for solving the test problems. In section 6 we
present the direction of future work. The paper ends with concluding remarks.

2 A Short Introduction on the Properties of Random Keys

This section summarizes the history and properties of the random key encoding.
The random key representation for representing permutations was first presented

by Bean (1992). Later, the encoding was also proposed for single and multiple machine
scheduling, vehicle routing, resource allocation, quadratic assignments, and traveling
salesperson problems (Bean, 1994). Norman and Bean (1994) refined this approach
(Norman & Bean, 2000) and applied it to multiple machine scheduling problems (Nor-
man & Bean, 1997). An overview of using random keys for scheduling problems can
be found in Norman (1995). In Norman and Smith (1997) and Norman et al. (1998),
random keys were used for facility layout problems. In Knjazew (2000) and Knjazew
and Goldberg (2000a) a representative of the class of competent GAs (fast messy GA
(Goldberg et al., 1993)) was used for solving ordering problems with random keys.

The random key representation uses random numbers for the encoding of a solution.
A key sequence of length l is a sequence of l distinct real numbers (keys). The values
are initially chosen at random, are floating numbers between zero and one, and are only
subsequently modified by mutation and crossover. An example for a key sequence is
r = (0.07, 0.75, 0.56, 0.67). Of importance for the interpretation of the key sequence is
the position and value of the keys in the sequence. If we assume that Zl = {0, . . . , l− 1}
then a permutation σ can be defined as a surjective function σ : Zl → Zl. For any

2 Evolutionary Computation Volume 10, Number 1

Network Random Keys

key sequence r = r0, . . . , rl−1, the permutation σr of r is defined as the sequence with
elements (σr)i = rσ(i). The permutation rs corresponding to a key sequence r of length
l is the permutation σ such that σr is decreasing (i.e., i < j ⇒ (σr)i > (σr)j). The
ordering corresponding to a key sequence r of length l is the sequence σ(0), . . . , σ(l− 1),
where σ is the permutation corresponding to r. This mathematical definitions describes
that the positions of the keys in the key sequence r are ordered according to the values
of the keys in descending order. In our example we have to identify the position of the
highest value in the key sequence (0.75 at position 2). The next highest value is 0.67
at position 4. We continue ordering the complete sequence and get the permutation
rs = 2 → 4 → 3 → 1. In the context of scheduling problems this permutation can be
interpreted as a list of jobs that are executed on one machine (We start with job 2, then
continue with job 4, job 3, and job 1.) From a key sequence of length l, we can always
construct a permutation of l numbers. Every number between 1 and l (resp. 0 and l−1)
appears in the permutation only once as the position of each key is unique. Here are
some properties of the encoding.

• A valid permutation rs of l numbers can be created from all possible key sequences
as long as there are no two keys ri that have the same value.1 Therefore, every
random key sequence represents a permutation of l numbers.

• There are many possibilities for the construction of a key sequence r from a per-
mutation of numbers rs. Every element ri of the sequence can be scaled up by the
same factor and r still represents exactly the same permutation. As long as the
relative ordering of the keys in the key sequence is the same, different key sequences
always represent the same permutation. Furthermore, it is necessary that rs is a
permutation of l numbers otherwise no key sequence r can be constructed from rs.

• RKs encode both the relative position of a number in the permutation rs (encoded
by the value of the key at position i in comparison to all other keys), and the absolute
position of i in rs. The relative position of a number i in the permutation rs is
determined by the numbers that precede and follow i. It is determined directly by
the weights of the keys ri. All numbers j in the sequence rs that follow i correspond
to lower-valued keys (rj < ri), whereas all numbers j that precede i correspond to
higher-valued keys (rj > ri). In the context of scheduling problems all jobs where
the corresponding key has a higher value than the ith key are executed before
job i, and all jobs with a corresponding key with lower value are executed after
i. In contrast, the absolute position of a number i in the permutation rs cannot
be encoded directly, but is only indirectly determined by the value of the ith key.
The absolute position describes at which position in the permutation rs a number
i appears. A large value at the ith position leads us to a position at the beginning
of the permutation, and a low value leads to a position at the end.

• The distinction between relative and absolute position of a number in the permuta-
tion rs is important for the locality of RKs. The locality of an encoding describes
how well the genotypic neighbors correspond to the phenotypic neighbors. A coding
has high locality if mutating a genotype changes the corresponding phenotype only
slightly. A look at RKs shows that the locality of RKs is high for ordering problems.
A small change in the genotype (the key sequence r) leads to a small change in the
phenotype (the permutation rs). The change of one key changes the relative posi-
tion of exactly one number. However, one must be careful with the definition of the

1ri 6= rj for i 6= j and i, j ∈ [1, l]

Evolutionary Computation Volume 10, Number 1 3

F. Rothlauf, D.E. Goldberg and A. Heinzl

neighborhood. If the absolute position of the numbers in rs would be important,
a change of one key is disastrous. If the value of the key ri with the highest value
is modified, only the number i changes its relative position in the permutation rs,
but up to l numbers change their absolute position in the permutation. However,
as we use RKs to represent a sequence of numbers, only the relative, and not the
absolute positions of the numbers in the permutation must be considered. And for
problems where the relative positions of numbers are important the locality of RKs
is high.

• When using genetic and evolutionary algorithms with RKs, standard crossover and
mutation operators can be used and are expected to work well. No repair mech-
anism, or problem-specific operators, are necessary when using this encoding for
ordering problems. The standard one- or multi-point crossover schemes work well
(Bean, 1994) because the relative ordering of the positions in the parents is pre-
served and transferred to the offspring (Fox & McMahon, 1991). Due to the high
locality of the encoding we expect standard mutation operators to work well and
to construct offspring that are similar to their parents.

RKs show interesting properties for the encoding of scheduling problems. In the
following section the tree network design problem is presented and we want to illustrate
how the RKs can be used.

3 Tree Network Design with NetKeys and the Characteristic
Vector Encoding

This section starts with a short overview of the tree network design problem. It is
followed by a description of the CV encoding, which problems arise with its use, and
how these can be overcome by using NetKeys.

3.1 The Design Problem

Finding good solutions for tree network design problems is important in many fields
such as telecommunication, computer, backbone access, transportation and distributing
networks.

For a graph with n nodes there are n(n− 1)/2

14

3

Figure 1: A spanning tree on 15
nodes, with the path connecting
nodes 3 and 14 emphasized.

possible links. This results in 2n(n−1)/2 different
graphs. A spanning tree is defined as a connected
graph with exactly n− 1 links. There are no loops
or rings in a tree. Between any two nodes there
exists only one possible path for the flow. Figure 1
shows a spanning tree on 15 nodes and emphasizes
the path connecting nodes 3 and 14. The aim of
the design process is to minimize the overall cost
for constructing and maintaining the tree network
and is calculated by summing-up the costs of all

links. The location of the nodes, the demanded flow between the different locations, and
the cost structure of the links that can be used for constructing the tree are given. The
only design variable is the list of links which are used for the tree.

3.2 Encoding Trees with the Characteristic Vector Encoding

The characteristic vector encoding is one of the most common approaches for encoding
graphs (Davis, Orvosh, Cox, & Qiu, 1993). Examples for the use of the CV encoding

4 Evolutionary Computation Volume 10, Number 1

Network Random Keys

can be found in Tang et al. (1997) and Sinclair (1995). In Berry, Murtagh, and Sugden
(1994) examples are given for the use of the CV encoding for the encoding of trees.

