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The γn → K0Λ reaction on a liquid deuterium target was measured in the A2

Hall of the MAMI-C electron accelerator facility at the Institut für Kernphysik in

Mainz, Germany. An incident electron beam of energy 1.5 GeV was directed onto

a 10-µm copper radiator to produce a bremsstrahlung photon beam that was tagged

using the Glasgow Photon Tagger. The final-state K0
S and Λ were identified by their

decays K0
S → 2π0 and Λ → π0n, respectively. The three final-state π0s were recon-

structed by detecting and analyzing the six photons resulting from their decays using

the Crystal Ball multiphoton spectrometer and the TAPS detector as a forward wall.

This combined detector system covered nearly 4π in solid angle. Kinematic fitting

was applied to reconstruct the γn → K0Λ → 6γn events. The primary background

reactions, γp → K0Σ+, γn → K0Σ0, γN → ηN , and γN → 3π0N , were identified

simultaneously using the 6-photon events. In order to determine the acceptance and

to estimate the background reactions, a detailed Monte Carlo simulation was per-

formed. Experimental cross sections for γn → K0Λ and γp → K0Σ+ were obtained

in the energy range Eγ = 9.15 to 1.4 GeV. Results for γn → K0Λ were compared

with theoretical predictions from two isobar models. Our results are the first experi-

mental measurements of the differential and total cross section for γn → K0Λ. Our



measurements for γp → K0Σ+ are in good agreement with prior measurements but

have better statistical precision.
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CHAPTER 1

Introduction

This chapter begins by reviewing the basic classification scheme of hadrons within

the quark model. A brief introduction to quantum chromodynamics (QCD) is

also included. Following this review, we describe the physics motivations for our

study of γn → K0Λ and then give an outline for the remainder of this dissertation.

1.1 Quark model

After the development of new experimental techniques at accelerator laboratories,

more and more hadrons were discovered. This introduced a challenge to develop

an appropriate classification scheme for hadrons. In 1964, Gell-Mann and Zweig[1]

independently observed that a hadron consists of substructures called quarks, which

led to the development of the quark model for hadrons. Each quark has spin- 1
2

and

baryon number 1
3
. There are three generations of quarks. The basic properties of

the three generations of quarks are given in the Table 1-1 in terms of the additive

quantum numbers. The quark model for the light quarks (u, d, and s) is represented

by using a flavor symmetry group SU (3 ), which provides a good description of the

observed hadron spectrum.

According to the quark model, these quarks combine with each other to form a

group of particles called hadrons. The hadrons are divided into two groups: baryons

and mesons. The three light quarks (up (u), down (d), and strange (s)) introduce a

broken flavor SU(3) symmetry. Each of the quarks has its corresponding antiquark,

1



2

Name Symbol Charge Isospin S C B T Constituent
(Q) (I3) Mass

(GeV/c2)

Down d −1
3

−1
2

0 0 0 0 0.35

Up u +2
3

+1
2

0 0 0 0 0.35

Strange s −1
3

0 −1 0 0 0 0.5

Charm c +2
3

0 0 +1 0 0 1.5

Bottom b −1
3

0 0 0 −1 0 4.5

Top t +2
3

0 0 0 0 1 171

Table 1-1: Summary of quark properties including their quantum numbers. Here
S, C, B, T denote, respectively, the quantum numbers strange, charm, bottom (or
beauty), and top.
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i.e., anti-up (ū), anti-down (d̄), anti-strange (s̄). The u and d quarks form an isospin

doublet and the s quark is an isospin singlet. The corresponding isospin components

I3 for u and d quarks are 1
2

and −1
2
, respectively. The strange quark has assigned

quantum number −1 for its strangeness, which is denoted by S. We can consider these

two quantum numbers I3 and S as two perpendicular axes, as shown in Fig. 1.1, in

order to classify the hadrons.

Figure 1.1: The members of the isospin doublets u and d quarks and the isospin
singlet s quark can be used to form the two axes of the SU(3) flavors.

During the strong interaction process, a quark and antiquark pair (qq̄) can be

created and/or annihilated.

1.1.1 Mesons in the quark model

Ordinary mesons are bound states of a quark and an antiquark with zero baryon

number. Using SU (3 ) we can represent such mesons as:

q ⊗ q̄ = 3 ⊗ 3̄ → 1 ⊕ 8. (1.1)

Thus mesons can be placed in the singlet and octet representations of SU(3) sym-

metry. Since quarks are spin- 1
2

fermions, in a meson the qq̄ pair must have a total
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intrinsic spin equal to 0 or 1. The parity of a meson is expressed as (−1)L+1, where L

is the orbital angular momentum of the qq̄ pair. In the ground state (L = 0) a meson

always has negative parity.

Mesons with total spin zero and odd parity (JP=0−) are called pseudoscalar

mesons. The nine members of the octet and singlet form a pseudoscalar meson

nonet. The lightest pseudoscalar mesons include pions (π) with strangeness 0 and

kaons (K) with strangeness +1. Likewise, the mesons with spin one and odd parity

(JP = 1−) are called vector mesons, and the nine members of the vector-meson octet

and singlet form a vector-meson nonet. A diagram for the ground-state pseudoscalar

and vector mesons is shown in Fig. 1.2.

Figure 1.2: Left: The pseudoscalar mesons with JP = 0−. Right: The vector mesons
with JP = 1−.

1.1.2 Neutral kaons

Neutral kaons are produced in strong and electromagnetic interactions as strangeness

eigenstates:

K0 (497) = ds̄ and K̄0 (497) = sd̄,
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with strangeness S = +1 and S = −1, respectively. These neutral kaons are anti-

particles to each other. In weak decay interactions, strangeness is not a good quantum

number and K0 and K̄0 can be converted into each other by the process shown in

Fig. 1.3. CP is approximately conserved in weak decays. The effect of CP on K0 and

Figure 1.3: Feynman diagram showing the conversion of K0 and K̄0.

K̄0 is given by

CP |K0〉 = η|K̄0〉 (1.2a)

CP |K̄0〉 = η′|K0〉, (1.2b)

where η and η′ are arbitrary phase factors satisfying ηη ′ = 1. We may choose η =

η′ = 1. This equation clearly shows |K0〉 and |K̄0〉 are not CP eigenstates. Consider

the states, K1 and K2, which are formed by the linear combinations

|K1〉 =
1√
2
(K0 + K̄0), (1.3a)
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|K2〉 =
1√
2
(K0 − K̄0). (1.3b)

From Eq. (1.2), it follows that K1 and K2 are CP eigenstates. For K1, CP = +1 and

for K2, CP = −1:

CP |K1〉 = |K1〉; (1.4a)

CP |K2〉 = −|K2〉. (1.4b)

.

We ignore small CP-violating effects in the following discussion. Then K1 and K2

can be distinguished experimentally by their decay modes. If we consider CP to be

conserved in weak decays, then K1 can decay only into a state with CP = +1, while

K2 must decay only into a state with CP= −1. Experimentally, neutral kaons may

decay into two or three pions. In the two-pion (2π) decay mode, the final-state pions

have C = (−1)L and P = (−1)L, so that CP = (−1)2L = +1, where L is the orbital

angular momentum of the two pions. In the three-pion (3π) decay mode, the Q value

which is the difference between the initial reactant mass (mass of a kaon) and the

final product mass (mass of 3π) is order of 70 MeV. This small value suggests that

the three pions are in an S state with no angular momentum between any pairs of

pions. Thus, parity of the 3π final state is

P = P 3
π = −1, since Pπ = −1.

For the 3π final state, C = +1. Hence, for the 3π system, CP = −1. Thus the

dominant mode of K1 decay is 2π with CP= +1, while the K2 may decay into 3π

with CP = −1. Because of the very small Q value for the three-pion decay, the rate
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of K1 decay into two pions is much faster than that of K2 into three pions; thus,

K1 and K2 have different lifetimes. Because of their lifetimes, K1 and K2 are called

short-lived neutral kaon (K0
S) and long-lived neutral kaon (K0

L), respectively.

Experimentally their lifetimes are

τS = (0.08953 ± 0.00005) ns, (1.5a)

τL = (51.16 ± 0.20) ns. (1.5b)

Because of their different lifetimes, K0
S can travel a few centimeters, whereas the

K0
L can travel many meters. The states K0 and K̄0 are superpositions of the states

|K0
S〉 and |K0

L〉 as the inverse relation of Eq. (1.3). This allows us to write

|K0〉 =
1√
2
(K0

S + K0
L), (1.6a)

|K̄0〉 =
1√
2
(K0

S − K0
L). (1.6b)

.

1.1.3 CP-Violation in neutral kaons

In 1964, Christenson et al .[2] demonstrated that the long-lived neutral kaon could

decay to π+π− with a branching ratio of order 10−3. This decay is a CP-violating

process. This means that the physical states K0
S and K0

L do not exactly correspond

to the CP-eigenstates K1 and K2 as just described above, but can contain small

components of states with opposite CP:

|K0
S〉 =

1
√

1 + |ε|2
(|K1〉 + ε|K2〉), (1.7a)
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|K0
L〉 =

1
√

1 + |ε|2
(|K2〉 + ε|K1〉), (1.7b)

where ε is a small complex number that measures the degree of CP-violation. Exper-

imentally its magnitude is about 2.3 × 10−3. Some important properties of the K0
S

and K0
L including their decay modes are given in Table 1-2.

Properties K0
S K0

L

mass difference
(mK0

S
− mK0

L
) (3.483± 0.006) ×10−12 MeV

mean lifetime
τ (ns) 0.08953 ± 0.00005 51.16 ± 0.20

decay modes π+π− (69.20±0.05)% π+π−π0 (12.54±0.05)%

and branching π0π0 (30.69±0.05)% π0π0π0 (19.52±0.12)%

fractions π+π−π0 (3.5+1.1
−0.9) ×10−7 π0π0 (8.65±0.06)×10−4

π0π0π0 < 1.2×10−7 π+π− (1.966±0.010)×10−3

π±e∓νe (7.04±0.08)×10−4 π±e∓νe (40.55±0.12)%

π+π−γ (1.79±0.05)×10−3 π±µ∓νµ (27.04±0.07)%

Table 1-2: Some of the physical parameters of the K0
S and K0

L with their decay modes.

1.1.4 Baryons in the quark model

Ordinary baryons are bound states of three quarks with baryon number one. Each

baryon has a corresponding antiparticle called an anti-baryon in which the quarks
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are replaced by their corresponding antiquarks. Using SU (3 ) we can represent the

baryons as:

q ⊗ q ⊗ q = 3 ⊗ 3 ⊗ 3 → 1 ⊕ 8 ⊕ 8 ⊕ 10. (1.8)

Thus baryons can be placed in the singlet, octet, and decuplet representations of

SU(3) symmetry. The quark constituents of the baryon octet and decuplet are illus-

trated in Fig. 1.4.

Figure 1.4: Left: The baryon octet with JP = 1
2

+
. Right: The baryon decuplet with

JP = 3
2

+
.

The most common baryons are the proton and neutron: p = |uud〉 and n = |udd〉,

which are collectively called nucleons (N). The baryon octet with JP = 1
2

+
also

includes the isosinglet Λ and isotriplet Σ baryons with strangeness −1. Baryons with

nonzero strangeness are called hyperons. The Λ (uds) with B = 1, Q = 0, and

S = −1 is the lightest hyperon or strange baryon.
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1.2 Quantum Chromodynamics (QCD)

Quantum chromodynamics (QCD) is the theory of the strong interaction which

attempts to describe the ‘quarks’ and ‘gluons’ found in hadrons. At high energy,

the strong coupling constant becomes smaller which results in the quarks and gluons

interacting very weakly. Inside a hadron, when quarks become asymptotically close,

they behave as non-interacting particles. At medium energies (up to few GeV), the

strong force is still an enigmatic force.

Although the original quark model explained successfully the classification of the

mesons and some baryons, the explanation of the ∆++ state in the baryon decuplet

required an additional quantum number called color. Each quark carries one of

three colors: red, green, or blue and each anti-quark carries one of three anti-colors:

anti-red, anti-green, or anti-blue. All the hadrons are color singlet states as these

quarks are confined with other quarks by the strong interaction to form pairs (as

in mesons) and triplets (as in baryons) so that the color is neutral. Because of

color confinement, the force between quarks never vanishes as they are separated

and it would take an infinite amount of energy to separate two quarks. Thus quarks

are forced to be in a bound state in an infinitesimally small volume of a hadron

and it is impossible to free a quark from its combination. Like quarks, gluons also

carry color charges and participate in the strong interaction. These colors, which

are additional degrees of freedom for the quarks, are an analog of electric charge

in quantum electrodynamics (QED). Actually gluons are the exchange particles for

the color force between the quarks analogous to the exchange of photons between two

charged particles in the electromagnetic force. However, unlike the electrically neutral

photons of QED, gluons carry the color charges of QCD. Thus like the representation
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of the photon interaction in QED, the gluon interaction can be represented by a

Feynman diagram as shown in Fig. 1.5. Just as in QED in which a charged particle

emits or absorbs photons, vertices in QCD allow a quark to emit or absorb a gluon.

Figure 1.5: (a) The QED vertex showing the emission or the absorption of a photon
(represented by a wavy line) by a charged particle. (b) The electromagnetic interac-
tion between the charged particles e1 and e2 with the exchange of a photon (c) The
QCD vertex showing the emission or absorption of a gluon (represented by a spiral
line) by a quark. (d) The strong interaction between two quarks q1 and q2 with the
exchange of a gluon.

The strong nuclear force is one of the most complicated subjects in physics. QCD

explains the strong interaction in the high-energy region successfully. Here hadrons

are described well in terms of partons (quarks and gluons), where asymptotic freedom

allows the use of perturbative quantum chromodynamics (pQCD). However, at lower
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energies the pQCD treatment breaks down and therefore the explanation of the strong

interaction in the medium-energy (resonance region) is still one of the unsolved prob-

lem in physics[3]. Effective field methods, such as chiral perturbation theory (ChPT)

have been successful at low energies, but its extension to the resonance regime is

difficult.

1.3 Nucleon resonances

In the quark model, many of the particles in the ground state baryon octet (J =

1/2) and baryon decuplet (J = 3/2) have the same valence quarks combinations. This

suggests that many particles in the baryon decuplet can be produced by supplying

enough energy to change the alignment of their quark contents (total spin 3
2

from

total spin 1
2
) in the baryon octet. Figure 1.6 shows how a proton (octet) is changed

into a ∆+ (decuplet) just by flipping the spin of a quark in the proton.

Figure 1.6: By flipping a quark’s spin, a proton is changed into a ∆+ .
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Nucleons can be excited into higher energy states, called resonances. The res-

onances with zero strangeness are extremely short-lived and decay strongly with a

mean lifetime of about 10−23 s, so that they cannot be observed directly. In the

photoproduction process, the nucleon is excited into resonances via electromagnetic

interaction with real photons. Resonances with isospin I = 1
2

are called N resonances,

and resonances with isospin I = 3
2

are called ∆ resonances. Collectively, N and ∆

resonances are often called N ∗ resonances. When an energetic beam of photons is

incident on a target nucleon, a peak in the particle production will sometimes be

observed at the corresponding resonance energy. In the basis of these resonances, the

hadrons can be classified in a proper way. There are many known baryon resonances

as shown in Table 1-3. Each resonance is denoted by a symbol that consists of a capi-

tal letter showing the orbital angular momentum for the pion-nucleon decay channels

(S, P , D, F ) used as the usual spectroscopic notation. This capital letter is followed

by two subscripts 2I and 2J , and usually the approximate mass of the resonance (in

MeV) is enclosed in parentheses.

1.4 Physics motivation

Since the electromagnetic interaction provides an accurate and well-understood

probe, meson photoproduction plays an important role in the nonperturbative region[5].

Due to the advent of several world-class electron accelerator facilities (CLAS at JLab,

MAMI at Mainz, ELSA at Bonn, etc.), there have been numerous recent measure-

ments involving photoproduction of single and double pions[6, 7], η mesons[8, 9], φ

mesons and charged kaons (K+ mesons)[11, 12]. When the present work began, there

were no published measurements of neutral kaon photoproduction. Such measure-

ments recently became feasible at the upgraded MAMI-C facility in Mainz, Germany.
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Resonance L2I−2J Status Resonance L2I−2J Status

N(939) P11 **** ∆(1232) P33 ****
N(1440) P11 **** ∆(1600) P33 ***
N(1520) D13 **** ∆(1620) S31 ****
N(1535) S11 **** ∆(1700) D33 ****
N(1650) S11 **** ∆(1750) P13 *
N(1675) D15 *** ∆(1900) S31 **
N(1680) F15 **** ∆(1905) F35 ****
N(1700) D13 *** ∆(1910) P31 ****
N(1710) P11 *** ∆(1920) P33 ***
N(1720) P13 *** ∆(1930) D35 *
N(1900) P13 ** ∆(1940) D33 *
N(1990) F17 ** ∆(1950) F37 ****
N(2000) F15 *** ∆(2000) F35 ****
N(2080) D13 ** ∆(2150) S31 *
N(2090) S11 * ∆(2200) G37 *
N(2100) P11 * ∆(2300) H39 **
N(2190) G17 ** ∆(2350) D35 ****
N(2200) P11 ** ∆(2390) F39 **
N(2220) H19 **** ∆(2400) G39 **
N(2250) G19 **** ∆(2420) H311 ****
N(2600) I111 *** ∆(2750) I313 **
N(2700) K114 ** ∆(2950) K315 **

Table 1-3: The status of the N and ∆ resonances[4]. The existence of **** resonances
is considered certain, the existence of *** resonances is likely to certain, and the
existence of ** and * resonance is fair and poor, respectively.
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This dissertation reports on the world’s first measurement of the differential and to-

tal cross section for the γn → K0Λ reaction. The measurements were performed at

MAMI-C using a tagged photon beam incident on a liquid deuterium target. Final-

state photons were detected using multiphoton spectrometers known as the Crystal

Ball and TAPS (see Chapter 3). As kaon photoproduction on the neutron is isospin- 1
2

selective, the reaction γn → K0Λ can provide essentially new information about the

spectrum of N∗ resonances. In addition, this reaction is also important to develop a

theoretical understanding of the differences between the γn → K0Λ and γp → K+Λ

reactions.

1.5 Outline of Current Work

This dissertation is divided into six chapters. Chapter 2 describes the theory

and kinematics of kaon photoproduction. This chapter also describes some recent

experiments similar to our research work. Chapter 3 gives a brief description of the

experimental set-up at MAMI-C. It describes the various detector systems and gives

an overview of their electronics. Chapter 4 describes the process used to calibrate

the different detectors used in our experiment. In addition, this chapter explains the

methods used to reconstruct the energy and momentum of various particles, and the

procedure used for background subtraction. The method of kinematic fitting used

for event reconstruction process is also described in detail. Chapter 5 describes the

results of this analysis with the differential and the integrated cross section. Chapter 6

includes a summary and conclusions of our work. Appendix A outlines the analysis

of γp → K0Σ+, the major background reaction to γn → K0Λ in our experiment.

Appendix B and Appendix C tabulate the total cross sections for the reactions γp →

K0Σ+ and γn → K0Λ, respectively. Appendix D and Appendix E tabulate values
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of the Legendre fitting coefficients for γp → K0Σ+ and γn → K0Λ, respectively.

Finally, the percentage contributions of the background reactions to γp → K0Σ+ and

γn → K0Λ are tabulated in Appendix F and Appendix G, respectively.



CHAPTER 2

Theory, Kinematics, and Previous Experiments

This chapter begins with a brief description of how we identified the events for the

γn → K0Λ reaction. It also provides a theoretical description of kaon photoproduc-

tion. Some of the recent prior experiments on the photoproduction of neutral kaons

are discussed at the end of this chapter.

2.1 Kaon photoproduction process

There are six elementary strangeness photoproduction reactions:

γ + p → K+ + Λ, (2.1a)

γ + p → K+ + Σ0, (2.1b)

γ + p → K0 + Σ+, (2.1c)

γ + n → K0 + Λ, (2.1d)

γ + n → K+ + Σ−, (2.1e)

γ + n → K0 + Σ0. (2.1f)

Among these reactions, (2.1a) and (2.1b) have received intensive experimental

attention[13, 14, 15, 16, 17]. Our experimental work is focused on reaction (2.1d),

17
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γ + n → K0 + Λ, which has an all-neutral final state and has received little experi-

mental attention. We detected the final-state K0 as a K0
S through its decay chain,

K0
S → π0π0 → 4γ. (2.2)

We detected the final-state Λ through its decay chain,

Λ → π0n → 2γ + n. (2.3)

Thus, the chain for the events of reaction (2.1d) is

γ + n → K0 + Λ → 3π0 + n → 6γ + n. (2.4)

As noted in Chapter 1, the final-state photons were detected using a multiphoton

spectrometer known as the Crystal Ball (CB), which is described in Chapter 3.

In our experiment a photon beam was incident on a liquid deuterium target. The

reaction process is shown schematically in Fig. 2.1. The neutral kaon photoproduction

process in terms of branching ratios can be represented as shown in Fig. 2.2.

In the reaction γn → K0Λ, strangeness is conserved as the neutron (udd) has zero

strangeness and the K0 (ds̄) and Λ (uds) have strangeness +1 and −1, respectively.

The K0 can decay into a K0
S and K0

L with equal probability. Because of its long

lifetime, the K0
L will typically travel about 15.1 m before it decays; thus, it is very

unlikely that it will decay within Crystal Ball (diameter ∼1.5 m). Consequently, only

K0
S mesons were taken into account in our analysis.

While calculating the cross section for γn → K0Λ, the missing K0
L is accounted for

by the 50% branching ratio for K0 → K0
S. The K0

S predominantly decays into a π+π−

pair with a branching ratio of 69.20±0.05%, but it has a significant branching ratio
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Figure 2.1: Schematic representation of the reaction γn → K0Λ as detected in our
experiment.

