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Abstract

This paper presents two gravity models for the estimation of air passenger volume between city-pairs. The models include variables

describing the general economic activity and geographical characteristics of city-pairs instead of variables describing air service

characteristics. Thus, both models can be applied to city-pairs where currently no air service is established, historical data is not available,

or for which factors describing the current service level of air transportation are not accessible or accurately predictable. One model is

limited to city-pairs with airports not subject to competition from airports in the vicinity, while the other model includes all city-pairs.

Booking data of flights between Germany and 28 European countries is used for calibration. Both models show a good fit to the observed

data and are statistically tested and validated.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Demand forecasts are used by airlines to predict the
travel behavior of potential passengers. Accurate forecasts
are of major importance for an airline’s overall success. An
important element in forecasting is passenger volume
estimation. The objective is to predict the number of
expected passengers between two cities for a given time
interval. Based on such forecasts, airlines can make
decisions regarding new routes or additional flights on
existing routes.

A variety of different techniques exist for passenger
volume estimation. Since no single technique guarantees
accuracy, airlines in fact compare forecasts from several
different models. Within this set of forecasting methods,
the most widely used is the gravity model.

Two gravity models for the estimation of passenger
volume between city-pairs are examined here. By excluding
service-related or market-specific input variables, and using
cross-sectional calibration data, the models are particularly
applicable to city-pairs where no air service exists,
historical data is unavailable, or factors describing the
current service level of air transportation are not available.
e front matter r 2007 Elsevier Ltd. All rights reserved.
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2. Air travel demand forecasting

2.1. Driving forces

In Gravity models it is assumed that air travel supports
other targeted activities such as business or vacation trips
(O’Connor, 1982), and that it can be derived from other
selected economic or social supply variables. In general,
these variables can be categorized into two groups: geo-
economic and service-related factors (Rengaraju and
Thamizh Arasan, 1992; Kanafani, 1983). Geo-economic
factors describe the economic activities and geographical
characteristics of the areas around the airports and the
routes involved (Jorge-Calderón, 1997). Service-related
factors are characteristics of the air transport system and
are, in contrast to geo-economic factors, under the control
of the airlines.
Geo-economic factors involve the economic activities and

geographical characteristics of cities served by an airline. The
most commonly used activity-related factors are income and
the population of the metropolitan area served. A more
aggregate measure can be the historical passenger volumes at
each airport (Doganis, 1966). Other activity-related variables
that have been used are income distribution, percentage of
university degree holders, number of full-time employees, type
of city, employment composition, structure of the local
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production sector, and economic, political and cultural
relationships between two countries (Russon and Riley,
1993). An important geographical factor affecting inter-city
air travel demand is the distance between cities. It has two
conflicting effects: increasing distance leads to lower social and
commercial interactions but longer distances increase the
competitiveness of air transport compared to other transporta-
tion modes (Jorge-Calderón, 1997). Competition between
airports in close proximity also influences demand. For
example, an airport offering better schedules may attract more
passengers than airports in closer proximity (Ubøe, 2004;
Fotheringham, 1983b; Fotheringham and Webber, 1980).

The main service-related factors focus on the quality and
the price of airline service (Jorge-Calderón, 1997). Various
studies have looked at factors influencing airline service
quality (Gardner Jr., 2004; Ghobrial and Kanafani, 1995;
Gursoy et al., 2003; Park et al., 2004). Travel time between
cities, often represented as the difference between the
desired departure time of a passenger and the actual arrival
time, is generally found important. Travel time partly
depends on the frequency of flights offered because with
increasing frequency, passengers are able to select a flight
that departs closer to their preferred time. The average load
factor also influences travel time as it indicates the
probability of free seats at the preferred departure time.
An airline’s overall on-time performance is another factor
as flight delays increase the travel times. Also relevant for
service quality are an airline’s reputation, market presence,
frequent flyer membership programs, and aircraft equip-
ment. In general, the demand for air travel decreases with
increasing fares. On short-haul routes, airlines face
competition of other modes that gain a relative advantage
with increasing airfares (Jorge-Calderón, 1997). A survey
of German passengers showed that 52% would not have
traveled at all if no low-priced low-cost airline flights had
been available (Tacke and Schleusener, 2003). However,
some reject consideration of air fares when forecasting
demand. Often, the airfare is highly correlated with the
distance or travel time and is omitted to avoid issues of
multicollinearity (Rengaraju and Thamizh Arasan, 1992).
It may also be assumed an exogenous factor; an airline has
only limited control over price in competitive markets
(O’Connor, 1982). In addition, it is difficult for airlines to
forecast fares reliably because determinants such as oil
prices are highly volatile and hard to predict (Doganis,
2004). Finally, the use of average fares is problematic
because fares often depend on route density and competi-
tion as well as on the fare classes (Lee, 2003). Jorge-
Calderón (1997), for example, showed that air travel
demand is price inelastic with respect to the unrestricted
economy fare, and that moderately discounted restricted
fares do not generate significant additional traffic.