A characteristic vector is a binary vector that indicates if a
A

B

C

D E

Figure 2: A five
node tree.

possible link is used or not in the graph. For an n-node graph exist
n(n − 1)/2 possible links, and a characteristic vector of length
l = n(n − 1)/2 is necessary for encoding an n-node graph. All
possible links must be numbered, and each link must be assigned
to a position in the vector. In Table 1 we give an example of
a characteristic vector for a 5 node tree. The nodes are labeled
from A to E. The link from node A to B is assigned to the first
position in the string, the link from A to C is assigned to the

second position and so on. To indicate if the ith link is established, the value at position
i is set to one. If no link is established the value at position i is set to zero. The tree
that is represented by Table 1 is shown in Figure 2.

0 1 0 0 0 1 0 1 0 1
A-B A-C A-D A-E B-C B-D B-E C-D C-E D-E

Table 1: The characteristic vector for the tree in Figure 2.

The locality of the encoding is high. Changing a zero to a one in the characteristic
vector adds an additional edge to the graph. However, if the graph was a tree, a cycle
would have been created. A repair mechanism is necessary that removes one of the
links in the cycle. For a tree, either none, (the previously added link is removed) or
two edges are different (another link in the cycle is removed). When changing a one
to a zero the situation is similar. The locality is the same for small changes in the
phenotype (the graph). A change of two edges (minimal mutation step) changes two
bits in the corresponding CV. Furthermore, in contrast to other encodings like Prüfer
numbers (Rothlauf & Goldberg, 2000), the locality of CVs is independent of the specific
structure of the represented tree (for example star, list, or arbitrary tree).

Every characteristic vector that represents a tree must have exactly n− 1 ones, the
represented graph must be connected, and there are no cycles allowed. This makes the
construction of trees from randomly chosen characteristic vectors demanding as most
of the randomly generated characteristic vectors are invalid, and not trees. For an n-
node network, there are 2n(n−1)/2 possible characteristic vectors, but only nn−2 valid

trees (Prüfer, 1918). The probability of randomly getting a tree is nn−2

2n(n−1)/2 < 2 ln(n)
ln(2)n <

3 ln(n)/n. The chance of randomly creating a CV that represents a tree is low (Palmer,
1994).

Randomly chosen characteristic vectors which represent a tree can be invalid in two
different ways:

• There are cycles in the tree.

• The tree is not connected.

We get a cycle for the example in Table 1 if we set the first allele (A-B) to one. This
characteristic vector does not represent a tree any more because a cycle of A-C-D-B-
A exists. If we alter any of the ones in the characteristic vector to zero we get two
disconnected trees. If A-C is switched to zero we get two disconnected trees. One
consists of the node A and the other consists of a star with center D.

Evolutionary Computation Volume 10, Number 1 5

F. Rothlauf, D.E. Goldberg and A. Heinzl

Moreover, when GEAs are used, and the genetic operators mutation and crossover
come into operation, the use of the characteristic vector is faced with some serious
problems:

• Under-specification,
• Over-specification and redundancy,
• Distinction between important and unimportant links.

Creating a new individual randomly, or by genetic operators, can produce a graph that
is not connected. The tree is not completely specified. Some links which are necessary
to connect the tree are missing. A similar problem arises with over-specification. An
individual is over-specified if there are more than n − 1 ones in the CV. The encoding
specifies more links as necessary for a valid tree. Therefore, to get a valid tree it is nec-
essary to remove some of the spare links. With the over-specification we get redundant
information, but no help on which links (redundant information) should be removed.
Some GEA approaches are not affected by over- and under-specification, and accept
invalid solutions to some extent (Orvosh & Davis, 1993; Davis, Orvosh, Cox, & Qiu,
1993). However, most of the traditional GEAs repair all infeasible solutions and use
some kind of repair mechanism. The repairing of invalid solutions is mostly done in two
steps (Berry, Murtagh, & Sugden, 1994):

• Remove links that cause cycles.
• Add links to obtain a connected graph.

When repairing a characteristic vector that should represent a tree, the cycles in the
corresponding graph must be identified. If we randomly choose the characteristic vector
~c = 1100010100 of length l = 10 for a 5 node graph, we are faced with the cycle A-C-D-
B-A. We could choose one of the links A-C, C-D, D-B or B-A and remove it randomly.
When we choose the link A-C we get ~c = 1000010100. As there are no more loops we can
stop removing links and continue checking if the graph is fully connected. As there are
only three ones in ~c, and we have a tree with 5 nodes, the graph could not be connected
and we have to randomly add one link. As the node E is separated from the rest of the
tree, a link from E to a randomly chosen node A, B, C or D, has to be added. The link
C-E is chosen and we finally get ~c = 1000010110. A closer look at the repair mechanisms
shows that the order of the repair steps does not matter.

When using the CV representation, it is difficult to decide during a GA run as
to whether a link in an infeasible offspring should be established or not, because the
algorithm can only add or delete links of an infeasible solution in a random fashion.
No information exists in the representation about which link should be removed if over-
specification happens, or which links should be added if the tree is under-specified.
Therefore, when using CVs it is not possible to distinguish between those links that are
important and those that are not. Due to the random deletion and insertion of links the
resulting offspring do not necessarily inherit the high-quality links from their parents,
but often have only few links in common with them. However, if the offspring do not
inherit the links from their parents, and the offspring mainly consist of randomly created
links, GAs can not work efficiently and perform in a similar way to random search.
To overcome this problem Palmer and Kershenbaum (1994) presented an approach for
encoding trees that uses biases for each node and modifies the cost matrix of the links
according to these biases. The represented tree is found by constructing a minimum
spanning tree using the modified cost matrix. With this approach GAs are able to
distinguish between expensive and cheap nodes and no repairing is necessary. This link

6 Evolutionary Computation Volume 10, Number 1

Network Random Keys

and node biased encoding shows interesting results and outperforms other approaches
where no biasing was used (Palmer, 1994; Abuali, Wainwright, & Schoenefeld, 1995). To
extend this idea and to consider not only the importance of the nodes, but also to enable
GAs to distinguish between the importance of links, and to overcome the problems of
CVs with redundancy and under-specification, we want to use the more general concept
of random keys for the encoding of trees.

3.3 Encoding Trees with NetKeys

We want to demonstrate how the problems that arise with the use of the characteristic
vector can be solved by using the random key encoding we described in section 2.

With NetKeys we are able to give priority to links that should be used for the
construction of a tree. As NetKeys use continuous variables that can be interpreted as
the importance of the link, it is possible to distinguish between more and less important
links. The higher the value of a key ri, the higher the probability that the link i is used
for the construction of the tree. Because NetKeys encode the importance of the links,
no problems of redundancy, over or under-specification occur. Every key sequence r
represents a valid tree. It is not necessary to use problem-specific operators. Standard
mutation and crossover operators can be used. With no under- or over-specification no
repair mechanism is necessary when using NetKeys.