Figure 2.2: Representation of the reaction γn → K0Λ using branching ratios. The
K0 has equal probability to decay into K0

S and K0
L. Only the K0

S was detected in our
experiment.
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of 30.69±0.05% into the π0π0 channel. The Λ decays weakly into π0n and π+n with

branching ratios of 35.8±0.5% and 63.9±0.5%, respectively. The π0 decays into 2γ

with a branching ratio of 99.798 ± 0.032%. The physical parameters of the particles

K0
S and Λ are summarized in Table 2-1.

Properties K0
S Λ

Mass (MeV) 497.614±0.024 1115.683±0.006

JP (I) 0−(1
2
) 1

2

+
(0)

cτ (cm) 2.684 7.89

Decay Modes π+π− (69.20±0.05)% π0n (35.8± 0.5)%

π0π0 (30.69±0.05)% π−p (63.9± 0.5)%

Table 2-1: Some physical parameters of the K0
S and Λ.

2.1.1 Kinematics

In our experiment, liquid deuterium was used as the target since free neutron

targets do not exist. We ignored Fermi motion of the neutrons, which were therefore

assumed to be at rest in the lab. After the interaction of the incident photon beam

with the neutron, the outgoing K0
S makes a polar angle θ with respect to the direction

of the incident photon as shown in Fig. 2.3.

Let us consider P µ
beam, P µ

n , P µ

K0
S
, and P µ

Λ as the four-momenta of the incident
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Figure 2.3: Diagram to represent the neutral kaon photoproduction mechanism.

photon, target neutron, K0
S meson, and Λ hyperon, respectively. Now, using the

energy-momentum conservation relation in four-momentum notation, we may write

P µ
beam + P µ

n = P µ

K0
S

+ P µ
Λ . (2.5)

The superscript letter µ takes four values µ = 0,1,2,3, where µ = 0 gives the energy

(E) and the other values of µ represent the three-momentum (P = P 1, P 2, P 3) of

the four vector (P µ). The four-momentum of K0
S is determined by summing the

four-momenta of its photon decays (4γs) as

P µ
K0

S
=

4
∑

i

P µ
γi. (2.6)

In the laboratory frame, these four-momenta can be expressed as

P µ
beam = (Ebeam,Pbeam), (2.7a)

P µ
n = (En,Pn) = (Mn, 0), (2.7b)

P µ

K0
S

= (EK0
S
,PK0

S
) =

2
∑

i

(Eπ0
i
,Pπ0

i
). (2.7c)
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Since the square of the neutron four-momentum gives the invariant mass of the neu-

tron (Mn), we can write P 2
n = P µ

n Pnµ = E2
n − P2

n = M2
n. As the target is at rest in

the laboratory frame, it follows that Pn = 0 and En = Mn in Eq. (2.7b). The photon

energy Ebeam is measured by using the Glasgow Photon Tagger (see Chapter 3) and

Ebeam = Pbeamc in Eq. (2.7a). When there is only one undetected particle in the final

state (like Λ here), its kinematics is reconstructed by using four-momentum conser-

vation. Using Eqs. (2.5) and (2.7c), the four-momentum (P µ
Λ) of the undetected Λ

can be expressed as

P µ
Λ = (EΛ,PΛ) = P µ

beam + P µ
n − P µ

K0
S

= P µ
beam + P µ

n −
4

∑

i

P µ
γi, (2.8a)

where EΛ and PΛ are the energy and the three-momentum of the undetected Λ. Using

Eqs. (2.7a), and (2.7b), these can be expressed as

EΛ = Ebeam + Mn −
4

∑

i

Eγi, (2.8b)

PΛ = Pbeam −
4

∑

i

Pγi. (2.8c)

Thus the the missing mass MM(K0
S) of K0

S is given as

MM(K0
S) = MΛ =

√

E2
Λ − P2

Λ. (2.8d)

The outgoing K0
S makes a polar angle θ with respect to the direction of the incident

photon. For our reaction the three possible mechanisms for K0
S production can be

expressed using the Mandelstam variables s, t, and u:

s = (P µ
beam + P µ

n )2 = W 2, (2.9a)

t = (P µ
beam − P µ

K0
s
)2 = (P µ

n − P µ
Λ)2, (2.9b)
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u = (P µ
beam − P µ

Λ)2 = (P µ
n − P µ

K0
S
)2. (2.9c)

Here, W is the total center-of-mass energy for the reaction.

2.1.2 Kaon center-of-mass angle (ΘK0

CM)

Figure 2.4 shows the reaction γn → K0Λ in the laboratory and center-of-mass

(CM) frames. In the CM frame the products K0
S and Λ travel back-to-back with

equal and opposite momenta in a single plane. The angle between the K0
S and γ

momenta is called kaon center-of-mass angle (ΘK0

CM). The photon momentum

defines the z-axis. If p̂γ and p̂K0
S

represent the direction of the photon and the kaon

momenta, respectively, then the y-axis is defined as:

ŷ = p̂γ × p̂K0
S
.

The CM reference frame moves with a velocity βCM along the z-axis with respect

to the laboratory frame as shown in Fig. 2.4. The kaon angle variation in this frame

of reference is crucial in order to calculate the cross section in our work. In the

laboratory frame, the three Cartesian components of PLab
K0

S
are given as:

PLab
K0

S
= (P x

K0
S
, P y

K0
S
, P z

K0
S
). (2.10)

Similarly, the three Cartesian components of K0
S in the CM reference frame are given

as:

PCM
K0

S
= ((P x

K0
S
)CM, (P y

K0
S
)CM, (P z

K0
S
)CM). (2.11)

As there is only motion along the z-axis, we have[22]:

(P z
K0

S
)CM = (P z

K0
S
)Lab + γCMβCM

[

γCMβCM(P Lab
K0

S
)

(γCM + 1)
− ELab

K0
S

]

, (2.12)
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Figure 2.4: (a) The laboratory frame for K0 photoproduction. (b) The center-of-mass
frame for K0 photoproduction. In both cases the direction of the incident beam is
along the z-axis.

while the other momentum components are the same in the laboratory and CM

frames. Here βCM = Eγ

(Eγ+Mn)
and γCM = 1√

1−(βCM)2
. Now using Eq. (2.12) we can

express the kaon angle in the center-of-mass reference frame as:

cos(ΘK0

CM) =
(P z

K0
S
)CM

|PCM
K0

S
| . (2.13)

2.2 Theory of kaon photoproduction

In the last four decades, many theoretical explanations have been proposed to

describe strangeness photoproduction. An isobar model which assumes that particle

production and decay proceed via resonances and all subsequent decays, is suitable

for the photon energy range 0.9 - 1.4 GeV in our work. In an isobar model, each decay

is described as a quasi-two-body reaction. For example, the decay of B as B → M +

N + E in the isobar model is written as B → X + E, where X = M + N is a resonance

with a given mass and width. This model is based on the Feynman diagrammatic



25

technique as shown in Fig. 2.5, which includes Born terms and resonance terms.

In this phenomenological model, the kaon photoproduction process is described in

terms of hadronic degrees of freedom using an effective Lagrangian approach. In

1966, the first isobar model for kaon photoproduction was developed by Thom[23],

in which Feynman diagrams for Born terms and partial-wave amplitudes for the

resonances were used. Because of the lack of experimental data, theoretical models

made no significant progress for two decades after Thom’s work. The isobar model

was further improved by Adelseck et al. in 1985 by using diagrammatic techniques

for the resonance and Born terms[24].

Figure 2.5: Feynman diagrams used in an isobar-model calculation of kaon photopro-
duction. The hadronic vertices are represented by (1), (2), (3) and the electromagnetic
vertices by (a), (b), (c). In γn → K0Λ, there is no contribution from the ∆ reso-
nance. The intermediate states N , Y , and K are associated with the Born terms and
those N∗, Y ∗, and K∗ are associated with the resonance terms. The diagrams, from
left to right, depict contributions from s-channel exchange, u-channel exchange, and
t-channel exchange, respectively. Figure from Ref. [31].

With the start of experimental activities at Jefferson Lab/CLAS, ELSA/SAPHIR,

MAMI, and SPring-8/LEPS using continuous beam electron accelerators and detec-

tors in the present decade, many theoretical explanations have been proposed to

explain the experimental results.[25, 26, 27, 28, 29, 30]. Although many theories have
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been developed for K+ photoproduction, there are only a few theories to explain K0

photoproduction. Some of these are described in the following sub-sections.

2.2.1 Kaon-MAID model

The Kaon-MAID group[31] has put forward a theoretical prediction for exclusive

quasifree kaon photoproduction in a Distorted Wave Impulse Approximation (DWIA)

framework. They revised the tree-level model for the elementary kaon photoproduc-

tion using the SU(3) values for the Born couplings and resonances consistent with a

multi-channel analysis. They developed some relations based on isospin symmetry[32]

to relate the coupling constants for the various reaction channels described in Sec. 2.1:

gK+Λp = gK0Λn, (2.14a)

gK+Σ0p = −gK0Σ0n = gK0Σ+p/
√

2 = −gK0Σ−n/
√

2. (2.14b)

The model also relates the electromagnetic couplings of the resonances to the proton

and the neutron by means of the helicity amplitude A1/2 of spin-1
2

resonances as[33]:

A±
1/2 = ± 1

2mN

(

mN∗ − m2
N

2mN

)2

egN∗Nγ , (2.15)

where egN∗Nγ is the electromagnetic vertex coupling constant of the s-channel ex-

change diagram shown in Fig. 2.5, and the ± sign refers to the parity of the resonance.

Thus, the relation between helicity amplitudes for the production on the proton and

on the neutron is given as

gN∗0nγ

gN∗+pγ

=
An

1/2

Ap
1/2

. (2.16)
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In the electromagnetic vertices, the ratio of the neutral to the charged coupling con-

stants must be known. In K0 photoproduction, the coupling constant gK∗+K+γ used

in K+ photoproduction must be replaced by the neutral coupling constant gK∗0K0γ .

For the vector mesons K∗(892) and K1(1270), the coupling constants are related to

their decay widths (See Eq. (22) in Ref. [31]). Thus, the ratio of these two coupling

constants is given as

rKK∗ = −
√

ΓK∗0→K0γ/ΓK∗+→K+γ = −1.53.

Since the decay widths of the K1 meson are not known, the ratio rKK1
, is treated as

a free parameter and it was fixed using the available data in the p(γ, K0)Σ+ channel

in the Kaon-MAID model.

The predicted total cross sections for the six channels of kaon photoproduction on

the nucleon are shown in Fig. 2.6.

2.2.2 SLA model

J. C. David et al.[26] in 1996 developed a model based on an isobaric approach

using Feynman diagrammatic techniques, which includes contributions from N ∗ res-

onances (spin ≤ 5
2
), hyperons (spin- 1

2
), and kaon resonances. This model is known

as the Saclay-Lyon (SL) model. Using this model, a series of investigations were per-

formed for the several strangeness photoproduction processes for which experimental

results were already available. The main kaon-hyperon-nucleon couplings were found

to be in good agreement with the values predicted by using SU(3) symmetry. This

model was extended by T. Mizutani et al.[28] in 1998 with an improvement of the

effective hadronic Lagrangian approaches by incorporating the correct spin- 3
2

reso-

nances propagator and what is called off-shell effects entering the vertices connected
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Figure 2.6: Theoretical results for the total cross section for the six channels of
strangeness photoproduction for the Kaon-MAID model (solid lines shows the current
and the dotted lines shows the older Kaon-MAID model as described in Ref. [31]).
The solid squares represent the new SAPHIR data taken from Ref.[15], open circles
represent the old data taken from Ref. [34], and the solid circles are the data from
Ref. [35].
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to the resonances. This extended model is valid for processes with a kaon K(K+, K0)

and a hyperon Y (Λ, Σ0, Σ+) in the final state. The extended model has four varia-

tions. Model A is obtained by removing the nucleonic resonances N1 and N8 from

Table I of Ref. [26]. The results of model A are called SLA in our analysis.

As described for the Kaon-MAID model in Sec. 2.2.1, it is important to evaluate

the elementary amplitudes in this model as well. Beside the Born terms, this model

includes diagrams for K∗(890) and K1(1270) exchange. The structure in hadronic

vertices is modeled by point-like hadrons. Before this model can be applied to the

K0Λ channel, the ratio of the electromagnetic transition coupling constants between

the charged and neutral particles has to be adjusted. Like in the Kaon-MAID model,

the ratios for processes involving a nucleon or a K0 are known while those involving

a K1(1270) are unknown. This ratio rKK1
is free and has to be adjusted for K0

production.

2.3 Previous experiments

Until recently, there were no published experimental results for the photoproduc-

tion of K0 off the neutron. At the Thomas Jefferson National Accelerator Facility a

new experiment designated g13, using tagged photons with both circular and linear

polarization, was carried out in 2006[18]. The data were taken using a liquid deuterium

target with photon beam energies Eγ of 0.4-1.9 GeV and 0.5-2.5 GeV. As yet, no re-

sults from the analysis of these data have been published. Two new studies[36, 19],

were conducted at the Laboratory of Nuclear Science (LNS) in Sendai, Japan with

an incident photon energy up to 1.1 GeV. The next two sub-sections describe these

studies.
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2.3.1 12C target

K0 photoproduction on a 12C target was studied at the LNS in the photon en-

ergy range 0.8-1.1 GeV[19]. The neutral kaons were identified by the invariant mass

constructed from two charged pions emitted in the K0
S → π+π− decay channel. This

photoproduction reaction has been considered as the mirror of γ + p → K+ + Λ, as

the coupling constants gK+Λp and gK0Λn have the same sign and magnitude for the

two reactions because of isospin symmetry (gK+Λp = gK0Λn).

The integrated cross sections for K0 and K+ photoproduction are plotted in

Fig. 2.7 as a function of photon energy Eγ. This figure shows that the cross sec-

tions for both K0 and K+ photoproduction on 12C are similar in magnitude, which

suggests that the elementary cross sections n(γ, K0)Λ and p(γ, K+)Λ are of the same

order.

As described in Sec. 2.2.1, it is important to fix the values of rKK1
for the Kaon-

MAID and SLA models of K0 photoproduction. For this work, the value of the

ratio rKK1
for Kaon-MAID was −0.447, and for SLA was tested for the three values

−0.447, −1.5, and −3.4. Out of these three values, satisfactory results were observed

for rKK1
= −1.5. Figure 2.8 shows predictions for the differential cross section of

γn → K0Λ at the photon energy Eγ= 1.05 GeV. These predictions resulted from

comparing the measured momentum spectra with those calculated by the models.

The SLA prediction with rKK1
= −1.5, which represents a gentle backward angu-

lar distribution, provides a reasonable agreement with the experimental data. The

dashed line represents the result from Kaon-MAID, which is concave. The SLA model

predictions for rKK1
= −0.447, −1.5, and −3.4 are represented by dotted, solid, and
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Figure 2.7: The filled circles represent the total cross section for 12C(γ, K0) and the
open triangles represent that for 12C(γ, K+). Figure from Ref. [37].

dot-dashed lines, respectively.

2.3.2 Liquid deuterium target

K. Tsukada et al.[36] used a liquid deuterium target to study the photoproduction

of neutral kaons at the LNS with an incident photon energy up to 1.1 GeV. This was

the first published work for γn → K0Λ in the threshold region using a deuterium

target. The neutral kaons were detected from the positive and negative pions emitted

in the decay K0
S → π+π−.

In order to calculate theoretical predictions of cross sections and other observables

for channels that include K0 in the final state, Tsukada et al. assumed isospin sym-

metry for the strong coupling constants and appropriately adopted electromagnetic

coupling constants for the neutral mode by replacing those for the charged mode in

Kaon-MAID[31]. As mentioned in Sec 2.2.1, for the t-channel meson resonances, the
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Figure 2.8: Differential cross section for γn → K0Λ. The Kaon-MAID model is
shown by the dashed line and SLA model predictions for rKK1

= −0.447, −1.5, −3.4
are represented by the dotted, solid, and dot-dashed lines, respectively. Figure from
Ref. [19].

ratio of the coupling constants for the neutral and the charged modes is well known

for K∗(892) but unknown for the K1(1270) resonance. This ratio for the latter, rKK1

was fixed at −0.45 as in the work of Tsukada et al.. This value of rKK1
differs from

that quoted in Ref. [31], and it has been used in the newer version of the Kaon-MAID

model (See Ref.[31] of Ref.[36]). By comparing the measured inclusive momentum

distribution with the theoretical calculation, the value of rKK1
for SLA model has

been selected, and it is −2.09.

A simple phenomenological parametrization in the CM system was introduced to

describe the angular dependence of the elementary cross section as

dσ

dΩ
=

√

(s − s0)(1 + e0(s − s0))(a0P0(x) + a1P1(x) + a2P2(x)),

(2.17)
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where Pl(x) are Legendre polynomials, x = cos(ΘK
CM), s is the square of the photon-

nucleon CM energy (s = W 2), and s0 = 2.603 GeV2, the K0Λ threshold. This

is called the PH parametrization. The best-fit parameters, denoted as PH1, were

a0 = 0.0884, a1 = −0.0535, a2 = −0.0098, and e0 = −0.132. The parametrization

with the opposite of sign for a1 is named PH2, which is expected to give the inverse

angular distribution as that of PH1.

The predicted differential cross section for γn → K0Λ in the CM system for

incident photon energies of Eγ = 0.97 GeV and Eγ = 1.1 GeV is shown in Fig. 2.9.

The solid line represents the Kaon-MAID[31] prediction and the dotted line represents

the SLA prediction[28]. Similarly the PH1 and PH2 predictions are denoted by the

dashed line and dotted dashed line, respectively.

Figure 2.9: The differential cross section for γn → K0Λ as predicted by Kaon-MAID
[31] (solid line), SLA [28] (dotted line), PH1 (dashed line), and PH2 (dotted dashed
line).

Figure 2.10 shows the corresponding predicted total cross section for γn → K0Λ

as a function of photon energy for SLA, Kaon-MAID, PH1, and PH2. Because of

the limited kinematical acceptance for K0, the work of Tsukada et al. was unable
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to extract the experimental total cross section. The Kaon-MAID plot for the total

cross section is almost convex in shape and there is a very sharp rise from threshold

(920 MeV) up to Eγ ' 1.2 GeV, whereas the results of SLA, PH1, and PH2 show a

flatter energy dependence with a much smaller cross section near the threshold region.

Figure 2.10: Comparison of the total cross section for γn → K0Λ. The Kaon-MAID

prediction[31] is represented by the solid line, SLA[28] by the dotted line, and the
PH1 and PH2 predictions coincide with each other and are represented by the dashed
dotted line. Figure from Ref. [36].



CHAPTER 3

Experimental Setup

This chapter describes the experimental facility used by the A2 Collaboration in

Mainz, Germany. The set-up is mainly comprised of the three components shown

in Fig. 3.1. The primary component is the electron accelerator, which is also called

the Mainz Microtron (MAMI-C). It produces a continuous-wave electron beam.

The beam of electrons from MAMI-C is directed onto a thin diamond or copper foil

generating a beam of high-energy photons via a bremsstrahlung process. The second

component is the Glasgow Photon Tagging Spectrometer, which is used to analyze

the momentum of the corresponding bremsstrahlung electrons. The photon beam

is allowed to impinge on a target causing the production of various particles. The

third component, which is the detector system used to detect these particles and their

decays, consists of the Crystal Ball (CB) and the TAPS spectrometer.

3.1 Mainz Microtron (MAMI)

The Mainz Microtron (MAMI) is an intense, stable and continuous-wave acceler-

ator that accelerates electrons to the relativistic limit. It is operated by the Institut

für Kernphysik at Johannes Guttenberg Universität in Mainz, Germany. The ac-

celerator in its current configuration was constructed in four stages: (i) MAMI-A1,

(ii) MAMI-A2, (iii) MAMI-B, and (iv) MAMI-C. MAMI-A1 was installed in 1979,

producing electrons up to 14 MeV. In 1983, a second microtron was added, upgrad-

ing the facility to MAMI-A2 with maximum energy 183 MeV. With the addition of

35
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Figure 3.1: The experimental set-up in the A2 Hall in Mainz consists of three main
components: (i) MAMI electron accelerator for production of electrons up to 1.5 GeV,
(ii) Glasgow Photon Tagger, (iii) Detector system (CB, TAPS, PID, MWPC).

a third microtron in 1990, the maximum energy was increased to 855 MeV under

the name MAMI-B. MAMI-C, which is the present facility, was set into operation in

December, 2006 producing a continuous high quality electron beam with maximum

energy 1.5 GeV. It supplies the electron beam to any of the experimental halls (A1,

A2, A4, X1) as shown in Fig. 3.2.