3. Gravity model development

Gravity models were the earliest causal models devel-
oped for traffic forecasting. The gravitational law states
that the gravity between two objects is directly propor-
tional to their masses and inversely proportional to their
squared distances. A simple formulation of a gravity model
for human spatial interaction used for the prediction travel
demand between two cities i and j is

Vij ¼ k �
ðAiAjÞ

a

d
g
ij

, (1)

where Vij is the passenger volume between i and j (Vij ¼ Vij

and i 6¼j), Ai and Aj are attraction factors of i and j, dij ¼ dji

is the distance between the cities, and k is a constant. g is a
parameter that controls the influence of the distance on
travel demand and a controls the influence of the attraction
factors. Usually, the attraction and deterrence is expressed
not only by a single variable but by a combination of
various factors. This undirected gravity model can be
extended to a directed model if Vij measures directed
passenger flows from i to j. Then, separate variables
represent travel production (push) factors P

b
i the originat-

ing city and travel attraction (pull) factors Ai
a of the

destination city. This distinction is sometimes only made by
allowing the variables to have different parameter values
for the origin and destination city while using the same
variables for both.
Parameters are calibrated to lead to the most accurate

prediction of the expected travel demand (the difference
between predicted and observed travel demand should be
low). Thus, data including historical passenger demand as
well as characteristics of the influencing factors is used.
Because accurate values for unconstrained demand can
only be obtained by extensive and detailed market
research, most models are calibrated using traffic figures
as a substitute for the unconstrained demand. These
figures, however, are influenced by the available aircraft
capacity of the airlines on the routes involved, and thus
only approximate unconstrained demand. In most cases,
the calibration involves ordinary-least-squares methods.
Table 1 offers some results from previous work.
4. Gravity models

Two new gravity models are developed for passenger
volume estimation. The first (BM) minimizes the effects of
competing destinations by excluding city-pairs involving
multi-airport cities such as London or Berlin. The second
(EM) is an extension of the BM that includes multi-airport
locations using the independent variables of the BM and
additional variables that describe effects of competing
airports. Because both models primarily deploy geo-
economic variables as inputs, and cross-sectional data for
calibration, they can be used for the estimation of air
passenger volume in new markets. A second motivation for
using only geo-economic variables is that the airline
industry is facing a more flexible business environment
with volatility in competition, changes in alliances,
different business models, volatile fuel prices, etc.
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Table 1

Properties of selected previously estimated gravity models

Study Factors Obs. R2

Doganis (1966) Observed passenger number at airports, distance 22 0.740a

Brown and Watkins (1968) Income, sales competition, average fare per mile, journey time per mile,

number of stops, distance, phone calls, international passengers on

domestic flight, competition index

300 0.870

Verleger (1972) Income, price, phone calls, distance, flying time 441 0.720b

Moore and Soliman (1981) population on city-level, income, economy fare 69 0.370

Population of airport catchment regions, income, airport catchment,

economy fare

58 0.810

Fotheringham (1983b) attractiveness/population, traffic outflow of origin, distance 9900 0.730; 0.760c

Rengaraju and Thamizh

Arasan (1992)

