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Cross-lagged regression coefficients are frequently used to test hypotheses in panel designs. However,
these coefficients have particular properties making them difficult to interpret. In particular, cross-lagged
regression coefficients may vary, depending on the respective time lags between different sets of
measurement occasions. This article introduces the concept of an optimal time lag. Further, it is
demonstrated that optimal time lags in panel studies are related to the stabilities of the variables
investigated, and that in unidirectional systems, they may be unrelated to the size of possible true effects.
The results presented also suggest that optimal time lags for panel designs are usually quite short.
Implications are (a) that interpreting cross-lagged regression coefficients requires taking the time lag
between measurement occasions into account, and (b) that in much research, far shorter time lags than
those frequently found in the literature are justifiable, and we call for more “shortitudinal” studies in the
future.
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Panel designs, in which data are gathered from the same indi-
viduals on two or more occasions, are very popular. However,
designing a panel study can be problematic. As Mitchell and James
(2001) noted,

With impoverished theory about issues such as when events occur,
when they change, or how quickly they change, the empirical re-
searcher is in a quandary. Decisions about when to measure and how
frequently to measure critical variables are left to intuition, chance,
convenience, or tradition. None of these are particularly reliable
guides. (p. 533; see also Cole & Maxwell, 2003)

The lack of systematic methods for determining “when to mea-
sure” means researchers have little practical guidance for choosing
appropriate time lags in longitudinal studies.

In this article, we address the problem of “when to measure” by
deriving methods to estimate the optimal time lag between mea-
surement occasions. We focus on the optimal time lag between two
variables, X and Y, in a panel design. The regression-based two-
wave, two-variable (2w2v) panel design is one of the most com-
mon types of repeated measure designs in the applied psychology
literature. We derive general principles that are algebraic rather
than simulation-based. We also provide practical guidance for

estimating optimally lagged effects regardless of the content do-
main.

Optimal time lags should be considered within the broader
question of “when events occur, when they change, and how
quickly they change (Mitchell & James, 2001, p. 533).” Collins
(2006) argues that an effective longitudinal design depends on
capturing the theoretical process that is consistent with the tem-
poral change being investigated. In this study, we assume a process
of continuous change through which independent variables exert
an ongoing influence on lagged dependent variables. This contin-
uous process can include reciprocal effects between variables, and
assumes that there is some level of stability in all variables across
time. This theoretical process is very common in panel studies, and
some assumptions regarding the underlying process are necessary
for general conclusions to be drawn (cf. Voelkle, Oud, Davidov, &
Schmidt, 2012). The only alternative approach to finding the
optimal time interval would be to conduct a multiwave study with
many waves separated by very short intervals, and interpolate from
the results.

The present article provides new insights into the temporal
design of panel studies. Ultimately, our approach encourages re-
searchers to estimate optimal time lags through “shortitudinal”
pilot studies conducted over periods that are shorter than the likely
time lag for any planned longitudinal study.

Background

Little research has been devoted to the question of which time
lags should be chosen in panel designs. Statements such as “not too
short” or “not too long” are common (cf. Boker & Nesselroade,
2002; Hertzog & Nesselroade, 2003) but do not convey specific
information about time lags. The reasons that researchers give for
choosing specific time lags are many and varied. For example,
Dormann and van de Ven (2014) identified six broad types of
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reason for particular lags: reasons related to the constructs under
investigation or their operationalizations; the proposed causal
mechanisms; the method used; epistemology; or the researcher.
First, to assess a construct, such as “annual earnings before interest
and taxes,” one has to consider an appropriate time frame, which
would be 12 months in this instance. The second group of argu-
ments relates to the operationalization of constructs, that is, to the
measurement level. For example, Plaisier et al. (2007) used the
“2-year incidence of depressive and anxiety disorders” (p. 403) as
a dependent variable in their study. The third group of reasons for
choosing particular time lags is related to the mechanisms under
study. For instance, it was argued that weak effects need a long
time to unfold (e.g., Gorgievski-Duijvesteijn, Bakker, Schaufeli, &
van der Heijden, 2005; Sacco & Schmitt, 2005). In the fourth
group are various methodological reasons. For example, a 12-
month lag may be chosen to control for seasonal fluctuations (e.g.,
de Lange, Taris, Kompier, Houtman, & Bongers, 2003). This issue
may be important in studies of work stress because workload (e.g.,
number of customers) may vary according to the time of the year
(e.g., Christmas). Fifth, there are epistemological reasons to
choose a particular time lag. For instance, Halbesleben (2010) used
a particular time lag that has not been used before in that field to
go beyond what was already known. Sixth, time lags may depend
on the personal goals of the researcher. For example, researchers
might want to demonstrate the sustainability of effects to show
they are theoretically or practically important (e.g., Kinnunen,
Kaprio, & Pulkkinen, 2005). In such instances, one would proba-
bly choose long time lags to address the needs of the target
audience.

As outlined thus far, many reasons exist to justify almost any
particular time lag. Nevertheless, articles in the applied psychol-
ogy literature proposing substantive reasons for choosing a partic-
ular time lag are scarce. Indeed, little research has been done to
provide a sound scientific basis for choosing an adequate time lag.

Extant Research on Optimal Time Lags

Cole and Maxwell (2003) observed that the timing of assess-
ment in the social sciences was often determined by convenience
and tradition rather than theory or research. Although there is little
systematic research investigating the most appropriate time lags
for panel studies, a few studies used simulated data to explore the
question of optimal time lags. Dwyer (1983, p. 359) showed that
time lags that are too long lead to a slight underestimation of
causal effects.

Sims and Wilkerson (1977) found correlations of X and Y that
varied in an inverse U-shaped fashion across time. This result was
not too surprising, because Sims and Wilkerson explicitly included
one element in their simulation that caused effects to increase
across time (in an S-curved fashion) and a second factor that
caused effects to decrease across time (exogenous influences that
followed a stochastic exponential function).

More recently, Cole and Maxwell (2009) considered the issue of
appropriate time lags in risk—outcome clinical psychology re-
search. They found that “When the experimenter selects anything
other than the optimal lag, the common statistical approaches will
grossly underestimate the relation between risk and the outcome”
(p. 80).

Cole and Maxwell (2003, Figure 7) demonstrated that lagged
effects vary with time, and that the shape of the distribution of
these effects over time varies, too. A model with similar assump-
tions will be discussed later, and we will extend this model by
demonstrating when lagged effects become strongest.

Finally, Voelkle et al. (2012) described the shape of cross-
lagged effect sizes of a variable X on Y that one would obtain for
varying time lags. Their findings are entirely in line with the
findings presented later. However, Voelkle et al. did not address
the issue of optimal time lags; rather, they demonstrated how
stochastic differential equations could be used to relate discrete
time models (D-Models) to continuous time models (C-Models).

The above studies using simulations provide insight into optimal
time lags but also involve some limitations. First, they do not
provide specific guidance about the length of optimal time lags.
Second, they are based on assumptions that do not meet the typical
situation for panel studies in psychology (cf. Finkel, 1995; Kessler
& Greenberg, 1981). For example, Cole and Maxwell (2009)
assumed that the independent variable (X) and the dependent
variable (Y) would be perfectly correlated if the optimal time
interval was chosen (� � 1.0), and there was no autoregressive
effect. This assumption is not valid for many psychological vari-
ables (cf. Finkel, 1995; Kessler & Greenberg, 1981). Cole and
Maxwell (2009) were also particularly concerned with interindi-
vidual differences in optimal time lags.

Although no general conclusion can be readily drawn from
existing research, a rule of thumb has emerged suggesting that
effects decline as time lags become longer (J. Cohen, Cohen, West,
& Aiken, 2003). This rule of thumb is inconsistent with nonmono-
tonic effects over time shown in simulated data and algebraic
proofs. However, it is consistent with observations of actual panel
studies, in which several meta-analyses have shown that effects
erode as the time lag between two measurements increases (e.g.,
Atkinson et al., 2000; A. Cohen, 1993; Griffeth, Hom, & Gaertner,
2000; Holden, Moncher, Schinke, & Barker, 1990; Hom,
Caranikas-Walker, Prussia, & Griffeth, 1992; Hulin, Henry, &
Noon, 1990; Riketta, 2008; Steel, Hendrix, & Balogh, 1990; Steel
& Ovalle, 1984; see also Cronbach, 1970, p. 137). Most of these
earlier meta-analysis either split the studies into two groups using
longer versus shorter lags (e.g., Holden et al., 1990) or conducted
linear correlation or regression analyses of effect sizes and time
lags (e.g., Steel et al., 1990). Both methods can reveal linear trends
only. Later, we discuss why the time lag of most panel studies is
likely to be longer than the optimal time lag, explaining the steady
decline in effects shown in these meta-analyses. Some more recent
meta-analyses investigated nonlinear effects of time lag on effect
sizes. One did not reveal linear or nonlinear effects (after exclud-
ing an outlier study; Sowislo, & Orth, 2013), whereas another
showed that lagged effects may increase across time, then de-
crease, and eventually level out (e.g., Ford et al., 2014).