MAMI-C consists of three cascades of RTMs (Race Track Microtrons) and a recently

added Harmonic Double-Sided Microtron (HDSM). This new HDSM is considered as

a worldwide unique recirculating electron accelerator. It consists of two systematic

pairs of 90◦-dipoles, each forming an achromatic 180◦ bending system as shown in

Fig. 3.3. In order to compensate for the strong vertical defocusing due to the 45◦-pole

face inclination at beam entrance and exit, these dipoles incorporate an appropriate

field gradient normal to the pole edge. This functions as a scheme for transversal
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Figure 3.2: The floor plan of MAMI facility. Three racetrack microtrons RTM1,
RTM2, and RTM3 together with the Harmonic Double Sided Microtron (HDSM)
produce an electron beam with energy up to 1508 MeV in MAMI-C. A1, A2, A4,
and X1 are the experimental halls. Our experimental work was carried out in the A2
Hall.
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Figure 3.3: General layout of the HDSM. HDSM consists mainly of two pairs of 90◦

bending magnets and two linear accelerators. These two linear accelerators work on
two different frequencies, 2.45 GHz and 4.90 GHz. Figure from Ref. [38]

focusing, with only two quadrupole doublets on each of the two dispersion-free anti-

parallel linac axes. In the HDSM, the two linacs operate at different frequencies: one

at 2.45 GHz and the other at 4.90 GHz. The linac operating at the lower frequency

maintains a higher longitudinal stability. The linac at the higher frequency is respon-

sible for a synchronous acceleration energy gain per turn below 20 MeV[39]. For the

HDSM, the electron energy gained per turn is given by

∆E/turn = n × ecB

(π − 2)
× λrf , (3.1)

where n is the number of complete turns made by electrons (n = 1 is the lowest

possible value) and λrf is the rf-wavelength. The injection of the electrons is made

from the result of RTM3 (MAMI-B) with the value of B = 1.23 T, λrf = 0.1224 m;

thus, from Eq. (3.1), ∆E = 41.1 MeV/turn. This also needs 20 m long linacs, which

would not fit into the existing MAMI-floor, as shown in Fig. 3.2. Moreover, it would

consume four times the electric power of MAMI-B. So it is practicable to adjust the
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frequency of the HDSM at 4.90 GHz (λrf = 0.0612 m) with a small variation in B value

as 1.823 T, to keep the length of the linacs about 10 m and the other parameters

similar to that of RTM3. The HDSM takes the beam energy from 855 MeV to

1508 MeV by 43 turns in 14.0 to 16.7 MeV per step through its accelerating section.

Table 3-1 shows a comparison of the main parameters of the HDSM to that of RTM3,

which was the third stage known as MAMI-B.

3.2 The Glasgow Photon Tagger

The Glasgow Photon Tagger was installed in the A2 Hall in 1991 for MAMI-B

with a maximum electron energy of 883 MeV. Recently the Tagger was upgraded for

the MAMI-C accelerator to work up to maximum electron energy of 1508 MeV. The

electron beam from MAMI-C is made to collide with a thin diamond or copper radi-

ator of the Glasgow Tagger, to produce photons through the bremsstrahlung process:

e− + A → A + e− + γ,

where e− is an electron, A is a nucleus, and γ represents a photon. Using the principle

of conservation of energy and momentum, the photon energy is given by

Eγ = E0 − Ee, (3.2)

where E0 is the electron beam energy and Ee is the energy of the deflected electron. In

this equation, the recoil energy of the nucleus has been ignored due to the large mass

of the nucleus compared with the energy of the photon and electron. In order for the

application of Eq. ((3.2)), the timing coincidence of each photon to the corresponding

electron should be known. This process of using the timing coincidence to match an

electron to its corresponding photon is called tagging.
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Features Unit RTM3 (MAMI-B) HDSM (MAMI-C)

General

Einjected MeV 180.2 855.3
Eoutput MeV 855.3 1508.4
Turns # 90 43
Power Consumption kW 650 1400

RF System Linac 1 — Linac 2

Linac amplitude MV 7.8 9.05 — 9.30
Energy gained per turn MeV 7.50 16.7 — 14.0
Frequency GHz 2.4495 4.8990 — 2.4495
Electrical linac length m 5 × 1.77 8 × 1.07 — 5 × 2.02
Beam load 100 µA kW 67.5 37.0 — 28.4

Magnet System

min./max. field T 1.2842 0.939 — 1.539
min./max. gap mm 100 85 — 140
min./max. radius m 0.47 — 2.22 2.23 — 4.60
Weight ton 2 × 450 4 × 250

Table 3-1: Comparison of some of the main features of the HDSM and RTM3. RTM3
is the third race track microtron, the last stage of MAMI-B, and HDSM is the fourth
stage of MAMI to increase the energy from 0.855 GeV to 1.5 GeV. Table from Ref. [40].
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The Glasgow Photon Tagger used for the tagging process is shown schematically

in Fig. 3.4. It consists of 353 plastic scintillators that overlap each other to form a

ladder in the focal plane of a quadrupole magnet of weight 1030 tons, which pro-

duces a magnetic field of 1.8 T. These focal-plane detectors have a length of 8 cm, a

thickness of 0.2 cm, and widths of 0.9 to 3.2 cm. They cover an energy range from

6-95% of the energy of the primary electron beam. The different widths of these

detectors are arranged in such a way as to achieve slightly more than half-overlap of

neighboring detectors so that each tagging electron should trigger two detectors at a

time. The width of the overlap region (a “channel”) is equivalent to an energy width

of ∼4 MeV for an incident electron beam energy of 1500 MeV, and neighboring chan-

nels overlap by about 0.4 MeV[41]. All the events involving only a single detector are

rejected, which thereby reduces the background. Each detector is adjusted perpen-

dicular to the anticipated electron’s path for the electron momentum corresponding

to that particular position in the focal-length plane. During the construction of the

Tagger, the number of required focal-plane detectors was determined by the physical

space occupied by a single photomultiplier. The 353 detectors provide a maximum

comfortable packing density for the photomultiplier tubes, covering an electron range

of 80 to 1401 MeV with photon flux up to ∼ 2.5 ×105 photons per MeV and an energy

resolution of about 4 MeV.

Most of the electrons in the incident beam do not interact with the radiator and are

deflected by the magnet onto a Faraday cup called the beam dump. A collimator

consisting of four lead cylinders each 2 cm long with a 4 mm hole bored through the

center parallel to the beam axis is used to eliminate the noise and deviations of the

resulting photon beam. Thus because of the use of the collimator, the ratio of the
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Figure 3.4: The Glasgow Tagger. As soon as the high-energy electron beam strikes
the surface of the radiator, photons are created by the bremsstrahlung process. The
trajectory of the electrons is bent by a huge Tagger dipole magnet onto the focal-plane
detectors and the photons are sent to the target.
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photons to the electrons is always less than one. This ratio is called the tagging

efficiency:

ε =
Nγ

Ne
, (3.3)

where Nγ is the number of photons that passed through the collimator and Ne is

the number of electrons detected in the tagger ladder. The tagging efficiency is

measured by using a Pb-glass detector placed downstream of the collimator in the

beam line to measure Nγ. While performing the tagging efficiency measurement,

normal experimental beam currents may damage the lead-glass detector. Therefore,

a greatly reduced beam current was used to protect the lead-glass detector. The

photon beam was monitored with an ionization chamber that measures the overall

bremsstrahlung flux during normal running.

As the bremsstrahlung spectrum is a continuous one in which the photon flux

varies as Nγ ∼ 1/Eγ, a larger number of low-energy photons is produced that are

accompanied by the high-energy photons. For our experiment, the high-electron

energy (low-photon energy) area of the Tagger focal plane was switched off so that

the energies of the tagged photons varied from 700 MeV to 1400 MeV.

3.3 The Crystal Ball

The Crystal Ball (CB) was designed in 1974 as a multiphoton spectrometer with

high detection efficiency over a large solid angle. It was initially used to detect

photons produced in high-energy e−e+ collisions[42] at SLAC (Stanford Linear Ac-

celerator Center in Stanford, CA). From 1978 to 1981, it was used to investigate the

spectroscopy of the J/Ψ and radiative decays of particles such as τ , Ψ, and D at
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SPEAR1. After this period, it was put into storage at SLAC until 1995 when it was

moved to the AGS2 facility at BNL, where it was used for the study of nucleon and

hyperon spectroscopy, and rare η decays. It was moved to Mainz in 2002 and after

completion of a major upgrade of the detector’s electronics it was used at MAMI-B

until 2005. It resumed operation in 2007 as the central detector at MAMI-C.

The CB consists of 672 thallium-doped sodium iodide NaI (Tl) crystals. These

crystals are optically isolated from one another by wrapping them in reflecting paper

and aluminized mylar. A SRC L50B01 type photomultiplier tube (PMT) of 5.1 cm

diameter and 21 cm in length is arranged behind each crystal to convert the resulting

light pulse into electric signals. Each crystal is shaped like a truncated pyramid of

length 40.6 cm (or 15.7 radiation lengths) with the side of inner face 5.1 cm in length

and the side of outer face 12.7 cm as shown in Fig. 3.5. These crystals are arranged

to form a ball structure as shown in Fig. 3.6 with an inner radius of 25.3 cm and

outer radius of 66 cm.

The geometry of the Crystal Ball is that of an icosahedron (a solid with 20 faces).

These 20 faces form “major triangles” which in turn are divided into faces of four

“minor triangles” each containing nine crystals as shown in Fig. 3.7. When these

crystals are stacked together closely they form a spherical shell of 720 elements. In

order to make a space for the photon beam and the target system, 24 crystals were

removed from the opposite poles. The CB is divided into two hemispheres: an upper

one and a lower one separated with two 0.8 mm stainless steel plates and a 0.8 cm

air gap. Because of this, an active space amounting to 1.6% of the solid angle (or

4π) is introduced. Since NaI(Tl) is hygroscopic, all the crystals are hermetically

1Stanford Positron Electron Accelerating Ring
2Alternating Gradient Synchrotron
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Figure 3.5: An individual crystal in the CB is 40.6 cm long with a truncated pyramid
shape.

Figure 3.6: A transverse view of the Crystal Ball showing the sub detectors inside it.
A liquid deuterium target is also located at its center.
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sealed in the two separated hemispheres. This also helps to control the temperature

(∼23±2◦C), pressure (low) and humidity (∼30%) inside the hemispheres.

In the Crystal Ball, the incident photon beam produces electromagnetic showers

that in turn deposit their energy in the NaI(Tl) crystals depending on the energy of

the photon. An incident photon below 10 MeV may deposit energy only in one or

two crystals whereas a photon up to 400 MeV deposits 98% of its energy in a cluster

of 13 crystals. Because of this, the measurement of photon energy from the Crystal

Ball is considered quite precise and the energy resolution is taken as

σE

E
=

2.05%

E(GeV)0.36
. (3.4)

Because of the high granularity of the Crystal Ball it also has a good position reso-

lution. For hadrons and charged particles, the positional resolution is not optimal as

the hadronic shower has less transverse extension. Thus for charged particles other

additional detectors are required. Some of the important properties of the Crystal

Ball are listed in Table 3-2.

3.4 Particle Identification Detector (PID)

The PID shown in Fig. 3.8 is a cylindrical detector with 10 cm inner diameter

around the beam axis centered on the target within the Crystal Ball. It is comprised

of 24 plastic scintillators each with the size 31 cm × 1.3 cm × 0.2 cm. Optical

isolation between each scintillator is achieved by wrapping each individually in a foil.

Each of these scintillators is connected to a Hamamatsu R1635 photomultiplier tube

of thickness 10 mm. The PID is installed inside the Crystal Ball for the purpose

of identifying charged particles. This detector measures small energy losses (∆E)

in the thin plastic scintillators and a rough variation of the azimuthal angle (φ) of
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Figure 3.7: The two-dimensional Mercator-like projection of CB Crystals. It shows
90 shaded and unshaded groups of rectangles each containing eight crystals. It also
shows the geometry of CB as there are 20 major triangles each of which is made of
four minor triangles and each minor triangle contains nine crystals. The ‘beam in’
and ‘beam out’ hole is also visible.
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Azimuthal angular acceptance 0◦ ≤ φ ≤ 360◦

Polar angular acceptance 20◦ ≤ θ ≤ 160◦

Azimuthal Angular resonance (σθ) (2 − 3◦)/sin θ

Polar angular resolution (σφ) 2 - 3◦

Photon Energy Resolution (σE/E) 2.05%
E(GeV)0.36

Table 3-2: Properties of the Crystal Ball.

the charged particles. By considering this ∆E and the total energy deposited in the

Crystal Ball one can identify different charged particles. In our experiment we did

not use the output of PID because our analysis involved only neutral particles.

3.5 Multiwire proportional chambers (MWPCs)

There is a charged-particle tracking detector inside the Crystal Ball that surrounds

the PID and consists of two cylindrical multiwire proportional chambers (MWPCs),

as shown in Fig. 3.9. Each MWPC has three layers: an inner and outer layer that act

as a cathode and a middle layer that acts as an anode. The cathode layers are made of

1 m Rohacel covered with 25 µm Kapton film and the anode layer is an array of thin

diameter tungsten wire stretched parallel to the cylindrical axis at 2 mm intervals

around the circumference[43]. The cathode layers are wound helically in opposite

directions at an angle of ±45◦ with respect to the wires. A mixture of argon (74.5%),
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Figure 3.8: The PID before inserting it into position within the CB.

ethane (25%), and freon (0.5%) is filled between the gap (4 mm) of the anode and

cathode layers. A high positive voltage of 2300-2500 V is applied between the anode

wire and the two cathode layers. The MWPCs cover the complete azimuthal angular

range and 21◦ to 159◦ in the polar angular range. During the measurements for this

work these chambers were turned off. This was of little importance since our analysis

involved only the detection of neutral final-state particles.

3.6 The TAPS detector

TAPS is a front-end detector for the Crystal Ball as it detects photons or any

charged particles that escape from the exit hole of the ball. TAPS was designed

and installed with the purpose to study high-energy photon beams as well as neutral

mesons[44].

TAPS consists of several hundred hexagonally shaped BaF2 detectors (see Fig. 3.10)

each of length 25 cm (equivalent to 12 radiation lengths) that can be arranged in

different configurations. For our experiment, 384 BaF2 crystals were configured as a
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Figure 3.9: The Multiwire Proportional Chamber before inserting it into its position
within the CB.

forward wall at a distance 180 cm from the center of the Crystal Ball covering the

angular range 0◦ < θ < 20◦. The combined photon detection set-up for the Crystal

Ball and TAPS shown in Fig. 3.11 covers approximately 96% of a complete sphere.

Since many particles are emitted in the forward direction, this forward wall is useful

to increase the overall detection efficiency.

Figure 3.10: Each individual TAPS BaF2 detector consists of a hexagonally shaped
crystal tube of 25 cm in length with a 2.5 cm cylindrical end connected directly to
the photomultiplier tube.

Because of some special characteristics of BaF2 crystals, they are considered a
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Figure 3.11: The use of TAPS as a forward wall detector at a distance 1.8 m from
the CB. The 384 BaF2 crystals of the TAPS forward wall cover the hole of the CB to
cover ∼96% of 4π in solid angle.
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good choice for the construction of scintillation detectors. First, BaF2 has a fast

rise time of the scintillation pulse; because of this virtue the intrinsic time resolution

(about 200 ps) of a single crystal is very good. The accurate particle identification

using the time of flight of a particle is made using this essential feature of the BaF2

crystal. Second, it produces scintillation light with two components: a fast component

and a slow component, corresponding to decay times of 0.60 ns (λ = 195 nm and

220 nm) and 620 ns (λ = 310 nm), respectively. These characteristics of BaF2 crystals

provide a means to separate slower hadrons like protons and neutrons from the faster

particles like photons, electrons, and pions by finding their corresponding time of

flights. Particle identification using this technique of decay of short and long light

components is generally called pulse shape analysis (PSA). By integrating the

light signals over a short and a long time gate, the pulse shape analysis is carried out.

Because the relative intensity of the short component is higher for photons than for

nucleons, the ratio of these two components provides a good tool to identify these

particles as shown in Fig. 3.12. Third, BaF2 has a high photon detecting efficiency

and energy resolution over a wide range of energies. In addition, because of the high

granularity of TAPS, there is a good position resolution.

Each of the BaF2 detectors has hexagonal front and back shapes with a cylindrical

end part of inner diameter 5.9 cm as shown in Fig. 3.10. The surfaces of the crystals

are polished. A UV reflector that is made up of eight layers of PTFE3 and one layer

of thin aluminum foil is wrapped around these crystals. The individual crystals are

coupled to a Hamamatsu R2059 photomultiplier tube using silicone grease. In order

to provide effective magnetic shielding up to a flux of 0.02 T, the phototubes and the

3Polytetrafluorethylene
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Figure 3.12: A schematic plot of the pulse shape for an α-particle and a photon in
TAPS. The larger long component make it possible to distinguish the α-particle and
a photon.

cylindrical section of the crystals are completely surrounded by a magnetic shield.

In front of each BaF2 detector, a hexagonally shaped 5 mm thick NE102A plastic

scintillator is installed so as to distinguish between charged and neutral particles.

These are called veto detectors. In our work the output of these detectors was not

included. Some of the important properties of the TAPS detector are summarized in

Table 3-3.

3.7 The target system

For our work, the target was liquid deuterium (LD2) contained in a cylindrical

cell made of Kapton. The target cell had length 4.8 cm and it was surrounded by

eight layers of super insulation foils (8 µm Mylar, 2 µm aluminum) and a 1 mm CFK

vacuum tube (See Fig. 3.13). There was a storage tank of volume 1.0 m3 to store the

liquid deuterium, which was located at the Tagger vault. A gas compressor connected
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Distance from the center of CB 1.80 m

Polar angular acceptance 2◦ ≤ θ ≤ 20◦

Time resolution 0.5 ns FWHM

Angular resolution (σφ) 0.7◦ FWHM

Energy Resolution (σE/E) 3.7%
E(GeV)1/4

Table 3-3: Detection properties of TAPS.

to a liquefier was kept outside the Tagger vault. The liquefier, a storage reservoir for

the liquid deuterium, was a rectangular aluminum box at a distance of 1.8 m from

the center of the Crystal Ball. A deuterium supply line connected the reservoir in the

liquefier to the target cell. The supply line and the target cell were located inside the

beam pipe in a reduced pressure of 3 ×10−7 mbar as shown in Fig. 3.14.

Initially, the deuterium in the storage tank was at a pressure of 1400 mbar. While

in operation, about 25% of the deuterium liquefied and the pressure in the storage

tank dropped to typically 1080 mbar. Because of this, the temperature might fall

below a certain temperature (21 K) for the liquid deuterium. Thus the temperature

of the liquid was maintained by a heating system, which was turned on and off by

a pressure and temperature control system. There are two heaters in the heating

system, each of 4 watts, one located on the reservoir and the other on the target cell.

The temperature and pressure of the target system were monitored at regular intervals
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Figure 3.13: Our deuterium target cell was 48 mm long and 40 mm in diameter. The
target was surrounded by thin multi-layers made of Kapton and super insulation foils
to prevent moisture build-up on the target window.

Figure 3.14: The complete liquid deuterium (LD2) target system. It consists of a
gas storage tank (of capacity 1000 liters), a deuterium gas compressor, a liquefier
containing the reservoir for the LD2, and the LD2 supply line connecting the target
cell with the reservoir. During the experiment, this target cell was inserted at the
center of the CB.
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during the experiment. Transverse and longitudinal alignments of the target were

done by using a telescope adjusted on the beam axis, a laser and crossed wires inside

the Crystal Ball detector. In order to make target-empty background corrections,

there was a facility to use the target in its empty mode by switching the button to

“Target Empty”. It took 20 s to empty the target cell or refill it with liquid deuterium.

3.8 Electronics

The electronics system performed mainly two tasks: (i) it obtained information

from CB, TAPS, Tagger, MWPC, PID, Veto, and (ii) stored the collected information

on a computer so that it could be read by the data acquisition system (DAQ). In order

to digitize the amplitude and time of the input signals, the signals of the detectors

were sent to a charge-to-digital converter (QDC) via a discriminator, and to a time-to-

digital converter (TDC). A start and a stop signal above the discriminator threshold

was required for the TDC. The experimental triggering electronics acted as a gate for

the QDC and provided the start signal for the TDC while the relevant detector gave

the stop signal for it.

3.8.1 Tagger electronics

A small electronics card containing two discriminators and a coincidence logic

was associated with each of the individual Tagger channels. These discriminators

had two thresholds: a low one that determined signal time and a higher one that

determined if the signal was sufficiently large to result from an incident electron.

Each individual Tagger channel had a timing resolution of ∼0.5 ns FWHM because

of this dual threshold setup.

Each photomultiplier tube from the focal-plane detectors was attached to a custom
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designed amplifier discriminator (A/D)[41]. High voltage (HV) was distributed to the

photomultiplier electrodes through a Zener stabilizer as shown in Fig. 3.15. The

anode signals from each photomultiplier tube were amplified about 10 times and then

sent to the dual low-high type of threshold discriminator, which supplied a logic

pulse to the relevant TDCs and scalers. When the signals were fed to the TDCs,

counting was started. Counting was stopped by a logic pulse from the triggering

electronics after delaying it 500 ns. The measurement of the electron event rate for

the computation of the photon flux was carried out using the scalers that were not

gated by the trigger.

3.8.2 CB electronics

The Crystal Ball photomultiplier tubes were connected in parallel to each other

and the output analog signals from each photomultiplier were sent to an active split

delay module where each set of 16 crystals formed a group. Three matched outputs

were formed from the splitter as shown in Fig. 3.16. One of the output signals was

delayed by 300 ns and passed into a sampling ADC that sampled the shape of the

signals with a frequency of 40 MHz.

The other output signal was the summed amplitude of all the 672 crystals, which

was sent to the energy sum trigger for making trigger decisions. This trigger decision

was sent to the ADCs, TDCs, and scalers via the Trigger Control System (TCS).

When a positive trigger decision was made, the information was digitized in the ADC

and TDC and stored in data for reading.

The last signal was fed into a discriminator that had high and low thresholds of

20 MeV and 2 MeV, respectively. The signal above the high threshold was sent to
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Figure 3.15: Tagger electronics system.
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Figure 3.16: The CB electronics system.
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the trigger decision in the cluster multiplicity and the signal above the low threshold

was used to start the TDC and the scalers.

3.8.3 TAPS electronics

Like in the Crystal Ball, an analog output signal from a BaF2 detector photomul-

tiplier was sent to a Constant Fraction Discriminator (CFD), two Leading Edge Dis-

criminators (LED1,2) and four Charge-to-Amplitude Converters (QAC1-4), as shown

in Fig. 3.17. The CFD had a 5-MeV threshold. A signal higher than the threshold

was considered as a hit in the crystal. It also provided an accurate timing for the

pulse with reduced amplitude dependent walk[45]. This accurate timing signal was

necessary for making the start signal of the QACs and the Time-to-Amplitude con-

verter (TAC) and also for measuring time in the TDCs. The LED1 had a threshold of

30 MeV. When the signal was higher than this threshold, it was fed into the triggering

information. The trigger decision was sent to the TAC and QACs. It stopped the

time measurement in the TAC.

