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Abstract

Nucleon polarisabilities are fundamental structure observables, like the nucleon mass

or charge, which are sensitive to the internal quark dynamics of the nucleon. Polarised

Compton scattering off the proton can be used to study the polarisabilities of the

proton, thus probing the internal structure of the proton. Spin dependent terms of

the nucleon polarisabilties quantify the response of the proton’s spin to an applied

electromagnetic field. The leading order polarisabilities, denoted by γ̄E1E1, γ̄M1M1,

γ̄E1M2, and γ̄M1E2, quantify the spin response to electric and magnetic dipole and

quadrupole interactions.

Single polarization observables for Compton scattering, which are sensitive to

these polarisabilities, were measured along with single polarization observables π0

photoproduction within the ∆(1232) resonance region. Σ3 is a single polarisation

observable which connects the polarised and unpolarised cross sections for linearly

polarised photons incident upon unpolarised protons. Within this work, the execution

and analysis of an experiment completed at the MAMI tagged photon facility in

Mainz, Germany, is presented. Σ3 was measured for π0 photoproduction for incident

photon energies of 210 MeV up to 307 MeV (just below two-pion threshold). Σ3 was

measured for Compton scattering for incident photon energies of 267 MeV to 307

MeV.

A new extraction of the leading order spin polarisabilties of the proton is presented.

This extraction used Σ3 results for Compton scattering from this work, and Σ2x results

from previous measurements at the MAMI tagged photon facility. Through this anal-

ysis, the spin polarisabilities of the proton were determined to be γ̄E1E1 = -5.0 ± 1.5,

γ̄M1M1 = 3.13 ± 0.88, γ̄E1M2 = 1.7 ± 1.7, and γ̄M1E2 = 1.26 ± 0.43, in units of 10−4 fm4.

These experimentally determined spin polarisabilities are in good agreement with

dispersion theory, K-matrix theory, and Heavy Baryon chiral perturbation theory

calculations.
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Chapter 1

Introduction

Quantum electrodynamics (QED) is a quantum field theory describing the electomag-

netic (EM) force, where the EM force is mediated by the photon. Electromagnetic

interactions with charged point-like particles are well described by QED. However,

when describing the interactions of non point-like particles, like the proton, a model

of the internal structure is required to describe the charge and magnetic distributions

being probed by the QED photon. Quantum chromodynamics (QCD) is a quantum

field theory describing the strong force, which is mediated by gluons. At scales close

to a femtometre, the strong force is responsible for binding quarks together to form

hadronic particles. A residual strong force remains at slightly larger scales, up to

about 3 fm, which is responsible for binding protons and neutrons together inside

the nucleus. While the Lagrangian for this QCD interaction is well known at very

high energies, it quickly becomes difficult to solve as the energy scale decreases (cor-

responding to distance scale increases). For this reason, structure observables of the

hadron (e.g. size, shape, polarisability) cannot be obtained from QCD directly. How-

ever, QCD inspired models of the effective quark interactions have been developed

and a common goal of modern hadronic structure studies is to make connections be-

tween the results of these QCD-inspired models and experimental results. This thesis

represents one such venture to provide measurement of some unique nucleon struc-

ture properties that are hoped to provide particular sensitivity to disentangle model

properties, and models themselves, in pursuit of identifying the best QCD-inspired

models.

QCD has two main properties: confinement and asymptotic freedom. Confinement

requires that a force exists between quarks which increases with distance. Because

of this increasing force, as the two quarks separate, it becomes more energetically

favourable to create a new quark/anti-quark pair before the quarks separate and be-

come unbound from each other. The second property of QCD, asymptotic freedom,

1
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requires that quarks interact weakly as energy increases (or distance decreases). QCD

is therefore dominated by confinement at low-energies and dominated by asymptotic

freedom at high-energies. Pertubative QCD provides a limited but powerful approach

to produce testable predictions within the framework of QCD. By restricting oneself

to the region of QCD dominated by asymptotic freedom, namely high-energy inter-

actions, the strong force coupling constant, αs, is small. In this region, many terms

can be simplified allowing for pertubative QCD predictions. However, as the energy

scale decreases, or distance scale increases, the coupling constant becomes so large

that pertubative QCD is no longer useful. For this reason, structure observables of

hadrons (eg. size, shape) cannot be directly obtained through pertubative QCD.