Overall, researchers have little guidance for defining and select-
ing an optimal time lag in panel studies. J. Cohen et al. (2003, p.
571) concluded that no generalizations could be made about “the
optimal interval for examining causal effects of one variable on
another.” We agree with Cohen et al. that little has been explicitly
said about optimal time lags, even if rules of thumb are available.
Furthermore, we concur with them that particular emphasis must
be placed upon causal effects, rather than upon simple correlations.
The reason is that panel models that do not include the lagged
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counterpart of the dependent variable Y as an additional indepen-
dent variable are frequently misspecified (cf. Finkel, 1995).

To address the concerns of J. Cohen et al. (2003), we show that
some generalizations can be made, and we present a statistical
theory of optimal time lags that is applicable to a wide array of
substantive theories. In the next section, we discuss the types of
variables and models to which the question of optimal time lags
applies. Then, we show how cross-lagged effects vary with time
and how optimal time lags can be determined.

Optimal Time Lags in Regression-Based Designs

We define an optimal time lag as the lag that is required to yield
the maximum effect of X predicting Y at a later time, while
statistically controlling for prior values of Y in a 2w2v design. This
definition corresponds to frequently applied approaches for inves-
tigating possible causal effects of X on Y using a panel design. For
instance, it was the most common approach in the longitudinal
studies reviewed by Zapf, Dormann, and Frese (1996; see also de
Lange et al., 2003).

The optimal time lag represents the time lag across which
researchers would ideally measure variables X and Y. That is,
researchers would aim to match the time lag of a specific study
with the optimal time lag. We define the actual time between two
measurement periods as the specified unit (SU) of time.

The approach presented in this article is algebraic, rather than
based on simulations. The analysis can be accomplished using
ordinary least square regression analysis or latent variable struc-
tural equation modeling (SEM). To simplify presentation, in the
present article, path diagrams without measurement models will be
used. Note, however, that it is assumed that variables are measured
without error when algebraically deriving optimal time lags. When
using empirical data, measurement error will need to be taken into
account. In the remainder of the article, we also make the assump-
tion that models are correctly specified, that is, that all relevant
third variables are included. As always, if a researcher fails to
include all relevant third variables, parameter estimates of effects,
including estimates of optimal time lags, might be seriously bi-
ased. Although the assumption of correct model specification is
not realistic, it is always implicitly made when causally interpret-
ing relations among variables. Hence, the approach to calculating
optimal time lags proposed in the present article has the same
deficiencies as other nonexperimental designs.

Conceptually, panel designs capture snapshots of a process that
unfolds continually over time. We refer to the ongoing relationship
between variables as a “continuous time” model and depict this
process in Figure 1A. A fundamental assumption in many panel
studies is that a cause (e.g., work conflict) and an effect (e.g.,
feelings of anxiety) unfold continuously over time. In the work
stress literature, this assumption is reflected in the stress reaction
model (Frese & Zapf, 1988, p. 389). According to this model,
stressors reduce psychological well-being, and if the stressor is
removed, an improvement in psychological well-being occurs. The
ups and downs in the level of stressors could vary among individ-
uals. Therefore, there is no discrete point at which the effect
occurs. As this continuous process unfolds, the size of the ob-
served effect also varies continuously, but because measures are
gathered at a specific point in time, our goal is to provide guidance
around this timing.

In C-Models, time can take on an infinite set of values for which
t indicates the exact time point of a particular observation (cf.
Voelkle et al., 2012). The C-Model in Figure 1A reflects the
theoretical model that creates the data generation process we
assume to operate in this article, and also fits the intuitive notion
of change used by researchers adopting panel designs to evaluate
lagged effects. If the parameters of the C-Model were known, one
could extrapolate the parameter estimates one would obtain when
choosing any particular time lag.

Continuous time parameters are typically not known, and re-
searchers rely on discrete measures to infer the underlying rela-
tionships. Figure 1B depicts a typical discrete panel model (D-
Model). The D-Model may comprise several waves of data
collection. In this model, t0, t1, and so forth, are used to denote
Time 0, Time 1, and so forth, of data collection. Thus, the index
� � 1 . . ., T denotes the rank of an observation. The discrete lag
between two consecutive measurement occasions is defined as the
SU of time. Researchers would typically prefer to match the SU of
a specific study with the optimal time lag. In the D-Model, the goal
would be to match the length of the SU (e.g., from t0 to t1) to the
optimal time lag. Because the optimal time lag is usually not

Figure 1. Continuous time model and discrete time panel analysis. Figure
1A depicts the ongoing relationship between variables as a “continuous
time” model (C-Model), in which time can take on an infinite set of values
for which t indicates the exact time point of a particular observation. The
dotted paths indicate that the effect of prior variables on later variables is
not necessarily direct; rather, these paths represent the overall effects that
occurred across time. The C-Model reflects the data generation process in
this article. Figure 1B depicts the relations between variables measured at
discrete time points (D-Model), and t0, t1 denote Time 0, Time 1, and so
forth of data collection and the index � � 1 . . ., T denotes the rank of an
observation. Figure 1C shows the final model (F-Model) used to test
substantive hypotheses. It depicts a regression of Y�opt

on X0, while
controlling for Y0, and vice versa, with �opt being a multiplier of the lag
that was used in the D-Model.
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known a priori, we propose the SU should be reasonably short, to
increase likelihood that it will be shorter than the optimal time lag.
Only then will researchers have the chance to collect another wave
of data at a later point coinciding with the optimal lag. Put
differently, if the SU used in a specific D-Model turned out to be
longer than the optimal time lag as estimated next, the researcher
could not travel back in time to collect additional data. Depending
on the nature of the continuous change process, an SU could
correspond to 2 days, 1 week, or 100 hr.

We describe the estimation of optimal time lags in three steps.
First, we derive an estimate of optimal lag for two waves of data
from the D-Model, which is easier to demonstrate compared with
C-Models. Although multiple waves can be applied in a D-Model,
two waves are algebraically sufficient to outline the basic princi-
ples for deriving optimal lag values. Second, we show how the
estimates from the C-Model can be used to calculate optimal lags.
In general, calculations of optimal time lags using the D-Model or
the C-Model will yield identical results. Third, we outline a final
F-Model to depict a two-wave panel model using the optimal time
lag, and show how this final model relates to both the D-Model and
C-Model.

The F-Model is depicted in Figure 1C and shows the regression
of Y�opt

on X0, while controlling for Y0 and vice versa. If the
optimal time lags are derived from D-Models, �opt represents a
multiplier of the SU that was used in the D-Model. For example,
if the D-Model used an SU of 1 week, �opt could reflect the second
wave in a study that is separated by �opt weeks from the initial
wave. If optimal time lags are derived from C-Models, �topt

reflects the optimal real time difference to Time 0. The F-Model is
used to test substantive hypotheses using optimal time lags.

In general, we propose researchers aim to use a SU in the
D-Model that is likely to be shorter than the optimal time lag. We
explain this issue in more detail later, but simply note here that the
main goal of estimating an optimal time lag is to ensure panel
studies implement measurement waves at the most appropriate
times. This outcome is most readily achieved if the multiplier of
the optimal lag is greater than 1; that is, if the optimal time lag is
longer than the lag in the D-Model.

Figure 1B is also useful to introduce the major terms used in our
analysis of optimal time lags. In the D-Model shown in Figure 1B,
X and Y are correlated at Time 0; these correlations reflect their
relations, which have emerged through prior causal effects among
X and Y. Each variable is stable over time to some extent. The
stabilities of the variables are the horizontal autoregressive paths
shown in the D-Model. The stability coefficients are it� and dt�

, to
denote the autoregressive effects of the independent (i) and the
dependent (d) variable, respectively. In Figure 1B, it is further
assumed that X has a direct cross-lagged effect on Y (ct�

) one
wave later. The reversed cross-lagged effect of Y on X is labeled
rt�

in the D-Model. When referring to X and Y measured at
particular waves (e.g., Xt2

and Yt4
), the indirect cross-lagged effect

of Xt2
on Yt4

is sometimes called time-specific indirect (cross-
lagged) effect (Gollob & Reichardt, 1991). Over the course of a
study with multiple waves, there are usually many time-specific
indirect effects. Altogether, they contribute to the unfolding of the
overall indirect (cross-lagged) effect of X on Y over time (Gollob
& Reichardt, 1991). Like Voelkle et al. (2012), we speak of
autoregressive and cross-lagged effects when referring to discrete
time analysis, compared with auto-effects and cross-effects in

continuous time analysis. We will use the terms stability, lagged
causal effect, and lagged reversed effect when we make general
statements that apply to both discrete and continuous time.

