Prof. Dr. Kurt Binder

Institut für Physik

Staudinger Weg 7

 

55099 Mainz

 

                                                    LEBENSLAUF

 

10. Februar 1944                           Geboren in Korneuburg, Österreich

                                                      als Sohn von Dipl.-Ing. Eduard Binder

                                                      und Anna Binder (geb. Eppel)

 

1950 – 1962                                  Volksschule Wien 19., Pantzergasse

                                                      Realgynmasium Wien 19., Krottenbachstraße 11

 

1962 – 1969                                  Studium der Technischen Physik

                                                      an der Technischen Hochschulen Wien

 

9. März 1965                                 Erste Staatsprüfung

2. Juni 1967                                   Zweite Staatsprüfung (Diplom)

 

1967 - 1969                                   Ausführung der Dissertation am Atominstitut

                                                      der Österreichischen Hochschulen, Wien.

                                                      Thema: „Berechnung der Spinkorrelationsfunktionen von

                                                      Ferromagnetika

 

1969                                              Karoline & Guido Krafft-Medal, Technical University

                                                      Vienna, Austria

 

21. März 1969                               Promotion zum „Doktor der Technischen Wissenschaften“

 

1. Februar 1969 -                           Assistent am Atominstitut der Österreichischen

15. September 1969                      Hochschulen, Wien (bei Prof Dr. G. Ortner)

 

15. September 1969 –                   Wissenschaftlicher Mitarbeiter am Physikdepartment E 14

30. September 1974                      der Technischen Universität München

                                                      (bei Prof. Dr. H. Maier-Leibnitz und Prof. Dr. H. Vonach)

 

1. April 1972 -                               IBM postdoctoral fellow am IBM Zürich Research

31. März 1973                               Laboratory, 8803 Rüschlikon, Schweiz

 

13. November 1973                      Erhalt eines Rufes auf eine Professur (AH5) für

                                                      Theoretische Physik der Kondensierten Materie an der

                                                      Freien Universität Berlin, welchen ich ablehnte

 

20. Dezember 1973                       Abschluss des Habilitationsverfahrens an der

                                                      TU München mit der Ernennung zum Privatdozenten

 

1. April 1974 -                               Gastaufenthalt bei Bell Laboratories, Murray Hill,

30. September 1974                      New Jersey 07974, USA (bei Dr. P.C. Hohenberg)

 

1. Oktober 1974 -                          Wissenschaftlicher Rat und Professor (H3)

30. September 1977                      für Theoretische Festkörperphysik an der

                                                      Universität des Saarlandes, Saarbrücken

 

1. Oktober 1977 -                          Ordentlicher Professor (C4) an der Universität zu Köln,

30. September 1983                      gemeinsam berufen mit der Kernforschungsanlage Jülich,

                                                      und dorthin beurlaubt als Instituts-Direktor am

                                                      Institut Theorie II des IFF (Institut für Festkörperfoschung)

 

15. Juli 1977                                  Heirat mit Marlies Eckert

                                                      (geb. am 12. Dezember 1948 in 66606 St. Wendel/Saarland)

 

5. Juni 1978                                   Geburt meines Sohnes Martin

 

30. April 1981                               Geburt meines Sohnes Stefan

 

seit 1. Oktober 1983                     Professor (C4) für Theoretische Physik

                                                      an der Johannes Gutenberg-Universität Mainz

 

2. Dezember 1986                         Mitglied des Technologieberats

- Dezember 1992                           des Landes Rheinland-Pfalz

 

1985                                              Ablehnung eines Rufes an die

                                                      Florida State University, Tallahassee, FL, USA

                                                      [Position “Full Professors” verbunden mit

                                                      der Leitung einer Forschungsgruppe am SCRI

                                                      (Supercomputer Computations Research Institute)

 

Mai 1986 -                                     Vorsitzender des Koordinationsausschusses des Material-

Januar 1996                                   wissenschaftlichen Forschungszentrums (MWFZ) an der

                                                      Universität Mainz

 

seit Februar 1987                          „Adjunct Professor“ am Center for Simulational Physics,

                                                      University of Georgia, USA

 

1. Juli 1987 -                                 Sprecher des Sonderforschungsbereichs 262 der

31. Dezember 2001                       Deutschen Forschungsgemeinschaft („Glaszustand und

                                                      Glasübergang nichtmetallischer amorpher Materialien“)

 

Juli 1987 -                                     Mitglied des „Wissenschaftlichen Rats“

Juli 1995                                        des HLRZ (Höchstleitungsrechenzentrum) in Jülich

 

1988 – 1990 und                           Mitglied der IUPAP Commission C3

1996 – 1999                                  Thermodynamics and Statistical Physics“ und des

                                                      DNK (Deutsches Nationales Komitee für IUPAP)

 

29. November 1988                      Erhalt eines Rufes zum Direktor an das

                                                      Max Planck Institut für Polymerforschung, Mainz,

                                                      welchen ich ablehnte

 

20. Juni 1989                                 Ernennung zum Auswärtigen Mitglied

                                                      der Max Planck Gesellschaft

 

12. Mai 1992                                 Ernennung zum Korrespondierenden Mitglied der

                                                      Österreichischen Akademie der Wissenschaften, Wien

 

24. März 1993                               Max-Planck-Medaille 1993 erhalten von der

                                                      Deutschen Physikalischen Gesellschaft (DPG)

 

 

1999 – 2002                                  Vorsitzender der IUPAP-Kommission C3 „Thermodynamics

                                                      and Statistical Physics“ und Mitglied des „Executive

                                                      Council“ der IUPAP

 

2001                                              Auszeichnung als „Highly Cited Researcherdurch das Institute for Scientific Information (ISI), Philadelphia, USA

                                                      (“Top-100” List in Science Citation Index of Physics, 1981-1999)

 

6. September 2001                        Berni J. Alder CECAM Prize (auf dem Gebiet der Computerorientierten Physik) der EPS

                                                     

21. Februar 2003                           Ernennung zum Mitglied der Akademie der Wissenschaften und

                                                      der Literatur, Mainz

 