The positions of the keys in the key sequence are interpreted in the same way as
for the characteristic vector. The positions are labeled and each position represents one
possible link in the tree. From a key sequence r of length l = n(n− 1)/2, a permutation
rs of l numbers can be constructed as described in section 2. The tree is constructed
from the permutation as follows:

1. Let i = 0, G be an empty graph with n nodes, and rs the permutation of length
l = n(n − 1)/2 that can be constructed from the key sequence r. All possible links
of G are numbered from 1 to l.

2. Let j be the number at the ith position of the permutation rs.

3. If the insertion of the link with number j in G would not create a cycle, then insert
the link with number j in G.

4. Stop, if there are n − 1 links in G.

5. Increment i and continue with step 2.

With this calculation rule, we can construct a unique, valid tree from every possible key
sequence.

We want to illustrate this construction rule with an example. We use the key
sequence r from Table 2 which represents a 5 node tree. The permutation rs = 10 →
8 → 6 → 9 → 2 → 7 → 1 → 5 → 4 → 3 can be constructed from r. We start
constructing the graph G by adding the link D-E (position 10) to the tree. This is
followed by adding C-D (position 8) and B-D (position 6). If we add the link C-E
(position 9) to the graph, the cycle C-E-D-C would be created, so we skip C-E and
continue by adding A-C (position 2). Now we have a tree with four edges and terminate
the construction algorithm. We have constructed the tree shown in Figure 2.

The computational effort for constructing the phenotype from the genotype is sim-
ilar for the NetKey and the characteristic vector representation. The calculation of the
permutation rs of length l from the key sequence r can be done in O(l log(l)) (sorting

Evolutionary Computation Volume 10, Number 1 7

F. Rothlauf, D.E. Goldberg and A. Heinzl

position 1 2 3 4 5 6 7 8 9 10
value 0.55 0.73 0.09 0.23 0.40 0.82 0.65 0.85 0.75 0.90
link A-B A-C A-D A-E B-C B-D B-E C-D C-E D-E

Table 2: A possible key sequence for the tree in Figure 2.

an array of l numbers). The process of constructing the graph from the permutation
rs is comparable to repairing an invalid graph that is constructed from a characteristic
vector.

The locality of the NetKey encoding is high. A mutation (changing the value of
one key) means either no change if the relative ordering is not changed, or the change
of two edges if the position of a number that corresponds to a used link changes in the
permutation rs. As the construction of the tree is based on the relative ordering of the
keys, the locality is high.

4 Test Problems

The following section presents the one-max tree problem and describes the properties of
some real-world test instances.

4.1 The One-Max Tree problem

To test the performance of optimization algorithms for the topological design of trees,
standard test problems should be used. But standard test problems are not very popu-
lar.

Most researchers define their own problems and rarely

n−2

n−20
d

i,opt

fm
in

Figure 3: The cost function for
the one-max tree minimization
problem.

use other test problems. To overcome this, and to mo-
tivate researchers to build up an open library of net-
work design problems of different size and complexity,
we introduce the standard one-max tree problem.

It is based on the one-max problem for binary
representations (Ackley, 1987). An optimal solution
(tree) is chosen either randomly or by hand. The
structure of this tree can be determined: It can be
a star, a list, or an arbitrary tree with n nodes.

For the calculation of the fitness of the individu-
als, the distance dab between two trees Ga and Gb is
used. It is defined as

dab =
1

2

n−1
∑

i=1

i−1
∑

j=0

|laij − lbij |,

where laij is 1 if the link from node i to node j exists in tree Ga and 0 if it does not exist
in Ga. This definition of distance between two trees is based on the Hamming distance
(Hamming, 1980) and dab ∈ {0, 1, . . . , n − 2}.

When using this distance metric for a minimization problem (Figure 3) the fitness of
an individual Gi is defined as the distance di,opt to the optimal solution Gopt. Therefore,
fmin

i = di,opt, and fmin
i ∈ {0, 1, . . . , n − 2}. An individual has fitness (cost) of n − 2

if it has only one link in common with the best solution. If the two individuals do not
differ (Gi = Gopt), the fitness (cost) of Gi is fmin

i = 0. When defining a maximization
problem, the fitness fmax

i of an individual Gi is defined as the number of edges it has

8 Evolutionary Computation Volume 10, Number 1

Network Random Keys

in common with the best solution Gopt. Therefore, fmax
i = n − 1 − di,opt. Because this

test problem is similar to the standard one-max-problem it is easy to solve for mutation-
based GEAs, but somewhat harder for recombination-based GAs (Goldberg, Deb, &
Thierens, 1993). The knowledge about the standard one-max problem can be used for
this one-max tree problem.

If our example tree from Figure 2 is chosen as the optimal solution and we have a
minimization problem, the star with center D would have fitness (cost) of 1, because
the two trees differ at two edges2 (di,opt = 1).

In our runs we use for Gopt either arbitrary trees, stars, or lists as best solutions.

4.2 Four Real-World Communication Tree Network Design Problems

Our communication network problems are derived from a real-world 26-node problem
from a company with locations all over Germany.

For fulfilling the demands between the nodes, different line types with discrete
capacities and cost are available. The cost for installing a line consists of a fixed and
length dependent share. Both depend on the capacity of the link. The cost are based
on the tariffs of the German Telecom from 1996 and represent the amount of money
(in German Marks) a company has to pay for renting a telecommunication line of a
specific length and capacity per month. For a detailed description of the cost structure,
demands and location of the nodes the reader is referred to Rothlauf (2001).

In problem 1 we have a 16-node problem with traffic ending only at node 1. In the
second problem, one of the nodes is removed and some additional traffic is added. The
third problem is similar to problem 1, but uses a modified cost-function for the lines.
Finally we look at a 16-node problem with traffic between all nodes.

4.2.1 Problem 1: One headquarter and 15 branch offices

This problem is the original design problem. All 15 branch offices (node 2 to 16) com-
municate only with the headquarter (node 1). Possible line capacities are 64 kBit/s, 512
kBit/s and 2048 kBit/s. The optimal solution for this problem is shown in Figure 4(a).
The complexity of the problem is low.

4.2.2 Problem 2: One headquarter and only 14 branches

If one node is left out and some additional traffic is added, finding the best solution is
slightly more involved than in problem 1. The optimal solution is shown in Figure 4(b).

4.2.3 Problem 3: One headquarter, 15 branches and cheap lines for

everybody

In the scenario shown in Figure 4(c) the cost for installing high capacity lines is only
10% of the cost in problem 1. Therefore, the cost of a link is mainly determined by its
length. Hence, the optimal structure is more like a minimum spanning tree. If the cost
of the link would be solely determined by the length of the link, and there was only one
possible capacity, the optimal solution would be the minimum spanning tree. Otherwise
the problem is exactly like problem 1.