As noted earlier, taking these terms into account, an optimal
time lag is the time lag that is required to yield the maximum
overall effect of X predicting Y at a later time, while statistically
controlling for prior values of Y. The optimal time lag will be
derived in terms of the number of SUs required to yield the
maximum overall indirect effect of X on Y.

It is noteworthy that the definition of an optimal time lag in
terms of maximum effect size is different from previous concep-
tualizations. It has been implicitly assumed by many authors that
the “exact point in time when the cross-lagged relationship is
greatest” has to “coincide with the true time lag” (e.g., Sims &
Wilkerson, 1977, p. 633). However, when the underlying process
is continuous, the concept of a “true time lag” is not particularly
meaningful. In a correctly specified model, a cross-lagged effect
over any period �t reflects the “true effect” for that specific time
lag because it comprises all direct and indirect causal effects that
have occurred during the lag. Therefore, our goal is not to identify
a “true time lag” but to identify the optimal time lag in terms of
maximum effect size.

Furthermore, it has sometimes been assumed that cross-lagged
effects fade as a function of time (see J. Cohen et al., 2003). In the
present article, it will be shown that cross-lagged effects may also
increase as a function of time. Our goal is neither to augment the
list of examples demonstrating that conventional wisdom can be
wrong, nor to criticize authors for mistaken definitions or deriva-
tions of optimal time lags. Of course, there are many potentially
useful definitions of optimal time lags. Similarly, there are poten-
tially useful alternatives to the basic model shown in Figure 1, and
there are different ways to represent causal relations. Other mod-
els—such as those with nonlinear causal effects (Sims & Wilker-
son, 1977), or models with causal effects that vary between indi-
viduals (Cole & Maxwell, 2009)—and other definitions may be
even more appropriate under certain circumstances. However,
models like the one shown in Figure 1, which will be used to
derive optimal time lags, are frequently found in the literature, and
thus probably reflect common assumptions inherent in many psy-
chological theories and in models used to test these theories.
Similarly, the definition of optimal time lags in terms of maximum
effect size is probably in line with most researchers’ aims to find
large effects, which are statistically significant. Therefore, the goal
of the present article is to derive conclusions that can be used to
improve the design of time lags for panel studies that will be
analyzed with regression-based models. To accomplish this goal,
we will show how optimal time lags can be calculated after we
have discussed the concept of stability and stationarity, which are
essential for the calculation and design of optimal time lags.

Stability Versus Test–Retest Correlation

As will be shown later, the stability of a variable is crucial in
determining an optimal time lag. Many authors have conceptual-
ized stability in term of test–retest correlations, which are not
based on any particular causal model. For the purpose of deriving
optimal time lags, stability is better defined as the effect that a
variable has on itself across time (autoregressive effect or auto-
effect). This model-based definition has some distinct advantages.
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For example, the test–retest correlation of Xt0
and Xt2

in the
D-Model is larger than the autoregressive effect it�. The test–retest
correlation is also larger than it�

2 , which reflects the autoregressive
effect of Xt2

on Xt0
via Xt1

. This is so because Xt0
has a further

indirect effect on Xt2
via Yt1

. Because variables are connected over
time not only by their stabilities but also by other variables that
contribute to their test–retest correlation, it is important to distin-
guish test–retest correlations from stabilities. Stabilities are usually
lower than test–retest correlations.

The meaning of the stability parameters it� and dt�
is not easily

determined. For example, if one considers wealth, and if the rich
were to become richer and the poor were to become poorer over
time, it� could be considered a direct causal effect of Xt0

on Xt1
in

its literal sense. Even if substantive reasons for such direct effects
are lacking, stabilities should be routinely considered (e.g., Finkel,
1995). In psychological, social, biological, and other human sys-
tems, extreme scores at Time 1 are usually less extreme at Time 2,
which is known as regression to the mean (RTTM). RTTM is
always present if the test–retest correlation of a variable is less
than 1.0 and if its variance remains constant over time (cf. Finkel,
1995; Kessler & Greenberg, 1981). A RTTM is appropriately
captured when a stability parameter is estimated; conversely, when
the relation of a variable across time is analyzed, for most variables
investigated in psychological research, a model without a stability
parameter is misspecified (cf. Finkel, 1995; Gollob & Reichardt,
1987).

It is important to distinguish stability from test–retest correla-
tions because only the stability of a variable “carries” causal
effects over time. If a variable was completely unstable, any
change imposed on this variable would completely decay imme-
diately. Causal effects over a period of time can only be observed
because the causal effect occurs with some delay (a causal lag), or
because the stability of the variable is not zero, or both. Stabilities
might be negative in some rare cases, but the present article is
limited to positive stabilities because they are much more com-
mon.

Stationarity

The stability of a variable is given by the autoregression param-
eters of X or Y, which are it� and dt�

, respectively, in the D-Model
in Figure 1 (and ic and dc in the C-Model). The sizes of i and d may
vary over time; however, in the reminder of the present article, it
is generally assumed that the stabilities between each pair of
identically spaced time lags are identical. On the one hand, this
assumption is made as an expedient to the mathematical deriva-
tions that follow. On the other hand, this probably reflects what is
typical in most instances in which there is no substantive theoret-
ical reason for supposing that these parameters might change
across time (e.g., Voelkle et al., 2012).

The causal effects ct�
and the reversed effects rt�

in the D-Model
(and the corresponding effects cc and rc in the C-Model) are
assumed to be lagged. Again, the C-Model assumes that the
substantive theory does not include changes in the causal effects
over time. A model with invariant stabilities, invariant causal
effects, and invariant residuals across time is a so-called stationary
model (e.g., Kenny, 1979). With invariant residuals over time, the
variance of X and Y may increase across time. This may apply if
developmental processes are investigated, but it does not apply to

most other variables investigated in the social sciences, which have
variances that remain relatively constant over time (Kessler &
Greenberg, 1981). Therefore, in this article, it is assumed that
residuals may change over time. If they change to an extent that
keeps that the variances of X and Y over time invariant, all
stabilities and causal effects can be interpreted in standardized
terms. This assumption is made through the remainder of the
article, unless otherwise stated. If the reader prefers to assume that
residuals are invariant across time, stabilities and cross-lagged
effects should be interpreted as unstandardized effects. Although
stationarity may not always apply, this assumption is made in most
regression-based causal models (Cole & Maxwell, 2003). Without
stationarity assumptions, optimal time lags can be probably de-
rived for particular sets of stabilities and causal effects, but gen-
eralizations are difficult to make.

Calculating Optimal Time Lags

An optimal time lag is the lag that is required to yield the
maximum effect of X predicting Y at a later time, while statisti-
cally controlling for prior values of Y. This definition corresponds
to the cross-lagged regression coefficient in a regression analysis
(or SEM) in which later Yt�

is predicted by prior Yt0
with the

regression weight �Yt�
Yt0

and prior Xt0
with �Yt�

Xt0
. Thus, �Yt�

Xt0
,

which is visualized Figure 1C (F-Model), is an estimate of the
overall cross-lagged effect of Xt0

on Yt�
.

In the following sections, we will derive the optimal number �
of SUs (the optimal discrete time lag) that yields the strongest
overall cross-lagged effect (�Yt�

Xt0
). First, we derive the optimal

discrete time lag for a simple D-Model without reverse causation.
We then derive an estimate for the continuous C-Model. Finally,
we extend the logic of these derivations to incorporate reciprocal
causation.

Optimal Time Lags in One-Directional Discrete
Time Models

To determine the optimal discrete time lag (i.e., the number � of
SUs), we have to determine the components of �Yt�

Xt0
. This can be

quite complicated, and to facilitate understanding we begin with a
simplified model in which the reversed causal effect is absent (i.e.,
rt�

� 0). As already noted, we also make the assumption that all
it� � i, all dt�

� d, and all ct�
� c. Then, �Yt�

Xt0
can be derived

following the rules of path analysis (cf. Kenny, 1979). The sum of
all direct effects of X on Y, that is, the sum of all traces that do not
involve a correlation, is

�Yt�
Xt0

� i0c d��1 � i1c d��2 � i2c d��3 � . . . � i�–2c d��(��1)

� i�–1c d��(�) (1)

Applying the general binomial formula yields

�Yt�
Xt0

� c
d� � i�

d � i
, (2)

which shows that the sum of all effects of X on Y equals the causal
effect c multiplied with a fraction; this fraction is composed of the
stabilities of X (i) and Y (d).
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The first derivative of �Yt�
Xt0

with regard to � is

�
Yt�

Xt0

� �
c(d�ln(d) � i�ln(i))

d � i
. (3)

This first derivative equals 0 if

�opt � �

ln�ln(d)

ln(i) �
ln(d) � ln(i)

(4)

When SU stabilities for X and Y, i and d, are equal (s � i � d),
then Equation 4 is not identified. Appendix A derives the proper
formulas for this case.