15. Januar 2003 -                           Dekan des Fachbereichs Physik der Johannes-Gutenberg

30. April 2005                               Universität Mainz

 

24. Januar 2003                             Staudinger-Durrer-Preis der ETH Zürich

 

2. November 2005                        Ernennung zum Auswärtigen Mitglied der Bulgarischen

                                                      Akademie der Wissenschaften, Sofia, Bulgarien

 

1. Oktober 2003 –                         Mitglied des Universitätsrats der Universität

30. September 2006                      Stuttgart

 

seit 2006                                        Mitglied „ehrenhalber“ des britischen Instituts of Physics (IOP)

 

24. Januar 2007                             Verleihung des Dr. h.c. in Chemie der Maria-Curie-Sklodowska Universität Lublin, Polen

 

11. Juli 2007                                  Verleihung der Boltzmann-Medaille der IUPAP

 

23. Oktober 2007                          Verleihung des Gutenberg Fellowships der Universität Mainz

 

2008 - 2013                                   Mitglied im wissenschaftlichen Beratungsgremium des Max Planck Institutes für „Kolloid und Grenzflächen-Forschung“

 

seit 2009                                        Mitglied im „Rat für Technologie, Rheinland-Pfalz“

 

23. September 2009                      Verleihung des „Lennard Jones Lecture Awards“ durch die Royal Society of Chemistry, London

 

seit 2010 - 2012                            Mitglied des “Scientific Steering Committee of the

                                                      Partnership for Advanced Computing in Europe (PRACE)”

 

2011                                              Vize-Präsident des wissenschaftlichen Rates des John von Neumann

                                                      Institutes für Computing (NIC), Jülich

 

April 2011                                     Mitglied der Nationalen Akademie der Wissenschaften, Leopoldina, Halle 

 

seit 2012                                        Vorsitzender des wissenschaftlicher Rates des John von Neumann Insitutes für Computing (NIC) Jülich

 

seit 2012                                        Vize-Präsident des „Steering Committee’s“ des Gauss Centers

                                                      für Computing

 

seit 1. April 2012                          Professor „emeritus

 

19. September  2012                     Ehrenmedaille „Marin Drinov“ der bulgarischen Akademie der

                                                      Wissenschaften

 

30. Januar 2013                             Ehrendoktorwürde der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf für bedeutende Beiträge zum Sonderforschungsbereich TR6 „Physik kolloidaler Dispersionen in äußeren Feldern

 

Supervision of Ph.D. theses/Betreuung von Doktorarbeiten

 

Prior to the “Habilitation” (1973), only an “inofficial” Ph.D. advisor status was possible for the following two cases:

 

(i)                 Volker Wildpaner “Berechnung der Magnetisierung um Gitterfehler in einem Heisenberg Ferromagneten” Technische Hochschule Wien, 1972

 

(ii)               Heiner-Müller-Krumbhaar “Bestimmung kritischer Exponenten am Heisenberg-Ferromagneten mit einem selbstkonsistenten Monte-Carlo Verfahren” Physik-Department, Technische Hochschule München, 1972

 

A)    Universität des Saarlandes, Saarbrücken

 

1.      Artur Baumgärtner “Die verallgemeinerte kinetische Ising-Kette: Ein Modell für

            die Dynamik von Biopolymeren” 1977

 

2.      Claudia Billotet “Nichtlineare Relaxation bei Phaseübergängen: Eine Ginzburg-Landau
      Theorie mit Fluktuationen” 1979

 

3.      Rüdiger Kretschmer “Kritisches Verhalten und Oberflächeneffekte von Systemen mit
      lang- und kurzreichweitigen Wechselwirkungen: Phänomenologische Theorie und

         Monte Carlo Simulation” 1979

 

4.      Ingo Morgenstern Ising Systeme mit eingefrorener Unordnung in zwei Dimensionen”

            1980

 

 

B)    Universität zu Köln

 

5.      Kurt Kremer “Untersuchungen zur statistischen Mechanik von linearen Polymeren unter

            verschiedenen Bedingungen” 1983

 

6.      Jozsef Reger “Untersuchungen zur statistischen Mechanik von Spingläsern” 1985

 

 

C)    Johannes Gutenberg Universität

 

7.      Ingeborg Schmidt Oberflächenanreichung und Wettingphasenübergänge in

      Polymermischungen” 1986

 

8.      Jannis Batoulis “Monte Carlo Simulation von Sternpolymeren” 1987

 

9.      Hans-Otto Carmesin “Modellierung von Orientierungsgläsern” 1988

 

10.  Wolfgang Paul “Theoretische Untersuchungen zur Kinetik von Phasenübergängen

erster Ordnung”

 

11.  Manfred Scheucher “Phasenverhalten und Grundzustandseigenschaften

      kurzreichweitiger Pottsgläser” 1990

 

12.  Hans-Peter Wittmann “Monte Carlo Simulationen des Glasübergangs von

      Polymerschmelzen im  Rahmen des Bondfluktuationsalgorithmus” 1991

 

13.  Burkhard Dünweg “Molekulardynamik-Untersuchungen zur Dynamik von

Polymerketten in verdünnter Lösung” 1991

 

14.  Friederike Schmid “Volumen-Grenzflächeneigenschaften von Modellen kubisch-

raumzentrierter binärer Legierungen: Untersuchung mittels Monte Carlo Simulation” 1991

 

15.  Hans-Peter Deutsch “Computer-Simulation von Polymer-Mischungen ” 1991

 

16.  Werner Helbing “Quanten Monte Carlo Simulation eines Rotatormoleküls” 1992

 

17.  Dominik Marx “Entwicklung von Pfadintegral Monte Carlo Methoden für adsorbierte

Moleküle mit inneren Quantenfreiheitsgraden” 1992

 

18.  Gernot Schreider “Hochtemperaturreihenentwicklungen zum geordneten und unge-

      ordneten Potts-Modell” 1993

 

19.  Jörg Baschnagel “Monte Carlo Simulationen des Glasübergangs und Glaszustandes von
dichten dreidimensionalen Polymerschmelzen” 1993

 