4.2.4 Problem 4: 4 headquarters, 12 branches and all are working together

In problem 4 depicted in Figure 4(d) the demand matrix is completely filled. Some traffic
exists between every node i and j. Between the four headquarters (node 1, 2, 3 and
4) the traffic is uniformly distributed between 256 kBit/s and 512 kBit/s. Every other
node communicates with the four headquarters and has a uniform demand between 0

2A-C respectively A-D

Evolutionary Computation Volume 10, Number 1 9

F. Rothlauf, D.E. Goldberg and A. Heinzl

cost: 60883.71

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

(a) Problem 1

cost: 58619.43

1

2

3

4

5

6

7

89

10

11

12

13

14

15

(b) Problem 2

cost: 28451.76

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

(c) Problem 3

cost: 112938.45

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

(d) Problem 4

Figure 4: Optimal solutions for the four real world problems.

and 512 kBit/s. This demand is split into the headquarters at a ratio of 0.4, 0.3, 0.2 and
0.1 for the node 1, 2, 3 and 43. Between all 12 branch offices the demand of the traffic
is uniformly distributed between 0 and 64 kBit/s. To make the problem more realistic
two additional line types are available. It is possible to use lines of 128 kBit/s and 4096
kBit/s with twice the cost of 64kBit/s respectively 2048 kBit/s lines.

5 Experimental Results

This section presents a population sizing model for the one-max tree problem, and
discusses the effects of stealth mutation. Furthermore, it compares the performance
of the NetKey and the CV representation for the one-max tree problem defined in
subsection 4.1, and the real-world problem from subsection 4.2.

5.1 Population Sizing for the One-Max Tree Problem and the Effects of

Stealth Mutation

In the following we develop a population sizing model for the one-max tree problem.
For our model we only consider crossover (pcrossover = 1) and no mutation (pmut = 0).
Because GAs without mutation are not able to reproduce links (BBs) once they are lost,
the supply of good building blocks in the first generation must be ensured (Goldberg,
1989b; Goldberg, Deb, & Clark, 1992).

When extending the population sizing equation in Harik, Cantú-Paz, Goldberg, and
Miller (1997) from a binary alphabet to a χ-ary alphabet we get:

Nmin = −χk

2
ln(α)

σf

d

√
π,

where χ is the cardinality of the alphabet, α is the probability of failure, σf is the overall
variance of the function, and d is the signal difference between the best and second best
BB. For calculating σf we have to investigate how to decide among the competing BBs.
For the one-max tree problem we have to find these n − 1 links the optimal solution is
constructed from. The key sequence r that represents a tree with n nodes consists of

3Node 1 is the most important node and 40% of the traffic of the branches ends there, in node 2
30% of the traffic ends, and so on.

10 Evolutionary Computation Volume 10, Number 1

Network Random Keys

25

50

100

200

8 10 12 14 16 18 20 22 24 26
m

in
im

um
 p

op
ul

at
io

n
si

ze
 N

m
in

problem size n

experimental results
prediction

Figure 5: Minimum pop size Nmin for NetKeys over the problem size n for the one-
max tree problem. The probability of finding the optimal solution is Pn = 0.95. The
population size goes with O(n1.5).

l = n(n − 1)/2 different keys. For the construction of the tree these n − 1 keys ri are
used that have the highest value. Therefore, we can split the n(n−1)/2 different keys ri

in n/2 different groups of size (n− 1). Finding the optimal solution means that all keys
ri with the links i contained in the optimal solution can be found in one group which
is considered for the construction of the tree and thus contains the keys with the n − 1
highest values of ri. A good decision among competing BBs means deciding between the
n/2 different groups of size n − 1 and identifying the correct one. A key ki can belong
either to the one group that is considered for the construction of the tree (the key has
a high value), or to one of the n − 2 groups that are not considered. This is similar to
the needle in a haystack model and the standard deviation for such a case is (Goldberg,
Deb, & Clark, 1992)

σf =

√

2l(n− 2)

n
=

√

(n − 1)(n − 2)

n
≈

√
n.

As we have n/2 different groups, the cardinality χ of the alphabet can be assumed to
be n/2 (compare Goldberg (1990). Using these results and with k = 1 (the one-max
tree problem is fully easy, and there are no interdependencies between the alleles), and
d = 1, we get an approximation for the population size Nmin:

Nmin = −
√

π

4
ln(α)

√

n(n − 1)(n − 2) ≈ −
√

π

4
ln(α)n1.5.

The necessary population size Nmin goes with O(n1.5).
In Figure 5, both the theoretical prediction from above, and the experimental results

for the minimum necessary population size Nmin that is necessary for solving the one-
max tree problem with probability Pn = 1−α = 0.95, are shown over the problem size n.
We use a simple GA with tournament selection without replacement of size 3, uniform
crossover and the NetKey encoding. We perform 500 runs for each population size and
for N > Nmin the GA is able to find the optimum with probability p = 0.95 (α = 0.05).
Although, we have to make some assumptions in our derivation, and the exact influence

Evolutionary Computation Volume 10, Number 1 11

F. Rothlauf, D.E. Goldberg and A. Heinzl

of the construction algorithm of the phenotype from the encoding is difficult to describe
theoretically, the population sizing model gives us a good approximation of the expected
population size N which goes with O(n1.5).

When comparing the results for NetKeys with those of the CV encoding we have
to consider the influence of the repair process. In subsection 3.2, we have seen that
the repair process fixes under-specified individuals by inserting links randomly. As a
result, we still get mutation when we use characteristic vectors though we only want to
consider the performance of selectorecombinative GAs and therefore used no mutation.
This effect caused by the repair process should be denoted as stealth mutation. New links
are created during the GA-run, even if they are not present in the start population, or
not properly mixed and lost. Therefore, stealth mutation results in some supply of BBs
during the run when using CVs.

We have seen that the one-max tree problem is similar to the standard one-max
problem. Because mutation-based search performs better for this easy problem in com-
parison to crossover-based search alone (Goldberg, Deb, & Thierens, 1993), stealth
mutation should also increase the performance of GAs using CVs for the easy one-max
tree problem. To investigate this effect some experiments concerning the influence of
mutation and stealth mutation were performed. The results have shown that even with
small population sizes GAs using CVs always find the optimal solution due to stealth
mutation. However the run duration strongly increases and GAs need many more gen-
erations to find the optimal solution. The same behavior was obtained for GAs using
NetKeys when we added some additional mutation. As a result we expect stealth mu-
tation to improve the performance of GAs using CVs especially when solving small and
easy one-max tree problems.

5.2 Optimization Parameters

For our empirical investigation we use a simple genetic algorithm with different selection
schemes and crossover operators. The simple GA is based on Goldberg’s basic imple-
mentation (Goldberg, 1989a) with the roulette wheel selection procedure replaced with
one of two possibilities described in the next paragraph. For recombination either one-
point or uniform crossover is used. We do not use mutation as we want to investigate the
effect of recombination alone, and to eliminate finding the optimal crossover-mutation
ratio for every specific problem. Furthermore, we assume that mutation only works as a
local search operator in the background, and that no significant differences in the results
when adding some additional mutation are expected.

For selection we use either tournament selection of size 3, or a deterministic (µ+λ)
selection (Bäck & Schwefel, 1995). In each generation λ individuals are created from
the µ parent individuals. Then the new λ individuals are examined and the µ best are
chosen from all µ + λ individuals. One consequence of this strategy is that a once found
good solution can only be replaced by a better one.

To gain statistical evidence from the results, 100 runs were performed and the
significance of the results was tested with a t-test for each parameter setting. For
minimizing the one-max tree problem the population size N for the runs was set to
2 ∗ Nmin. Nmin was determined by experiment for one-point crossover and for the
probability of failure α = 0.01. As a result, when using the population size N = 2∗Nmin

the optimal solution for the one-max problem was found in all GA runs. For the real
world telecommunication problem the population size N for the SGA was set to 2000 in
all runs.