Figure 3.17: The TAPS electronics system.
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The analog output from the veto detectors of TAPS was passed to the LED2.

The threshold of these detectors was set between the background signal noise and the

energy of a minimum ionizing particle incident on the detectors[46]. Any signal higher

than this threshold was considered as the signature of a hit in the veto detectors. The

QACs measured the fast and slow components of the scintillators response with high

and low gains, which resulted in a perfect determination of the pulse shape.

3.8.4 Event triggering

The event triggering system was based on the energy sum of the Crystal Ball and

its cluster multiplicity. In our work only the CB was considered for event triggering.

As mentioned in Sec. 3.8.2, the energy sum of the Crystal Ball was obtained by

summing the analog energies of all 672 NaI crystals. For the triggering during our

experiment, the threshold total energy sum deposited in the CB was 350 MeV. If

the total energy deposited in the CB was below 350 MeV, the events were rejected.

Generally, the higher energy set up of the threshold energy for the trigger helped to

reject the more energetic background.

Our knowledge of cluster multiplicity filtered out unwanted events based on the

number of final-state particles. The active splitter in the Crystal Ball electronics

divided the 672 NaI crystals readout into 45 logical sectors containing 16 crystals.

These 45 outputs added with four sector outputs (128 BaF2 crystals) from TAPS

were designed to record the multiplicity output using the four LeCroy 16 channel

CAMAC discriminators, as shown in Fig. 3.18. If the energy deposited in a crystal

of any sector exceeded 20 MeV (threshold limit), a multiplicity hit resulted.
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Figure 3.18: Technical scheme of the trigger electronic system.
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3.9 Overview of data taking

For this work, data were taken from December 5-21, 2007 with an electron energy

up to 1.5 GeV. Test data were also taken from May 11-21, 2007 soon after MAMI-C

was commissioned. Because of the low yield of those data, they were not included in

our analysis. Table 3-4 summarizes the experimental parameters for the December

run.
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Data Taking Period Dec. 5-21, 2007

Total Beam Time 277 hours

Size of Recorded Data 721 GB

Electron Beam Energy 1.508 GeV

Tagged Energy Range 0.4 - 1.4 GeV

Beam Current 10-20 nA

Radiator 10 µm Cu

Diameter of Collimator 4 mm

Target Liquid Deuterium

Target Length 4.76±0.03 cm

CB Trigger Multiplicity 2+

Table 3-4: Overview of data taking scheme.



CHAPTER 4

Data Analysis

This chapter explains the analysis software used for our present work and

calibration of energy and time measurement for the CB, TAPS, and the tagger

system. It also discusses the method used to reconstruct the particle energy

and momentum from the measured energy, and the procedure to subtract the

background. The kinematic fitting technique used for the reconstruction and

the selection of good events is also described in detail. After the collection

of raw data, a calibration of the detector is required in order to convert

the stored digital pulse heights and times to the different physical quantities.

The values recorded as raw ADC and TDC signals were converted to energies

in MeV and time in ns, respectively, and also the cluster algorithms were

applied to the data from Crystal Ball and TAPS to form clusters. The final

results of the analysis were made from the reconstruction of particle types

and four-vectors of each detected hit in all events.

4.1 Analysis software (AcquRoot)

AcquRoot is the analysis software that is used for all of the online

and offline analysis of data for Crystal Ball experiments at MAMI. It is

an upgraded form of ACQU incorporating with the multi-threaded purely

C++ program mainly written by J. R. M. Annand[47]. The new version

of AcquRoot (4v0) includes AcquMC and AcquDAQ components. AcquMC

65
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is a Monte Carlo reaction kinematics generator and AcquDAQ reads data

from some components of the detector system and feeds the data to one

or more central event builders. AcquRoot is based on the framework of

ROOT[48], which is the CERN C++ based suite of software and libraries.

ROOT is based on object-oriented sources, comprised of various types of

classes, each performing a specific task. As AcquRoot combines the full

ROOT functionality, it makes extensive use of the facilities offered by ROOT

for controlling A2 electronics, data acquisition, storage, retrieval, and analysis.

The tree structure of the AcquRoot analyzer is shown in Fig. 4.1.

The four circles of different colors on the left-hand side of the figure

represent the four important classes involved in AcquRoot. The lowest green

circle represents a dedicated class specific to each detector: e.g., Crystal Ball

NaI crystals detectors are accounted by the class TA2CB NaI, TAPS BaF2

crystals by TA2TAPS BaF2, focal plane tagger detectors by TA2TaggLadder,

PID by TA2PlasticPID, and so on. These detector classes are responsible

for conversion of the digitally stored pulse heights to energies and times.

The blue circle, one step higher, represents the three classes that collect

information from each of the three subgroups of the detectors. TA2CrystalBall

represents the group of detectors related to the Crystal Ball (e.g., NaI,

PID, MWPC). Similarly, TA2TAPS and TA2Tagger represent all the detectors

related to the TAPS (e.g., BaF2, Veto), and the Tagger (e.g., Ladder, Pb

Glass, Micro), respectively. These three classes in a group form a class called

TA2Apparatus which is responsible for the conversion of energies and times

into particle types and four-vectors. The pink circle above the blue circle



67

Figure 4.1: The tree structure of AcquRoot Analyzer with its Apparatus,
Detector, Physics and Analysis classes. Figure from Ref. [47].
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represents a Physics class that collects all the information from the three

detector systems (such as four-vectors and particle identities) to reconstruct the

related events yielding the invariant and missing mass to identify the specific

particle. The red circle on the top represents a class called TA2Analysis

which provides the core of the data analysis system. It decodes the basic

ADC, TDC, and Scalers information and passes them to TA2Apparatus.

4.2 Energy calibration process

4.2.1 Tagger energy calibration

The final energy of the tagged electron after producing a photon via

bremsstrahlung is determined from the measured position at which the electron

hit the focal plane detector, as described by Eq. (3.2) in Sec. 3.2. Because

of the application of the large magnetic field (1.834 T), the electron deviates

from its path and thus the position at the end of the exit of the Tagger

magnet is proportional to its energy. Thus, there is a relationship between

the corresponding position of the tagger hit by the electron and the electron’s

energy. For the Tagger energy calibration, this relationship in a uniform

magnetic field is measured by using a computer program. An NMR probe is

used to determine and monitor the magnetic field strength of the Tagger.

4.2.2 TAPS energy calibration

The TAPS energy calibration is made using minimum-ionizing cosmic muon

radiation. Because all of the BaF2 detectors in TAPS have the same size

and orientation, the energy deposited in them by cosmic ray muons always

have minimum ionizing peaks at 37.7 MeV. For this calibration, special runs
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were made to measure the energy distribution formed by the passage of

cosmic muons through the crystals both before and after the experiments.

A typical spectrum obtained from the TAPS energy calibration is shown in

Fig. 4.2. The first ‘non-zero value’ is called the pedestal, which corresponds

to no true signal and has a value 0 MeV. This pedestal can be seen at the

left-most point of the spectrum and is a single-channel peak. In addition to

this peak, another peak is essential for the absolute calibration of energy in

TAPS. The second reference is provided by the minimum ionizing muon peak

at 37.7 MeV. These two points are sufficient for the complete calibration of

energy as there exists a linear relationship between the deposited energy and

measured channel numbers.

Figure 4.2: A cosmic-ray energy spectrum in a TAPS module with a fit
(exponential+Gaussian) showing the narrow pedestal peak at 0 MeV (near
ADC channel 100) and the broad cosmic peak at 37.7 MeV (near ADC
channel 275). Figure from Ref. [49].
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4.2.3 Crystal ball energy calibration

The low-energy photon calibration of the Crystal Ball was done by

illuminating the NaI crystals with the help of an Americium-Beryllium

(241Am/9Be) source. As this process produces a certain number of photons of

energy 4.38 MeV, the response of the photomultiplier was adjusted to match

this energy in the same region of ADC spectra. Although this matching was

made at a far lower energy than those of photons detected in our experiment,

it set a rough experimental hardware threshold for all crystals. For much

more energetic photons, this low-energy adjustment was not sufficient and a

calibration for higher energy photons was done using γp → π0p.

4.3 TAPS particle identification

As mentioned in Sec. 3.6, the BaF2 scintillation output contains both

fast (0.6 ns) and slow (620 ns) components. This property can be used

to distinguish between baryons (e.g., neutrons, protons) and electromagnetic

particles (e.g., photons and electrons). These two signals are recorded by two

ADCs having two different integration times: a short gate for the short time

window (30 ns), and a long gate for the long time window (2 µs). We call

Eshort and Elong the energies measured by the short time gate ADC and the

long time gate ADC, respectively. The integration for the short time window

contains information about the fast component and that for the long time

window contains information about both the fast and slow components. The

ratio of these two measured energies (Eshort/Elong) is of order 1 for photons

and it is smaller than 1 for baryons. A plot of Eshort vs. Elong is shown
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in Fig. 4.3.

.

Figure 4.3: TAPS pulse-shape analysis for the identification of baryons and
the electromagnetic particles. The energy deposited in the short gate ADC
(fast component) and that deposited in the long gate ADC (total light
output) are plotted against each other.

4.4 Tagger random subtraction

When an energetic electron impinges upon the radiator, it produces a

photon. As the electron imparts some fraction of its initial energy to the

photon, the deflected electron hits a tagger element in the focal plane that

depends on its reduced energy, which starts a TDC clock corresponding to

the tagger element. As soon as the photon produced by the electron initiates

the experimental trigger (see Sec. 3.8.4), the stop signal for the TDC clock

comes into play. This time difference between the start and stop recorded

by the TDC is simply related to the time of propagation of the photon
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to the target and the time taken for the produced particles to make the

experimental trigger. This produces a “prompt” peak in each of the Tagger

TDC spectra. However, if these electrons are not associated with the photon

producing the experimental trigger, then they contribute to the uncorrelated

“random” background. A Tagger TDC (TimeOR) spectrum for our experiment

is shown in Fig. 4.4. This plot shows the timing of every single photon

Tagger hit in every channel relative to the experimental trigger. The prompt

peak is at ∼105 ns and an almost flat background of random coincidences

spreads for the whole 200 ns wide event window.

It is useful to keep uniform cuts on the combined timing spectrum for

all the individual tagger TDCs so that the prompt peaks of each element

were coincident. The alignment is done by fitting a Gaussian distribution to

the prompt peak of each channel for the timing spectra obtained during the

tagging efficiency measurements. The number of random coincidences in the

Tagger focal plane is small during the tagging efficiency measurements because

of the low intensity electron beam and this results in a timing spectrum that

is dominated by the prompt peak. The alignment of all the Tagger TDC

spectra is shown in Fig. 4.5, which was obtained by plotting the time for

each prompt peak against the corresponding Tagger channel.

In order to make a proper random background subtraction, it was necessary

to consider three regions of interest in the Tagger TDCs spectrum, as shown

in Fig. 4.4:

(i) A prompt region, which normally varied from 95 ns to 115 ns, containing

the prompt peak (red shaded) and the random background underneath it
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Figure 4.4: A Tagger timing spectrum for all the tagger elements in the
focal plane. A coincidence of the CB trigger and the Tagger time gives the
prompt peak. The red shaded area (95-115 ns) indicates the prompt events.
The region underneath it (PQRS) is the random background.
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Figure 4.5: The Tagger-time alignment for the data acquisition period.

(PQRS);

(ii) A random region in the random background to the right of the prompt

peak, which normally varied from 125 ns to 145 ns (KLMN);

(iii) A random region in the random background to the left of the prompt

peak, which normally varied from 60 ns to 80 ns (ABCD).

Let us define a correction factor (rpr) as the ratio of the areas of the

prompt region to the sum of the areas of the random regions:

rpr =
PQRS

(ABCD + KLMN)
. (4.1)

By using Eq. (4.1), we can calculate the correction factor rpr for each Tagger

channel. Figure 4.6 shows a timing spectrum for Tagger channel 25.

The relative time of the photon Tagger hit and the experimental trigger
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Figure 4.6: Tagger timing spectrum for channel 25 for which the calculated
ratio of the random-prompt areas was rpr = 0.492.

(CB) should be known for every event. Let Yprompt denote the number of

prompt counts observed when the time belongs to the prompt region and

Yrand denote the number of random counts observed when the times belongs

to either of the random regions. Now for each tagger channel and energy bin,

the number of counts in the prompt window corrected for random background

is expressed as:

Ysubt = Yprompt − rpr × Yrand. (4.2)

The uncertainty in Ysubt is given by:

σY = (σY 2
prompt

+ r2
prσY 2

rand
)

1
2 = (Yprompt + r2

prYrand)
1
2 , (4.3)

where the corresponding σs are the standard deviations in the number of

prompt and random counts and are statistical uncertainties, given by the
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square roots of the corresponding number of counts.

Figure 4.7 shows the application of Eq. (4.2) to the missing mass

distribution for the elimination of random background. It is for a particular

Tagger channel 51 and the corresponding photon energy 1251.9 MeV. The

contribution of background events is represented in Fig. 4.7(a) by the red-

filled histogram and the contribution of the coincident events is given by

the green-filled histogram. The subtraction of these two histograms is shown

fitted with a Gaussian distribution in Fig. 4.7(b).

4.5 Cluster algorithm

When an incident photon strikes a crystal in the Crystal Ball or TAPS

detectors, it creates an electromagnetic cascade or shower that consists of a

chain reaction of pair production (γ → e+e−), Compton scattering (γe− → γe−)

and bremsstrahlung photon emission. This shower spreads over a group of

several adjacent crystals. The group of crystals fired by the same incident

photon is called a cluster. In the Crystal Ball for 98% of events, the

energy is normally deposited in a cluster of 13 NaI crystals as shown in Fig.

4.8(a). The crystal with the largest energy deposited in a cluster is called

the central crystal. The minimum energy of a cluster should be 25 MeV

for the Crystal Ball as below this energy the event is rejected as being

below threshold.

Similarly, for TAPS there are seven detectors in a cluster with a central

crystal surrounded by six nearest neighboring crystals as shown in Fig. 4.8(b).

The total minimum energy deposited in a cluster of TAPS should exceed

15 MeV. The position of a cluster in CB or TAPS is calculated using the
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Figure 4.7: Example of random background subtraction of missing mass of
K0 for a typical channel 51 at photon energy Eγ= 1251.9 MeV. (a) The
red-filled histogram corresponds to random background events and the green-
filled histogram is for prompt coincident events. (b) The resulting histogram
fitted with a Gaussian distribution after the subtraction of the two previous
histograms using Eq. (4.2).
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Figure 4.8: The cluster patterns mentioned in the cluster algorithm. (a) A
NaI cluster for an ideal event in the CB with the central crystal red in color.
The cluster-finding algorithm defines the crystal with the highest energy and
surrounded by 12 nearest neighboring crystals as the central crystal in CB.
(b) A TAPS cluster for an ideal event in TAPS with the central crystal red
in color. The cluster-finding algorithm defines the crystal with the highest
energy and surrounded by six nearest neighboring crystals as the central
crystal in TAPS.

weighted sum of each of the crystal locations and the energy deposited in

the corresponding crystals. For example,

Xcluster =
Σixi

√
Ei

Σi

√
Ei

, (4.4)

where Ei and xi are the energy deposited and the x-coordinate of the i-th

crystal respectively. The three direction cosines (αi) with i = (x, y, z), for a

photon can be expressed as

αi = cos(βi) =
Pi

|P| , (4.5)

where βi is the angle between the photon’s path and the i-axis and Pi is

the projection of its momentum onto the i-axis. The corresponding polar

angle (θ) and azimuthal angle (φ) are related to the direction cosines as:

θ = cos−1(αz) = βz, (4.6)
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φ = sin−1(
√

(α2
x + α2

y). (4.7)

When all the photons are reconstructed using the cluster algorithm, a

number of quantities can be used to categorize the events. For a particular

reaction like γn → K0Λ → 6γn, the six-cluster events are examined and various

quantities related to the photons (such as invariant mass and missing mass,

and the total energy and the momentum) can be measured.

4.6 Kinematic fit

In our analysis the kinematic fit is a primary tool for event reconstruction

and selection to test all the reaction hypotheses needed. It is used to select

the events that are good candidates for each hypothesis being tested. For

the better estimation of the background, it has a significant role.

4.6.1 Introduction

Kinematic fitting is a standard method of least-squares fitting with

constraints and Lagrange multipliers[50]. The different parameters used for

kinematic fits are the measured parameters of the reaction such as total

momentum, energies of the clusters, the interaction vertices, and direction of

the clusters. In order to determine the good candidates, all the possible

combinations of photon clusters for each event are tested. In the kinematic

fit, the constraints are determined by conservation of momentum and energy

and the masses of the intermediate particles. Let’s suppose η1, η2, η3, ..., ηn are

measured parameters:
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where η is a set of n measured parameters in vector form. If there are j

constraint equations, and using as the first approximation for the kinematic

fit:

f(η) =
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Suppose, the initial vector of real values η will not satisfy the constraint

equations exactly. Then the initial values are corrected by an amount ∆η so

that the kinematic fit tries to fulfill the constraint equation:

f(η + ∆η) = 0. (4.10)

In order to solve the system of equations using the method of least

squares, the quantity ∆ηT G−1
x ∆η should be minimized, and where Gx is the
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weight matrix of the measurement and it is the inverse of the covariance

matrix associated with η. This covariance matrix is just the error matrix of

the analysis:

Gx =
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The minimization of ∆ηT G−1
x ∆η is done using the method of Lagrange

multipliers. For this, let us introduce a Lagrange multiplier, µ with m

parameters as:

µ =
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. (4.12)

Now using Lagrange multipliers and constraints a Lagrange function can be

constructed as:

L = ∆ηT G−1
x ∆η + 2µT f(η + ∆η). (4.13)

For the minimum at the certain point, the derivative of L with respect to

∆η and µ must vanish. The parameters such as energies and azimuthal and

polar angles are known for each particle in the final state. For this analysis,

the minimization process adopted is that of V. Blobel[51].
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4.6.2 The pull function

The pull function provides information about systematic uncertainties in

the measured values. If there is no systematic uncertainty, the pull function

results in a normal distribution centered at zero. The presence of systematic

uncertainties causes a shift in the distribution to either positive or negative

values. The covariance matrix Gx is related to the resolution of the detectors

used in our experiment. The pull distribution is the ratio of the difference

between the measured initial and final (fitted) parameters to the square root

of the respective quadratic error differences resulted from the covariance matrix

Gx. If ηi and ηf are the set of the initial and the final (fitted) parameters

of the measured values respectively, and ση2
i

and ση2
f

are the corresponding

components of the covariance matrix Gx, then the pull of a parameter is

defined as

pull =
ηi − ηf

√

σ2
ηi
− σ2

ηf

. (4.14)

If the components of Gx (i.e., the uncertainties in the measured parameters)

are estimated properly, then the pulls will follow a normal distribution with

a mean of zero and a variance of one. In order to find the accuracy of the

kinematic fitting used in our analysis, the pull function is a key factor. The

pull distributions for energy (E) and for the angular variations theta (θ) and

phi (φ) of the incoming photon beam are shown in Fig. 4.9 for the reaction

γn → K0Λ. These distributions are all centered around 0 and have σ = 1.

A confidence level cut of 15% was applied in the analysis (see Sec. 4.6.3).
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Figure 4.9: The pull distributions for (a) the energy E, (b) the angular
variation θ, and (c) the angular variation φ of the incoming photon beam
in the analysis of γn → K0Λ using kinematic fitting. When each distribution
is fitted with a Gaussian function, the mean is close to zero with standard
deviation σ close to one.
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4.6.3 Confidence level (CL)

When the components of the covariance matrix are estimated correctly, the

quantity ∆ηT G−1
x ∆η, will follow a normal χ2 distribution. The χ2 distribution

plays an important role for measuring the confidence in our analysis. If ηi

and ηf are the corresponding initial and final (fitted) values of the set of

measured parameters, then the χ2 value of the fit is defined as[52]:

χ2 = (ηi − ηf)
T G−1

x (ηi − ηf ). (4.15)

The distribution of χ2 values of all the possible events is given by the

probability density function f(χ2) defined as[53]

f(χ2) =
1

2k/2Γ(k/2)
(χ2)(k/2)−1e−1/2χ2

, (4.16)

where Γ denotes the Gamma function and k is the number of degrees of

freedom. The value of f(χ2) in Eq. (4.16) will become zero for χ2 = 0.

Figure 4.10(a) shows f(χ2) for different numbers of degrees of freedom.

The cumulative distribution function F (χ2) associated with f(χ2) can be

defined as

F (χ2) =
1

2k/2Γ(k/2)

∫ χ2

0

t(k/2)−1e−1/2tdt, (4.17)

where t is a random variable, which is less than or equal to χ2. Figure

4.10(b) shows the cumulative distribution function for different numbers of

degrees of freedom.

The distribution function F (χ2) gives the probability (P ) as

F (χ2) = P (x2 < χ2), (4.18)
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Figure 4.10: (a) Probability density of χ2 for different numbers of degrees of
freedom. The distribution for k = 1 is the curve at the far left and the
curves move to the right as the value of k increases. (b) The cumulative
distribution of χ2 for different numbers of degrees of freedom. The curve for
k = 1 is the one at the far left, and the curve for k = 5 is at the far
right.
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where x2 is a random variable not larger than χ2. So we can define a

quantity

CL(χ2) = 1 − F (χ2), (4.19)

where CL(χ2) measures the confidence in a measured result and is called

confidence level.