20.  Marco d’Onorio de Meo “Monte Carlo Methoden zur Untersuchung reiner und

      verdünnter Ferromagnete mit kontinuierlichen Spins” 1993

 

21.  Marcus Müller “Monte Carlo Simulation zur Thermodynamik und Struktur von

Polymer-Mischungen” 1994

 

22.  Klaus Eichhorn “Pottsmodelle zu Zufallsfeldern” 1995

 

23.  Frank M. Haas “Monolagen steifer Kettenmoleküle auf Oberflächen. Eine Monte Carlo

Simulationsuntersuchung” 1995

 

24.  Matthias Wolfgardt “Monte Carlo Simulation zur Zustandsgleichung glasartiger

      Polymerschmelzen 1995

 

25.  Martin H. Müser “Klassische und quantenmechanische Computer Simulationen zur
Orientierungsgläsern und Kristallen” 1995

 

26.  Stefan Kappler “Oberflächenspannung und Korrelationslängen im Pottsmodell” 1995

 

27.  Felix S. Schneider “Quanten-Monte-Carlo-Computersimulationsstudie der Dynamik des

      inneren, quantenmechanischen Freiheitsgrades eines Modell-Fluids in reeller Zeit” 1995

 

28.  Katharina Vollmayr “Abkühlungsabhängigkeiten von strukturellen Gläsern: Eine

            Computersimulation” 1995

 

29.  Volker Tries “Monte Carlo Simulationen realistischer Polymerschmelzen mit einem

       vergröberten Modell” 1996

 

30.  Martina Kreer “Quantenmechanische Anomalien bei Phasenübergängen in 2D:

      Eine Pfadintegral-Monte-Carlo Studie zu H2 und O2 physisorbiert auf Graphit” 1996

 

31.  Bernhard Lobe “Stargraph-Entwicklungen zum geordneten und ungeordneten Potts-

      Modell und deren Analysen” 1997

 

32.  Stefan Kämmerer “Orientierungsdynamik in einer unterkühlten Flüssigkeit: eine
MD-Simulation” 1997

 

33.  Henning Weber “Monte Carlo-Simulationen der Gasdiffusion in Polymermatrizen” 1997

 

34.  Rüdiger Sprengard “Raman-Spektroskopie in Li2OAl2O3SiO3- Glaskeramiken:
Simulation und Kristallspektren und experimentelle Untersuchungen zum

Keramisierungsprozeß” 1998

 

35.  Frank F. Haas “Oberflächeninduzierte Unordnung in binären bcc Legierungen” 1998

 

36.  Jürgen Horbach “Molekulardynamiksimulationen zum Glasübergang von

Silikatschmelzen” 1998

 

37.  Matthias Presber “Pfadintegral-Monte Carlo Untersuchungen zu Phasenübergängen in

       molekularen Festkörpern” 1998

 

38.  Christoph Stadler “Monte Carlo Simulation in Langmuir Monolagen” 1998

 

39.  Andres Werner “Untersuchung von Polymer-Grenzflächen mittels Monte Carlo

Simulationen” 1998

 

40.  Christoph Bennemann “Untersuchung des thermischen Glasübergangs von Polymer-

      schmelzen mittels Molekular-Dynamik Simulationen” 1999

 

41.  Tobias Gleim “Relaxation einer unterkühlten Lennard-Jones Flüssigkeit” 1999

 

42.  Fathollah Varnik “Molekulardynamik-Simulationen zum Glasübergang in

      Makromolekularen Filmen” 2000

 

43.  Dirk Olaf Löding “Quantensimulationen physisorbierter Molekülschichten auf Graphit:

      Phasenübergänge, Quanteneffekte, und Glaseigenschaften” 2000

 

44.  Alexandra Roder “Molekulardynamik-Simulationen zu Oberflächeneigenschaften

      von Siliziumdioxidschmelzen“ 2000

 

45.  Oliver Dillmann “Monte Carlo Simulationen des kritischen Verhaltens von dünnen”

      Ising Filmen” 2000

 

46.  Harald Lange “Oberflächengebundene flüssigkristalline Polymere in nematischer

            Lösung: eine Monte Carlo Untersuchung” 2001

 

47.  Peter Scheidler “Dynamik unterkühlter Flüssigkeiten in Filmen und Röhren” 2001

 

48.  Claudio Brangian “Monte Carlo Simulation of Potts-Glasses” 2002

 

49.  Torsten Kreer “Molekulardynamik-Simulation zur Reibung zwischen

      polymerbeschichten Oberflächen” 2002

 

50.  Stefan Krushev “Computersimulationen zur Dynamik und Statistik von Polybutatien-

      schmelzen” 2002

 

51.  Susanne Metzger “Monte Carlo Simulationen zum Adsorptionsverhalten von Homo-

      Copolymeren” 2002

 

52.  Claus Mischler “Molekulardynamik-Simulation zur Struktur von SiO2-Oberflächen mit

       adsorbiertem Wasser” 2002

 

53.  Ellen Reister “Zusammenhang zwischen der Einzelkettendynamik und der Dynamik von

Konzentrationsfluktuationen in mehrkomponentigen Polymersystemen: dynamische Mean-Field Theorie und Computersimulation” 2002

 

54.  Anke Winkler “Molekulardynamik-Untersuchungen zur atomistischen Struktur und

      Dynamik von binären Mischgläsern Na2O2 und (Al2O3) (2SiO2)” 2002

 

55.  Martin Aichele “Simulation Studies of Correlation Functions and Relaxation in

      Polymeric Systems” 2003

 

56.  Peter M. Virnau “Monte Carlo Simulationen zum Phasen-und Keimbildungsverhalten

       von Polymerlösungen” 2003

 

57.  Daniel Herzbach “Comparison of Model Potentials for Molecular Dynamics Simulation

      of Crystallline Silica” 2004

 

58.  Hans R. Knoth “Molekular-Dynamik-Simulation zur Untersuchung des Mischalkali-

      Effekts in silikatischen Gläsern” 2004

 

59.  Florian Krajewski “New path integral simulation algorithms and their application to

      creep in the quantum sine-Gordon chain” 2004

 