12 Evolutionary Computation Volume 10, Number 1

Network Random Keys

5.3 Performance of the NetKey Encoding for the One-Max Tree Problem

We want to compare the efficiency of the NetKey encoding, and the characteristic vector
representation for the one-max tree problem from subsection 4.1.

We investigated the performance of the two representations for a 12, 16, 20 and 26
node one-max tree minimization problem with Gopt as an arbitrary tree (12, 20, and
26 nodes), or a list, star, or arbitrary tree (16 nodes). As the population size is set to
N = 2∗Nmin the optimal solution is found in all runs. In Table 3 the results for different
selection and crossover schemes are presented. The mean µ and the standard deviation
σ of the number of generations that are necessary for finding Gopt is shown. A t-test is
performed on the means µNetKey and µcv and the probability pT that the two samples
are taken from the same universe is shown.

For 20 and 26 node trees, SGAs using NetKeys are always highly significantly
better than when using CVs (pT < 0.001). A SGA with tournament selection, uniform
crossover and NetKeys needs the smallest number of generations for finding the optimal
solution for all different tree sizes (highly significantly with pT < 0.001).

In Mühlenbein and Schlierkamp-Voosen

5

10

15

20

25

30

35

40

10 12 14 16 18 20 22 24 26 28

ru
n

du
ra

tio
n

t c
on

v

problem size n

NetKeys
CVs

Figure 6: Run duration tconv over prob-
lem size n for the one-max tree problem
using tournament selection and uniform
crossover.

(1993), and Thierens and Goldberg (1994),
the time until convergence is defined as
tconv = π

√
l/2I with the selection intensity I

and the string length l. I depends only on the
used selection scheme. With l = n(n − 1)/2
we get tconv/n ≈ const. In Table 3 it could
be seen that when using NetKeys, tconv/n
is about constant for different n. NetKeys
behave according to the predicted behavior.
When using CVs, tconv/n increases with larger
n which indicates that GAs with CVs struggle
more because of more repair and stealth mu-
tation. The search for good solutions depends
mainly on the random effects of mutation than
on recombination. With larger problem size n
of the one-max tree problem, the performance
of GAs using NetKeys increases in comparison
to when using CVs. This can be explained by
assuming that for simple problems, the stealth
mutation of the CV helps the GA to regain

lost links randomly. With higher problem size, the probability of randomly finding the
correct link decreases, the performance of the characteristic vector encoding is reduced,
and the NetKey representation becomes better in comparison to the CV. To illustrate
this more clearly in Figure 6 we show, using the results from Table 3, the run du-
ration tconv over the problem size n for tournament selection and uniform crossover.
For NetKeys tconv grows as predicted linearly with increasing n, whereas with CVs the
increase is much larger and not linear any more.

To investigate if there are any structural dependent influences on the performance
of GAs, we compare in Table 3 the case that Gopt is a tree with Gopt is a list, or a star,
for a 16 node tree. SGAs show the same behavior as for trees and their performance is
independent of the structure of the optimal solution. Tournament selection with uniform
crossover and NetKeys performs significantly better than all other parameter settings.

In Figure 7 the averaged lowest cost for the 100 runs is plotted over the number of

Evolutionary Computation Volume 10, Number 1 13

F. Rothlauf, D.E. Goldberg and A. Heinzl

generations for 16, 20 and 26 node trees and Gopt is a tree. As an extension to Table 3 we
wanted to know not only how many generations are necessary to find Gopt, but if there
are any differences in the convergence behavior of the GAs for the different encodings.
The convergence and search behavior of the GAs for the different parameter settings
show the same properties as in Table 3. GAs using uniform crossover and NetKeys
perform the best, NetKeys are better than characteristic vectors, uniform is better than
one-point crossover, and tournament selection outperforms (µ + λ) selection. It could
be seen that with increasing problem size n, GAs with NetKeys are significantly better
than with CVs.

n
pop
size
N

type

tconv (in generations)
tournament selection µ + λ selection

1-point uniform 1-point uniform
NetKey CV NetKey CV NetKey CV NetKey CV

12 600 tree
µ 9.43 9.71 7.48 9.03 15.25 14.4 11.6 12.73
σ 1.27 1.30 0.82 1.00 1.76 1.68 1.13 1.31
pT 0.13 < 0.001 < 0.001 < 0.001
tconv/n 0.79 0.81 0.62 0.75 1.27 1.20 0.97 1.06

16 1600

tree
µ 13.62 14.55 10.16 14.75 20.73 21.37 15.89 18.96
σ 1.29 1.34 0.69 1.10 1.86 1.84 1.11 1.24
pT < 0.001 < 0.001 0.015 < 0.001
tconv/n 0.85 0.91 0.64 0.92 1.30 1.34 0.99 1.19

star
µ 14.84 16.09 9.78 18.08 22.45 23.56 14.99 21.08
σ 3.30 5.21 0.66 1.61 4.52 5.95 1.02 1.24
pT 0.044 < 0.001 0.14 < 0.001
tconv/n 0.93 1.01 0.61 1.13 1.40 1.47 0.94 1.32

list
µ 14.03 13.86 10.54 13.53 21.56 20.23 16.42 18.28
σ 1.18 1.12 0.83 1.05 1.87 1.63 0.82 1.25
pT 0.30 < 0.001 0.015 < 0.001
tconv/n 0.88 0.87 0.66 0.85 1.35 1.26 1.03 1.14

20 3200 tree
µ 17.2 19.74 12.7 21.15 26.25 28.37 19.34 25.81
σ 1.35 1.90 0.58 1.62 2.03 2.25 1.00 1.33
pT < 0.001 < 0.001 < 0.001 < 0.001
tconv/n 0.86 0.99 0.64 1.06 1.31 1.42 0.97 1.29

26 5700 tree
µ 22.61 28.24 16.16 34.46 35.15 39.14 24.6 36.32
σ 1.53 2.52 0.71 2.17 2.89 2.95 0.93 1.38
pT < 0.001 < 0.001 < 0.001 < 0.001
tconv/n 0.87 1.09 0.62 1.33 1.35 1.51 0.95 1.40

Table 3: A comparison of the performance of a simple GA using NetKeys versus CVs
for the one-max tree problem. We show for different problem sizes n and corresponding
population sizes N = 2Nmin the mean µ and standard deviation σ of the number of
generations that are necessary for finding Gopt. pT is the probability that µNetKey and
µcv are taken from the same universe. The results show that GAs using NetKeys find the
optimal solution faster independently of the used crossover and selection scheme than
when using CVs. As predicted tconv/n stays constant for NetKeys, whereas it increases
for CVs with increasing problem size.

14 Evolutionary Computation Volume 10, Number 1

Network Random Keys

SGAs using the NetKey representation show some advantage in comparison to the
CV representation. However, the results are muddied by stealth mutation. With increas-
ing problem size the effect of the stealth mutation increases, SGAs using CVs perform
more random search-like, and SGAs using NetKeys always perform significantly better
than with CVs.

5.4 Performance of the NetKey Encoding for a Real-World

Telecommunication Tree Network Design Problem

We want to test the performance of the NetKey encoding on the real-world problem
from subsection 4.2. We only show results for uniform crossover, because in our runs
uniform crossover generally outperformed one-point crossover.