Population, percentage of employees, university degree holders, big-

city proximity factor, travel time ratio (travel time by rail divided by

travel time by air), distance, frequency of service

40 0.952

Russon and Riley (1993) Income, population, highway miles distance, number of jet/propeller

nonstop/connection flights, driving time minus connection flight time,

distance to competing airports, political state boundary

391 0.992

O’Kelly et al. (1995) Nodal attraction, distance 294 0.850d

Jorge-Calderón (1997) Population, income, proximity of hub airport, hub airport, distance,

existence of body of water between cities

339 0.371

Additional variables: tourism destination, frequency, aircraft size,

economy fare (not/moderately/highly discounted restricted)

339 0.722

Shen (2004) Nodal attraction, impedance 600 0.568e

Doganis (2004) Scheduled passenger traffic at airports, economy fare, frequency 47 0.941

aThis value is the ‘‘rank coefficient’’. The city-pairs are ranked according to the actual and estimated passenger volumes and the correlation between the

ranks yields the rank coefficient.
bThe study is based on the model from Brown and Watkins (1968).
cThe model with the higher R2 includes the ‘‘accessibility’’ of a destination to all other destinations of an origin’’ as an additional variable to consider the

effects of spatial structure.
dDifferent methods for a reverse calibration of the gravity model were used.
eThe focus is on an algebraic approach for reverse-fitting of the gravity model. Therefore, the nodal attraction is estimated endogenously from

exogenous spatial interaction and impedance.
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Therefore, the selection of service-related factors that are
subject to continual change often play a minor role in long-
term forecasting. In addition, airline-specific variables such
as available aircraft, overall capacities and airport facilities
are excluded because the output of the models is the
number of passengers which is the basis for developing
airline-specific schedules.

Market Information Data Tapes (MIDT) bookings are
used as a substitute for the unconstrained demand for
calibration. The data sets describe travel itineraries
between airports in Germany and 28 European countries
between January and August 2004. City-pairs for which
data is unavailable are excluded. To reduce the effects of
competing modes, only medium and long-haul routes are
considered (distances greater than 500 km) as are only traf-
fic routes with at least 500 passengers over the time period.
Typical tourist routes or destinations with low-cost airlines
traffic are not considered because traffic on these routes is
expected to depend on different factors to routes with
significant amounts of business traffic (Jorge-Calderón,
1997). The sample contains 1228 city-pairs with 137
embracing cities, and 9,091,082 passengers.
4.1. Basic gravity model

The basic gravity model is

Vij ¼ e�Pp
ijC

w
ijB

b
ijG

g
ijD

d
ijT

t
ij, (2)

where Vij is total passenger volume between cities i and j.
Table 2 lists the functional forms of the independent
variables.
�
 Population: City populations are based on data from the
statistical offices of the countries where they are located.
The latest figures were always considered. Population
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Table 2

Independent variables used in the basic model

Notation Functional form Factor

Pij PiPj Population

Cij CiCj Catchment

Bij Bi+Bj Buying power index

Gij GiGj Gross domestic product

Dij Geographical distance

Tij Average travel time

1

terr

reg
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refers only to the city where each airport is located with
potential passengers from an airport’s vicinity included
its catchment data.

�
 Catchment: A catchment area covers the vicinity of an

airport. Usually it includes only those areas that are
within a certain driving time of an airport (60 minutes).
The data is derived from population data of the regions
at the NUTS3-level for 2003.1
�
 Buying power index: The average buying power index is
based on an airport’s catchment area and is given at the
NUTS3-level with 100 as the European average. The
index is an indicator for the size of the travel budget of
the population within an airport’s catchment in 2003.

�
 Gross domestic product: The gross domestic product of

the country of the airport is given at market prices in h

millions for 2003. Because data on income distribution is
not available, the GDP is considered as a representative
variable for the level of economic activity.

�
 Geographical distance: The distance between two air-

ports is the great circle distance in kilometers between
their coordinates.

�
 Average travel time: The travel time is calculated from

the MIDT-bookings and averages non-stop and con-
necting flights for each city-pair.
Distance and the travel time are expected to be deterrent
factors for air travel; airfare is omitted because appropriate
data is unavailable. Excluding tourist routes and destina-
tions of low-cost airlines reduces the effect of not including
fares because the remaining routes are expected to have a
high proportion of business travelers who are largely time-
sensitive and price-insensitive. The model’s parameters are
calibrated using ordinary least squares (Table 3).