The confidence level varies from 0 to 1. A high χ2 corresponds to a

confidence level close to 0 and a low χ2 corresponds to a confidence level

close to 1. If the distribution of the measured values is normally distributed

around the values calculated by the fit, and the uncertainties in the measured

parameters have been estimated properly, then the confidence level distribution

will be flat. Figure 4.11 shows the confidence level for all fitted γn → K0Λ

events in our measured data. The events having the largest values of χ2 in

the fit are located near the peak region close to CL = 0 whereas the events

with low χ2 values are distributed close to CL = 1. The distribution of the

rest of the events are in the intermediate flat region. As the events near

CL = 0 do not satisfy the constraint equations, those events with the large

χ2 are not of interest. These low CL events arise in part from events with

partially overlapping photon clusters, or in cases that involve some energy

leakage associated with photon clusters in the edge crystals of the CB and

TAPS[10, 54]. A cut was placed on the confidence level at 15% as shown in

the figure, so that events with lower confidence level were discarded.
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Figure 4.11: The confidence level distributions for Monte Carlo simulation
(blue circles) and for real data (red triangles) in the reaction γn → K0Λ.
The vertical line shows a CL cut placed at 0.15 for the selection of good
events. This cut reduces 33% misidentified events from the real data.
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4.6.4 Number of degrees of freedom (NDF)

The number of degrees of freedom (NDF) is a primary factor for determining

the confidence level (CL) as explained above. The NDF in an event is

defined as

NDF = No. of constraints − No. of unmeasured quantities.

(4.20)

As we consider the momentum of the incident photon to lie along the z-axis,

the γn interaction point inside the target is a free variable in the kinematic

fit. This z-axis of the interaction point inside the target is taken as the

primary vertex in our analysis (see Fig. 4.12). Moreover, because of the

short lifetimes of the Λ and K0
S, their decay lengths are comparable to the

size of the target, and thus these are also considered as free parameters

in the kinematic fit. The variation of the neutron’s kinetic energy and the

energy deposit in the NaI crystals has not been well defined as nuclear

interactions in the NaI crystals are not well known[55]. Thus the energy of

the neutron is considered as one of the unmeasured quantities. If the neutron

cluster is completely undetected, the two angles (θ and φ) associated with

the neutrons are also considered as unmeasured.

Thus, the number of unmeasured quantities for the six-cluster events of

our case is six: the z coordinate of the vertex position, Λ and K0
S decay

lengths, energy of the neutrons, and the two angles of the neutrons. There

are mainly nine constraints related to our experiment: four constraints for

momentum (px, py, pz) and energy conservation, three constraints for the π0
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Figure 4.12: The z coordinate of the incident beam for Monte Carlo simulation
(blue circles) and for real data (red triangles) in the reaction γn → K0Λ. It
is considered as the primary vertex in our analysis.

mass, one for the K0 mass, and one for the Λ mass. Therefore, the NDF

in our case, in which the neutron cluster is undetected, is NDF = 9 − 6

= 3.

4.7 Event selection

The neutral mesons (π0, K0
S) and baryons (Λ) have a very short lifetime,

so only the photons resulting from their decay are determined (e.g., π0 →

2γ, K0
S → 2π0, Λ → π0n). When a particle decays, its momentum four-vector

is conserved. Consequently, the momentum four-vector of a neutral meson is

equal to the sum of the momentum four-vectors of the photons resulting from

its decay. For γn → K0Λ, as we considered six photons and a neutron in

the final state, only those events containing exactly six clusters were selected.
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Because of this, it was possible to reduce the amount of data significantly

by making a cut on the cluster multiplicity of an event. In our analysis we

considered the neutron as an undetected particle. After selecting the events

with six clusters, we applied a kinematic fit to select those events with a

neutron and three π0s in the final state.

4.7.1 Particle identification in γn → K0
S
Λ → (π0π0)(π0n) → 6γn

As we have seen, the final state we detected was six photons and a

neutron. The six photons thus produced in the reaction can be combined

into three π0s in 15 possible ways, as using the following formula

N =
nγ !

2nπ0 × nπ0 !
, (4.21)

where N is the total number of combinations, nγ is the number of photons

and nπ0 is the number of π0s. In these combinations, further consideration was

given only to those combinations in which the measured two-photon invariant

masses were within reasonable limits of the known π0 mass (134.9 MeV). Figure

4.16 shows a plot of the invariant mass of 2γ for all possible combinations

out of six photons in the final state for γn → K0
SΛ → 3π0n → 6γn to produce

a peak around the mass of π0.

4.7.2 Identification of K0
S

and Λ

In our analysis the momentum four-vectors of detected photons were

obtained using kinematic fitting. As explained in Sec. 1.1.2, K0
S mesons

have a very short lifetime, so only the photons resulting from their decays

K0
S → 2π0 → 4γ were detected. The momentum four-vector of a K0

S is equal

to the sum of the momentum four-vectors of the four photons resulting from
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Figure 4.13: The invariant mass of 2γ for all combinations of two out of
six photons in the final state for γn → K0

SΛ → 3π0n → 6γn. The invariant
mass of 2γ gives a peak around the mass of π0.
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its decay. The K0
S events were identified by constructing the invariant mass of

the four photons. Since all six photons in the final state are indistinguishable,

it must be determined which four photons came from the decay of the K0
S

and which two photons came from the decay of the Λ (as Λ → π0n → 2γn).

The invariant masses from each combination of four photons were compared,

and the combination with an invariant mass closest to the K0
S mass was

assigned as coming from the K0
S decay.

The notation M4γ refers to the invariant mass of the four photons. Then

the invariant mass squared is given as

M2
4γ =

( 4
∑

i=1

Pγi

)2

, (4.22)

where Pγi is the momentum four-vector (Eγi,Pγi) of the ith photon determined

using kinematic fitting as described in Sec. 4.6. Figure 4.14 shows the

distribution of invariant mass for the four photons identified as coming from

K0
S decay in the reaction γn → K0Λ. There is excellent agreement between

the real data and the Monte Carlo simulated events (see Sec. 4.8).

The notation MM4γ refers to the missing mass of the four photons. For the

reaction γn → K0Λ, all information about the initial state was available: the

energy of the incident photon beam and its direction (along the beam axis),

and the target nucleon, which was assumed to be at rest. The momentum

four-vector of the K0
S (the four-vector of the four decay photons) was also

known. Thus, using the principal of conservation of energy and momentum,
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Figure 4.14: The distribution of invariant mass for the four photons identified
as coming from γn → K0Λ followed by K0

S → 2π0 → 4γ. The peak is near
the mass (497.6 MeV) of the neutral kaon.

the four-vector of the Λ as the missing particle is given by

PΛ = Pbeam + Ptarget −
4

∑

i=1

Pγi, (4.23)

where Pbeam and Ptarget are the corresponding momentum four-vectors of the

incident photon and target nucleon, respectively. For the target nucleon, we

assumed Ptarget = (Mn, 0), where Mn is the neutron mass. I.e., we ignored

the neutron’s Fermi motion in this work. The square of PΛ gives the missing

mass of the four photons (MM4γ):

(MM4γ)
2 = (PΛ)2. (4.24)

For γn → K0Λ, the missing mass distribution should be at the mass of the

Λ (1116 MeV), as shown in Fig. 4.15.
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Figure 4.15: The distribution of missing mass for the four photons clusters
identified as coming from γn → K0Λ followed by K0

S → 2π0 → 4γ. The peak
is near the mass (1115.7 MeV) of the Λ hyperon.

4.7.3 Identification of a neutron by missing mass

In the reaction γn → K0
SΛ → (π0π0)(π0n) → 6γn, we just mentioned that

the neutron is an undetected particle; however, it can be reconstructed by

using the missing mass principal as described in Sec. 4.7.2. As the momentum

four-vectors of the incoming photon beam, the target neutron, and the six

final-state photons are known, the four-momentum of the missing neutron is

given by

Pneutron = Pbeam + Ptarget −
6

∑

i=1

Pγi. (4.25)

The missing mass-squared of the six photons in the final state is obtained

by squaring the four-vector Pneutron as

(MM6γ)
2 = (Pneutron)

2. (4.26)
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In Fig. 4.16, which shows the missing mass of the six photons, there is a

distinct peak at the mass of the neutron (940 MeV) as expected.
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Figure 4.16: The distribution of missing mass of the six photons identified
as coming from γn → K0

SΛ → 3π0n → 6γn. The peak is near the mass
(939.6 MeV) of the neutron.

4.7.4 Best pion combination of the four photons from K0
S

The invariant mass of four photons gives the mass of K0 as described

in Sec. 4.7.2, and these four photons are assumed to be from the decay

of two π0s. If the latter is true then some combination of the masses of

the photon pairs made out of the four photons (γ1γ2, γ3γ4) must be close

to the pion mass. If more than one combination satisfies this criterion, the
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combination selected was the one minimizing the equation

∆M =
√

(Mγ1γ2
− Mπ0)2 + (Mγ3γ4

− Mπ0)2. (4.27)

This condition is called the best pion combination. Figure 4.17 shows

a two-dimensional view of the invariant mass of these selected pion pairs

obtained from the best combination of the four photons, and Fig. 4.18 is a

one-dimensional view of the invariant mass of these selected pion pairs.

 Mass (MeV)
0π

50 100 150 200 250 300 350 400 Mass (MeV)

0π

50
100

150
200

250
300

350
400

0

50

100

150

200

250

300

350

Figure 4.17: Two-dimensional plot of invariant masses of the reconstructed π0

pairs from the decay of K0 as K0 → 2π0 → 4γ for γn → K0Λ events.
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Figure 4.18: The distribution of invariant mass for the two photons identified
as coming from K0

S → 2π0 followed by π0 → 2γ. The peak is near the mass
(135.0 MeV) of the neutral pion.
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4.8 Monte Carlo simulation

There are two main objectives of using the Monte Carlo simulation: first,

to determine the efficiencies of the detector system for γn → K0Λ and second,

to estimate the major background contributions to the measurements from

other possible reactions such as γp → K0Σ+, γN → ηN , and γN → 3π0N .

The Monte Carlo simulation package for our analysis consists of two parts:

one part that generates the events, and the other part that tracked the

particles through the experimental set-up.

For the first step, a code is used to generate the kinematics of the

reactions, or reaction chains. For the incident photon, the actual beam

parameters were obtained from the real beam events of real experimental

data. The beam parameters are beam energy of incident photon, target

dimension, spot size at the target, the beam divergence, the final state of

the particles, whether they decay or not, and what they decay into. The

output of this step is a file that contains the vertex position, the kinematic

variables of the beam particle, and the kinematic variables of all the final-state

particles for each event.

For the next step, a code based on the simulation package from CERN,

GEANT version-3.21, was used for the purpose of tracking[57]. The output

from the first event generation process was an input file to this tracking code.

The tracking parameters in the code were optimized so that the simulated

data mimicked as closely as possible the real data. The geometry of all

the detectors of the real experimental set-up such as CB, TAPS, PID, and

target, were added in the tracking package. Figure 4.19 shows the design of
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the CB and TAPS geometry in the Monte Carlo simulation. Because there is

no real photon to be tagged for simulation, the Tagger was not included in

the package and moreover, it did not directly affect the detection efficiency.

The final output of the tracking step was fed to the code “AcquRoot”[47],

for the final analysis process. The same code was used to analyze both real

and simulated data.

Figure 4.19: Geometry of the CB and TAPS in the Monte Carlo simulation.
Figure from Ref. [46].

4.9 Estimation of background

As mentioned earlier, we can investigate the experimental background for

γn → K0Λ using a Monte Carlo analysis. For this purpose we simulated data

for various other reactions and analyzed these data using the fitting hypothesis

of the reaction γn → K0Λ. Those events that survived the selection tests for

γn → K0Λ were counted as backgrounds. (In order for a real event to be
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accepted as viable γn → K0Λ candidate, it should have the highest confidence

level for this hypothesis compared to any other hypothesis. Finally, to be

acceptable, it should have CL > 0.15.)

We considered the following possible background reactions: (i) γp → K0Σ+,

(ii) γn → K0Σ0, (iii) γN → ηN , and (iv) γN → 3π0N . The average

survival probabilities that the simulated events satisfied the selection tests for

γn → K0Λ are summarized in Table 4-1. By comparison, the average survival

probability that simulated γn → K0Λ events satisfied the selection criteria was

about 17%.

background survival
channels probability

γp → K0Σ+ 2.15%

γn → K0Σ0 0.76%

γN → ηN 0.38%

γN → 3π0N 1.02%

Table 4-1: Survival probability for several background reactions to γn → K0Λ
calculated from Monte Carlo analysis.
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4.9.1 Background from γp → K0Σ+

Events for γp → K0Σ+ were simulated using the Monte Carlo analysis.

The threshold photon energy for this reaction in the laboratory frame is

1.0475 GeV. Since the threshold photon energy for γn → K0Λ is 0.914 GeV,

the background from γp → K0Σ+ is expected at slightly higher photon energies

in the data set. The K0Σ+ final state is obtained through the following

sequential decays:

γ + p → K0
S + Σ+ (4.28a)

and K0
S further decays into 2π0, which ultimately produces four photons

exactly in the same way as for K0
SΛ:

K0
S → π0π0 → 4γ. (4.28b)

Similarly, the Σ+ further decays to a π0 and a proton, and the π0 further

decays to 2γ as:

Σ+ → π0p → 2γ + p. (4.28c)

Thus, the decay chain for this background reaction is:

γp → K0
SΣ+ → (π0π0)(π0p) → 6γp. (4.29)

We therefore identified this reaction as the 6-cluster events in which the final

state consisted of six photons and a missing proton, and the missing mass

of the K0
S corresponded to the Σ+ mass.

In addition to studying γp → K0Σ+ as a background for γn → K0Λ,

we also analyzed 6-cluster events in our data to measure the cross section
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for γp → K0Σ+. Since published cross-section data for this reaction are

available[52, 58, 59, 60], we could compare our results with previous measure-

ments. Consequently, we used this comparison to check our technique for

analyzing γn → K0Λ events. The analysis of γp → K0Σ+ was carried out in

a similar way as for γn → K0Λ. Details of our analysis of γp → K0Σ+ are

described in Appendix A.

4.9.2 Background from γn → K0Σ0

Events for γn → K0Σ0 were simulated using the Monte Carlo analysis.

The threshold photon energy for this reaction in the laboratory frame is

1.050 GeV. The background from this reaction is expected at slightly higher

photon energies in the data set. The K0Σ0 final state is obtained through

the following sequential decays:

γ + n → K0
S + Σ0 (4.30a)

and K0
S further decays into 2π0, which ultimately produces four photons:

K0
S → π0π0 → 4γ. (4.30b)

Similarly, the Σ0 further decays to a Λ and a γ, and the Λ further decays

to a proton and a γ as

Σ0 → Λγ → π0γp. (4.30c)

Thus, the decay chain for this background reaction is

γp → K0
SΣ0 → (π0π0)(Λγ) → (π0π0)(π0nγ) → 7γp. (4.31)
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This reaction should then produce 7-cluster events in which the final state

consists of seven photons with a missing neutron. Most of these events did

not survive the selection criteria for γp → K0
SΛ due to the multiplicity cut

requiring six detected photons only. For the 6-cluster events, we required that

we could reconstruct three π0s, with two identified as coming from decay of

a K0
S and their corresponding missing mass consistent with the Σ0 mass.

4.9.3 Background from γN → ηN

Events for γN → ηN were simulated using the Monte Carlo analysis. Since

the threshold photon energy for this reaction is 0.706 GeV, the background

from this reaction is expected to extend throughout the entire data set. The

ηN final state was identified through the following sequential decays:

γ + N → η + N, (4.32a)

and η further decays into 3π0, which ultimately produces six photons:

η → π0π0π0 → 6γ. (4.32b)

Thus, the decay chain for this background reaction is

γN → ηN → (π0π0π0)N → 6γN. (4.33)

This reaction should then produce 6-cluster events in which the final state

consists of six photons coming from the decay of three π0s with a missing

nucleon. These were rejected by removing all events with a 6γ invariant

mass in the range 510-580 MeV.
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4.9.4 Background from γN → 3π0N

Events were also simulated for the direct 3π0 production reaction γN →

3π0N . As the threshold photon energy of this reaction is 0.492 GeV,

background from this reaction is expected in the entire range of the data

set. The reaction chain for this background reaction is

γN → π0π0π0N → 6γN (4.34)

This reaction should then produce 6-cluster events in which the final state

consists of six photons coming from the decays of three π0s with a missing

nucleon. Unlike for γN → ηN , these events could not be rejected on the

basis of the 3π0 invariant mass.

4.10 Some methods for background subtraction

In order to extract good K0
SΛ events from the kinematically fitted data, as

much background as possible needed to be removed. The next two subsections

describe the methods that we used to extract good events in our analysis.

4.10.1 Selection of the highest probability among all reaction channels

As already mentioned in Sec. 4.6, the kinematic-fitting technique was

applied to test various hypotheses. Each event was tested simultaneously for

five hypotheses: (i) that the event was from γn → K0Λ, (ii) that it was

from γp → K0Σ+, (iii) that it was from γn → K0Σ0, (iv) that it was from

γN → ηN , and (v) that it was from γN → 3π0N . The selection of good

events was made by comparing the confidence level (CL) of each hypothesis.

The events having the highest CL for a given hypothesis were selected as
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good events for the corresponding reaction. The events surviving these cuts

were passed on for further analysis.

4.10.2 Final background subtraction method

All considered background reactions have at least a 6γ final state so all

of these reactions were considered as 6-cluster events in the analysis. For

the real data, the backgrounds due to these reactions were estimated using

a Monte Carlo simulation and the measured number of K0Σ+, K0Σ0, ηN ,

and 3π0N events.

Let us define a constant ratio factor εMC(XY/SP ) known as contamination

ratio for the determination of background subtraction using the Monte Carlo

simulation as:

εMC(XY/SP ) =
N(SP ){γN→XY }

N(SP ){γN→SP}

, (4.35)

where

N(SP ){γN→XY } = number of Monte Carlo events generated for γN → SP

that satisfied the selection tests for the hypothesis

γN → XY ,

N(SP ){γN→SP} = number of Monte Carlo events generated for γN → SP

that satisfied the selection tests for the hypothesis

γN → SP.

Thus, we can define εMC(K0
SΛ/K0

SΣ+) as the ratio of the fraction of Monte

Carlo simulated events for γp → K0Σ+ that survived the selection tests for
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γn → K0
SΛ to the fraction of Monte Carlo simulated events for γp → K0

SΣ+

analyzed as γp → K0
SΣ+. Ratios for other reactions can be defined similarly.

These ratios are defined for specified energy and angle (cos θ) bins. Let us

suppose that N
K0

SΛ

data , N
K0

SΣ+

data , N
K0

SΣ0

data , NηN
data, and N3π0N

data are the corresponding

known numbers of K0
SΛ, K0

SΣ+, K0
SΣ0, ηN , and 3π0N (correctly identified) in

the real data. Then the number of real signal N
K0

SΛ

signal events for γn → K0
SΛ[55]

is:

N
K0

SΛ

signal = N
K0

SΛ

data − N
K0

SΣ+

data εMC(K0
SΛ/K0

SΣ+) − N
K0

SΣ0

data εMC(K0
SΛ/K0

SΣ0) −

NηN
dataεMC(K0

SΛ/ηN) − N 3π0N
data εMC(K0

SΛ/3π0N).
(4.36)

I.e., we can subtract the background events from our analysis and compute

the actual number of γn → K0Λ events.

In addition to the above mentioned background sources, there is another

source due to empty target data. It arises due to the interaction of incident

photons with the target cell. The method for the empty target subtraction

is described in Sec. 4.14.

4.11 Secondary vertex and decay correction for K0
S

and Λ

In our experiment, it was assumed that the initial electromagnetic interaction

occurs at the primary vertex where K0
S and Λ are produced in the

reaction γn → K0
SΛ. Because of their lifetimes, τΛ = 0.2632 ns for Λ and

τK0
S

= 0.08935 ns for K0
S, these particles can travel a few centimeters from

the point at which they were produced before they undergo a weak decay.

In order to find the position of the secondary vertex[34, 56] (where these

particles decay), their momenta must be known. In our analysis, the positions
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of the secondary vertexes for K0
S and Λ were reconstructed by using the

kinematic fit. If the coordinate of the primary vertex is (xprim, yprim, zprim) and

the corresponding co-ordinate of the secondary vertex is (xsecond, ysecond, zsecond),

then the distance traveled by a particle before decay is

d =
√

(xsecond − xprim)2 + (ysecond − yprim)2 + (zsecond − zprim)2.

(4.37)

The reconstructed distributions of the distance traveled by K0
S and Λ after

their production at the primary vertex are shown in Figs. 4.21 (a) and (c).

The lifetime of each particle can be calculated as

t[10−10 s] =
d[cm] × m[GeV/c2]

|p|[GeV/c]
, (4.38)

where d is the distance traveled by the particle, m is the mass of the particle,

and p is the three-momentum of the particle. The distribution of the lifetime

is shown in Figs. 4.21 (b) and (d) and in both of the plots, linear fits

are drawn. The reciprocal of the slope of these fits provides the respective

mean lifetimes of the K0
S and Λ. The PDG values[4] of the mean lifetime

for K0
S and Λ are (0.8958 ± 0.0005) × 10−10 s and (2.631 ± 0.020) × 10−10 s,

respectively. The values from our fit are (0.864± 0.032)× 10−10 s for K0
S and

(2.865 ± 0.046) × 10−10 s for Λ.