60.  Ben Jesko Schulz “Monte Carlo Simulation of Interface Transitions in Thin Film with

      Competing Walls” 2004

 

61.  Torsten Stühn “Molekular-Dynamik Computersimulation einer amorph-kristallinen SiO2

      Grenzschicht” 2004

 

62.  Ludger Wenning “Computersimulation zum Phasenverhalten binärer Polymerbürsten ” 2004

 

63.  Juan Guillermo Diaz Ochoa “Theoretical investigation of the interaction of a polymer

      film with a nanoparticle” 2005

 

64.  Federica Rampf “Computer Simulationen zur Strukturbildung von einzelnen

      Polymerketten” 2005

 

65.  Michael Hawlitzky “Klassische und ab initio Molekulardynamik-Untersuchungen zu

            Germaniumdioxidschmelzen” 2006

 

66.  Andrea Ricci “Computer Simulations of two-dimensional colloidal crystals in

       confinement” 2006

 

67.  Antione Carré “Development of emperical potentials for liquid silica” 2007

 

68.  Swetlana Jungblut “Mixtures of colloidal rods and spheres in bulk and in confinement” 2008

 

69.  Yulia Trukhina “Monte Carlo Simulation of Hard Spherocylinders under confinement” 2009

 

70.  Leonid Spirin “Molecular Dynamics Simulations of sheared brush-like systems” 2010

           

71.  Daniel Reith “Computersimulationen zum Einfluß topologischer Beschränkungen auf

      Polymere” 2011

 

72.  Alexander Winkler “Computer simulations of colloidal fluids in confinement” 2012

 

73.  David Winter “Computer simulations of slowly relaxing systems in external fields” 2012

 

74.  Dorothea Wilms “Computer simulations of two-dimensional colloidal crystals under

      confinement and shear” 2013

 

75.  Benjamin Block “Nucleation Studies on Graphics Processing Units” 2014

 

76.  Fabian Schmitz “Computer Simulations Methods to study Interfacial Tensions: From the

Ising Model to Colloidal Crystals” 2014

 

77.  Antonia Statt “Monte Carlo Simulations of Nucleation of Colloidal Crystals” 2015

 

 

Main Research Interests

 

1.    Monte Carlo simulation as a tool of computational statistical mechanics to study

     phase transitions

 

A main research goal has been to develop Monte Carlo techniques for the numerical study of classical interacting many body systems, with an emphasis on phase transitions in condensed matter [33,41,76,153,189,205,244,321,491,551,630,970,1132, number refer to the list of publications, see:publication list Binder.] A central obstacle to overcome are finite size effects: Ising and classical Heisenberg ferromagnets [5] exhibit the “finite size tail” in the root mean square magnetization, which is strongly enhanced near the critical point (due to the divergence of correlation length and susceptibility in the thermodynamic limit), leading to finite size rounding and shifting of the transition [16,29]. Combining this starting point with the finite size scaling theory developed by M.E. Fisher at about the same time, numerous promising first studies of phase transitions were given [33,41,75,76,92,103] but the main breakthrough came from a study of the order parameter probability distribution and its fourth order cumulant [135]. For different system sizes the cumulants (studied as function of the proper control parameter, e.g. temperature) intersect at criticality at an (almost) universal value, and this allows an easy and unbiased estimation of the critical point location. This method has helped to study phase transitions and phase diagrams of many model systems and now is widely used by many research groups. Lattice models for adsorbed monolayers at crystal surfaces have been studied to clarify corresponding experiments (e.g. H on Pd (100) [127], H on Fe (100) [145,154] or CO and N2 on graphite [398,411]. Lattice models for solid alloys have been used to understand the ordering in Cu-Au alloys [16,124,210,215], of Fe-Al alloys [355,380], and of magnetic ordering of EuS diluted with SrS [86,103,105]. Recently finite size scaling methods have also been used to study off-lattice models for the α – β phase transition in SiO2  [676] and the vapor-liquid phase transitions of CO2 [916] and various liquid mixtures [943] and good agreement with experiment was found. The technique could also be extended to very asymmetric systems, such as the Asakura-Oosawa model for colloid-polymer mixtures [823] and rod-sphere mixtures [910].

 

Since finite size scaling in its standard formulation needs “hyperscaling” relations between critical exponents to hold (see e.g. [135]), nontrivial generalizations needed to be developed for cases where hyperscaling does not hold, such as model systems in more than 4 space dimensions [184,195,596] and Ising-type systems with quenched random fields (such as colloid-polymer mixtures inside a randomly-branched gel) [883,939,1016]. Other generalizations concern anisotropic critical phenomena [261], e.g. critical wetting transitions [1061,1068,1095], and crossover from one universality class to another [369,524,593], e.g. when the effective interaction range increases the system criticality changes to become mean-field like (an application being binary polymer blends when the chain length of the macromolecules increases [414]). An important task in the study of phase transitions by simulations is the distinction of second order phase transitions from first-order ones, a problem studied in collaboration with David Landau since also the latter are rounded (and possibly shifted) by finite size (e.g. [182,212,262,375,1066]). Some of the “recipes” developed to study phase transitions by simulations using Monte Carlo methods are reviewed in [201,375,656,912]; we also note that finite size scaling concepts are also useful for Molecular Dynamics methods, and then allow also the study of dynamic critical behavior of fluids [801,868,873].