The results indicate that the model is statistically valid.
The null hypothesis that the independent variables have no
effect can be rejected for each variable at the 1%-level and
the significance of the combination of all coefficients is
high, exceeding the critical F-statistics value at the 1%-
level. Tests for multicollinearity produce contradictory
results. The maximum variance inflation factor indicates
collinearity but the maximum correlation coefficient
Nomenclature des unités territoriales statistiques (NUTS) are levels of

itory of about the same population size that provide the basis for

ional statistics of the European Union.
between any two independent variables is 0.700 for
distance and travel time. However, omitting one of these
variables would substantially reduce the model fit. As the
goal is to obtain a reliable estimation of the passenger
volume, both variables were included.
The results of the statistical tests use the information

available within the sample to test specific hypothesized
values of individual regression coefficients (Huang, 1970).
However, it is important to study model validity by testing
its structural stability after calibration and a test requiring
additional observations not already considered is used.
Because additional observations are not available, we split
the total sample into sub-samples. For the sub-samples, the
stability of the input coefficients and the coefficient of
determination are analyzed. The separation into subsets is
conducted through two experimental setups.
For the first experimental setup (setup 1), the sample is split

into two subsets of equal size (Rengaraju and Thamizh
Arasan, 1992). Five experiments are conducted each with two
different subsets. In the first, observations are assigned
randomly to one of the subsets and in the other the
observations are split into two subsets with one subset having
50% of the observations with the highest value of the
selection criteria: distance, aggregate population, aggregate
catchment, and observed passenger volume. For each of the
experiments, one subset is used to calibrate the coefficients of
the gravity model using regression analysis—the calibration
sample (CS). Then coefficients obtained from the CS are used
to estimate the passenger volume for the observations of the
other subset (estimation sample ES), and vice versa. The
results of this validation setup are presented in Table 4.
In the second experimental setup (setup 2), subsets are

constructed by building successive intervals with respect to
the different selection criteria used in the first experimental
setup leading to subsets with different numbers of
observations (Table 5).
A formal procedure to test the stability of the set of

coefficients in a regression equation for different subsets is
presented by Huang (1970). s is defined as the number of
subsamples, bi as the coefficients of the ith subsample
(iA{1,y,s}), and b� as the coefficients of the complete
sample. The following hypotheses are tested:

H0 : b1 ¼ b2 ¼ � � � ¼ bsð¼ b�Þ, (3)

H1 : b1ab2a � � � ¼ bs. (4)

SSR� is the sum of the squared residuals for the complete
sample and SSRs is the sum of the squared residuals of
subsample s. The following variables are constructed:

Q1 ¼ SSRn, (5)

Q2 ¼
X

s

SSRs; (6)

Q3 ¼ Q1 �Q2, (7)

where n is the number of observations and v is the number
of independent variables including the constant term.
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Table 4

Validation results for the BM, setup 1

Selection criteria Coefficients F R2 (CS) R2 (ES)

Pij Cij Bij Gij Dij Tij

BM 0.156 0.164 1.452 �0.065 2.085 �3.297 503.4 0.761

Random 0.158 0.120 1.284 �0.053 2.047 �3.299 258.3 0.767 0.752

0.153 0.205 1.633 �0.079 2.130 �3.301 247.4 0.759 0.761

Distance 0.190 0.058 1.053 0.017 1.941 �3.283 348.4 0.816 0.668

0.104 0.239 1.783 �0.120 2.192 �3.537 186.4 0.704 0.799

Population 0.148 0.169 1.103 �0.036 1.877 �2.960 188.9 0.706 0.762

0.138 0.118 1.719 �0.095 2.271 �3.606 263.3 0.770 0.679

Catch-ment 0.199 0.129 1.144 �0.083 1.707 �3.065 191.3 0.709 0.735

0.077 0.129 1.497 �0.002 2.634 �3.623 256.3 0.766 0.614

Passenger volume 0.059 0.036 0.425 �0.038 0.345 �0.478 7.8 0.090 0.697

0.155 0.172 1.255 �0.037 1.850 �2.680 227.3 0.743 0.078

Table 5

Validation results for the BM, setup 2

Selection criteria Interval Coefficients F R2 Obs.