Suppose we had determined the month-to-month SU stability in
a pilot study (e.g., monthly sales, X, and salary bonus, Y), for
example, a SU stability of i � .83 and d � .82 for a 1-month period
(SU), then inserting these values in Equation 4 results in

�opt � �

ln�ln(.83)

ln(.82)�
ln(.83) � ln(.82)

� 5.1995.

Thus, the optimal time lag is 5.20 SU, that is, 5.20 months. If six
waves of data (5.20 rounded) separated by monthly intervals are
available for analysis, a model with five one-wave lagged effects
can be tested. The overall indirect effect of monthly sales at Time
0 on salary bonus at Time 5 will become the largest of all possible
overall indirect effects; time lags that span 4 months or less, or 6
months or more, will yield smaller overall indirect effects. Because
collecting six waves of data is inefficient, collecting two waves
separated by 5.20 months would be sufficient.

Note that the size of the causal effect c does not influence the
optimal time lag. Similarly, the correlation at the onset of the
causal process, that is, �Yt0Xt0, does not affect the optimal time lag
either. Thus, the optimal time lag does not depend on whether a
causal system has just been initiated, or whether it has achieved a
state of equilibrium, or whether it has begun dissolving for what-
ever reason. This also applies for the subsequently presented cases.
Also note that when the effect c � 0, there is no optimal time lag
because Equation 3 is then �Yt�

Xt0
� 0 for all possible time lags.

Figure 2 shows an asymmetric distribution of cross-lagged
effect sizes (lagged standardized partial regression coefficients) for
c � .005, .050, and .100, with i � .99, .98, and .90, and with d �
.995, .97, and .90, respectively. In cases of superstable variables
(i � .99 and d � .995; the dashed line in Figure 2), the issue of an
optimal time lag is of less importance: The curve is relatively flat
and wide. It is not until 3 years have gone by (if � refers to a 1-day
interval) that effects vanish. Superstable variables (i.e., i � 0.99) are
unlikely to be seen in practice; however, the example demonstrates
that using long time lags exceeding 2 years may be inappropriate.

For slightly less stable variables, however, the situation changes
dramatically. If i � .98 and d � .97 (the dotted line in Figure 2),
a cross-lagged effect size would approach zero when the lag is
approximately 350 SUs (e.g., 1 year if the SU is 1 day). Thus, if
a researcher knows that X and Y have, for example, day-to-day
(SU) stabilities that fall short of .98 (after correcting for measure-
ment error), finding a cross-lagged effect spanning one year or
more becomes a matter of chance.

When variables become more unstable (e.g., s � i � d � .90;
the solid line in Figure 2), the issue of optimal time lags becomes
even more important. Figure 2 shows that time intervals, which are
less than optimal, lead to a sharp decline in effect sizes. This
decline is slightly more marked for time lags that are too short
compared with time lags that are too long. For example, the
optimal time lag in this case is 9.49 SU with �Yt9.49

Xt0
� 0.3880, and

at 5 SU below the optimal lag �Yt4.49
Xt0

� 0.3109, whereas at 5 SU
above the optimal lag �Yt14.49

Xt0
� 0.3498. Thus, because effect

sizes are positively skewed, time lags that are too short lead to
slightly stronger decreases in effect size compared with time lags
that are too long.

Note that the equations for the optimal time lag (i.e., Equation
4 for i � d and Equation 17 for i � d) may result in �opt � 1.0.
For example, when a pilot study has revealed identical stabilities
for X and Y (i.e., i � d) that are lower than .3678, Equation 17
shows that the optimal time lag is shorter than the time lag used in
the pilot study. For example, if s � .30 across 1 month,

�opt � �
1

ln(.30)
� .8306.

Thus, the optimal time lag is .83 SU, that is, .83 months, which
is 24.92 days (assuming 30-day months). Although stabili-
ties �.3678 are rarely reported in empirical studies, they do occur.
For instance, the stability of mental distress among men was .30 in
the 1-year-lag study by Mäkikangas and Kinnunen (2003). Stabil-
ities typically become smaller if a model includes many causes of
the Time 2 variable (e.g., overall, 15 causes of distress at T1 in the
study of Mäkikangas & Kinnunen, 2003). As Coleman (1968)
already asserted, “as the formal system becomes more complete,
this coefficient should approach zero” (p. 441). Note, however,
that Coleman did not claim that the stability of a variable is
entirely made up by stable underlying third variables. He also
viewed the stability coefficient as a placeholder for mediators that
cause a negative feedback loop over time, which we usually
observe as the RTTM. A further reason why low stabilities are rare
in the literature is measurement error related to omitted third
variables, because “omitted variables in panel models may lead to
autocorrelation in the endogenous variable’s error term over time.
This in turn produces . . . inconsistent OLS estimates of the effects
of Yt-1 on Yt” (Finkel, 1995, p. 229; italics in the original).

Figure 2. Effect sizes (cross-lagged regression coefficients of Y�i
on X0,

while controlling for Y0) across time depending on the stability of the
independent variable X (i), the stability of the dependent variable Y (d),
and the cross-lagged effect of Y�i

on X�i-1
(c).
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Overall, there is good reason to believe that stabilities typically
reported in the literature are biased upward.

Optimal Time Lags in One-Directional C-Models

Thus far we have used estimates of the stabilities based on an
SU. Of course, the lag that is assumed in the SU affects the
stabilities obtained. In C-Models, there is no SU. Thus, any esti-
mate must be made with reference to the real time difference on
which it is based. Because the time lag in C-Models can take any
set of values, a time lag may be infinitesimally short. The change
in a variable across an infinitesimally short interval is the deriva-
tive. This change, either from its counterpart earlier in time or from
its cause earlier in time, can be predicted using so-called drift
parameters (cf. Voelkle et al., 2012). To discuss this issue in a
more compact way, we use matrix notation. Instead of X and Y, we
now use x1 and x2; x(t) no longer represents a single variable at
Time t, but a 2 � 1 vector of variables. The derivative of x can be
predicted by a so-called drift matrix A with 2 � 2 dimensions:

A � �ic rc � 0

cc dc
�,

in which the diagonal elements are the auto-effects and the off-
diagonal elements are the cross-effects. Because we still assume
there is no reversed lagged effects, rc � 0. This leads to a
(nonstochastic) differential equation:

dx(t)

dt
� Ax(t) (5)

Fortunately, this is a well-known differential equation, and
the only function that satisfies this equation is

x(t) � eA(t�t0)x(t0). (6)

Equation 6 can now be used to express the exact relation
between discrete and continuous time (for details see Voelkle et
al., 2012) as follows:

A(�ti) � eA·�ti (7)

where A��ti� is the matrix relating the outcome variables over
time and contains the autoregressive effects in the main diag-
onal and cross-lagged effects in the off-diagonals, and eA·�ti is
the matrix exponential of the drift matrix A multiplied by the
change in time. The matrix exponential provides expressions, in
which the continuous time drift coefficients are expressed as
functions of i, d, and c. These are as follows (with the subscript
“c” indicating the continuous drift parameters and letters with-
out subscript the discrete stabilities and causal effects):

i � eic, (8)

d � edc, (9)

c � cc

edc·�ti � eic·�ti

i � d
(10)

For example, if the continuous time parameters are cc � .15,
ic � 	.19, and dc � 	.20 for 1 week, the corresponding 1-week
discrete time parameters are c � .12, i � .83, and d � .82, and, for

example, the corresponding 4-week discrete time parameters are
c � .28, i � .47, and d � .45. Note that drift parameters for
stabilities in continuous time are usually negative, and the more
negative they are, the lower is the stability of the variable. Also
note that one could use continuous time parameters to extrapolate
discrete time parameters for any time lag. However, correctly
estimating continuous parameters using available discrete time
parameters requires simultaneous estimation of continuous time
and F-Models (for details, see Voelkle et al., 2012).

The derivative of the Equation 10, in which �ti refers to the real
time difference between two possible measurement occasions,
equals zero if

�topt � �

ln�dc

ic
�

dc � ic
, (11)

whereas for the discrete case in which � referred to the number of
SU, it was

�opt � �

ln�ln(d)

ln(i) �
ln(d) � ln(i)

.