Non-pertubative approaches to QCD exists, most notably lattice QCD. Lattice QCD

is a lattice gauge theory, which means spacetime is discretized into a lattice of points.

Quark fields are defined at the lattice points and gluon fields are defined on the links

between lattice points. As the lattice size grows to infinity, and the lattice spacing,

a, goes to zero, a complete description of spacetime is recovered. However, computa-

tionally this is difficult to realise and results from lattice QCD are often derived from

an extrapolation to a = 0.

This thesis focuses on structure observables for the proton called polarizabilities,

which are accessible through the nuclear Compton scattering process. Nuclear Comp-

ton scattering is a two-body elastic scattering process of a photon off the nucleus. In

the case of nuclear Compton scattering with hydrogen, 1H, the photon scatters off an

individual proton,

γ + p → γ′ + p′. (1.1)

A proton is a composite system made of three valence quarks (uud). At photon en-

ergies below ≈ 100 MeV, scattering cross sections for photons incident on the proton

depend on the protons charge, mass, and magnetic moment as well as on two fun-

damental structure constants - the electric and magnetic scalar (spin-independent)

polarizabilities, αE1 and βM1 respectively. These scalar polarizabilities quantify the

response of the protons structure to an electric or magnetic field and can be thought

of as the electric “stretchability” and the magnetic “align-ability” of the proton. At

incident photon energies above 100 MeV, higher order terms must be included in the

calculation of the scattering cross sections (thus creating a dependence on structure
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quantities beyond those listed previously). In particular, the four spin polarizabili-

ties (γE1E1, γM1M1, γE1M2, and γM1E2) are the next leading order terms. While the

spin-dependent polarizabilities have no classical analog, they are often analogized to

the “stiffness” of the nucleon against electromagnetic deformations. These polaris-

abilities describe the proton’s internal response to electromagnetic interactions. As

stated earlier, a primary goal of modern hadronic structure studies is to make con-

nections between the results of QCD-inspired models and lattice QCD calculations

to the results of experiment- and nuclear Compton scattering provides a powerful in-

teraction with which QCD-inspired structure models can be tested and constrained.

Nucleon polarizabilities, fundamental structure observables sensitive to the internal

quark dynamics of the nucleon, provide an ideal testing ground for the validity of

QCD-inspired structure models.

Although the leading order scalar polarisabilities, αE1 and βM1, have been studied

for the proton and the neutron, very few experiments have attempted to study the

spin-dependent polarizabilities (γE1E1, γM1M1, γE1M2, and γM1E2), and no experiment

to date has separated all four leading spin polarisability terms. The scattering be-

haviour of Compton scattering is sensitive to the polarisabilities, and therefore can

be used to access the nucleon polarisabilities. Although experimental and theoretical

interest in Compton scattering has existed for decades, modern experiments using po-

larised photon beams and targets provide access to new internal structure observables.

A series of polarised Compton scattering experiments have been proposed to run at

the MAMI tagged photon facility in Mainz, Germany. These experiments would each

measure a single or double polarisation asymmetry (Σ3, Σ2x, and Σ2z) for Compton

scattering off the proton. Each asymmetry quantifies a change in the scattering be-

haviour, or cross section, due to a change in polarisation, and each exhibits a unique

sensitivity to the individual spin polarisabilities. A global study of the asymmetries

will allow for the first extraction of the four leading order spin polarisabilities of the

proton for the first time ever. A measurement of the proton spin polarisabilities is

meaningful for two main reasons, (1) the spin polarisabilities are fundamental struc-

ture constants of the proton, just like the radius, charge, mass and magnetic moment,

which have not been measured before and (2) the spin polarisabilities are an ideal

test for exploring the validity of QCD-inspired structure models.
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A detailed overview of the nucleon polarisabilities from the viewpoint of the full,

formal theoretical physics standpoint will be presented in Chapter 2. This theoreti-

cal overview will detail the connection between nucleon polarisabilities and Compton

scattering, a discussion of sum rules related to the polarisabilities, and finally the

relation between measurable asymmetries and the polarisabilities. In Chapter 3, a