Pij Cij Bij Gij Dij Tij

BM 0.156 0.164 1.452 �0.065 2.085 �3.297 503.4 0.761 956

Distance 500–1000 km 0.199 0.046 1.126 0.017 1.968 �3.310 347.9 0.822 460

1000–1500 km 0.092 0.217 1.464 �0.092 2.259 �3.420 102.0 0.682 292

41500km 0.114 0.271 2.127 �0.143 2.829 �3.610 89.3 0.731 204

Population 0–200Bill. 0.178 0.180 1.136 �0.059 1.861 �2.889 102.6 0.661 322

200–400Bill 0.167 0.205 0.845 �0.063 2.115 �3.231 121.8 0.751 250

400–600 Bill �0.196 0.109 1.716 �0.086 1.930 �3.401 64.8 0.728 152

600–800 Bill 1.909 0.066 2.356 �0.065 2.710 �3.823 42.3 0.791 74

4800Bill. 0.158 0.007 1.971 �0.074 2.401 �3.894 70.1 0.736 158

Catchment 0–4 Mrd. 0.192 0.116 1.078 �0.071 1.643 �2.947 148.8 0.711 370

4–8 Mrd. 0.151 0.084 1.014 �0.040 1.799 �3.366 92.5 0.726 216

8–12 Mrd. 0.156 0.877 2.728 �0.133 2.341 �2.785 86.8 0.824 118

12–16 Mrd. 0.091 �0.935 1.353 �0.016 2.930 �3.593 54.5 0.813 82

416 Mrd �0.010 �0.050 1.719 0.063 3.197 �4.300 89.6 0.767 170

500–1000 0.020 0.006 0.048 �0.008 �0.025 �0.014 0.9 0.020 284

1000–1500 �0.006 0.013 0.052 0.010 0.045 �0.014 1.2 0.050 150

Passenger volume 1500–2000 0.017 0.014 0.183 0.007 0.065 0.021 5.1 0.254 96

2000–2500 �0.025 �0.010 0.061 0.003 0.032 �0.038 2.5 0.223 60

2500–3000 �0.013 �0.024 �0.094 0.013 �0.100 0.069 3.6 0.316 54

43000 0.180 0.235 0.957 �0.006 2.182 �2.819 123.1 0.708 312

Table 3

Calibration results of the basic model

Model Obs. Coefficients R2 F

Pij Cij Bij Gij Dij Tij

BM 956 0.156 0.164 1.452 �0.065 2.085 �3.297 0.761 503.4

�7.254 �9.340 �9.023 (�3.276) �28.592 (�41.103)

[0.132] [0.201] [0.161] [�0.075] [0.692] [�1.018]
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ARTICLE IN PRESS
T. Grosche et al. / Journal of Air Transport Management 13 (2007) 175–183180
Then, Q1/s
2 has a w2 distribution with n degrees of

freedom, Q2/s
2 has a w2 distribution with n—sv degrees

of freedom, and Q3/s
2 has a w2 distribution with (s�1)v

degrees of freedom. The test statistic for the null hypothesis
is

F ¼
Q3=ððs� 1Þ:vÞ

Q2=ðn� s � vÞ
, (8)

which follows an F-distribution with ((s�1)v, n�sv) degrees
of freedom. For example, splitting the sample according to
the city-pair distances into two subsamples of equal size
results in F ¼ 5.31. The critical value of F(8, 940) at the
1%-level is 2.51 (2.5%-level: 2.19). Therefore, the null
hypothesis is not rejected. Table 6 presents all F-values for
the two experimental validation setups.

To summarize, the basic gravity model was derived by
testing all possible combinations of input variables and the
model offering the best fit selected using as independent
variables the factors population, catchment, GDP, buying
power, travel time, and distance. For this model, the
overall fit is comparable to results found in other studies.
To eliminate the effects of competing airports, multi-
airport cities were excluded from the data set reducing the
number of observations to 956.