The optimal time lag now is obtained by inserting the continu-
ous time stabilities into Equation 11:

�topt � �

ln� �.19

� . 20�
� (�.19) � (�.20)

� 5.1995.

For the D-Model using i � .83 and d � .82, we also obtained
that the optimal time lag is 5.1995 weeks. Both approaches yield
identical values for optimal time lags at the population level.
Although the C-Model requires no assumption about the lags
between variables, in practice, we must assess individuals with a
certain lag, regardless of the choice of underlying models. Using
an D-Model, rather than a C-Model, to estimate parameters and to
calculate optimal lags also has some additional advantages. Esti-
mation problems, in particular with small sample sizes, are likely
to be less of a problem when using the D-Model, and parameter
estimates are probably more efficient. Although we are not aware
of an elaborated investigation of the statistical properties of the
estimators, our reanalysis of the examples used by Voelkle et al.
(2012) revealed that the ratios of the estimates and their associated
standard errors were larger for discrete estimates.1

Optimal Time Lags in Models With Reciprocal Effects

In panel analyses, authors are frequently interested in possible
reciprocal effects between X and Y. So far, we have assumed no
causally reversed effect of X on Y, that is, all rt�

� 0. This was in
order to facilitate understanding by simplifying the calculations. In
addition, models with reciprocal effects generate some problems
for discrete time models. Consider Figure 3, which depicts a

1 We thank an anonymous reviewer for suggesting these possible ad-
vantages of using the D-Model.
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reciprocal process with very low stabilities (.15) and very strong
causal effects (.80). These parameters cause erratic, saw-toothed
variations in effect sizes during the first couple of time lags. This

occurs because the effects of Xt0
on Yt�

are only strong when � is
odd, because then the trace between Xt0

and Yt�
does not mainly go

along the (weak) stability paths, but also involves the (strong) c
and r paths in a zig-zag pattern. Although not impossible, we
believe most variables in psychology and the social sciences are
likely to have higher stabilities across short time intervals com-
pared with their causal impact on other variables. Such erratic
behavior is probably limited to very short time intervals and to
very few content areas. Nevertheless, the example in Figure 3
shows that there is no general “real” solution of possible optimal
time lags. Therefore, the closed-form solutions provided subsequently
could imply optimal time lags that are “complex” rather than “real”
numbers, but complex numbers will usually not result if causal effects
are smaller than stabilities. Also, Figure 3 shows that the optimal time
lag in reciprocal systems in which cc 
 0 and rc 
 0 is longer than in
unidirectional systems in which rc � 0.

For C-Models, we demonstrated that the derivation of optimal
time lags required determining the root of the first-order derivative
of the matrix exponential of the drift matrix. This is still valid if
reciprocal effects exist, that is, rc � 0. The optimal continuous
time lag then is

�topt �

ln�1

2

dc�dc
2 � 2dcic � ic

2 � 4rccc � ic�dc
2 � 2dcic � ic

2 � 4rccc � dc
2 � 2rccc � ic

2

rccc � dcic
�

�dc
2 � 2dcic � ic

2 � 4rccc

. (12)

Compared with models with unidirectional effect, the
optimal time lag no longer depends solely on the stabilities ic and
dc; the sizes of the causal effects cc and rc also matter. This is
because in reciprocal systems, cc and rc, do not only carry a causal
effect from one point in time to the next; rather, they carry a causal
effect to infinity. Note that the optimal time lag to estimate the
effects of X on Y, or of Y on X, is identical because c and r in
Equation 12 are tied together in product terms.

Because calculating the continuous drift parameters is a
relatively recent development, which cannot be carried out

using the most common SEM computer programs, we also
provide the formulas for determining optimal discrete time
lags based on the SU of the D-Model. Compared with solving
the matrix exponential of the drift matrix, and determining
the �t for which the matrix exponential has a root, for contin-
uous time parameters, in the discrete time case one has to
determine the matrix power of the discrete empirical coeffi-
cients, and determine for which � it has a root. As with
C-Models, the optimal discrete time lag for c and r is identical.
This root is

�opt � �

ln�ln�1

2
d �

1

2
i �

1

2�d2 � 2di � i2 � 4cr�
ln�1

2
d �

1

2
i �

1

2�d2 � 2di � i2 � 4cr��
ln�1

2
d �

1

2
i �

1

2�d2 � 2di � i2 � 4cr�� ln�1

2
d �

1

2
i �

1

2�d2 � 2di � i2 � 4cr� . (13)

Thus far, we have shown how estimates of optimal time lags for
correctly specified continuous and discrete time models can be
calculated. We have limited ourselves to models with only two
variables that are unidirectionally or reciprocally related across

time. In principle, the same approach applies to more complex
models. However, the complexity may increase exponentially if
further variables are added to the model. Formulas to calculate
optimal time lags become particularly unwieldy if further variables

Figure 3. Example of erratic effect sizes (cross-lagged regression coef-
ficients of Y�i

on X0, while controlling for Y0) in models with reciprocal
causation, in which cross-lagged effects exceed autoregressive effects. In
this example, the stability of the independent variable X is i � .15, the
stability of the dependent variable Y is d � .15, the cross-lagged effect of
Y�i

on X�i-1
is c � .80, and the reversed cross-lagged effect of X�i

on Y�i-1

is r � .80 (dotted line) and r � .00 (solid line).
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are involved that are reciprocally related to X and Y. Fortunately,
if such third variables cause X or Y in a unidirectional fashion
only, Equation 13 is still valid. This is because unidirectional third
variables do not carry forward the causal effects between X and Y.

Note that Equations 12 and 13 remain valid only if the
C-Model and D-Model, respectively, are correctly specified;
that is, if all relevant third variables are actually included in the
models. For instance, suppose X is the number of hassles
experienced by children and Y is their level of depression. If the
number of siblings affect X, and genes affect Y, and the effects
of number of siblings and genes are explicitly modeled in the
C-Model and in the D-Model, then the estimates obtained of cc,
dc, ic, and rc can be inserted into Equation 12 (and c, d, i, and
r into Equation 13) to calculate the optimal time lag. If the
number of siblings and genes are excluded from the C-Model
and the D-Model, inserting the estimates of stabilities and
causal effects into Equations 12 and 13 would yield biased
calculations of the optimal time lag.

Designing Optimal Time Lags

A key goal of the present research is to provide guidance on
the design of optimal time lags. In many cases, neither discrete
nor continuous parameter estimates are known before a study
has been carried out. Fortunately, because increasing numbers
of repeated-measure studies are being published, researchers
now have a better chance of finding examples that have used
repeated measures of the variables that they wish to study. One

could use the reported coefficients and then calculate optimal
time lags for a new study. However, there are potential prob-
lems that should be considered when using prior research to
calculate optimal time lags, which we discuss in the next
section.

Using Existing Data to Calculate Optimal Time Lags

To demonstrate calculation of optimal time lags using exist-
ing data, we use data reported by Steca et al. (2014), who
conducted a study to investigate whether children develop de-
pressive symptoms when facing daily hassles. We leave out the
moderators they investigated, and focus on the cross-lagged
relations between depression and hassles. Using a sample of
554 male children aged 7 to 9 years, the authors used four
waves of data collection (Time 0 to Time 3). The time lag
between each pair of subsequent measurement occasions was 2
months. The correlations reported are shown in Table 1.

In setting up a D-Model, we started by using data from Time 0
to Time 1. We obtained the following discrete time parameter
estimates (stabilities in the diagonal, casual and reversed cross-
lagged effect in the off-diagonal, where ��� p � .001):

B(�t�2months, t0�Time0) � �.530*** .033

.159*** .597*** �.

Using Equation 13 yields the optimal time lag in terms of a
multiplier of the SU:

1.7485 � �

ln�ln�1

2
.53 �

1

2
.60 �

1

2�.532 � 2 · .53 · .60 � .60 � 4 · .16 · .03�
ln�1

2
.53 �

1

2
.60 �

1

2�d2 � 2 · .53 · .60 � 602 � 4 · .16 · .03� �
ln�1

2
.53 �

1

2
.60 �

1

2�.532 � 2 · .53 · .60 � .602 � 4 · .16 · .03�� ln�1

2
.53 �

1

2
.60 �

1

2�.532 � 2 · .53 · .60 � .602 � 4 · .16 · .03�

Thus, the optimal time lag is 1.7485 times the SU for an SU of
2 months. Because 2 � 1.7485 � 3.497 is closer to 4 months than
to the 2-months lag realized in the D-Model, we used an F-Model
comprised of Time 0 and Time 2 data, which were separated by 4
months. We obtained the following discrete parameter estimates
(where ��� p � .001):

B(�t�4months, t0�Time0) � �.353*** .015

.176*** .434*** �
Indeed, the effect of hassles Time 0 on depression Time 2 is now

.176 and .017 larger than in the initial D-Model, which used an SU
of 2 months. Unexpectedly, the reverse effect of depression Time
0 on hassles Time 2 decreased by .018 to .015.