4.12 Acceptance and efficiency determination

The acceptance for γn → K0Λ was determined from a Monte Carlo

simulation of the experimental set-up. Approximately 25 million events for

K0
S with a phase-space distribution of energy and momenta were simulated in
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Figure 4.20: (a) The distributions of the distance traveled by K0
S before

its decay for Monte Carlo simulation (blue dashed line) and for real data
(red solid line). (b) The distribution of the lifetime of K0

S for Monte Carlo
simulation (blue dashed line) and for real data (red solid line). (c) The
distribution of the distance traveled by Λ before its decay for Monte Carlo
simulation (blue dashed line) and for real data (red solid line). (d) The
distribution of the lifetime of Λ for Monte Carlo simulation (blue dashed
line) and for real data (red solid line).
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Figure 4.21: (a) The distribution of the lifetime for the K0
S with fit values

(0.864±0.0320)×10−10 s and the PDG values[4], (0.8958±0.0005)×10−10 s. (b)
The distribution of the lifetime for the Λ with fit values (2.865±0.046)×10−10 s

and the PDG values[4], (2.631 ± 0.020) × 10−10 s.
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the energy range Eγ = (925 - 1430) MeV. The simulated data were treated

in exactly the same manner as the experimental data, both running through

the same analysis code. In general, acceptance is the ratio of the number

of events reconstructed to the number of events generated. Let us consider

the angular variation of K0
S for different energy bins Eγ , then the acceptance

ε(Eγ, θK0
S
) for each (Eγ , θK0

S
) bin is given as

ε(Eγ , θK0
S
) =

number of K0
S observed in the Eγ, θK0

S
bin

number of K0
S thrown in the Eγ , θK0

S
bin

.

(4.39)

Figure 4.22 shows the calculated acceptance for γn → K0Λ plotted as a

function of the center-of-mass angle of the K0
S (ΘCM

K0 ) for different energy

bins. At backward angles the acceptance for γn → K0Λ is better than at

forward angles because of the beam exit opening.

When we consider the variation of the acceptance only with the beam

energy of photon Eγ , it gives the mean detector efficiency εdet(Eγ). Figure 4.23

shows the detector efficiency for γn → K0Λ as a function of the incident

photon energy. It indicates that the efficiency remains about 17% for incident

photon energies below 1200 MeV, and falls to about 8% at a photon energy

of 1400 MeV. At energies close to threshold (Eγ = 925 MeV), the efficiency

remains high. All six final-state photons come out with a very low momentum

at such low energies. As Eγ increases, the final-state particles gain more and

more momentum, which increases the chance that they will be lost from the

beam exit tunnel. In addition, at higher incident photon energies, it is more

likely that cluster mergers will occur at forward angles, and such events will

not survive the multiplicity cut. This effect contributes to the decrease in
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Figure 4.22: The acceptance for γn → K0Λ as a function of cos(θCM
K0 ) for

beam energies between 950 and 1400 MeV.
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acceptance at forward angles and at the largest values of Eγ.
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Figure 4.23: Detector efficiency for γn → K0Λ events as a function of incident
photon energy.

4.13 Photon flux determination

For the correct measurement of the cross section, it is essential to know the

number of beam photons that are incident on the target. We have described

the tagging efficiency in Sec. 3.2. As tagging efficiency depends on how

well the beam is aligned, its measurement should be done during the MAMI

beam optimization. For this experiment, tagging efficiency measurements were

performed on a daily basis. The running of the accelerator for a long time

causes a buildup of background radiation. In order to account for this, beam

off measurements were made of the background counts in the tagger scalers

(without any radiator) before and after each tagging efficiency measurement.

After subtracting this background from the “beam off” measurement, Eq. (3.3)
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can be rewritten as

εtagg[i] =
Nγ [i]

Ne[i] − Nbackgd[i]
, (4.40)

where i stands for each tagger channel in the focal plane ladder, Nγ is

the number of photons that passed through the collimator, and Ne is the

number of electrons detected in the tagger ladder. Using this equation, one

can compute the tagging efficiency for each individual channel. The tagging

efficiency during our experiment is shown in Fig. 4.24.
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Figure 4.24: The tagging efficiency during our measurements.

Once we have determined the tagging efficiency for each channel, it is

trivial to calculate the corresponding photon flux for each tagger channel as

Flux[i] = εtagg[i] × Ne[i]. (4.41)
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This equation gives the flux for each channel as a product of the tagging

efficiency of each channel and the corresponding number of incident electrons

on those channels. Figure 4.25 shows the photon flux, which is related to

the number of incident photons on the target. The fitted curve in the figure

shows that the photon flux is inversely proportional to the incident photon

energy.
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Figure 4.25: The photon flux, which is related to the number of incident
photons on the target.

4.14 Empty target background subtraction

As mentioned in Sec. 3.7, the liquid deuterium target was kept inside

a cylindrical cell made of Kapton (Fig. 3.14). During the experiment

this Kapton cell might contribute to the prompt background events by the

processes of pair production and Compton scattering. In order to correct for
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this background, data were taken with an empty target cell for several hours.

The empty target subtraction was performed by subjecting the empty-target

data to the same analysis procedures as the full-target data. The subtraction

was done by normalizing the target-empty counts by the photon flux so that,

for each tagger channel and energy bin, the yield (Ysubt) is[61]

Ysubt = Yfull − rfe × Yempty, (4.42)

where Yfull and Yempty are respective counts for the full and empty target

runs, and rfe is the ratio of the photon flux for the full and the empty

runs:

rfe = PhotonFluxfull

PhotonFluxempty
.

As the photon flux is the product of the tagging efficiency (εtagg) and the

electron flux ElectronFlux, rfe can be further written as

rfe = εtagg×ElectronFluxfull

εtagg×ElectronFluxempty
= ElectronFluxfull

ElectronFluxempty
.

The uncertainty associated with the subtraction yield (σY ) is

σY = (σY 2
full

+ r2
fe
σY 2

empt
)

1
2 ,

where σYfull
and σYempt

are the statistical uncertainties corresponding to the

full and empty yields and are given by their square roots.

.



CHAPTER 5

Results and Discussion

This chapter describes how numerical values for the differential cross section

dσ/dΩ and the total cross section σtot for γn → K0Λ were calculated. A

discussion is provided for how the statistical uncertainties in these quantities

were determined. Our results for γn → K0Λ are presented graphically and these

results are compared with the theoretical predictions discussed in Chapter 2.

We also discuss an expansion of our results for dσ/dΩ in terms of Legendre

polynomials.

5.1 Calculation of differential cross section

The differential cross section is a measurable quantity that describes the

likelihood of an interaction for a given set of kinematics. In general, the

differential cross section is related to the probability of detecting the scattered

particle at center-of-mass angles θCM and φ, where θCM is the polar angle

with respect to the incident photon and φ is the azimuthal angle. For our

work, dσ
dΩ

was only a function of θCM as the liquid deuterium target was

unpolarized. The differential cross section was calculated by using the formula:

dσ

dΩ
(Eγ, θCM) =

Nevents(Eγ, θCM)

Nγ(Eγ) × εaccept(Eγ , θCM) × Ntarget × BR× [2π∆ cos θCM]
,

(5.1)

where:

116
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• Nevents(Eγ, θCM) is the absolute number of reconstructed events and it

is also known as the detected yield of the experiment.

• Nγ(Eγ) is the number of photons incident on the target and it is

also called the incident photon flux, which is given as the product of

the tagging efficiency (εtagg) and the number of electrons (Ne−) as in

Eq. (4.41).

• εaccept(Eγ, θCM) is the acceptance of the detector calculated from Monte

Carlo simulation as described in Sec. 4.12.

• BR is the product of branching ratios for our considered reaction.

We define,

BR(γn → K0
SΛ → π0π0π0n → 6γn) = B(K0 → K0

S) ×

B(K0
S → 2π0) × B(Λ → π0n) × B(π0 → γγ)3,

(5.2)

where[4]:

B(K0 → K0
S) = 0.5,

B(K0
S → 2π0) = 0.3069 ± 0.0005,

B(Λ → π0n) = 0.3580 ± 0.0050,

B(π0 → γγ) = 0.9879 ± 0.0003.

Thus, numerically

BR(γn → K0
SΛ → π0π0π0n → 6γn) = (0.5) × (0.3069 ± 0.0005) ×

(0.3580 ± 0.0050) × (0.9879 ± 0.0003)3

= 0.0529 ± 0.0007.
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• Ntarget is the number of protons in the target per cm2, which is

calculated by using the formula:

Ntarget =
ρd × NA × Leff

target

Md
, (5.3)

with:

ρd = 0.162 g/cm−3 is the density of liquid deuterium,

NA = 6.022 × 1023 mol−1 is Avogadro′s number,

Md = 2.0141 g mol−1 is a molar mass of liquid deuterium,

Leff
target = 4.76 cm is the effective length of the target.

Using all these values, we get

Ntarget = 0.162×6.022×1023×4.76
2.0141

= 2.275 × 1023 cm−2.

• ∆ cos θCM is the corresponding size of the bin for cos θCM the center-

of-mass angle variation. In our analysis there were nine bins of equal

width spanning cos θCM= −0.95 to +0.95.

5.1.1 Legendre polynomial fitting

The measured differential cross sections for all reactions can be expanded

with a series of Legendre polynomials as:

dσ

dΩ
=

imax
∑

i=0

AiPi(cos θ), (5.4)

where Pi is the i-th order Legendre polynomial and imax was the highest

order used in the series. The choice of imax was made in such a way that for
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all i > imax, Ai was consistent with zero. The coefficients Ai have dimensions

of area. For fitting purposes, it was useful to rewrite Eq. (5.4) as

dσ

dΩ
= A0

[

1 +
imax
∑

i=0

BiPi(cos θ)

]

, (5.5)

where Bi = Ai/A0. The corresponding ratios, Ai/A0 are then independent of any

systematic uncertainty in the normalization of our cross-section measurements.

The total cross sections, σtot(Eγ), were calculated by integrating the fitted

differential cross section as:

σtot =

∫

dσ

dΩ
dΩ = 4πA0. (5.6)

5.2 Background subtractions

As described in Sec. 4.9, γp → K0Σ+, γn → K0Σ0, γN → ηN , and

γN → 3π0N are background reactions to our considered reaction γn →

K0Λ. Our Monte Carlo studies show that these reactions contribute a

significant number of events that look like γn → K0Λ. By using Eq.

(4.35), the number of events due to each of the background reactions can

be estimated in the experimental data. It is essential to evaluate the

contamination ratio εMC for each of these background reactions. Following the

notation in Sec. 4.10.2, εMC(K0
SΛ/K0

SΣ+), εMC(K0
SΛ/K0

SΣ0), εMC(K0
SΛ/ηN),

and εMC(K0
SΛ/3π0N) represent the contamination ratios for γp → K0

SΣ+,

γn → K0
SΣ0, γN → ηN , and γN → 3π0N , respectively. In order to determine

the differential cross section for γn → K0Λ, it is necessary to find the angular

distribution of εMC in each Eγ bin. For the real data, knowing the values of

εMC and the corresponding number of events (such as K0
SΛ, K0

SΣ+, ηN , and
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3π0N) that are identified in the real data, the background corrected events

for γn → K0
SΛ can be evaluated using Eq. (4.36). Figure 5.1 shows the

angular distributions of the contamination ratios εMC at Eγ = 1250 MeV for

the various background reactions to γn → K0Λ. A comparison of the value

of εMC with the background contributions listed in Table 4-1 shows that the

magnitude of εMC for each background reaction depends on its contribution

to γn → K0Λ. The angular variations and magnitudes of εMC for each of the

background channels are not similar. For γp → K0Σ+, the contamination ratio

increases in going from backward to forward angles; for other background

reactions, the contamination ratios have a less pronounced angular variation.

The angular variations of εMC follow similar trends in other energy bins.

5.3 Differential cross section for γn → K0Λ

As described in Sec. 5.1, the differential cross section for γn → K0Λ at

a given photon energy, Eγ , and center-of-mass angle, θCM, was calculated by

using Eq. (5.1). Determination of the corresponding uncertainties is discussed

in Sec. 5.5.

We extracted dσ/dΩ at 19 incident photon energies: 925, 950, 975, 1000,

1025, 1050, 1075, 1100, 1125, 1150, 1175, 1200, 1225, 1250, 1275, 1300, 1325,

1350, and 1375 MeV. Figure 5.2 shows dσ/dΩ for each of these energy bins;

our numerical values for dσ/dΩ are tabulated in Appendix C. For each value

of Eγ, we extracted dσ/dΩ in nine cos(θCM) bins ranging from cos(θCM) =

−0.95 to 0.95.
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Figure 5.1: Angular distributions of contamination ratio εMC for the reaction
γn → K0Λ at Eγ= 1250 MeV due to (a) γp → K0Σ+, (b) γn → K0Σ0,
(c) γN → ηN , and (d) γN → 3π0N . The angular distributions for other
energy bins are similar.



122

In general, we observe that the magnitude of the differential cross section

increases with the value of the photon energy. The differential cross section

between 925 and 1000 MeV is almost flat in shape (isotropic), which suggests

that this region is s-wave dominated. At energies above 1075 MeV, the

differential cross section has a slight convex shape.

5.3.1 Comparison with model predictions

There are no published experimental results of the differential cross section

for γn → K0Λ with which we can compare our results. However, we are able

to compare our results with the KAON-MAID and SLA predictions described

in Chapter 2. Figure 5.3 compares our results for dσ/dΩ at Eγ = 1100 MeV

with predictions from these two models. Our differential cross section at this

energy is more similar to the Kaon-MAID prediction in that both have a

slight convex shape and about the same magnitude.
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Figure 5.2: Differential cross section in the center-of-mass system for the
reaction γn → K0Λ at incident photon energies, Eγ , from 925 to 1375 MeV.
The plots also show the corresponding center-of-mass energy W . The solid
curves are from the Legendre polynomial fits to our data.
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Figure 5.2: Continued.
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Figure 5.2: Continued.



126

CM
KθCos 

-1 -0.5 0 0.5 1

b/
sr

)
µ (

Ω
/dσd

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Present Work
Legendre Fit
KAON-Maid
SLA

 = 1100 MeVγE
W = 1716 MeV

Figure 5.3: Comparison of our results (red filled circles) for the differential

cross section of γn → K0Λ at Eγ = 1100 MeV with predictions of the

Kaon-MAID model[31] (blue dashed curve) and the SLA model[26] (green

dotted curve). The solid curve is the result of the Legendre polynomial fit

to our data.

5.3.2 Legendre fitting coefficients

The Legendre coefficients for the fit of dσ/dΩ for the reaction γn → K0Λ

are plotted in Fig. 5.4 and tabulated in Appendix D. The Legendre fits were

obtained for maximum values of n between 2 and 4. Fitted values of A3/A0

and A4/A0 were found to be consistent with zero over the entire energy

range. Therefore, our final fits used a maximum value of n = 2 and these

are the results displayed in Fig. 5.2. As exceptional cases, the values of
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A1/A0 and A2/A0 were found to be consistent with zero for Eγ = 925 to

1000 MeV; thus, data at these energies were fitted only with A0. A1/A0 was

found to be small over the entire energy range. A2/A0 is generally negative

for energies above ∼1050 MeV.
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Figure 5.4: Legendre fitting coefficients for dσ/dΩ of the reaction γn → K0Λ.

5.4 Total cross section for γn → K0Λ

The amount of background to be subtracted from γn → K0Λ can be

calculated using the values of the contamination ratios as described in Sec. 5.2

and Eq. (4.35). Figure 5.5 shows the measured total cross section for γn → K0Λ

without background subtraction and the estimated background stemming from

all the background reactions (γp → K0Σ+, γn → K0Σ0, γN → ηN , and

γN → 3π0N) and the empty target. The background contributions were

computed on a bin-by-bin basis. Figure 5.6 shows σtot(γn → K0Λ) obtained

after the background subtraction as a function of center-of-mass energy W .
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The values of σtot are tabulated in Appendix C. The total cross section

increases rapidly from threshold up to 1700 MeV and from there it gradually

increases with W . Because of the low photon flux at higher energies, we

could not extract the total cross section beyond 1870 MeV. The statistical

uncertainties in the measured cross section are about 5% at the lowest

energies and increase to about 13% at the highest energies.
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 without Backgd subt. σ
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Figure 5.5: The total cross section for γn → K0Λ without subtraction
of background (filled squares) and estimation of the total contribution of
background stemming from the background reactions and the empty target
(open crosses) as described in the text.

The percentage background contributions to σtot(γn → K0Λ) stemming from

all four background reactions and the empty target are tabulated in Appendix

G. The empty target contributes about ∼1% to the total background. The

total percentage background contribution varies from about 5-20%. The
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Figure 5.6: The total cross section for γn → K0Λ after background subtractions
as a function of center-of-mass energy W . The error bars shown are due
only to counting statistics.

individual reactions γp → K0Σ+, γn → K0Σ0, γN → ηN, and γN → 3π0N

contribute 7-10%, 2-3%, 3-4%, and 1-2% to the total background, respectively.

For energies below W ∼ 1690 MeV, the only background contributions are

from the reactions γN → ηN and γN → 3π0N , and the empty target.

At higher energies, there are also contributions to the background from

γp → K0Σ+ and γn → K0Σ0.

As mentioned in Chapter 2, there are no published experimental results

with which we can compare our measurements. However, we may compare our

results with model predictions. Figure 5.7 compares our results, represented

by the red solid circles, to the KAON-MAID[31] predictions as indicated by

the blue solid curve and to the SLA[26] prediction with rKK1
= −2.09 by
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the green dashed curve. Our results are in fairly good agreement with the

Kaon-MAID prediction up to W = 1700 MeV, but above this energy, our

measured cross section is smaller than the Kaon-MAID prediction. Compared

with the SLA prediction, our measurements are systematically larger across

the entire energy range.
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Figure 5.7: Comparison of our results (red filled circles) for σtot(γn → K0Λ)

after background subtraction with predictions of the Kaon-MAID model[31]

(blue solid curve) and SLA model[26] (green dashed curve).

5.5 Uncertainties in dσ/dΩ

In Sec. 4.10.2 the background subtraction procedure for γn → K0Λ has

been described. The major statistical uncertainty in dσ/dΩ comes from the
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number of events obtained from the background subtraction. In addition to

the background subtraction, an empty target subtraction must be made in

order to determine the final number of γn → K0Λ events. For simplicity, Eq.

(4.36) can be rewritten as

NK0

event = NK0Λ
data − Nempty − Nγp→K0Σ+ − Nγn→K0Σ0

−NγN→ηN − NγN→3π0N .

(5.7)

The statistical uncertainty in each number of events is computed as the square

root of the number of events. As the uncertainties in all the contributions

are independent to each other, the uncertainty ∆NK0

event in the total number

of extracted γn → K0Λ events is

∆NK0

event =

[

(∆NK0Λ
data )2 + (∆Nγp→K0Σ+

)2 + (∆Nγn→K0Σ0

)2

+(∆Nγn→ηN )2 + (∆NγN→3π0N)2

]1/2

.

(5.8)

We have seen the differential cross section in Eq. (5.1) is obtained by

dividing the absolute number of reconstructed events NK0

event for a specific bin

by the photon flux Nγ, the acceptance εaccept, the surface target density

Ntarget, and branching ratios BR. Thus, the uncertainty in the extracted

cross section depends upon the uncertainties in the number of reconstructed

events, photon flux, acceptance, target density, and the branching ratios. The

general formula for the differential cross section can be rewritten as

dσ

dΩ
=

NK0

events

Nγ × εaccept × Ntarget × BR× Ω
, (5.9)

where Ω is the solid angle for the bin and the other symbols carry the

usual meanings as defined here and in Sec. 5.1.
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As all the factors in Eq. (5.9) are independent, the statistical uncertainty

in dσ/dΩ is determined by summing each contribution in quadrature:

∆dσ/dΩ = dσ/dΩ ×
[(

∆NK0

events

NK0

events

)2

+

(

∆Nγ

Nγ

)2

+

(

∆εaccept

εaccept

)2

+

(

∆Ntarget

Ntarget

)2

+

(

∆BR
BR

)2]1/2

.
(5.10)

In our experiment, the average fractional uncertainty in the final number of

selected events, NK0

events, is about 25%. The second term is related to the

tagging efficiency measurements. Using Eq. (4.41), we estimate the fractional

uncertainty in Nγ to be 3 to 4%. The third term is due to the Monte Carlo

simulation of the detection efficiency. As shown in Fig. 4.22 the average

uncertainty in εaccept is about 2%. The target length was measured at a

temperature of 21 K with a precision of ±1%[62], which introduces a 1%

uncertainity in Ntarget. From Sec. 5.1, it can be inferred that the uncertaintity

in BR is about 1.3%. Now keeping these respective values of uncertaintity

in Eq. (5.10), it can be concluded that the statistical uncertainity in the

number of selected events dominates the total uncertaintity in dσ/dΩ.



CHAPTER 6

Summary and Conclusions

In this dissertation, we have described our cross-section measurements

for the reaction γn → K0Λ. Our experiment was performed at the Mainz

Microtron (MAMI-C) using the Crystal Ball (CB) multiphoton spectrometer as

a central detector and the TAPS calorimeter as a forward wall. Unpolarized

photon beams were produced by bremsstrahlung in the energy range up to

1400 MeV by passing the electron beam through a 10-µm copper radiator.

The deflected electrons were momentum analyzed by the Glasgow Tagger,

which consists of a momentum-dispersing magnetic spectrometer that diverts

electrons onto a focal plane detector comprised of 353 half-overlapping plastic

scintillators. The energetic photons impinged on a liquid deuterium target of

length 4.76 cm located at the center of the Crystal Ball. The experimental

trigger consisted of two main requirements: (i) the total energy deposited in

the Crystal Ball had to exceed a threshold of 350 MeV, and (ii) the sector

multiplicity in the CB had to be greater than or equal to 2.

We identified the reaction γn → K0Λ by the decay chain, γn → K0Λ →

(π0π0)(π0n) → 6γn. The combination of the CB and TAPS covering almost

4π of solid angle was well suited for reliably measuring the 6-photon final

state. Because the efficiency for detecting neutrons is relatively low, we

assumed that the clusters of deposited energy in the Crystal Ball were due
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only to photons. The technique of kinematic fitting was used to analyze the

6-cluster events. Since the neutral kaon and Λ were not produced at rest,

they propagate away from the primary vertex before they under go weak

decays. Kinematic fitting was necessary to calculate where they decayed in

the Crystal Ball.