Figure 8 compares the performance of GAs using NetKeys with using the CV en-
coding for the telecommunication tree network design problem. The problem complexity
increases from problem 1 (figure 8(a)) to problem 4 (figure 8(d)). We show the perfor-
mance of GAs with different selection schemes (tournament and µ + λ selection) for
NetKey versus CV encoding.

The comparison between NetKeys and CVs reveals performance differences for dif-
ferent problem complexity. In all four problems the convergence speed was significantly
higher when using NetKeys in comparison to CVs. Because of the stealth mutation,
SGAs with CVs continue finding better solutions even when SGAs with NetKeys are
already converged. But as the stealth mutation only works very slowly it could not
compensate the lack of performance of the CVs in comparison to the NetKeys. For the
simple problem 1 (figure 8(a)) the NetKeys perform slightly better than CVs. With
increasing problem complexity the differences become larger. For problems 3 (figure
8(c)) and 4 (figure 8(d)) CVs could not find the optimum independently of the selection
scheme in a reasonable amount of time.

In Table 4 we summarize the results and present the mean µ and the standard devi-
ation σ of the best solution after 50 generations averaged over 100 runs. The percentage
by which the best solutions’ cost at the end of the run exceeded the cost of the known
best solution is indicated by pw = cost/costopt − 1 in percent. pw = 0 indicates that
the optimal solution is found in all runs. A SGA with (µ + λ) selection and NetKeys
is able to find solutions that are on average no more than 0.1% worse than the optimal
solution in all four problems. For problem 2 the optimal solution even was found in all
runs. However, SGAs with CVs and (µ + λ) selection find solutions that are on average
2.8% worse than the optimum. The results are even worse for CVs with tournament
selection. For all four problems GAs using NetKeys find solutions that are on average
not worse than 0.77% in comparison to the optimum. When using CVs the distance
to the optimum is up to more than 13%. Both the convergence speed and the solution
quality at the end of the run show a strong advantage for the NetKey representation.

For the real-world problem we observe the same behavior of GAs as for the one-
max tree problem. Due to the stealth mutation, NetKeys are only slightly better than
CVs for long run durations and simple problems, whereas they generally converge much
faster to the optimal solution. However, if the problems become more complex, SGAs
with NetKeys remain very robust and are able to solve the problem quickly and easily,
whereas CVs rarely find the optimal solution.

6 Future Research

Based on this study, the following topics require further investigation:

• Use of evolution strategies and mutation with the NetKey representation.

Evolutionary Computation Volume 10, Number 1 15

F. Rothlauf, D.E. Goldberg and A. Heinzl

0

2

4

6

8

0 5 10 15 20 25

fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l

generations

NetKeys and one-point crossover
CVs and one-point crossover

NetKeys and uniform crossover
CVs and uniform crossover

(a) n = 16 and (µ + λ) selection

0

2

4

6

8

0 5 10 15 20 25

fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l

generations

NetKeys and one-point crossover
CVs and one-point crossover

NetKeys and uniform crossover
CVs and uniform crossover

(b) n = 16 and tournament selection

0

2

4

6

8

10

12

0 5 10 15 20 25 30

fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l

generations

NetKeys and one-point crossover
CVs and one-point crossover

NetKeys and uniform crossover
CVs and uniform crossover

(c) n = 20 and (µ + λ) selection

0

2

4

6

8

10

12

0 5 10 15 20 25 30

fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l

generations

NetKeys and one-point crossover
CVs and one-point crossover

NetKeys and uniform crossover
CVs and uniform crossover

(d) n = 20 and tournament selection

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l

generations

NetKeys and one-point crossover
CVs and one-point crossover

NetKeys and uniform crossover
CVs and uniform crossover

(e) n = 26 and (µ + λ) selection

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l

generations

NetKeys and one-point crossover
CVs and one-point crossover

NetKeys and uniform crossover
CVs and uniform crossover

(f) n = 26 and tournament selection

Figure 7: Fitness of the best individual over the number of generations for the 16 (top),
20 (middle) and 26 (bottom) node one-max tree problem. The best solution is an arbi-
trary tree. SGAs using NetKeys generally perform better than when using characteristic
vectors. The higher the problem size, the better NetKeys are in comparison to CVs.

16 Evolutionary Computation Volume 10, Number 1

Network Random Keys

60000

65000

70000

75000

80000

85000

0 5 10 15 20 25 30 35 40 45 50

fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l

generations

NetKeys and tournament selection
CVs and tournament selection

NetKeys and (µ+λ) selection
CVs and (µ+λ) selection

(a) Problem 1

60000

65000

70000

75000

80000

0 5 10 15 20 25 30 35 40 45 50

fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l

generations

NetKeys and tournament selection
CVs and tournament selection

NetKeys and (µ+λ) selection
CVs and (µ+λ) selection

(b) Problem 2

28000

30000

32000

34000

36000

38000

40000

0 5 10 15 20 25 30 35 40 45 50

fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l

generations

NetKeys and tournament selection
CVs and tournament selection

NetKeys and (µ+λ) selection
CVs and (µ+λ) selection

(c) Problem 3

115000

120000

125000

130000

135000

140000

145000

150000

155000

0 5 10 15 20 25 30 35 40 45 50

fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l

generations

NetKeys and tournament selection
CVs and tournament selection

NetKeys and (µ+λ) selection
CVs and (µ+λ) selection

(d) Problem 4

Figure 8: We compare the performance of SGAs for the four real-world problems using
NetKeys and CVs. The plots show the fitness (cost) of the best individual over the
number of generations. SGAs generally perform better with NetKeys than with CVs.
The higher the problem complexity, the better SGAs perform with NetKeys. For com-
plex problems (problem 4), GAs using CVs could not find the optimal solution in a
reasonable amount of time.

Evolutionary Computation Volume 10, Number 1 17

F. Rothlauf, D.E. Goldberg and A. Heinzl

problem
number

Cost cost of best solution after 50 runs
of best tournament selection (µ + λ) selection
solution NetKey CV NetKey CV

1 60 883.71
µ 61 351.33 62 566.87 60 886.62 61 525.47
σ 145 431 40 225
pw 0.77% 2.76% 0.00% 1.05%

2 58 619.43
µ 58 623.06 60 062.01 58 619.43 58 829.77
σ 20 290 0 108
pw 0.01% 2.46% 0.00% 0.36%

3 28 451.76
µ 28 513.59 31 195.79 28 462.53 29 268.9
σ 145 431 40 225
pw 0.22% 9.64% 0.04% 2.87%

4 112 938.45
µ 113 310.25 128 106.06 113 056.74 115 156.54
σ 880 3806 93 816
pw 0.33% 13.43% 0.10% 1.96%

Table 4: Fitness of the best individual after 50 generations for the four real-world
problems. We show the mean µ and the standard deviation σ of the cost of the best
solution after 50 generations. pw is the distance to the optimal solution in percent.

• Use of NetKeys for general network topologies.

• Creation of test library for network problems.

• Properties of the NetKeys in comparison to other tree encodings.

• More theoretical investigation in representations.

• Use of NetKeys in combination with competent GAs.