Assuming a correctly specified model, our conclusion is that the
optimal time lag for the effect of hassles on depression is indeed
between 2 and 4 months. This conclusion is consistent with the
calculated optimal lag of 3.497, and with the increase in the lagged
effect from .159 to .176 for the effect of hassles on depression. In
fact, the effect of .176 was very close to expectation, which is

.1809 (this value results from taking the matrix power of the
discrete empirical coefficients, which we did not show for reasons
of space). In Figure 4, we show the expected effect sizes of the
lagged and reversed lagged effect over time, based on the results

Table 1
Correlations (N � 554) of Depression and Hassles From
Time 0 to Time 3 Reported by Steca et al. (2014)

No. 1 2 3 4 5 6 7 8

1 Depression T0 1
2 Depression T1 .59 1
3 Depression T2 .42 .67 1
4 Depression T3 .49 .62 .70 1
5 Hassles T0 .38 .36 .31 .29 1
6 Hassles T1 .26 .39 .28 .27 .61 1
7 Hassles T2 .18 .29 .34 .31 .44 .59 1
8 Hassles T3 .16 .26 .24 .29 .35 .50 .61 1

Note. T0 � Time 0; T1 � Time 1; T2 � Time 2; T3 � Time 3.
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from the initial D-Model. Note again that the formulas to compute
the expected effects sizes are not reported in the present article for
reasons of space.

The declining effect of the reverse path from depression to hassles
contrasts with the increasing effect from hassles to depression, yet can
also be consistent with an optimal time lag between 2 and 4 months.
However, the size of the lagged reverse effect from depression to
hassles did not confirm expectations. This result might tempt re-
searchers to conclude that the optimal time lag for effects of hassles
on depression differs from the optimal time lag for the reverse path.
Note, however, that Equation 13 shows that for correctly specified
models, the optimal time lag is identical for both effects. The problem,
rather, is the assumption of correct model specification. We will
discuss this issue in the next section.

Up to this point, we conclude that a 2-month lag was too short
for hassles to have its strongest effect on depression, whereas the
4-month lag was too long for depression to have its strongest effect
on hassles. Therefore, the optimal time lag to investigate the
impact of hassles on depressive symptoms among children aged 7
to 9 years might be between 2 and 4 months.

Issues With Using Existing Data

The previous analyses show how existing data might be used to
investigate optimal time lags. However, our calculations were
based on assumptions that are probably not appropriate in most
practical applications. In particular, measurement error, restric-
tions in variance, and unmeasured third variables are likely to
influence the observed correlations that we used. In this section we
explore how these factors might influence the estimation of opti-
mal time lags.

First, measurement error has to be taken into account. Measure-
ment error attenuates relations among variables. Therefore, ideally,
one should take parameter estimates from latent variable structural
equation models reported in the literature. Unfortunately, a matrix

covering the correlations of all latent constructs is usually not
reported in published studies. Alternatively, one could use reported
correlations and reliability estimates, and then estimate an initial
D-Model using the disattenuated correlations, although this ap-
proach has some shortcomings (e.g., Schmitt, 1996).

Second, taking parameter estimates from an arbitrary sample to
derive optimal time lags is conceptually problematic because pa-
rameter estimates depend on sample characteristics. Correlations
will be reduced if the variances of the variables in a given sample
are restricted. Hence, whether or not parameter estimates reported
in the literature are useful depends on the degree to which variance
restrictions are comparable.

Third, we argue later that many studies reported in the literature
use time lags that are too long, and using these parameter estimates
to compute the optimal time interval for one’s own study will
usually lead to further exaggerated time lags. For example, sup-
pose we have used Time 0 and Time 3 data from the Steca et al.
(2014) study, which are separated by 6 months, for estimating a
D-Model. The discrete time coefficients here are (where ��� p �
.001, �� p � .01)

B(�t�6months, t0�Time0) � �.444*** .032

.121** .338*** �
Notably, inserting these values in Equation 13 yields an optimal

time lag that is longer than the 6 months (6 months � 1.0576 �
6.3456 months). Thus, the calculated optimal time lag increases
with the length of the SU; it was 3.497 months when using an SU
of 2 months, but 6.3456 months when using an SU of 6 months.

This longer period for the optimal time lag could occur if the
D-Model is not correctly specified. In particular, it is likely that the
stabilities of hassles and depression are influenced by causes that
are not included in the model. Earlier, we speculated that the
number of siblings might affect hassles, and that genetic determi-
nants might affect depression. Unfortunately, these variables
were not measured, or not reported, by Steca et al. (2014).
However, one could model unmeasured third variables and then
reexamine the stabilities and cross-lagged effects. This model is
shown in Figure 5. The abbreviations UTVX and UTVY represent

Figure 4. Observed lagged causal effects of hassles on depression (circles)
and of depression on hassles (triangles) from Time 0 to Time 1 (left circle/
triangle) and from Time 0 to Time 2 (right circle/triangle) using correlations
reported by Steca et al. (2014) and controlling for Time 0 counterparts of the
dependent variable. Dashed and solid lines represent the expected effects based
on extrapolating from the analysis of Time 0 and Time 1 data. Further
information is provided in the text.

Figure 5. A discrete time model of X and Y across four time points with
two correlated unmeasured third variables (UTVs), which reduce the
stability estimates of X (i) and Y (d) compared with a model without
unmeasured third variables.
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unmeasured causes of X and Y, respectively, which might be
correlated. Applying the model shown in Figure 5 (an Mplus
syntax file can be found in Appendix B) to the Steca et al. data
shown in Table 1, we obtained

B(�t�2months, UTVs included) � �.211*** �.051

.019 .372*** �.

The stabilities are now much lower than before, and the cross-
lagged effects both fail to become significant. The model fit was
quite good (�2 � 34.96, df � 21, p � .029, RMSEA � .035,
CFI � .993), and was significantly better than its counterpart
without the two unmeasured third variables involved (��2 �
93.65, �df � 5, p � .001). If the two stabilities i � .211 and d �
.372 were used as fixed parameters in the counterpart model, �2

increases significantly (��2 � 500.82, �df � 2, p � .001); thus,
the stabilities estimated in the model with unmeasured third vari-
ables are significant lower than the values obtained from the first
analyzed D-Model.

If the values for i � .211 and d � .372 are inserted into Equation
13, the optimal time lag is calculated as .8012 times the SU of 2
months, which is 1.6024 months, and therefore shorter than the
shortest time lag available in the study by Steca et al. (2014). This
and other examples in the literature (e.g., Dormann, 2001; Ormel
& Schaufeli, 1991) show that stability estimates will be biased
upward and, importantly, the upward bias increases with increas-
ing time lags.

To summarize thus far, there are several limitations when using
existing data to calculate optimal time lags: (a) correlations based
on perfectly reliable (latent) variables are frequently not available;
(b) possible range restriction in existing data limits the ability to
extrapolate optimal time lags to a planned study; (c) most extant
studies use rather long time lags, which are likely to provide
stability estimates that are biased upward; and (d) only few extant
studies use multiple waves that allow unmeasured third variables
to be included when estimating stabilities and cross-lagged effects
(the structural models are not algebraically identified when two
waves are available only). Therefore, conducting a pilot study with
rather short time lags for the initial D-Model could be a useful
alternative to using existing data. We describe this approach as a
“shortitudinal study” because we want to stress that panel studies
with shorter time lags than usually applied could reveal important
information about the unfolding of psychological processes over
time, and about the optimal time lag for the process under study.

Discussion

We addressed the unresolved question of optimal time lags in
panel studies. Our presentation of optimal lags leads us to recom-
mend greater use of shortitudinal research. Some aspects of this
recommendation perhaps seem counterintuitive, so we emphasize
that the optimal time lag is one that will detect the maximum effect
size across two waves of measurement.

Over time, a continuous causal process produces both increasing
and declining effect sizes. Previous simulations (e.g., Cole &
Maxwell, 2003; Sims & Wilkerson, 1977) and algebraic analyses
(Voelkle et al., 2012) clearly demonstrated the distribution of
effect sizes across time. The present article extends previous
research by providing a general solution to the problem of how to

calculate when the discrete and continuous effect becomes stron-
gest in time. Interestingly, it turned out that in unidirectional causal
models, the optimal time lag does not depend on the magnitude of
the cross-lagged effect, but only on the stabilities of X and Y.