Each 6-cluster event was tested for five possible hypotheses:

• that the event was from γn → K0Λ;

• that the event was from γp → K0Σ+, where the Σ+ was identified from

its weak decay Σ+ → π0p;

• that the event was from γn → K0Σ0 (most of these events produced

7-cluster events that were immediately excluded from further analysis);

• that the event was from from γN → ηN ; and

• that the event was from γN → 3π0N , where the final-state pions were

assumed to be produced at the primary vertex.

Events selected as coming from the reaction γn → K0Λ were required to

have the highest likelihood (confidence level) out of these hypotheses. We

also imposed a cut of 15% on the confidence level (CL) to the final selected

events, which led to a much cleaner event sample. The angle-averaged

detection efficiency for γn → K0Λ events using this criterion was found to be

about 17% over almost our entire energy range.
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The relative survival contributions of the background reactions were estimated

using Monte Carlo (MC) generated events. For each generated background

event, those that survived the selection tests for γn → K0Λ events were counted

as background. In order to estimate and subtract background contributions,

MC data for each of the five hypotheses were simulated and analyzed using

the same criteria as for the real data. The backgrounds from direct 3π0 and

η production were suppressed within our analysis, with the main background

to γn → K0Λ coming from γp → K0Σ+ events. This problem is easily

understood as being caused by our inability to resolve Λ and Σ events clearly

in our K0 missing mass spectra.

The details of the γn → K0Λ event selection criteria were as follows: (1)

We required that the invariant mass of four of the photon clusters was

consistent with the mass of K0
S meson and that their corresponding missing

mass was consistent with the mass of the Λ hyperon. (2) For the four

photons identified as coming from the decay of a K0
S meson, we required

that we could reconstruct the two neutral pions coming from the decay

K0
S → 2π0 → 4γ. (3) For the two photons identified as coming from the

decay of a Λ hyperon, we required that their invariant mass was consistent

with that of a π0 and that their missing mass was consistent with that of

a neutron.

We simultaneously measured events for the reaction γp → K0Σ+, which we

identified by the decay channel with six photons and a proton in the final

state. We required that the invariant mass of four of the photon clusters



136

was consistent with the mass of the K0
S meson and that their corresponding

missing mass was consistent with the mass of the Σ+ hyperon. Events

selected as coming from γp → K0Σ+ were required to have the highest

likelihood out of the same hypotheses used to select γn → K0Λ events. The

angle-averaged acceptance for γp → K0Σ+ events using this criterion was about

5% over almost our entire energy range. We determined differential and total

cross sections for γp → K0Σ+, which were compared with prior measurements

(see Appendix A). The good agreement of our results for γp → K0Σ+ with

prior measurements provides support for our analysis procedures for both

γp → K0Σ+ and γn → K0Λ.

This dissertation reports the world’s first measurements of dσ/dΩ and

σtot for γn → K0Λ. Our results were compared with predictions of the

Kaon-MAID[31] and SLA[26] models. Our results for σtot are in fairly good

agreement with the Kaon-MAID prediction up to W = 1700 MeV but above

this energy, our measured cross section is smaller. Our measurements are

systematically larger than the SLA prediction across the entire energy range.

Some final comments about our work are listed below.

• This dissertation reports the world’s first experimental measurements of

dσ/dΩ and σtot for γn → K0Λ. We identified approximately 40,000

background-subtracted γn → K0Λ events.

• Our results for σtot(γn → K0Λ) are similar in shape with the prediction

of the Kaon-MAID model up to W= 1700 MeV but are lower at higher

energies; in comparison to the SLA model, our results are higher over
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the entire energy range.

• In the energy range Eγ = 1000 to 1400 MeV, our results for

σtot(γp → K0Σ+) are in good agreement with prior measurements. We

identified about 3,400 background-subtracted final γp → K0Σ+ events. By

comparison, Goers et al.[34] (at Eγ up to 1.55 GeV), SAPHIR[60] (Eγ

up to 2.6 GeV), CB-ELSA[52] (Eγ up to 2.3 GeV), CLAS[58] (Eγ up

to 2.35 GeV) identified 405, 3,310, 10,000, and 15,650 final events of

γp → K0Σ+, respectively.

• Results from the high statistics g13 experiment at JLab should eventually

be published, which will provide experimental data with which to compare

our results.

• Our results hopefully will be included in future partial-wave analysis and

will lead to an improved understanding of isospin- 1
2

N∗ resonances in

the third resonance region (W ∼ 1700 MeV).

• In principle, PΛ (polarization of the final-state Λ) could be determined

by measuring the angular distribution of the π0 emitted in the decay

Λ → π0n, in the Λ’s rest frame, but such a measurement needs better

statistics.
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APPENDIX A

Analysis of γp → K0Σ+

In this appendix we describe our analysis of the reaction γp → K0Σ+.

Some details that are similar to those described in Chapter 4 for the reaction

γn → K0Λ are not repeated here. The differential cross section and the

total cross section for γp → K0Σ+ will be presented and compared with

prior results. The generally good agreement of our γp → K0Σ+ results with

prior measurements provides support for our analysis procedures and therefore

provides credibility to our results for γn → K0Λ. Numerical results are

tabulated in Appendix B.

A.1 Tagger random subtraction

The Tagger TDC (TimeOR) spectrum for this analysis is shown in

Fig. 4.4, which shows that the prompt peak is at ∼105 ns and a nearly

flat background of random coincidences spreads for the whole 200-ns-wide

event window. Figure A.1 shows a timing spectrum for Tagger channel 25.

(See Fig. 4.6 to compare at the same channel for the reaction γn → K0Λ.)

Random background subtraction for the K0
S missing mass spectrum at photon

energy Eγ = 1300.9 MeV is shown in Fig. A.2. The contribution of random

events is represented by the red-filled histogram and the contribution of the

coincident events is given by the green-filled histogram. The subtraction of

these two histograms is shown fitted with a Gaussian distribution.
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Figure A.1: Tagger timing spectrum for channel 25 for which the calculated
ratio of the random-prompt areas was rpr = 0.516.

A.2 Confidence level and the number of degrees of freedom (NDF)

The analysis procedure used the same kinematic fit methods for event

selection as for the reaction γn → K0Λ described in Sec. 4.6. Here, for a

6-cluster event to be identified as a candidate γp → K0Σ+ event, it had to

have the largest confidence level (CL) for γp → K0Σ+, as compared with CL

values for the other hypotheses tested. Figure A.3 shows the CL distribution

for all identified γp → K0Σ+ events in our measured data. The events having

largest values of χ2 in the fit are located near the peak region close to CL

= 0 whereas those with low χ2 values are distributed close to CL = 1.

The rest of the events are in the intermediate flat region. As the events

near CL = 0 do not satisfy the constraint equations, those events are not

of interest. A cut was placed on the confidence level as shown in the figure,
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Figure A.2: Example of random background subtraction of missing mass
of K0 for Tagger channel 34 and incident photon energy 1300.9 MeV. (a)
The red-filled histogram corresponds to random background events and the
green-filled histogram is for the prompt coincident events. (b) The resulting
histogram fitted with a Gaussian distribution after the subtraction of the two
previous histograms using Eq. (4.2).
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so that events with CL < 0.15 were discarded.
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Figure A.3: Confidence level distributions for Monte Carlo simulation (blue
circles) and for real data (red triangles) in the reaction γp → K0Σ+. The
vertical line shows a CL cut placed at 0.15 for the selection of good events.
This cut reduces 33% misidentified events from the real data.

As the momentum of each incident photon lies along the z-axis, the

γp interaction point inside the target was a free variable in the kinematic

fit. Figure A.4 shows the measured distribution of the z-coordinate of the

interaction point inside the target, which is also considered as the primary

vertex. Because of the short lifetimes of the Σ+ and K0
S, their decay lengths

are comparable to the size of the target, and thus these were also considered

as free parameters in the kinematic fit.

The decay chain used to identify γp → K0Σ+ events was γp → K0
SΣ+ →

(π0π0)(π0p) → 6γp. The number of unmeasured quantities for the six-cluster
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Figure A.4: The z coordinate of the incident beam for Monte Carlo simulation
(blue circles) and for real data (red triangles) in the reaction γp → K0Σ+.
It is considered as the primary vertex in our analysis.

γp → K0Λ events was six: the z coordinate of the vertex position, the Σ+

and K0
S decay lengths, energy, and the two angles (θ and φ) of the final-state

protons. There are nine constraints: four for momentum (px, py, pz) and energy

conservation, three for the mass of each π0, one for the K0 mass, and one

for the Σ+ mass. Therefore, the NDF in our analysis of γp → K0Σ+, which

supposes that the final-state proton is undetected, is NDF = 9 − 6 = 3.

A.3 Event selection

The neutral mesons (π0, K0
S) and baryons (Σ+) have a very short lifetime,

so only the photons resulting from their decays were detected (e.g., K0
S →

2π0, Σ+ → π0p, π0 → 2γ). When a particle decays, its momentum four-vector

is conserved. Consequently, the momentum four-vector of a neutral meson



146

is equal to the sum of the momentum four-vectors of the photons resulting

from its decay.

Figure A.5 shows the invariant mass distribution of 2γ for all possible

combinations of six photons in the final state for γp → K0
SΣ+ → 3π0p → 6γp

to produce a peak around the mass of π0.
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Figure A.5: The invariant mass distribution of 2γ for all combinations of two
out of six photons in the final state for γp → K0

SΣ+ → 3π0p → 6γp.

The identification of the different particles (e.g., K0
S, Σ+, proton) was

made by following the same process described in Sec. 4.7. The invariant mass

distribution of the four photons from a K0
S decay should be centered at 497

MeV, the mass of the K0
S, as shown in Fig. A.6. These four photons are

assumed to be from the decay of two π0s and are determined by applying

the best pion combination as described in Sec. 4.7.4. A two-dimensional

view of the invariant mass of the selected pion pairs obtained from the decay

of K0
S is shown in Fig. A.8, and a one-dimensional view of the invariant
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mass of these selected pion pairs is shown in Fig. A.9.

The missing mass distribution of the four photons that came from the K0
S

decay should be centered around the mass of the Σ+ (at 1189 MeV), as

shown in Fig. A.7.
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Figure A.6: The distribution of invariant mass for the four photons identified
as coming from γp → K0Σ+ followed by K0

S → 2π0 → 4γ. The peak is near
the mass (497.6 MeV) of the neutral kaon.

Figure A.10 shows the missing mass of the six photons identified as coming

from γp → K0
SΣ+ → 3π0p → 6γp. There is a distinct peak at the mass of the

proton (938 MeV) as expected.
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Figure A.7: The distribution of missing mass for the four photons identified
as coming from γp → K0Σ+ followed by K0

S → 2π0 → 4γ. The peak is near
the mass (1189 MeV) of the Σ+ hyperon.

A.4 Background subtraction

As mentioned in Sec. 4.9, we can investigate the experimental background

for γp → K0Σ+ using a Monte Carlo analysis. For this purpose we simulated

data for various reactions and analyzed these data using the fitting hypothesis

of the reaction γp → K0Σ+. Those events for other reactions that survived

the selection tests for γp → K0Σ+ were counted as backgrounds. In order

for a real event to be accepted as a viable γp → K0Σ+ candidate, it should

have the highest confidence level for this hypothesis compared to any other

hypothesis. Finally, to be acceptable, it should have CL > 0.15.

We considered the following possible background reactions: (i) γn → K0Λ,

(ii) γn → K0Σ0, (iii) γN → ηN , and (iv) γN → 3π0N . The average

survival probabilities that the simulated events satisfied the selection tests for
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Figure A.8: Two-dimensional plot of invariant masses of the reconstructed π0

pairs from the decay of K0
S as K0

S → 2π0 → 4γ for γp → K0Σ+ events.
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Figure A.9: The distribution of invariant mass for the two photons identified
as coming from K0

S → 2π0 followed by π0 → 2γ. The peak is near the mass
(135.0 MeV) of the neutral pion.
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Figure A.10: The distribution of missing mass of the six photons identified
as coming from γp → K0

SΣ+ → 3π0p → 6γp. The peak is near the mass
(938.3 MeV) of the proton.
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γp → K0Σ+ are summarized in Table A-1.

background survival
channels probability

γn → K0
SΛ 0.99%

γn → K0
SΣ0 0.74%

γN → ηN 0.17%

γN → 3π0N 0.30%

Table A-1: Survival probability for several background reactions to γp → K0Σ+

calculated from Monte Carlo analysis.

All considered background reactions have at least a 6γ final state so all

of these reactions were considered as 6-cluster events in the analysis, the

same as for the reaction γn → K0Λ. For the real data, the backgrounds

due to these reactions were estimated using a Monte Carlo simulation and

the measured number of K0Λ, K0Σ0, ηN , and 3π0N events in the real

data. Let us suppose that N
K0

SΣ+

data , N
K0

SΛ

data , N
K0

SΣ0

data , NηN
data, and N3π0N

data are the

corresponding known numbers of K0
SΣ+, K0

SΛ, K0
SΣ0, ηN , and 3π0N events

in the real data. As described in Sec. 4.10.2, the number of real signal
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N
K0

SΣ+

signal events for γp → K0
SΣ+ is given as

N
K0

SΣ+

signal = N
K0

SΣ+

data − N
K0

SΛ

data εMC(K0
SΣ+/K0

SΛ) − N
K0

SΣ0

data εMC(K0
SΣ+/K0

SΣ0) −

NηN
dataεMC(K0

SΣ+/ηN) − N3π0N
data εMC(K0

SΣ+/3π0N).
(A.1)

I.e., we can subtract the background events from our analysis and compute

the actual number of γp → K0Σ+ events. In addition to the above mentioned

background sources, there is another source due to empty target data. The

method of the empty target subtraction is described in Sec. 4.14.

A.5 Secondary vertex and decay correction for K0
S and Σ+

As described in Chapter 4, it was assumed that the initial electromagnetic

interaction occurs at the primary vertex where K0
S and Σ+ are produced

in the reaction γp → K0Σ+. Because of their lifetimes, τΣ+ = 0.08018 ns

for Σ+ and τK0
S

= 0.08935 ns for K0
S, these particles can travel a few

centimeters from the point at which they were produced before they undergo

a weak decay. In order to find the positions of the secondary vertices (where

these particles decay), their momenta must be known. The positions of the

secondary vertexes for K0 and Σ+ were reconstructed by using the kinematic

fit as described in Sec 4.11.

The reconstructed distributions of the distance traveled by K0 and Σ+

after their production at the primary vertex are shown in Figs. A.11(a) and

(c). The lifetimes of these particles were calculated by using Eq. (4.37).

The distributions of the lifetime are shown in Figs. A.11(b) and (d). Linear

fits of the lifetime distributions are shown in Figs. A.12(a) and (b). The

reciprocal of the slope of these fits provides the respective mean lifetimes of
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the K0
S and Σ+. The PDG values[4] of the mean lifetime for K0

S and Σ+ are

(0.895±0.0005)×10−10 s and (0.8018±0.0026)×10−10 s, respectively. The values

from our fit are (0.961± 0.032)× 10−10 s for K0
S and (0.973± 0.024)× 10−10 s

for Σ+.

A.6 Acceptance and efficiency determination

The acceptance for γp → K0Σ+ was determined from a Monte Carlo

simulation as described in Sec. 4.12. Approximately 17 million events for

K0
S with a phase-space distribution of energy and momentum were simulated

in the energy range Eγ = (1050 - 1430) MeV. The simulated data were

treated in exactly the same manner as the experimental data with both

analyzed using the same code. Figure A.13 shows the calculated acceptance

for γp → K0Σ+ plotted as a function of the center-of-mass angle of the K0
S

(ΘK
CM) for different energy bins. Figure A.14 shows the detector efficiency

for γp → K0Σ+ as a function of the incident photon energy. It indicates

that the efficiency remains about a 5% for incident photon energies below

1200 MeV, and falls to about 2% at a photon energy of 1400 MeV.

A.7 Result of background subtraction

Table A-1 lists several background reactions (γn → K0Λ, γn → K0Σ0,

γN → ηN, and γN → 3π0N) to the reaction γp → K0Σ+. These reactions

contribute a significant number of events that look like γp → K0Σ+. By using

Eq. (4.35), the number of background events due to each of these reactions

can be estimated in the experimental data. As defined in Sec. 4.10.2,

εMC(K0
SΣ+/K0

SΛ), εMC(K0
SΣ+/K0

SΣ0), εMC(K0
SΣ+/ηN), and εMC(K0

SΣ+/3π0N)



155

Distance (cm)
0 2 4 6 8 10

Ev
en

ts

1

10

210

310

 Path 0
SK (a)

Monte Carlo

Real Data 

  s)-10Time (10
0 1 2 3 4 5 6 7 8 9 10

Ev
en

ts

1

10

210

310
Monte Carlo

Real Data 

 Decay TimeS
0K (b)

Distance (cm)
0 2 4 6 8 10

Ev
en

ts

10

210

310

 Path +Σ
(c)

Monte Carlo

Real Data 

 s)-10Time (10
0 1 2 3 4 5 6 7 8 9 10

Ev
en

ts

1

10

210

310

Monte Carlo

Real Data 

 Decay Time+Σ (d)

Figure A.11: (a) The distributions of the distance traveled by K0 before
its decay for Monte Carlo simulation (blue dashed line) and for real data
(red solid line). (b) The distribution of the lifetime of K0

S for Monte Carlo
simulation (blue dashed line) and for real data (red solid line). (c) The
distribution of the distance traveled by Σ+ before its decay for Monte Carlo
simulation (blue dashed line) and for real data (red solid line). (d) The
distribution of the lifetime of Σ+ for Monte Carlo simulation (blue dashed
line) and for real data (red solid line).
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Figure A.12: (a) The distribution of the lifetime for the K0
S with fit values

(0.961±0.032)×10−10 s and the PDG values[4], (0.895±0.0005)×10−10 s. (b) The
distribution of the lifetime for the Σ+ with fit values (0.973± 0.024)× 10−10 s

and the PDG values[4], (0.8018 ± 0.0026) × 10−10 s.
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Figure A.13: The acceptance for γp → K0Σ+ as a function of cos(θK
CM) at

beam energies between 1100 and 1400 MeV.
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Figure A.14: Detector efficiency for γp → K0Σ+ events as a function of
incident photon energy.

represent the contamination ratio for the corresponding background reactions

γn → K0
SΛ, γn → K0

SΣ0, γN → ηN , and γN → 3π0N .

In order to determine the differential cross section for γp → K0Σ+, it was

necessary to find the angular distributions of εMC in each Eγ bin. Figure

A.15 shows the angular distributions of the contamination ratios εMC at Eγ =

1200 MeV for the various background reactions to γp → K0Σ+. The angular

variations of εMC for each of the background channels are not similar. For

γp → K0Σ+, the ratio increases at forward angles. The angular variations of

the εMC ratios show similar trends at other energies.
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Figure A.15: Angular distributions of contamination ratio εMC for the reaction

γp → K0Σ+ at Eγ = 1200 MeV due to (a) γn → K0Λ, (b) γn → K0Σ0, (c)

γN → ηN , and (d) γN → 3π0N . The angular distributions for other energy

bins are similar.

A.8 The differential cross section for γp → K0Σ+

The differential cross section for γp → K0Σ+ was calculated using Eq. A.2

for a given photon energy, Eγ, and center-of-mass kaon angle, θK
CM, as
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dσ

dΩ
(Eγ , θCM) =

Nevents(Eγ , θCM)

Nγ(Eγ) × εaccept(Eγ , θCM) × Ntarget × BR× [2π∆ cos θCM]
.

(A.2)

Most of these symbols were defined in Sec. 5.1. Here, the product of

branching ratios BR for the reaction γp → K0Σ+ is given as

BR(γp → K0
SΣ+ → π0π0π0p → 6γp) = B(K0 → K0

S) ×

B(K0
S → 2π0) × B(Σ+ → π0p) × B(π0 → γγ)3,

(A.3)

where[4]:

B(K0 → K0
S) = 0.05,

B(K0
S → 2π0) = 0.3069 ± 0.0005,

B(Σ+ → π0p) = 0.5157 ± 0.0030,

B(π0 → γγ) = 0.98798 ± 0.00032.

Thus, numerically

BR(γp → K0
SΣ+ → π0π0π0p → 6γp) = (0.5) × (0.3069 ± 0.0005) ×

(0.5157 ± 0.0030) × (0.98798 ± 0.00032)3

= 0.07629 ± 0.00046

εaccept(Eγ, θ
K
CM) is the acceptance calculated from Monte Carlo simulation as

described in Sec. A.6. Similarly, the terms Nγ(Eγ), and Ntarget were evaluated

as described in Sec. 5.1.
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The differential cross section was measured at 14 incident photon energies:

1050, 1175, 1100, 1125, 1150, 1175, 1200, 1225, 1250, 1275, 1300, 1325, 1350,

and 1375 MeV. In each energy bin, dσ/dΩ was evaluated in nine angular

bins that ranged from −0.95 to 0.95 in cos θK
CM .

Figure A.16 shows dσ/dΩ at each of the 14 energy bins. Numerical

results are tabulated in Appendix B. The curves through the data points

were obtained by fitting the data with a series of Legendre polynomials using

coefficients An up to n = 2. The error bars include statistical uncertainties

only. The differential cross section at the lowest energies is nearly isotropic,

which indicates that the threshold region is s-wave dominated. Between

1075 MeV and 1275 MeV, the angular distribution has a concave bowl shape,

which changes to a convex bowl shape between 1300 and 1375 MeV.
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Figure A.16: Differential cross section in the center-of-mass system for the

reaction γp → K0Σ+ at incident photon energies Eγ between 1050 and

1375 MeV. The solid curves are the results of the Legendre polynomial fits

to our data.
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Figure A.16: Continued.
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Figure A.16: Continued.