 

 

2.    Monte Carlo simulation as a tool to study dynamical behavior in condensed matter systems

 

One can give the Monte Carlo sampling process a dynamic interpretation in terms of a Markovian master equation [24]; on the one hand, one can thus give statistical errors an appropriate interpretation in terms of dynamic correlation functions of the appropriate stochastic model, and understand what the slowest relaxing variables are: e.g., for a fluid these are long wavelength Fourier components of the density, when the fluid is simulated in the canonical ensemble. This “hydrodynamic slowing down” [33,76] was not recognized in the early literature on Monte Carlo simulations of fluids, where the relaxation of the internal energy was advocated to judge the approach to equilibrium. In this way, it also becomes possible to understand that the so-called “statistical inefficiency” of the Monte Carlo algorithm near second-order phase transitions simply reflects critical slowing down, and it is possible to study the latter systematically by Monte Carlo e.g. for finite kinetic Ising models [26,1132], although even with the computer power available in the 21st century this is a demanding task, and thus the early work [26] could not reach a meaningful accuracy. A subtle aspect (that still does not seem to be widely recognized) is the fact that critical slowing down leads to a systematic bias (due to finite time averaging) in the sampling of susceptibilities using fluctuation relations [298]. One also needs to be aware that the latter suffer from a lack of self-averaging [214]. At first-order transitions, rather than critical slowing down one may encounter metastability and hysteresis [33,76], but on the other hand, the decay of metastable states (via nucleation and growth) is an interesting problem, both from the point of view of analytical theory [25], phenomenological theories based on the dynamical evolution of the “droplet” size distribution [53] and via attempts to directly study nucleation kinetic by simulation [27,30]. However, these early studies of nucleation phenomena in kinetic Ising models encountered two basic difficulties: (i) due to by far insufficient computer resources, only nucleation barriers of a few times the thermal energy were accessible. (ii) ambiguities in the definition of “clusters” [51]. Both difficulties could only recently be overcome [1090], showing that only the use of the Swendsen-Wang definition of “physical clusters” allows a consistent description of nucleation phenomena in the Ising model, and then the classical theory of nucleation is compatible with the observations of the kinetics.

 

The dynamic interpretation of Monte Carlo sampling is the basis for a broad range of kinetic Monte Carlo studies of stochastic processes, such as diffusion in concentrated (and possibly interacting) lattice gases [126,146,163], surface diffusion [161] and kinetics of domain growth [168,179], and last but not least interdiffusion in alloys [263] and spinodal decomposition of alloys using the vacancy mechanism [297,301,319]. Other groups have taken the subject of kinetic Monte Carlo and developed it to become a powerful tool of computational materials science.

 

 

3.    Spinodal decomposition and the non-existence of spinodal curves

 

While generalized nonlinear Cahn-Hilliard type equations for phase separation kinetics could be derived from kinetic Ising models [37], it was emphasized that the critical singularities that result from the linearization of the Cahn-Hilliard equation are a mean-field artefact, and rather one has a gradual and smooth transition between nonlinear spinodal decomposition and nucleation [52,53,68,80,87]. To show this, a phenomenological description of spinodal decomposition in terms of the dynamics of many growing clusters was developed [68,70,80], which also allowed to understand the diffusive growth law for spinodal decomposition in liquid binary mixtures [43], and provided a dynamic scaling concept for the structure factor of phase separating systems [61,68,80]. It was numerically demonstrated by Monte Carlo estimations of small subsystem free energies that the spinodal has a well defined meaning for subsystems with a linear dimension L that is small in comparison with the correlation length [162,181], since the order parameter in such small subsystems always is essentially homogeneous. For large L the distance of the “spinodal” from the coexistence curve decays with the minus 4th power of L (in d=3 dimensions). Later this observation was explained via the phenomenological theory for the “droplet evaporation/condensation transition” [750]. The latter has been studied via simulations [966].

 

It needs to be emphasized that the above results apply for systems with short-range interactions. When the interaction range R diverges, nucleation gets more and more suppressed (since the interfacial free energy is proportional to R), and metastable states still have a large life time rather close to the mean field spindoal [169,219,221]. Similarly, for large R the linearized Cahn theory of spinodal decomposition is predicted to hold in the initial stages, and this has been verified for phase separation of symmetrical polymer mixtures, as reviewed in [288,702]. These Ginzburg criteria [169,219,221] explain why the spinodal is useful for mean field systems but not beyond [1074].

 

 

4.    Surface critical phenomena, interfaces, and wetting

 

At the critical point of a ferro- or antiferromagnet critical correlations at a free surface show an anisotropic power law decay, and the critical exponents describing this decay differ from the bulk [19,31,42,48,151,270]. A phenomenological scaling theory for surface critical phenomena could be derived [19,31] in collaboration with Pierre Hohenberg, including scaling laws relating the new critical exponents to each other and to bulk ones, and numerical evidence from both systematic high temperature expansions and simulations was obtained to support this theoretical description. The Monte Carlo simulation method uses periodic boundary conditions throughout to describe bulk systems, but free boundary conditions in one direction (and periodic in the other) are used to study thin magnetic films [29]. Also small (super paramagnetic) particles can be studies [8], where a combination of surface and size effects matters (see also [1082]). In ferroelectrics and dipolar magnets even on the mean field level the description gets more complicated [91,137], due to the fact that depolarizing fields cannot be neglected. For short-range systems, on the other hand, estimations of the critical exponents associated with the “surface-bulk multicritical point” have remained a longstanding challenge [178,276,283,294]. An interesting extension also is needed for surface criticality if the bulk system exhibits a Lifshitz point [590,637], since then the system exhibits anisotropic critical behavior in the bulk. This problem was treated by deriving an appropriate Landau theory from the lattice mean field theory of a semi-infinite ANNNI model. A similar concept was used to describe the dynamics of surface enrichment, deriving the proper boundary conditions at a surface for a Cahn-Hilliard type description from a lattice formulation [325], which also is the starting point to study surface-directed spinodal decomposition [333,348,427,495,559,565,605,668,748,963]. Finally, critical surface induced ordering or disordering at bulk first-order transitions was studied [302,500,618]. Qualitatively, such transitions are understood in terms of the gradual unbinding of an interface between the ordered and disordered phase of the system from a surface, reminiscent of wetting phenomena.

 

In fact, the understanding of interfaces between coexisting phases has been one of the longstanding research interests as well. It was already realized soon [140] that sampling the size-dependence of the minimum of the distribution of the order parameter that describes the two coexisting phases yields information on the “surface tension” (i.e., the interfacial excess free energy). Originally developed for the Ising model [140] and then for lattice models of polymer mixtures [472], this method has become one of the widely used standard methods to estimate surface tensions at gas-liquid transitions (e.g. [823,916,943], but only recently could the subtle finite size corrections to this method be clarified [1119,1127].