• Different tree representations in the field of genetic programming.

In the remainder of this section, each of these items is briefly considered.
In this work we have used NetKeys only with selectorecombinative GAs. Based

on the observations made, and the good performance of mutation-based approaches for
continuous problems, we strongly believe that using evolution strategies or introducing
mutation, could improve the performance of GEAs with NetKeys, and would give us an
even more powerful optimization method for many real-world applications.

In this work the use of random keys is restricted to trees. In principle NetKeys
could also be used for meshed networks. This could easily be done by introducing a
measurement for the meshedness of the network. The higher the meshedness of the
network, the more links that are used for constructing the graph, and the more links
which are present in the network.

Trying to compare the encodings under controlled conditions has convinced us that
more boundedly difficult standard test problems are needed. The one-max tree prob-
lem was one attempt to develop such a library of problems with different sizes and
complexities for optimizing network structures. The development of deceptive problems
(compare Kargupta, Deb, and Goldberg (1992)) could make life for GEAs more diffi-
cult, and comparisons between different operators and encodings easier. Deceptive tree
problems could be created in a similar manner as that presented in the one-max tree
problem.

In this work NetKeys were compared only to the characteristic vector representa-
tion. Elsewhere (Rothlauf & Goldberg, 2000) it has been shown that the Prüfer number

18 Evolutionary Computation Volume 10, Number 1

Network Random Keys

encoding, that can also be used for representing trees, performs worse than the charac-
teristic vectors because of the low locality of this encoding. Palmer and Kershenbaum
(1994) proposed the link and node biased encoding that uses a similar, but less general
concept, for distinguishing between important and unimportant links. It was compared
in Abuali, Wainwright, and Schoenefeld (1995) to some other representations and showed
good performance. A more exhaustive investigation into the properties and performance
of the existing tree encodings is necessary.

The theoretical results about population sizing and convergence time we get for the
NetKeys using available theory give us good predictions of the empirical performance
of the representation. This kind of approach should be used more widely because it
could help researchers in evaluating and designing encodings in a more theory-guided
manner. If existent theoretical models were more frequently used by practitioners, the
choice between different encodings could be performed more systematically. When us-
ing a network representation for a problem of unknown complexity, a good theoretical
understanding of encodings is often more helpful than only empirical results.

Competent GAs were used successfully for scheduling problems using random keys
(Knjazew & Goldberg, 2000b). It would be interesting to use these more efficient GAs
for network design problems and to overcome some of the problems caused by the use of
traditional GAs. Especially if the problems are boundedly deceptive, those algorithms
would result in a more powerful optimization method.

An interesting question in this context is how different encoding possibilities of
trees affect the field of genetic programming. One strength of GEAs is that the search
process works on the genotype and not on the phenotype of a problem. Therefore, it
is not necessary to define specific operators for every problem, and standard operators
with known properties could be used. In the field of genetic programming, currently
the encoding of the tree structure is not important because the operators modify the
phenotypical structure of the tree and not the underlying representation. However, to
develop and use genetic programming operators not on the phenotypical structure of
the tree but on the encoding, could result in more general operators, and in less effort
for developing specific operators for each different problem.

7 Conclusions

This paper performed a number of functions. We started by reviewing the use of ran-
dom keys in ordering and permutation problems. Some of the properties of random
keys were then described and a method of using random keys for tree network design
called network random keys (NetKeys) was developed. We described the characteristic
vector representation that could also be used for the encoding of trees and illustrated
an effect called stealth mutation that can arise in intersection with genetic algorithms
using selection and crossover. We analyzed the properties of the characteristic vector
and compared it to the NetKeys. An easy test function (one-max tree problem) was
developed in analogy to the one-max problem (Ackley, 1987). In addition to this, a real-
world problem with four different scenarios was presented to investigate the performance
of the two different encodings. We made some predictions about population sizing and
run duration for the one-max tree problem by using existing GA theory for the NetKey
encoding. A comparison of the NetKeys to the characteristic vector representation was
done using a variety of selection and crossover operators both for the real-world and the
one-max tree problem. Finally we presented directions of future research.

These results suggest that the use of the characteristic vector encoding is affected
by some serious theoretical problems with over- and under-specification, as well as dis-

Evolutionary Computation Volume 10, Number 1 19

F. Rothlauf, D.E. Goldberg and A. Heinzl

tinction between the importance of the links that should be used for constructing a tree.
NetKeys overcome those problems in theory as they do not use repair mechanisms, and
they are able to distinguish between important and unimportant links. This is possible
because NetKeys encode the structure of a tree as an ordered sequence of links, whereas
the characteristic vector representation only encodes whether a link is established or
not. Although the empirical results are muddied by stealth mutation that favors the
CV representation, it could be seen that for small and very simple tree problems a
selectorecombinative simple genetic algorithm using NetKeys shows some advantage rel-
ative to CVs especially with tournament selection and uniform crossover. For larger
and more complex problems, using NetKeys generally speeds up the SGA significantly
in comparison to characteristic vectors both for the one-max tree problem and the real-
world problem. The empirical results support the theoretical assertions and show that
genetic and evolutionary algorithms work faster and more reliably with NetKeys than
with characteristic vectors.

Based on the presented results we encourage further study of NetKeys for encod-
ing both trees and other networks. Our simple application of time-to-convergence and
population-size theory gave good predictions in the empirical investigations. We believe
that deeper application of this theory should be advantageous. For a controlled com-
parison and test of representations, operators, and algorithms a test-suite of scalable
and boundedly difficult problems is necessary. We recommend that such a library be
built because only with bounding test problems can the performance of genetic and
evolutionary algorithms be investigated systematically and be assured to work in other
less taxing circumstances. Finally, even though more work is needed, we believe that
the results presented are sufficiently compelling to immediately recommend increased
application of the NetKey encoding in real-world applications.

References

Abuali, F. N., Wainwright, R. L., & Schoenefeld, D. A. (1995). Determinant factor-
ization: A new encoding scheme for spanning trees applied to the probabilistic
minimum spanning tree problem. In Eschelman, L. (Ed.), Proceedings of the Sixth

International Conference on Genetic Algorithms (pp. 470–477). San Francisco,
CA: Morgan Kaufmann.

Ackley, D. H. (1987). A connectionist machine for genetic hill climbing. Boston:
Kluwer Academic.

Bäck, T., & Schwefel, H.-P. (1995). Evolution strategies I: Variants and their com-
putational implementation. In Winter, G., Périaux, J., Galán, M., & Cuesta, P.
(Eds.), Genetic Algorithms in Engineering and Computer Science (Chapter 6, pp.
111–126). Chichester: John Wiley and Sons.

Bean, J. C. (1992, June). Genetics and random keys for sequencing and optimization

(Technical Report 92-43). Ann Arbor, MI: Department of Industrial and Opera-
tions Engineering, University of Michigan.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimiza-
tion. ORSA Journal on Computing, 6 (2), 154–160.

Berry, L. T. M., Murtagh, B. A., & Sugden, S. J. (1994). A genetic-based approach to
tree network synthesis with cost constraints. In Zimmermann, H. J. (Ed.), Second

European Congress on Intelligent Techniques and Soft Computing - EUFIT’94,
Volume 2 (pp. 626–629). Promenade 9, D-52076 Aachen: Verlag der Augustinus
Buchhandlung.