Second, when reciprocal relations between X and Y across time
are considered, the results also confirm that the shape of the
distribution of total cross-lagged effects is similar to that for
unidirectional effects. The existence of reciprocal relations could
make it easier to demonstrate empirically a causal effect in either
direction. This is because the overall cross-lagged effects are
always equal to or greater than those which would be observed if
only unidirectional effects were operating. Reciprocal relation-
ships “stabilize” a causal system by producing a better spread of
causal effects. This stabilization has another side effect: When
reciprocal effects exist, the optimal time lag is slightly longer
compared with systems with unidirectional effects. Interestingly, if
models are correctly specified, the optimal time lag for an effect of
X on Y is identical to the optimal time lag for an effect of Y on X.

It should be noted that the optimal time lag might differ from the
time it takes for a dependent variable to reach its maximum level
when individuals are exposed to an independent variable. For
example, a study of the link between exposure to a work stressor
and subsequent reporting of depressive symptoms in a sample of
employees would be expected to show a distribution of increasing,
then decreasing, effect sizes over time, depending on the time of
measurement. This result is distinct from the answer to the ques-
tion of when the accumulation of work stressors and symptoms
might result in a depressive disorder. This latter effect is a question
of optimal time lags for estimating unknown hazard rates within a
given cohort (e.g., Inoue & Parmigiani, 2002), but it is not related
to the distribution of effect sizes across time, which captures the
cause–effect relations that we are interested in.

The optimal time lag might also be different from the time one
should allow to pass in order to make a precise prediction of future
states (e.g., the exact level of stressors and stress symptoms). This
is a question of optimizing forecasts (cf., Prasolov, 2001) by using
several reasonable past variables to predict future variables, but
does not address the question of when the effect of one particular
past variable X reaches its maximum value in predicting future Y.
Our study complements these questions by addressing the differ-
ent, but important, question of the maximum lagged effect of X
on Y.

Our call for researchers to use shorter time lags implies that the
common lag of 1 year should be supplemented with shortitudinal
studies of much shorter time lags. Again, this recommendation
may seem counterintuitive, based on the observation that many
1-year stabilities fall between .40 and .70, and inserting these
values in Equation 17 would yield estimates of 1.09 and 2.80
years. Although this result seems to be at odds with the need for
shorter time lags, these stabilities do not take account of the
upward bias in stabilities because of factors such as unmeasured
third variables. Our analyses show that these factors add greatly to
the observed stability values.

In addition, we believe that in the applied psychology literature,
many substantive changes can be observed over reasonably short
time frames. For example, many cause–effect relationships be-
tween work experiences and work attitudes might not take long to
be expressed, but are likely to be obscured because they are very
small.
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Therefore, we suggest greater attention be given to shorter time
lags in research that applies common longitudinal statistical meth-
ods (e.g., hierarchical regression analysis or SEM). This plea is not
to be confused with a call for more diary or event sampling studies:
These are worthy in their own right, but they tend to analyze
cross-sectional effects (within individuals) and are based on a quite
different concept of change. There is great potential, however, for
diary studies to be useful when between-subjects analysis is ap-
plied. This is because diary studies employing short time intervals
may be better suited for demonstrating cross-lagged effects than
panel studies covering several months or years.

The call for more shortitudinal research need not be made for all
areas of research. Certain disciplines, however, are particularly
inclined toward using long time lags, and these disciplines might
benefit from the present analysis of optimal lags. In particular,
research in basic psychology applies quite short lags, whereas time
intervals in industrial and organizational psychology research are
usually very long. As an example, Glasman and Albarracín’s
(2006) meta-analysis of basic research into attitude–behavior re-
lations reported time lags of less than one day (46 out of 51
studies). By contrast, the average time lag in Steel and Ovalle’s
(1984) meta-analysis of applied research into the relationship
between behavioral intention and turnover was approximately two
years. The stability of intention to quit and turnover, however, may
not be very high even across shorter time lags. Therefore, we believe that
it becomes likely that long lags yield noticeable cross-lagged
effects only by chance, or because third variables are left out from
analysis. Then, long time lags are perhaps also more likely to
provide results that are contrary to theory, such as in a recent
meta-analysis by Swider and Zimmerman (2014), in which the
generally negative sign of the cross-lagged effect of performance
on withdrawal behavior turned into a positive one when studies
using time lags of 13 or more months were analyzed.

Compared with social sciences, other disciplines such as biology
or chemistry have invested much more effort to determine optimal
time intervals between assessments of independent and dependent
variables (e.g., Cole & Maxwell, 2003). As we have shown for
regression-based panel analysis, assessing the optimal time inter-
val requires determining the stabilities for the variables under
study in unidirectional causal systems, and of the (reversed) causal
effects in reciprocal systems. Therefore, we are convinced that
appropriately chosen, optimal time lags based on accurate, prelim-
inary estimates of stabilities and causal effects, are most promising
in demonstrating lagged effects of X on Y. The suggested
D-Model to estimate stabilities and causal effects is quite easy to
test, but it is probably too simplistic. More complex models that
would yield more accurate stability estimates could be used when
multiwave data are available, as we also demonstrated (cf. Kenny
& Zautra, 1995, 2001).

Limitations

Our presentation of optimal time lags is based on assumptions
that might limit application to other research contexts. An impor-
tant assumption was that the model was correctly specified. For
example, third variables that affect X and Y have to be included
and statistically controlled for. The presence of a third variable Z
does not influence the optimal time lag for finding an effect of X
on Y if it is appropriately included in analyses, because estimates

of stabilities and (reversed) causal effects will then be unbiased.
However, leaving out third variables from analyses will certainly
yield biased estimates and, therefore, biased calculation of the
optimal time lag.

As noted in the introduction, another general assumption under-
lying all models discussed was that causal effects generally are
linear. It was assumed that an increase and a decrease in an
independent variable had identical effects on the dependent vari-
able. Therefore, theoretical models that include cumulative effects
were beyond the scope of the present article. In the future, such
models need to be examined in more detail.

In the present article, stationarity was assumed, that is, invariant
stabilities and causal effects across time. Thus, the findings of the
present study may not apply to developmental processes in which
stabilities and causal effects may change across time. Indeed,
stationarity is a strong assumption, but it can be tested if multiple
waves of data are available for analysis (e.g., Kenny & Zautra,
1995), ideally each separated by optimal time lags.

Furthermore, only variables without measurement errors were
considered. Measurement errors should be corrected whenever
possible, for instance, by modeling latent variables.

Our approach to the calculation of optimal time lags is directed
to between-subjects regression-based designs. An extension to
within-subject designs in which person-specific optimal time lags
are determined was beyond the scope of the present article. Such
an extension is more straightforward for multilevel models, in
which time is implicit, than for approaches such as growth curves,
in which time is explicit in the model (cf. Voelkle et al., 2012). We
suspect this extension will reveal very short optimal time lags for
most persons, based on our observation that stabilities are typically
rather low in such studies. For example, the (unstandardized)
stability for affect balance between the evening and the next
morning was .26 in a study by Wrzus, Wagner, and Riediger
(2014); for negative affect in the morning and before bedtime, it
was .10 in a study by Dudenhöffer and Dormann (2013); and for
positive mood after returning home from work and before bedtime,
it was .26 in a study by Sonnentag and Bayer (2005). These low
stabilities probably result from within-person centering; without
this centering, longer optimal time lags might result. Future re-
search is needed for a more informed answer to this question.

Implications and Recommendations

Because of the problems associated with using existing studies
and their estimates, we recommend that researchers estimate the
parameters of the D-Model themselves. In particular, we suggest
the following steps for designing a shortitudinal pilot study:

1. Based on conceptual considerations, estimate a reason-
ably short interval across which a change in X and Y can
be expected. This interval (the SU) will be the lag be-
tween Time 0 and Time 1 in the D-Model (see Figure
1B).

2. Consider important third variables (Z) that may impact
on X and Y, and include them in the D-Model, too. This
is, of course, always important in order to obtain unbi-
ased estimates; it is also important for unbiased calcula-
tions of optimal time lags.
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3. Randomly select a reasonably sized subsample from the
target sample (i.e., the participants sampled at Time 0) to
gather Time 1 data in a shortitudinal pilot study.

4. Estimate the D-Model using discrete time modeling. Fur-
thermore, use measurement models to account for mea-
surement error, because without them, structural relations
may be biased. Also include error autocorrelations
among errors of observed indicators—omitting them
usually leads to overestimated stability estimates.