 

An interesting property of interfaces is the order parameter profile across the interface [391,392]. In d=3 dimensions lattice models can show a roughening transition [260,391], where in the thermodynamic limit the interfacial width diverges. The interfacial width then scales logarithmically with the interfacial area [392,611,669,673,833,968,999], and the mean field (van der Waals, Cahn-Hilliard, etc) concept of an “intrinsic interfacial profile” becomes doubtful. While this logarithmic broadening of the interfacial profile could also be established for solid-fluid interfaces [968,999], in solid-solid interfaces elastic interactions may suppress this broadening [819], yielding a well-defined intrinsic profile again. Particularly interesting are interfaces confined between walls in thin film geometry [555,587,588]; the resulting anomalous dependence of the interfacial width on the film thickness could also be proven to occur in thin films of unmixed polymer blends through appropriate experiments [513,578].

 

Interfaces confined between parallel walls can also undergo an interface location/delocalization transition [272,442,468,503,571,638,653,659,681,820]. This transition is the analog  of the interface unbinding from a surface of a semi-infinite system, i.e. wetting transition, which is a difficult critical phenomenon in the case of short-range forces [206,222,233,277,295,313,353,572,1024,1061,1092]. Interesting interface unbinding transitions were also found in wedges [764,767] and bi-pyramide confinement [815,835], giving rise to unconventional new types of critical phenomena. Also interesting first-order transitions such a capillary condensation [344,356,677] can be studied for systems confined in strips, cylindrical or slit-like pores [275,834,874,1006,1008]. Then also phenomena such as heterogeneous nucleation at walls [967,974,1062] come into play; however, this problem is difficult since it requires consideration of both curvature effects on the interfacial free energy [966,1011,1045,1047,1051] and possible effects due to the line tension [1021,1131]. First steps of a methodology to deal with all these problems via simulations were developed [966,968, 1011,1021,1029,1045,1047,1051,1057,1062,1131]. Particularly challenging is the treatment of crystal nucleation from fluid phases, since in general the interface free energy depends on the interface orientation relative to the lattice axes [1135,1137,1138]. A methodology to circumvent this problem was invented [1133,1135], analyzing the equilibrium between a crystal nucleus and surrounding fluid in a finite simulation box, using a new method to sample the fluid chemical potential.

 

 

5.    Spin glasses and glass-forming fluids

 

The “standard model” for spin glasses is the Edwards-Anderson model, i.e. an Ising Hamiltonian where the exchange coupling is a random quenched variable, either drawn from a Gaussian distribution or chosen as +/- J. First Monte Carlo simulations of this model in d=2 dimensions [60,66] showed a cusp-like susceptibility peak similar to experiment; however, now it is known that this peak simply is an effect of the finite (short) observation time, and spin glass-like freezing in d=2 occurs at zero temperature only [104,106]. Recursive transfer matrix calculations [104,106] showed that at T=0 spin-glass-type correlations exhibit a power law decay with distance in the +/-J model. The spin-glass correlation length and associated susceptibility diverge with power laws of 1/T as the temperature T tends to zero [106]. Also a more realistic site disorder model for the insulating spin glasses EuS diluted with SrS was developed, and good agreement with experiment was found [86,105], and critical magnetic fields in spin glasses were discussed [164,171]. Also some aspects of random field Ising models [159,174,421] and random field Potts models [479,521] were considered. Together with Peter Young a comprehensive review on spin glasses was written, encompassing experiments, theory, and simulation; this highly cited paper still is the standard review of the field.

 

Considering Edwards-Anderson models where spins are replaced by quadrupole moments one obtains models for “quadrupolar glasses” [234,238,250,268,291,306,474,515,567,583,679,691,694,730,766], which can be realized experimentally by diluting molecular crystals with atoms which have no quadrupole moment (e.g. N2 diluted with Ar, or K(CN) diluted with K Cl [387]). An atomistic model for such a system was simulated in [540], and a detailed review is found in [387].

 

Also various contributions were made attempting to elucidate the “grand challenge problem” how a supercooled fluid freezes into a glass. First studies were devoted to develop a lattice model for the glass transition of polymers, introducing “frustration” in the bond fluctuation model via energetic preference for long bonds, which “waste” lattice sites for further occupation by monomers [334,374,388,400,405,417,423,433,435,476,493,496,506,528,549,696]. It was shown that much of the experimental phenomenology could be reproduced (stretched relaxation, time-temperature superposition principle, Vogel-Fulcher relation describing the increase of the structural relaxation time, and evidence in favor of the mode coupling theory as a description of the initial stages of slowing down). Many of these features could also be demonstrated by molecular dynamics simulations of a more realistic off-lattice bead spring model of macromolecules [577,598,600,617,628,708,709], including an analysis of the surface effects on the glass transition in thin polymer films [708,709]. However, a particular highlight of the bond fluctuation model studies was the evidence [493,506,528] that the Gibbs-DiMarzio description of the “entropy catastrophe” at the Kauzman temperature is an artefact of rather inaccurate approximations. Also attempts to map the lattice model to real polymers gave promising results [329,519].

 

Molecular dynamics simulations were also carried out for two other models of glassforming fluids, the Kob-Anderson binary Lennard-Jones mixture [510,568,684,690,738] and a model for SiO2 and its mixtures with other oxides [531,535,568,569,597,632,649,672,685] in particular; the logarithmic dependence of the apparent glass transition temperature on the cooling rate [510,535], evidence for the Goetze mode coupling theory [586], evidence for growing dynamic length scales extracted from surface effects [690,738,756,781], and percolative sodium transport in sodium disilicate melts [736] deserve to be mentioned. However, none of these studies gave insight whether or not the structural relaxation time truly diverges at nonzero temperatures, and what a proper “order parameter” distinguishing the glass from the supercooled fluid is. The current state of the art is summarized in a textbook (written with W. Kob) [1035]

 

6.    Studies of macromolecular systems

 

While a formulation of a Monte Carlo Renormalization Group scheme [121 aimed at a better understanding of the critical exponents describing the self-avoiding walk problem, the first simulation of a dense melt of short chains [128] was motivated by experimental work [130,150] that gave evidence for the Rouse-like motions of the monomers only, not for snakelike “reptation” of the chain in a tube formed by its environment. However, later simulations of much longer chains [307,339,379,418,666] succeeded to study the crossover from the Rouse model to reptation in detail.