A.8.1 Comparison with prior results

Figure A.17 shows a comparison of our dσ/dΩ measurements at Eγ bins

of 1100, 1200, and 1300 MeV with the CB-ELSA/TAPS data, which were

measured using a liquid hydrogen target[52]. In general, the two sets of

measurements are in good agreement, but our results have smaller statistical

uncertainties.

A.8.2 Legendre fitting coefficients

The Legendre coefficients obtained by fitting dσ/dΩ for the reaction

γp → K0Σ+ are plotted in Fig. A.18 and tabulated in Appendix D. The

Legendre fits were obtained for maximum values of n between 2 and 4.

Fitted values of A3/A0 and A4/A0 were found to be consistent with zero

over the entire energy range. Therefore, our final fits used a maximum value

of n = 2 and these are the results displayed in Fig. A.16. As exceptional

cases, the values of A1/A0 and A2/A0 were found to be consistent with zero

for Eγ = 1050 to 1125 MeV; thus, data at these energies were fitted only
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Figure A.17: Differential cross section for the reaction γp → K0Σ+ from this

work (red solid circles) compared to measurements by CB-ELSA/TAPS[52]

(green triangles) at incident photon energies of Eγ = 1100, 1200, and 1300
MeV. The solid curves are the results of Legendre polynomial fits to our
data. Only statistical uncertainties are displayed.
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with A0. A1/A0 was found to be positive for energies above ∼ 1200 MeV,

while A2/A0 is positive for 1125 MeV ≤ Eγ ≤ 1290 MeV and negative for

Eγ ≥ 1290 MeV.
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Figure A.18: Legendre coefficients obtained by fitting dσ/dΩ for γp → K0Σ+.

A.8.3 Total cross section for γp → K0Σ+

The amount of background to be subtracted from γp → K0Σ+ can be

calculated using the values of the contamination ratios as described in Sec. A.7

and Eq. (4.35). Figure A.19 shows the measured total cross section for γp →

K0Σ+ without background subtraction and the estimated background stemming

from all the background reactions (γn → K0Λ, γn → K0Σ0, γN → ηN , and

γN → 3π0N) and the empty target. The background contributions were

computed on a bin-by-bin basis. Figure A.20 shows σtot(γp → K0Σ+) obtained

after the background subtraction as a function of center-of-mass energy W .

The values of σtot are tabulated in Appendix B. The total cross section
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gradually increases as Eγ increases. Because of limitations of the photon flux,

we could not extract the total cross section beyond 1870 MeV. The statistical

uncertainties associated with σtot in our work vary from 5 to 15%.
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Figure A.19: The total cross section for γp → K0Σ+ without subtraction
of background (filled squares) and estimation of the total contribution of
background stemming from the background reactions and the empty target
(open crosses) as described in the text.

The percentage background contributions to σtot(γp → K0Σ+) stemming from

all four background reactions and the empty target are tabulated in Appendix

E. The empty target contributes about 1-2% to the total background. The total

percentage background contribution varies from about 32-47%. The individual

reactions γp → K0Λ, γn → K0Σ0, γN → ηN, and γN → 3π0N contribute



168

25-35%, 4-6%, 2-3%, and 1-2% to the total background, respectively.
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Figure A.20: The total cross section for γp → K0Σ+ after background
subtractions as a function of c.m. energy W . The uncertainties shown are
due only to counting statistics.

There are some published results (CB-ELSA/TAPS[52], SAPHIR[60], and

CLAS[58] Collaborations) with which our measurements can be compared. The

CB-ELSA/TAPS Collaboration made measurements of γp → K0Σ+ using a

liquid hydrogen target and identified events with the same decay chain as in

our analysis:

γp → K0Σ+ → (π0π0)(π0p) → 6γp. (A.4)
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On the other hand, the CLAS and SAPHIR Collaborations made measure-

ments of γp → K0Σ+ using a liquid hydrogen target but identifying the K0
S

by its K0
S → π+π− decay mode. For the decay of the Σ+, both decay modes,

Σ+ → pπ0 and Σ+ → nπ+ were analyzed. Thus their analysis were carried

out using two decay chains:

γp → K0Σ+ → (π+π−)(π0p),

γp → K0Σ+ → (π+π−)(π+n),
(A.5)

In addition, measurements of γp → K0Σ+ on a liquid deuterium target

were carried out by Shende (CB-ELSA/TAPS Collaboration)[59]. The reaction

chain considered was

γd → K0Σ+n → (π0π0)(π0pn) → 6γpn, (A.6)

in which the final state consists of six photons, a detected proton, and a

neutron.

Figure A.21 compares our results for σtot(γp → K0Σ+) with those of

previous experiments that used both liquid hydrogen and deuterium targets.

The previous experiments extended to higher incident photon energies than

our experiment. Thus, the plot has a range in the c.m. energy W from 1700

to 2200 MeV. Although the results of these experiments show disagreement

with each other, their general trends are similar. Prior measurements

obtained with a deuterium target are about 40% lower than those measured

with liquid hydrogen targets. Our results are in good agreement with the

CB-ELSA measurements obtained with a liquid hydrogen target, although

our measurements have slightly smaller values, but also smaller statistical

uncertainties.
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Figure A.21: The total cross section for γp → K0Σ+ measured after background
subtractions in this work (black circles) compared with results of prior

experiments. Measurements by the SAPHIR Collaboration[60] using a liquid
hydrogen (LH2) target are shown as pink stars, measurements by the CB-

ELSA Collaboration[52] using a LH2 target are shown as green triangles, and

measurements by Shende (CB-ELSA/TAPS Collaboration)[59] using a liquid
deuterium target are shown as blue squares.



APPENDIX B

Tables of dσ/dΩ and σtot for γp → K0Σ+

Eγ (MeV)
cos θCM

1050 1075 1100 1125

−0.9500 0.011 ± 0.007 0.019 ± 0.012 0.011 ± 0.006 0.013 ± 0.006

−0.7125 0.011 ± 0.004 0.014 ± 0.005 0.012 ± 0.004 0.016 ± 0.004

−0.4750 0.006 ± 0.002 0.009 ± 0.003 0.010 ± 0.003 0.013 ± 0.004

−0.2375 0.006 ± 0.003 0.009 ± 0.003 0.006 ± 0.004 0.023 ± 0.004

0.0000 0.010 ± 0.003 0.009 ± 0.002 0.009 ± 0.003 0.017 ± 0.004

+0.2375 0.016 ± 0.003 0.010 ± 0.002 0.009 ± 0.003 0.016 ± 0.003

+0.4750 0.013 ± 0.003 0.011 ± 0.003 0.017 ± 0.003 0.012 ± 0.003

+0.7125 0.012 ± 0.003 0.011 ± 0.003 0.011 ± 0.004 0.016 ± 0.004

+0.9500 0.011 ± 0.005 0.017 ± 0.006 0.017 ± 0.005 0.012 ± 0.011

Table B-1: dσ/dΩ for γp → K0Σ+.
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Eγ (MeV)
cos θCM

1150 1175 1200 1225

−0.9500 0.022 ± 0.009 0.029 ± 0.012 0.007 ± 0.006 0.006 ± 0.004

−0.7125 0.023 ± 0.012 0.023 ± 0.007 0.028 ± 0.011 0.019 ± 0.008

−0.4750 0.014 ± 0.005 0.018 ± 0.007 0.027 ± 0.010 0.027 ± 0.007

−0.2375 0.016 ± 0.005 0.023 ± 0.006 0.023 ± 0.006 0.018 ± 0.006

0.0000 0.019 ± 0.004 0.015 ± 0.003 0.015 ± 0.004 0.016 ± 0.005

+0.2375 0.012 ± 0.003 0.014 ± 0.004 0.018 ± 0.005 0.015 ± 0.004

+0.4750 0.019 ± 0.004 0.026 ± 0.004 0.017 ± 0.004 0.014 ± 0.004

+0.7125 0.016 ± 0.005 0.022 ± 0.005 0.019 ± 0.005 0.023 ± 0.006

+0.9500 0.023 ± 0.009 0.018 ± 0.009 0.026 ± 0.008 0.033 ± 0.009

Table B-1: Continued.
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Eγ (MeV)
cos θCM

1250 1275 1300 1325

−0.9500 0.021 ± 0.016 0.027 ± 0.011 0.017 ± 0.017 0.016 ± 0.011

−0.7125 0.014 ± 0.011 0.016 ± 0.006 0.017 ± 0.008 0.021 ± 0.012

−0.4750 0.018 ± 0.007 0.023 ± 0.005 0.025 ± 0.007 0.031 ± 0.010

−0.2375 0.033 ± 0.012 0.018 ± 0.005 0.026 ± 0.007 0.034 ± 0.009

0.0000 0.021 ± 0.005 0.022 ± 0.004 0.034 ± 0.006 0.039 ± 0.008

+0.2375 0.018 ± 0.005 0.026 ± 0.005 0.031 ± 0.006 0.036 ± 0.009

+0.4750 0.019 ± 0.005 0.031 ± 0.005 0.029 ± 0.006 0.045 ± 0.012

+0.7125 0.022 ± 0.008 0.033 ± 0.008 0.030 ± 0.005 0.030 ± 0.007

+0.9500 0.029 ± 0.011 0.043 ± 0.001 0.034 ± 0.009 0.021 ± 0.013

Table B-1: Continued.
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Eγ (MeV)
cos θCM

1350 1375

−0.9500 0.015 ± 0.012 0.022 ± 0.009

−0.7125 0.029 ± 0.019 0.019 ± 0.010

−0.4725 0.031 ± 0.010 0.027 ± 0.008

−0.2375 0.033 ± 0.025 0.031 ± 0.011

0.0000 0.029 ± 0.008 0.039 ± 0.009

+0.2375 0.039 ± 0.010 0.039 ± 0.010

+0.4750 0.042 ± 0.010 0.038 ± 0.007

+0.7125 0.031 ± 0.009 0.034 ± 0.007

+0.9500 0.031 ± 0.014 0.015 ± 0.010

Table B-1: Continued.
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W (MeV) σtot (µb)

1689.93 0.114 ± 0.013
1703.77 0.131 ± 0.016

1717.50 0.140 ± 0.015

1731.12 0.191 ± 0.018

1744.64 0.227 ± 0.024

1758.08 0.260 ± 0.027

1771.36 0.260 ± 0.029

1784.57 0.257 ± 0.027

1797.69 0.280 ± 0.037

1810.70 0.365 ± 0.031

1823.63 0.391 ± 0.036

1836.47 0.451 ± 0.048

1849.21 0.468 ± 0.058

1861.87 0.472 ± 0.047

Table B-2: Total cross section for γp → K0Σ+.



APPENDIX C

Tables of dσ/dΩ and σtot for γn → K0Λ

Eγ (MeV)
cos θCM

925 950 975 1000

−0.9500 0.052 ± 0.023 0.057 ± 0.022 0.020 ± 0.016 0.060 ± 0.035

−0.7125 0.044 ± 0.014 0.040 ± 0.011 0.064 ± 0.016 0.150 ± 0.019

−0.4750 0.054 ± 0.011 0.061 ± 0.012 0.048 ± 0.011 0.078 ± 0.019

−0.2375 0.034 ± 0.010 0.061 ± 0.012 0.070 ± 0.011 0.089 ± 0.016

0.0000 0.048 ± 0.010 0.040 ± 0.014 0.061 ± 0.017 0.089 ± 0.017

+0.2375 0.057 ± 0.018 0.059 ± 0.012 0.081 ± 0.016 0.067 ± 0.018

+0.4750 0.048 ± 0.016 0.091 ± 0.014 0.064 ± 0.022 0.147 ± 0.026

+0.7125 0.073 ± 0.020 0.062 ± 0.016 0.070 ± 0.002 0.108 ± 0.025

+0.9500 0.112 ± 0.031 0.005 ± 0.023 0.133 ± 0.076 0.057 ± 0.042

Table C-1: dσ/dΩ for γn → K0Λ.
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Eγ (MeV)
cos θCM

1025 1050 1075 1100

−0.9500 0.133 ± 0.039 0.139 ± 0.053 0.012 ± 0.064 0.108 ± 0.042

−0.7125 0.161 ± 0.037 0.207 ± 0.030 0.106 ± 0.024 0.144 ± 0.028

−0.4750 0.177 ± 0.035 0.173 ± 0.029 0.206 ± 0.026 0.107 ± 0.045

−0.2375 0.172 ± 0.036 0.127 ± 0.035 0.176 ± 0.027 0.192 ± 0.061

0.0000 0.153 ± 0.029 0.148 ± 0.023 0.213 ± 0.044 0.200 ± 0.038

+0.2375 0.112 ± 0.024 0.143 ± 0.027 0.024 ± 0.029 0.021 ± 0.039

+0.4750 0.096 ± 0.022 0.150 ± 0.032 0.153 ± 0.035 0.162 ± 0.043

+0.7125 0.129 ± 0.029 0.190 ± 0.035 0.099 ± 0.047 0.119 ± 0.077

+0.9500 0.019 ± 0.064 0.085 ± 0.043 0.135 ± 0.049 0.108 ± 0.035

Table C-1: Continued.



178

Eγ (MeV)
cos θCM

1125 1150 1175 1200

−0.9500 0.141 ± 0.046 0.157 ± 0.019 0.130 ± 0.051 0.151 ± 0.047

−0.7125 0.199 ± 0.033 0.157 ± 0.034 0.246 ± 0.042 0.193 ± 0.034

−0.4750 0.125 ± 0.040 0.172 ± 0.034 0.258 ± 0.032 0.206 ± 0.045

−0.2375 0.220 ± 0.032 0.248 ± 0.043 0.204 ± 0.065 0.214 ± 0.043

0.0000 0.225 ± 0.029 0.195 ± 0.031 0.238 ± 0.033 0.237 ± 0.038

+0.2375 0.163 ± 0.030 0.243 ± 0.033 0.183 ± 0.036 0.214 ± 0.055

+0.4750 0.163 ± 0.034 0.238 ± 0.039 0.142 ± 0.046 0.152 ± 0.042

+0.7125 0.113 ± 0.040 0.192 ± 0.039 0.153 ± 0.050 0.139 ± 0.067

+0.9500 0.061 ± 0.047 0.091 ± 0.054 0.011 ± 0.047 0.112 ± 0.045

Table C-1: Continued.
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Eγ (MeV)
cos θCM

1225 1250 1275 1300

−0.9500 0.010 ± 0.040 0.033 ± 0.015 0.146 ± 0.037 0.137 ± 0.055

−0.7125 0.216 ± 0.046 0.143 ± 0.038 0.189 ± 0.044 0.144 ± 0.048

−0.4750 0.218 ± 0.035 0.215 ± 0.042 0.200 ± 0.035 0.219 ± 0.046

−0.2375 0.253 ± 0.046 0.224 ± 0.049 0.236 ± 0.041 0.185 ± 0.055

0.0000 0.230 ± 0.049 0.066 ± 0.060 0.182 ± 0.039 0.186 ± 0.048

+0.2375 0.224 ± 0.046 0.151 ± 0.029 0.155 ± 0.035 0.116 ± 0.011

+0.4750 0.177 ± 0.064 0.139 ± 0.068 0.103 ± 0.033 0.186 ± 0.067

+0.7125 0.109 ± 0.039 0.179 ± 0.038 0.160 ± 0.068 0.177 ± 0.051

+0.9500 0.017 ± 0.056 0.120 ± 0.051 0.185 ± 0.066 0.032 ± 0.047

Table C-1: Continued.
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Eγ (MeV)
cos θCM

1325 1350 1375

−0.9500 0.103 ± 0.057 0.169 ± 0.053 0.112 ± 0.050

−0.7125 0.208 ± 0.048 0.238 ± 0.069 0.171 ± 0.063

−0.4750 0.234 ± 0.120 0.249 ± 0.077 0.218 ± 0.054

−0.2375 0.250 ± 0.054 0.274 ± 0.065 0.252 ± 0.044

0.0000 0.177 ± 0.084 0.216 ± 0.063 0.221 ± 0.044

+0.2375 0.163 ± 0.079 0.133 ± 0.073 0.227 ± 0.058

+0.4750 0.125 ± 0.077 0.086 ± 0.070 0.148 ± 0.100

+0.7125 0.137 ± 0.067 0.124 ± 0.038 0.114 ± 0.064

+0.9500 0.082 ± 0.085 0.069 ± 0.078 0.053 ± 0.054

Table C-1: Continued.
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W (MeV) σtot (µb)

1618.94 0.52 ± 0.05
1633.38 0.53 ± 0.04

1647.70 0.65 ± 0.07

1661.89 0.93 ± 0.08

1675.97 1.37 ± 0.11

1689.93 1.74 ± 0.12

1703.77 1.77 ± 0.13

1717.50 1.84 ± 0.17

1731.12 1.97 ± 0.14

1744.64 2.24 ± 0.15

1758.08 2.36 ± 0.17

1771.36 2.38 ± 0.20

1784.57 2.29 ± 0.19

1797.69 2.12 ± 0.19

1810.70 2.27 ± 0.20

1823.63 2.42 ± 0.28

1836.47 2.57 ± 0.35

1849.21 2.79 ± 0.32

1861.87 2.75 ± 0.32

Table C-2: Total cross section for γn → K0Λ.



APPENDIX D

Legendre fitting coefficients for γp → K0Σ+

Eγ (MeV)
An

1050 1075 1100 1125

A0 0.009 ± 0.001 0.010 ± 0.001 0.011 ± 0.001 0.015 ± 0.001

A1

A2

1150 1175 1200 1225

A0 0.017 ± 0.002 0.020 ± 0.002 0.021 ± 0.002 0.020 ± 0.002

A1 −0.000 ± 0.003 −0.000 ± 0.004 −0.003 ± 0.005 0.004 ± 0.005

A2 0.003 ± 0.003 0.005 ± 0.003 0.005 ± 0.004 0.006 ± 0.005

Table D-1: Legendre coefficients for γp → K0Σ+.
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Eγ (MeV)
An

1250 1275 1300 1325

A0 0.022 ± 0.003 0.029 ± 0.002 0.031 ± 0.003 0.036 ± 0.004

A1 0.002 ± 0.006 0.009 ± 0.004 0.009 ± 0.005 0.005 ± 0.006

A2 0.003 ± 0.007 0.005 ± 0.003 −0.004 ± 0.005 −0.012 ± 0.007

1350 1375

A0 0.037 ± 0.004 0.038 ± 0.004

A1 0.008 ± 0.008 0.005 ± 0.006

A2 −0.008 ± 0.008 −0.016 ± 0.008

Table D-1: Continued.



APPENDIX E

Legendre fitting coefficients for γn → K0Λ

Eγ (MeV)
An

925 950 975 1000

A0 0.042 ± 0.004 0.042 ± 0.003 0.052 ± 0.005 0.074 ± 0.006

A1

A2

1025 1050 1075 1100

A0 0.109 ± 0.009 0.138 ± 0.009 0.141 ± 0.010 0.146 ± 0.013

A1 −0.052 ± 0.015 −0.023 ± 0.018 −0.019 ± 0.019 0.005 ± 0.019

A2 −0.043 ± 0.018 0.004 ± 0.021 −0.099 ± 0.029 −0.058 ± 0.024

Table E-1: Legendre coefficients for γn → K0Λ.
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Eγ (MeV)
An

1125 1150 1175 1200

A0 0.157 ± 0.011 0.178 ± 0.012 0.188 ± 0.014 0.189 ± 0.016

A1 −0.041 ± 0.021 0.043 ± 0.012 −0.079 ± 0.025 −0.031 ± 0.026

A2 −0.069 ± 0.027 −0.122 ± 0.025 −0.097 ± 0.030 −0.069 ± 0.031

1225 1250 1275 1300

A0 0.182 ± 0.015 0.169 ± 0.015 0.181 ± 0.016 0.193 ± 0.022

A1 −0.176 ± 0.027 −0.088 ± 0.027 −0.085 ± 0.037 −0.103 ± 0.037

A2 −0.030 ± 0.022 0.012 ± 0.024 −0.080 ± 0.030 −0.025 ± 0.034

1325 1350 1375

A0 0.205 ± 0.028 0.223 ± 0.026 0.218 ± 0.025

A1 −0.104 ± 0.056 −0.079 ± 0.049 −0.139 ± 0.045

A2 −0.062 ± 0.047 −0.107 ± 0.043 −0.053 ± 0.043

Table E-1: Continued.



APPENDIX F

Background contributions to σtot(γp → K0Σ+)

W (MeV) Contribution (%)

1689.93 39.3 ± 5.1
1703.77 35.2 ± 4.9

1717.50 32.9 ± 4.1

1731.12 32.9 ± 3.8

1744.64 35.1 ± 4.3

1758.08 32.4 ± 3.8

1771.36 34.2 ± 5.4

1784.57 40.6 ± 4.5

1797.69 33.3 ± 4.8

1810.70 36.3 ± 3.4

1823.63 43.9 ± 4.2

1836.47 29.4 ± 4.4

1849.21 33.7 ± 5.1

1861.87 37.5 ± 4.2

Table F-1: Total contribution to σtot(γp → K0Σ+) from different background
reactions and the empty target.
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APPENDIX G

Background contributions to σtot(γn → K0Λ)

W (MeV) Contributions (%)

1618.94 7.5 ± 0.9
1633.38 6.3 ± 0.8

1647.70 5.5 ± 0.9

1661.89 5.2 ± 0.7

1675.97 7.2 ± 0.8

1689.93 7.1 ± 0.5

1703.77 10.5 ± 0.9

1717.50 11.4 ± 1.3

1731.12 14.9 ± 1.2

1744.64 13.9 ± 1.1

1758.08 14.4 ± 1.3

1771.36 13.4 ± 1.4

1784.57 13.3 ± 1.4

1797.69 13.6 ± 1.4

1810.70 15.9 ± 1.6

1823.63 16.9 ± 2.2

1836.47 16.3 ± 2.8

1849.21 15.6 ± 3.7

1861.87 17.6 ± 2.3

Table G-1: Total contribution to σtot(γn → K0Λ) from different background
reactions and the empty target.
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