5. Insert the estimated parameter values in Equation 13 (for
discrete time parameters) to determine the optimal �opt

(i.e., optimal number of SUs). Based on this result, de-
termine how much time you have to wait until Time 2
data should be gathered for testing the F-Model (see
Figure 1C). Alternatively, if c (and r) is already signifi-
cant using the initial D-Model, you may consider stop-
ping here and publishing the results.

The sample size of the pilot and main studies should carefully
follow the guidelines suggested by Kelley and Maxwell (2012).
Researchers’ intuition might be to use a small sample size for
the pilot study (D-Model), then follow up with a main study
(F-Model) using a larger sample. However, parameter estimates
obtained from the initial D-Model will be imprecise because of
the sampling error when only a small sample is used. A larger
sample size for the pilot study will produce more accurate
estimates of parameters for calculating the optimal time lag,
which should then allow estimation of larger cross-lagged ef-
fects in the F-Model. Thus, for testing the F-Model a smaller
sample size might be feasible compared with an F-Model with-
out a shortitudinal pilot study.

We identify three further implications for empirical studies
when repeatedly gathering data over time. First, researchers should
provide not only the estimates of the effect sizes obtained, but also
information concerning the exact time that Y was measured fol-
lowing the measurement of X. This is highly important because
there is no such thing as a time-invariant effect size (e.g., Cole &
Maxwell, 2009, 2003; Gollob & Reichardt, 1987). Ideally, re-
searchers of future panel studies would use continuous time mod-
eling, and report their estimated drift parameters, because they can
then be more easily integrated in possible meta-analyses of cross-
lagged effects.

Second, the logic of our approach extends directly to studies
with more than two time points. In such cases, we suggest using
varying time lags between the different measurement occasions,
ranging from shorter to longer intervals. Of course, different
discrete stabilities and discrete cross-lagged effects will then be
estimated for the different time lags. Voelkle et al. (2012) have
shown how to estimate the different discrete effects as functions
of a single set of two underlying continuous auto-effects (i.e.,
stabilities) and two cross-effects (i.e., causal effects). Inserting
the estimated continuous auto-effects and cross-effects in Equa-
tion 12 will yield the optimal time lag. The result from this
calculation might explain why some of the discrete effects were
small, and perhaps not significant, if they spanned measurement
occasions that were not optimally spaced in time.

Third, researchers should clarify the theoretical and empirical
time frame over which concepts relate to each other (see also Cole
& Maxwell, 2003; Collins, 2006; Finkel, 1995). Problems arise
when a construct and its measures do not align with the general
time frame of relationships. For example, if overlap across mea-
surement occasions exists, then a variable, which ought to be
regressed on its counterpart at an earlier point in time, is rather
partly regressed on itself (cf. Frese & Zapf, 1988). In this case, a
clear interpretation of what has really changed between measure-
ments becomes impossible. More importantly, without a clear
reference to time when defining constructs and developing their
measures, stabilities of the variables will vary. Consequently,
effect sizes will also vary, as will cross-lagged effects, making it
impossible to compare validly results obtained from different
panel studies. Similarly, problems ensue for integrating findings
from different panel studies using meta-analysis.

A concern that arises from these implications relates to the
asymmetric distribution of effect sizes. It is possible that a shor-
titudinal pilot study might produce relatively small effects, and if
the effect is not significant, researchers might decide that it is not
worth collecting a further wave of data at the optimal time point.
This situation is most likely when the stabilities of the variables are
rather low, producing a sharp decline in effect sizes around the
optimal time lag. Here, time lags that are too short are slightly
more likely than time lags that are too long to yield effect sizes that
are very low and not significant.

Despite this concern, there are two reasons why the time lag in
the pilot study should ideally be short. First, given low stabilities,
the likelihood of conducting a panel study that yields significant
cross-lagged effects is—in absolute terms—rather low, because of
the sharp decline of effect sizes around the optimal time lag.
Second, if a researcher finds no significant cross-lagged effect in
a shortitudinal pilot study, an extrapolation of the maximum effect
that can be expected after an optimal time lag is possible. If this is
still quite low, it might indeed be worth thinking about not doing
another follow-up. However, if the pilot study was short enough,
one can expect the effect sizes to increase thereafter.

A final consideration is the question of what makes a time lag in
a shortitudinal pilot study too short. This question cannot be
answered without referring to theoretical reasons (cf. Collins,
2006). We believe that, for many psychological variables, a time
lag shorter than 1 day is indeed too short. Within a single day,
several processes may occur that are unrelated to the substantive
change process being investigated. For example, researchers inter-
ested in the effect of exposure to work-related stressors on the
development of stress symptoms have to consider work timetables
and shift patterns that mean intensity of a stressor at Time 0 is not
a very good predictor of the intensity of a stressor 15 hr later when
work has finished. Consequently, across a time lag of 15 hr or so,
the stability of the stressor is rather low, which would imply a very
short optimal time lag. However, theoretically, it is assumed that
stressors during each person’s workdays cause stress symptoms.
Therefore, it is more reasonable to use a time lag of greater than 1
day to cope with different working hours. Ultimately, theory rather
than calculus determines the optimal lag for a pilot study, but
calculus rather than theory determines the optimal lag for a final
study.
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Conclusion

We suggest that shortitudinal pilot studies using quite short lags
will help researchers to design an optimally spaced panel study.
When the substantive hypotheses tested are valid, such shortitudi-
nal studies will provide essential information about the expected
distribution of causal effects over time. In the introduction, we
noted several meta-analyses that seem to support the incorrect rule
of thumb suggesting that cross-lagged effects decline as a function
of time. We suspect these meta-analyses are based on time lags
that are longer than optimal, and future research is needed to
provide better estimates of the effects identified by panel studies.
It is possible that some results are derived from lags that are so far
beyond the optimal time lag that they might fail to establish the
expected cause–effect relations. We believe that estimating opti-
mal time lags has the potential to enhance understanding of im-
portant causal relationships across multiple domains of psychol-
ogy.
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Appendix A

Optimal Time Lags in One-Directional Discrete Time Models With Identical Stabilities (i � d)

The partial regression coefficient relating X0 to Y� is

�Y�X0
� i0c d��1 � i1c d��2 � i2c d��3 � . . . � i�–2c d��(��1) � i�–1c d��(�). (14)

When stabilities for X and Y for the SU, that is, i and d, are equal (s � i � d), then Equation (14) can be rewritten as follows:

�Y�X0
� s0c s��1 � s1c s��2 � s2c s��3 � . . . � s�–2c s��(��1) � s�–1c s��(�) � �c s��1. (15)

The first derivative with regard to � is

�
Y�X0

� � c s��1 � �c s��1ln(s), (16)

which equals 0 if

� � �
1

ln(s)
. (17)

Appendix B

Mplus Syntax for the Analysis of the Model in Figure 5 Using the Correlations Among
Hassles and Depression Reported by Steca et al. (2014)

title: Steca et al., 2014;
data:

file � Steca.cor;
type � correlation;
nobservations � 544;

variable:
names � CStCon CStSlf AcSE SoSe Dep0 Dep1 Dep2 Dep3 Has0 Has1 Has2 Has3;
usevar � Has0 Has1 Has2 Has3 Dep0 Dep1 Dep2 Dep3;

analysis: estimator � ML;
Model:

! Modeling the 2 unmeasured third variables
TV_D BY Dep0 (Ld1);
TV_D BY Dep1 Dep2 Dep3 (Ld1);
TV_H BY Has0 (Lh1);
TV_H BY Has1 Has2 Has3 (Lh1);
TV_H WITH TV_D;
! Modeling the causes (auto & cross-lagged) of depression
Dep1 ON Dep0 (a11);
Dep1 ON Has0 (a12);
Dep2 ON Dep1 (a11);
Dep2 ON Has1 (a12);
Dep3 ON Dep2 (a11);
Dep3 ON Has2 (a12);

(Appendices continue)
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! Modeling the causes (auto & cross-lagged) of hassles
Has1 ON Has0 (a22);
Has1 ON Dep0 (a21);
Has2 ON Has1 (a22);
Has2 ON Dep1 (a21);
Has3 ON Has2 (a22);
Has3 ON Dep2 (a21);
! Covariance of depression and hassles at Time 0
Dep0 WITH Has0 (cov1);
! Covariances of latent disturbances at later times
Dep1 WITH Has1 (cov2);
Dep2 WITH Has2 (cov2);
Dep3 WITH Has3 (cov2);
! Variance of depression and hassles at Time 0
Dep0 (VDep0);
Has0 (VHas0);
! Variances of latent disturbances at later times
Dep1 (VDep1);
Dep2 (VDep1);
Dep3 (VDep1);
Has1 (VHas1);
Has2 (VHas1);
Has3 (VHas1);

Output: sampstat stdyx;
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