 

A famous problem of polymer science is the adsorption transition of a long flexible macromolecule from a dilute solution (under good solvent conditions) at an attractive wall [149,745,763,1012,1034,1083,1084]. In early work [149], recognizing the analogy to the surface-bulk multicritical point of the phase transitions of semi-infinite n-vector models, the deGennes conjecture for the crossover exponent could be disproven, but the precise value of this exponent has remained controversial for decades, and only recent work [1083] applying the pruned-enriched Rosenbluth method to very long chain molecules and using a comparative study of various ranges of the adsorption potential could clarify the situation. However, open questions still remain concerning the adsorption of semiflexible chains [1084]. The latter show a complicated crossover behavior also in bulk solution, particularly when exposed to stretching forces, which could be elucidated only recently [1039,1052,1077]. The fact that the standard definition of the persistence length of semiflexible polymers holds only for Gaussian “phantom chains” [933] has hampered progress in this field, in particular when the extension to polymers with complex chemical architecture (such as “bottlebrush polymers” [877,904,985,1025,1055]) is considered.

 

A very interesting problem involving only the statistical mechanics of a single chain concerns confinement inside a tube [188,899,934,1000] or in between parallel plates [455,566,935], or the competition between chain collapse in poor solvents [148,439,969,978] and adsorption [915,945,948,1129]. Related single chain phase transitions (which often show inequivalence between different ensembles of statistical mechanics due to the geometrical constraints that are present) concern the “escape transition” of compressed mushrooms [609,610] or compressed polymers [1107] or the “coil-bridge”-transition [1118]. Polymer collapse in poor solvents gives rise to a rich phase diagram, when bottle-brushes are considered, due to pearl necklace type structures [988,997,1010].

 

While for phase transition of single chains their connectivity provides unique features, phase transitions in many-chain systems often have analogs in small molecule systems, but show also characteristic differences due to the large size of a polymer coil. Nucleation and spinodal decomposition in polymer mixtures for very long chains behave almost mean-field like [166,169,399]; with respect to the critical point of unmixing, crossover from Ising to mean field behavior is observed with increasing distance from the critical point [390,399,414]. Nevertheless, the Flory-Huggins theory for polymer blends is fairly inaccurate [226], when one extracts Flory-Huggins parameter from scattering experiments via this theory a spurious concentration dependence results [240,264] and the chain linear dimensions depend on the thermodynamic state [251], particularly in semidilute solutions [446]. But early versions of integral equation theories of blends even performed worse [338]. In d=2 dimensions, however, the critical temperature scales sublinearly with chain length [744,828]. Particularly interesting is mesophase separation in block copolymer melts [315,318], where simulations revealed a pretransitional stretching (into a dumbbell-like conformation) of the chains, in agreement with experiments performed independently at the same time. Also the interplay of confinement in thin films and lamellar ordering produces a rich phase diagram, relevant for experiment [385,432,622,623], while block copolymers in selective solvent show micelle formation [585,602,654,664,878,930]. These simulations (for finite chain lengths) clearly reveal the shortcomings of the “selfconsistent field theory”, which in theoretical polymer physics often is taken as something like the “gold standard”. Also simulations of “polymer brushes” (chains grafted densely with one chain end on a planar or curved substrate) [336,365,381,434,461,697,750,771,790,837,847,869,906,944,1017,1043,1059,1067,1069 1073,1093,1116,1124] have revealed similar limitations of the standard theories. Thus, Monte Carlo simulation for polymeric systems has become a particularly fruitful method. 

 

 

MITGLIEDSCHAFTEN

 

- Deutsche Physikalische Gesellschaft

- Hochschulverband

- Institute of Physics, UK (Fellow)

 

Sonderforschungsbereiche der Deutschen Forschungsgemeinschaft

 

                        SFB 130 “Ferroelektrika” 1976 – 1978 Teilprojektleiter

                        SFB 125 “Magnetische Momente in Metallen” 1978 - 1983

                        SFB 41   “Makromoleküle” 1984 – 1987 Teilprojektleiter

                        SFB 262  “Glaszustand und Glasübergang nichmetallischer

                                         amorpher Materialen“ 1987 – 2001, Teilprojektleiter

2002 - 2013    SFB 625  “Von einzelnen Molekülen zu nanoskopisch strukturierten Materialien“

                                         (Teilprojektleiter 2002-2013)

2002 - 2013    SFB TR6  “Physik kolloidaler Suspensionen in externen Feldern”

                                          (Teilprojektleiter 2002-2013)

 

 

Organisations- und Programmkomitees von Tagungen

 

1975  NATO Advanced Study Institute, Geilo, Norway

seit    1975    MECO (Middle European Cooperation on Statistical Physics)

1979  ICM (International Conference on Magnetism) Munich, Germany

1979  Jülicher Ferienkurs – The Physics of Alloys, Jülich, Germany

1980  IUPAP Conference on Statistical Physics, Edmonton, AL / Canada

1981  Les HouchesWinter School“, Les Houches, France

1982  Jülicher Ferienkurs – The Physics of Polymers, Jülich, Germany

1983  IUPAP Conference on Statistical Physics, Edingburgh, Great Britain

1985  ICM (International Conference on Magnetism) San Francisco, CA, USA

1986  IUPAP Conference on Statistical Physics, Boston, MA. USA

1989  IUPAP Conference on Statistical Physics, Rio de Janeiro, Brazil

1992  IUPAP Conference on Statistical Physics, Berlin, Germany

1993  13th General Conference of the EPS Condensed Matter Division,

    Regensburg, Germany

1995  IUPAP Conference on Statistical Physics, Xiamen, China

1995    Director of Euroconference “Monte Carlo and Molecular

            Dynamics of Condensed Matter Systems” Como, Italy (with G. Ciccotti)