The model is statistically valid and all variables
significant at the 1%-level. Tests for multicollinearity
produced inconsistent results. If it exists, an interpretation
of the individual coefficients and their order of magnitude
would not be possible. Here, for example, the positive value
for the distance runs counter to the common assumption
for gravity models that distance has a negative impact on
travel demand. However, because distance is correlated
with travel time, the negative coefficient of travel time may
be overcompensating the positive effect of distance. For
Table 6

F-test on structural stability of the BM

Model F-value (setup 1) F-value (setup 2)

Distance 5.31 3.53

Population 4.44 2.37

Catchment 6.98 3.98

Passenger volume 127.50 94.60

Table 7

Results of the BM including multi-airport cities

Model Obs. Coefficients

Pij Cij Bij

BM 956 0.156 0.164 1.452

�7.254 �9.340 �9.023

BM 1228 0.136 0.193 1.558

(all cities) �7.383 �10.858 �9.411

BM 1178 0.281 0.189 2.071

(agg. cities) �14.664 �10.279 �12.242
forecasting, however, multicollinearity is not relevant as
long as the model offers a good fit between the observa-
tions and the estimates and the collinearity is not expected
to change significantly in the future.
The model is validated by testing its structural stability.

With the exception of passenger volume as a selection
criteria, the validation results (Table 4) show good fits
for the subsamples, and for the estimation samples (ES)
compared to the CS. The high correlation between the
estimated and observed values for the ES indicates
good explanatory power. Additional tests of structural
stability (Table 5) show that the coefficients are only
subject to minor variations across the different subsets.
Changes of sign for some variables occur when using
distance as a selection criterion in setup 1 (Table 4), and
for all different selection criteria in setup 2 (Table 5).
The results emphasize that the gravity models should,
if possible, be applied to homogeneous data sets.
However, the high coefficient of determination for all
subsets and the results in Table 6 indicate broad applic-
ability of the model.
A poor fit is found when separating the data by

passenger volume that may be a result of the highly diverse
observation data. However, the results are obtained ex
post. When using the model for forecasting purposes (ex
ante), it is not possible to use different models or
coefficients for passenger volume groups because passenger
volume is the subject of forecasting. Because the validation
using the other selection criteria yielded good results, the
presented model is meaningful.

4.2. Extended gravity model

In the basic model, multi-airport cities were not
considered but are now brought into consideration.
Rengaraju and Thamizh Arasan (1992), for example,
include a ‘‘big-city proximity factor’’ as a dummy variable
in their model to identify small cities in proximity of
larger ones. Jorge-Calderón (1997) also uses dummies
for airports that have a hub within a 200 km radius, and
another to indicate if the airport is itself a hub; hubs
being defined as the top two cities in an airline’s host
country where the airline carries out international services
and that are among the top 20 destinations in terms
R2 F

Gij Dij Tij

�0.065 2.085 �3.297 0.761 503.4

(�3.276) �28.592 (�41.103)

�0.085 1.893 �3.082 0.713 506.8

(�4.137) �25.526 (�38.400)

�0.102 1.846 �2.974 0.708 476.4

(�4.815) �24.223 (�35.130)
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of passenger throughput. Fotheringham (1983a) intro-
duced a variable describing the accessibility of a destina-
tion airport as perceived by the passengers of the origin
airport.

Table 7 shows results when applying the basic model to
all city-pairs including multi-airport cities. The first line
replicates the results of Table 3 and shows results when
omitting all multi-airport cities. The second line offers
results when applying the basic model to all observations
without any modification. In the third line, airports of
multi-airport cities are aggregated to represent only one
generic airport for each city (input values are averaged
among those airports).

For the extended model, additional variables that
describe the competition faced by each airport are included
in the basic model. Multi-airport destinations are char-
acterized by the number of competing airports and their
individual characteristics. It is assumed that the number of
competing airports depends on distances between airports
with airports defined as competing airports if the distance
is less than a given maximum distance. The set of possible
variables describing a competing airport are the indepen-
dent variables of BM and these variables divided by the
distance to the airport.