20 Evolutionary Computation Volume 10, Number 1

Network Random Keys

Davis, L., Orvosh, D., Cox, A., & Qiu, Y. (1993). A genetic algorithm for survivable
network design. See Forrest (1993), pp. 408–415.

Forrest, S. (Ed.) (1993). Proceedings of the Fifth International Conference on Genetic

Algorithms. San Mateo, CA: Morgan Kaufmann.

Fox, B. R., & McMahon, M. B. (1991). Genetic operators for sequencing problems.
In Rawlins, G. J. E. (Ed.), Foundations of Genetic Algorithms (pp. 284–300). San
Mateo, CA: Morgan Kaufmann.

Goldberg, D. E. (1989a). Genetic algorithms in search, optimization, and machine

learning. Reading, MA: Addison-Wesley.

Goldberg, D. E. (1989b). Sizing populations for serial and parallel genetic algorithms.
In Schaffer, J. D. (Ed.), Proceedings of the Third International Conference on

Genetic Algorithms (pp. 70–79). San Mateo, CA: Morgan Kaufmann.

Goldberg, D. E. (1990, September). Real-coded genetic algorithms, virtual alphabets,

and blocking (IlliGAL Report No. 90001). Urbana, IL: University of Illinois at
Urbana-Champaign.

Goldberg, D. E., Deb, K., & Clark, J. H. (1992). Genetic algorithms, noise, and the
sizing of populations. Complex Systems, 6 , 333–362.

Goldberg, D. E., Deb, K., Kargupta, H., & Harik, G. (1993). Rapid, accurate op-
timization of difficult problems using fast messy genetic algorithms. See Forrest
(1993), pp. 56–64.

Goldberg, D. E., Deb, K., & Thierens, D. (1993). Toward a better understanding of
mixing in genetic algorithms. Journal of the Society of Instrument and Control

Engineers , 32 (1), 10–16.

Hamming, R. (1980). Coding and information theory. Prentice-Hall.

Harik, G. R., Cantú-Paz, E., Goldberg, D. E., & Miller, B. L. (1997). The gambler’s
ruin problem, genetic algorithms, and the sizing of populations. In Bäck, T. (Ed.),
Proceedings of the Forth International Conference on Evolutionary Computation

(pp. 7–12). New York: IEEE Press.

Kargupta, H., Deb, K., & Goldberg, D. E. (1992). Ordering genetic algorithms and
deception. In Männer, R., & Manderick, B. (Eds.), Parallel Problem Solving from

Nature- PPSN II (pp. 47–56). Amsterdam: Elsevier Science.

Knjazew, D. (2000). Application of the fast messy genetic algorithm to permutation

and scheduling problems (IlliGAL Report No. 2000022). Urbana, IL: University of
Illinois at Urbana-Champaign.

Knjazew, D., & Goldberg, D. E. (2000a). Large-scale permutation optimization with

the ordering messy genetic algorithm (IlliGAL Report No. 2000013). Urbana, IL:
University of Illinois at Urbana-Champaign.

Knjazew, D., & Goldberg, D. E. (2000b). OMEGA- ordering messy ga: Solving per-

mutation problems with the fast messy genetic algorithm and random keys (IlliGAL
Report No. 2000004). Urbana, IL: University of Illinois at Urbana-Champaign.

Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive models for the breeder
genetic algorithm: I. Continuous parameter optimization. Evolutionary Computa-

tion, 1 (1), 25–49.

Norman, B. A. (1995). Scheduling using the random keys genetic algorithm. unpub-
lished PhD thesis, University of Michigan, Ann Arbor, Michigan.

Evolutionary Computation Volume 10, Number 1 21

F. Rothlauf, D.E. Goldberg and A. Heinzl

Norman, B. A., & Bean, J. C. (1994). Random keys genetic algorithm for job shop

scheduling (Tech. Rep. No. 94-5). Ann Arbor, MI: The University of Michigan.

Norman, B. A., & Bean, J. C. (1997). Operation sequencing and tool assignment for
multiple spindle CNC machines. In Proceedings of the Forth International Confer-

ence on Evolutionary Computation (pp. 425–430). Piscataway, NJ: IEEE.

Norman, B. A., & Bean, J. C. (2000). Scheduling operations on parallel machines.
IEE Transactions , 32 (5), 229–460.

Norman, B. A., & Smith, A. E. (1997). Random keys genetic algorithm with adap-
tive penalty function for optimization of constrained facility layout problems. In
Proceedings of the Forth International Conference on Evolutionary Computation

(pp. 407–411). Piscataway, NJ: IEEE.

Norman, B. A., Smith, A. E., & Arapoglu, R. A. (1998). Integrated facility design
using an evolutionary approach with a subordinate network algorithm. In Eiben,
A. E., Bäck, T., Schoenauer, M., & Schwefel, H.-P. (Eds.), Parallel Problem Solving

from Nature, PPSN V (pp. 937–946). Berlin: Springer-Verlag.

Orvosh, D., & Davis, L. (1993). Shall we repair? Genetic algorithms, combinatorial
optimization, and feasibility constraints. See Forrest (1993), pp. 650.

Palmer, C. C. (1994). An approach to a problem in network design using genetic

algorithms. unpublished PhD thesis, Polytechnic University, Troy, NY.

Palmer, C. C., & Kershenbaum, A. (1994). Representing trees in genetic algorithms. In
Proceedings of the First IEEE Conference on Evolutionary Computation, Volume 1
(pp. 379–384). Piscataway, NJ: IEEE Service Center.

Prüfer, H. (1918). Neuer Beweis eines Satzes über Permutationen. Archiv für Mathe-

matik und Physik , 27 , 742–744.

Rothlauf, F. (2001). Towards a theory of representations for genetic and evolutionary

algorithms: Development of basic concepts and their application to binary and tree

representations. Doctoral dissertation, University of Bayreuth/Germany.

Rothlauf, F., & Goldberg, D. E. (2000). Prüfernumbers and genetic algorithms: A
lesson on how the low locality of an encoding can harm the performance of GAs.
In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J. J.,
& Schwefel, H.-P. (Eds.), Parallel Problem Solving from Nature, PPSN VI (pp.
395–404). Berlin: Springer-Verlag.

Sinclair, M. C. (1995). Minimum cost topology optimisation of the COST 239 Euro-
pean optical network. In Pearson, D. W., Steele, N. C., & Albrecht, R. F. (Eds.),
Proceedings of the 1995 International Conference on Artificial Neural Nets and

Genetic Algorithms (pp. 26–29). New York: Springer-Verlag.

Tang, K. S., Man, K. F., & Ko, K. T. (1997). Wireless LAN desing using hierarchi-
cal genetic algorithm. In Bäck, T. (Ed.), Proceedings of the Seventh International

Conference on Genetic Algorithms (pp. 629–635). San Francisco: Morgan Kauf-
mann.

Thierens, D., & Goldberg, D. E. (1994). Convergence models of genetic algorithm
selection schemes. In Davidor, Y., Schwefel, H.-P., & Männer, R. (Eds.), Parallel

Problem Solving from Nature- PPSN III (pp. 119–129). Berlin: Springer-Verlag.

22 Evolutionary Computation Volume 10, Number 1