1996    EPS-APS Conference on Computational Physics, Cracow, Poland

1998    EPS-APS-IUPAP Conference on Computational Physics, Granada, Spain

2000  Co-Director of NATO ARW “Multiscale Simulations in Chemistry and Biology”, Eilat,

   Israel (with A. Brandt and J. Bernholc)

2001  IUPAP Conference on Statistical Physics, Cancun, Mexico

2001    EPS-APS-IUPAP Conference on Computational Physics, CCP 2001,

            Aachen, Germany (Vice Chairman)

2002  EPS-APS-IUPAP Conference on Computational Physics, CCP2002, San Diego, USA

         2004    IUPAP Conference on Statistical Physics, Bangalore, India

         2004    EPS-APS-IUPAP Conference on Computational Physics, CCP2004, Genova, Italy

         2005    Co-Director of Erice Summer School, Erice, Italy

         2007    IUPAP Conference on Statistical Physis, Genova, Italy

         2007    EPS-APS-IUPAP Conference on Computational Physics, CCP2007, Brussels, Belgium

seit    2010    Steering Committee of the Granada Seminar on Computational and Statistical Phyiscs

         2010    IUPAP Conference on Statistical Physics, Cairns, Australia

         2010    EPS-APS-IUPAP Conference on Computational Physics, CCP2010, Trondheim, Norway

         2011    Liquid Matter Conference, Vienna, Austria

         2013    IUPAP “Conference on Statistical Physics”, Seoul, South Korea

         2015    EPS-APS-IUPAP Conference on Computational Physics, CCP 2015, Guwahati, India

         2016    IUPAP Conference on Statistical Physics, Lyon, France

 

 

MITHERAUSGEBER VON

 

1979        Springer, Berlin Monte Carlo Methods in Statistical Physics (2nd Edition 1986)

1984    Springer, Berlin Applications of the Monte Carlo Method in Statistical Physics

            (2nd Edition)

1992        Springer, Berlin The Monte Carlo Method in Condensed Matter Physics

1995    Oxford University Press, New York Monte Carlo and Molecular Dynamics Simulations in Polymer Science

1996    Societa Italiana di Fisica, Bologna

            Monte Carlo and Molecular Dynamics of Condensed Matter Systems

2001        IOS Press, Amsterdam Multiscale Computational Methods in Chemistry and

            Physics

2006    Springer, Berlin Computer Simulations in Condensed Matter: From Materials to

            Chemical Biology, Vols 1,2

1979 – 1982, 1988 – 1990 Editorial board Journal of Statistical Physics

1984 – 1989      Editorial board Journal of Computational Physics

seit       1983      Editorial board Ferroelectrics Letters

seit       1987     Editorial board Computer Physics Communications

seit       1991       Editorial board International Journal of Modern Physics C (Physics and Computers)

seit       1992      Editorial board Die Makromolekulare Chemie, Theory and Simulations

1993 – 1996      Advisory board Journal of Physics: Condensed Matter

seit       1996      Advisory board Physica A

seit       1998      Editorial board, Monte Carlo Methods and Applications

2000-2002         Editorial board, European Journal of Physics

2000-2002         Editorial board, Journal of Statistical Physics

2000-2003         Editorial board, Europhysics Letters
2000-2004         Kuratorium, Physikalische Blätter

2003-2005         Editorial board, Physical Chemistry and Chemical Physics

                          Editorial board, Current Opinion in Materials Science

seit 2010                       Journal of Statistical Physics

2006-2011         Editorial board, Journal of Physics A: Mathematics and General

2011-2013         Advisory Board, Journal of Chemical Physics

 

 

 

GUTACHTERTÄTIGKEIT

 

Ich erstelle Fachgutachten für die folgenden Institutionen und Trägerschaften:

 

Deutsche Forschungsgemeinschaft, DFG (Bonn)

 

Mitgliedschaft in den Fachgutachtergruppen der Sonderforschungsbereiche (Bayreuth, Bochum-Düsseldorf-Essen, Bonn, Tübingen-Stuttgart, Aachen-Jülich-Köln, Berlin, Halle) sowie fachgutachterliche Beratung im Rahmen des „DFG-Schwerpunkt“-Programms “Computer-Simulation in der Gitterreichtheorie”. Ebenso erstelle ich Fachgutachten in DFG-Normalverfahren und bin des weiteren als Fachgutachter im Rahmen des Heisenberg Programms tätig.

 

Volkswagen Stiftung

Alexander von Humboldt Stiftung

Österreichischer Fond zur Förderung wissenschaftlicher Forschung (Wien), Österreich

Nationale Stiftung zur Förderung der Wissenschaften (Washington D.C.), USA

NATO Abteilung für wissenschaftliche Angelegenheiten (Brüssel), Belgien

Wissenschaftliche Stiftungen der tschechischen Republik, von Israel, den Niederlanden, Großbritannien, etc. Deutsch-Israelische Stiftung (GIF)

BSF (Binational USA-Israel Science Foundation)

 

Fachgutachter für zahlreiche Zeitschriften: Phys. Rev. Lett., Phys. Rev. A, B, E, Physics Letters, Journal of Physics A, C, F, Europhysics Lett., Journal de Physique (Paris), Zeitschrift für Physik B, Journal of Chemical Physics, Solid State Comm., Physics Reports, Advances in Physics, Journal of Statistical Physics, Journal of Computational Physics, Physica status solidi, Canadian Journal of Physics, Surface Science, Computer Phys. Commun., Colloid & Polymer Sci., Die makromolekulare Chemie, Journal of Polymer Science, Macromolecules, Ferroelectrics, Journal of Noncrystalline Solids, Nuclear Physics B, Langmuir; Revs. Mod. Phys.; Eur. Phys. J. B, E; J. Phys. Chem. B, etc.

 

 

FREIZEITAKTIVITÄTEN

 

In meiner doch sehr begrenzten freien Zeit spiele ich gerne Klavier und genieße zur Abwechslung die Arbeit in freier Natur in unserem Garten oder Wanderungen.

 

 

 

 

Mainz, 01. Januar 2016                                                         Prof. Dr. Kurt Binder