For the BM, the final set of additional variables, their
functional form and the relevant distance dcomp�max is
determined by testing all possible combinations of vari-
ables. The overall structure of the EM is

V ij ¼ e�Pp
ijC

w
ijB

b
ijG

g
ijD

d
ijT

t
ijN

u
ijA

a
ijW

o
ij , (9)

where Nij, Aij, and Wij are variables that describe the spatial
characteristics.

The additional variables offering the best fits are seen in
Table 8. The best results are found when considering
Table 8

Additional independent variables of the EM

Notation Functional

form

Factor

Nij NiNj Number of competing airports

Aij AiAj Average distance to competing airports

Wij WiWj Number of competing airports weighted by their

distance

Table 9

Calibration results of the EM

Model Obs. Coefficients

Pij Cij Bij Gij Dij

EM 1228 0.154 0.224 1.856 �0.089 1.804

�7.562 �12.170 �11.099 (�4.457) �24.15

[0.146] [0.265] [0.231] [�0.100] [0.562]
airports within a distance of 200 km as competing airports.
In contrast to other models the EM does not use variables
for service levels or that are obtained by personal judgment
(for example the identification of an airport as a hub or
large city). The results of the EM model are presented in
Table 9.
The EM is statistically valid with all variables significant

at the 1%-level. As in the BM, no clear results are obtained
when testing for multicollinearity. The maximum variance
inflation factor indicates no effects of collinearity. On the
other hand, as in the BM, the maximum correlation
between any two independent variables is 0.696 for
distance and travel time.
We validate the structural stability of the model in

the same way as for the BM. First, the structural sta-
bility is tested in two experimental setups. We study the
coefficients and fit for different subsets of the total
observation data. Table 10 presents results for EM using
setup 1 while Table 11 presents results for setup 2. The
results of the test on structural stability are presented in
Table 12.
To summarize, like the BM, the EM is statistically valid

and all variables are statistically significant. Tests on
multicollinearity lead to inconsistent results. Thus, the
interpretation of the individual coefficients and their order
of magnitude is not possible, but the joint impact of
correlating variables is not affected.
The results on structural stability of the EM follow the

results of the BM. With the exception of passenger volume
as a selection criteria, Table 10 indicates good fits for the
subsamples, and for the estimation and calibration
samples. The coefficients are subject to minor variations
across the different subsets (Table 11). The formal test on
structural stability produced the same results as for the BM
(Table 12) and indicate a broad applicability of the model
at the 2.5%-level for all subsets, and at the 1%-level for all
subsets excluding population.
5. Conclusions

This paper presents two gravity models that can be used
for air passenger volume forecasting between city-pairs.
Both models use mainly geo-economic variables as
independent factors. Traditionally, service-related factors
or additional variables such as passenger income, are used
R2 F

Tij Nij Aij Wij

�3.032 �0.704 �1.141 0.181 0.730 366.2

8 (�38.503) (�7.825) (�4.575) �7.250

[�0.912] [�0.180] [�0.088] [0.155]
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Table 11

Validation results of the EM, setup 2

Selection criteria Interval Coefficients F R2 Obs.

Pij Cij Bij Gij Dij Tij Nij Aij Wij

EM 0.154 0.224 1.856 �0.089 1.804 �3.032 �0.704 �1.141 0.181 366.2 0.730 1228

Distance 500–00 0.197 0.117 1.851 0.001 2.031 �3.160 �0.466 �1.150 0.058 251.8 0.788 618

1000–1500 0.083 0.251 2.225 �0.138 1.757 �2.918 �0.472 �0.434 0.191 72.6 0.641 376

1500 0.123 0.316 1.796 �0.168 1.995 �3.007 �0.930 �1.061 0.324 56.5 0.694 234

Population 0–200 Bill. 0.141 0.238 1.320 �0.074 1.873 �2.813 �0.560 �0.252 0.120 72.4 0.668 334

200–400 Bill. 0.071 0.283 1.951 �0.043 1.698 �2.837 �0.882 �0.810 0.166 75.8 0.714 284

400–600 Bill. �0.494 0.084 2.154 �0.090 2.255 �3.419 0.212 �0.339 0.043 55.1 0.749 176

600–800 Bill. �0.049 0.247 1.294 �0.059 2.467 �3.812 �1.279 �1.078 0.161 52.9 0.832 106

4800 Bill. 0.148 0.171 1.467 �0.165 1.388 �2.889 �0.808 �1.276 0.175 62.3 0.638 328

Catchment 0�4 Mrd. 0.234 0.161 1.406 �0.107 1.380 �2.580 �0.537 �0.910 0.207 101.8 0.677 446

4–8 Mrd. 0.184 0.270 4.755 �0.057 1.635 �2.967 �0.566 �0.843 0.207 68.1 0.694 280

8�12 Mrd. 0.125 1.188 2.797 �0.075 1.926 �2.790 �1.240 �3.163 0.225 64.2 0.796 158

12–16 Mrd. 0.054 �0.130 5.613 �0.112 2.408 �2.911 �0.582 �0.394 0.414 21.4 0.702 92

416 Mrd. �0.016 0.404 2.020 0.047 3.094 �4.124 �1.437 �3.887 0.259 72.6 0.730 252

500–1000 0.022 0.012 �0.003 �0.005 �0.043 0.020 �0.093 0.049 0.036 1.9 0.048 340

1000–1500 �0.007 0.023 0.114 0.002 0.091 �0.102 �0.013 �0.099 0.017 2.6 0.121 182

Passenger volume 1500–2000 0.006 0.027 �0.018 �0.005 0.031 0.070 �0.050 0.050 0.003 2.9 0.202 112

2000–2500 �0.002 �0.017 0.258 0.014 0.109 �0.201 �0.033 �0.206 �0.009 3.2 0.284 82

2500–3000 �0.005 �0.028 0.148 0.016 �0.147 0.113 �0.021 0.034 0.016 4.1 0.414 62

43000 0.201 0.273 5.824 �0.038 1.732 �2.325 �0.369 �0.821 0.158 96.9 0.665 450

Table 10

Validation results of the EM, setup 1

Selection criteria Coefficients F R2 (CS) R2 (ES)

Pij Cij Bij Gij Dij Tij Nij Aij Wij

EM 0.154 0.224 1.856 �0.089 1.804 �3.032 �0.704 �1.141 0.181 366.2 0.730

0.164 0.198 1.560 �0.077 1.790 �3.167 �0.504 �1.004 0.148 180.4 0.729 0.677

Random 0.142 0.251 2.162 �0.103 1.837 �2.912 �0.926 �1.349 0.212 185.9 0.735 0.658

0.191 0.120 1.488 0.006 2.068 �3.160 �0.501 �1.105 0.057 250.6 0.789 0.521

Distance 0.108 0.285 2.098 �0.154 1.674 �2.890 �0.671 �0.761 0.254 129.1 0.658 0.750

0.090 0.245 1.538 �0.061 1.749 �2.792 �0.716 �0.716 0.169 156.3 0.700 0.630

Population 0.144 0.160 2.311 �0.135 1.842 �3.229 �0.590 �1.056 0.168 157.2 0.701 0.618

0.234 0.136 1.384 �0.088 1.394 �2.638 �0.497 �0.758 0.221 129.8 0.659 0.644

Catchment 0.073 0.327 1.833 �0.038 2.236 �3.349 -1.137 �2.367 0.220 185.5 0.734 0.618

0.040 0.071 0.629 �0.048 0.293 �0.405 �0.395 �0.367 0.103 10.2 0.131 0.410

Passenger volume 0.167 0.207 1.661 �0.054 1.679 �2.535 �0.298 �0.687 0.106 178.9 0.727 0.057

Table 12

F-test on structural stability of the EM

Model F-value (setup 1) F-value (setup 2)

Distance 7.37 4.07

Population 3.55 2.06

Catchment 6.49 3.66

Passenger volume 143.13 73.17

T. Grosche et al. / Journal of Air Transport Management 13 (2007) 175–183182
in explanatory modeling but in new markets usually no
service-related factors are available and an alternative is
needed. This has been done here.
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