review of previous experimental and theoretical studies specifically for the proton

polarisabilities is presented. Chapters 4 through 6 outline the execution and analysis

of my experiment at the MAMI tagged photon facility to measure the Σ3 asymmetry,

a single polarisation observable, which connects the polarised and unpolarised cross

sections for linearly polarised photons incident upon unpolarised protons. My de-

tailed measurements of Σ3 within the ∆(1232) resonance region will be presented for

both Compton scattering (the main thesis focus) and π0 photoproduction (a reaction

measured simultaneously with the Compton scattering reaction, providing important

experimental systematic checks as well as useful complementary data). Results for

the Σ3 asymmetry will be compared to previous measurements in Chapter 6. Finally,

a preliminary extraction of the proton’s spin polarisabilities is provided in Chapter 7.

This final extraction combines Σ3 results derived from this work and a previous mea-

surement from our MAMI collaboration by Martel [1] of Σ2x for Compton scattering,

a double polarisation observable, which connects the polarised and unpolarised cross

sections for circularly polarised photons incident upon a transversly polarised proton

target. The analysis by Martel was the first measurement of a double polarisation

observable for Compton scattering, and allowed for a very preliminary extraction of

γE1E1 of (−4.5 ± 1.5) × 10−4 fm4. A more recent analysis by Martel [2] combined

earlier Σ3 results from the LEGS collaboration [3][4] with Σ2x results from Martel to

determine a preliminary extraction of the proton’s spin polarisabilities. In Chapter 7,

a comparison of two spin polarisability extractions is given as the highlight result of

this thesis: the previous extraction combining the earlier LEGS and Martel measure-

ments is compared to a new extraction obtained by combining Martel’s Σ2x results

with this work’s Σ3 measurements.



Chapter 2

Theoretical Review

2.1 Nucleon Compton scattering

Nuclear Compton scattering, specifically Compton scattering from protons and neu-

trons, provides important insight into the internal structure of nucleons. Nuclear

Compton scattering experiments can probe the internal structure of nucleons and act

as a test of quantum field theories describing the electromagnetic properties of the nu-

cleus, and their constituent nucleons. Although experimental and theoretical interest

in Compton scattering has existed for decades, modern experiments using polarised

photon beams and targets provide access to new internal structure observables.

2.1.1 Compton scattering amplitudes

The scattering amplitude for nucleon Compton scattering,

γ +N → γ′ +N ′, (2.1)

can be expanded in terms of the energy of the incident photon, ω. To first order in the

incident photon energy, ω1, the scattering amplitude is consistent with scattering from

a point-like particle. However, at higher orders (ω2 and above), degrees of freedom

related to the internal structure and spin of the nucleus will enter the scattering

amplitudes.

2.1.1.1 First order expansion: Born terms

The zeroth and first order terms, known together as the Born terms, depend solely

on the nucleon’s charge, mass, and magnetic moment. Following the derivation given

by Levchuk and L’vov [5], the zeroth term of the effective Hamiltonian has the form,

H
(0)
eff = eZφ+

π2

2M
, (2.2)

5
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where eZ is the nucleon’s electric charge, φ is the scalar potential, M is the nucleon’s

mass, and where π is a covariant momentum defined as,

π = p− eZA, (2.3)

where p is the momentum and A is the external vector potential. At first order, the

effective Hamiltonian is also dependent on the anomalous magnetic moment, κ, and

has the form,

H
(1)
eff = −

e(Z + κ)

2M
σ ·H−

e(Z + 2κ)

8M2
σ · (E× π − π × E), (2.4)

where E and H are the electric and magnetic field, respectively, and σ is the proton’s

Pauli spin matrices. In the case of Compton scattering off a proton, the electric

charge is simply equal to e and the Born terms of the Compton scattering amplitude

can be written,

H
(0)
eff = eφ+

(p− eA)2

2M
,

H
(1)
eff = −

e(1 + κ)

2M
σ ·H−

e(1 + 2κ)

8M2
σ · (E× π − π × E). (2.5)

2.1.1.2 Second order expansion: Scalar Polarisabilities

The first order effective Hamiltonian, given for Compton scattering off the proton in

Equation (2.5), is valid as ω → 0. However, as ω increases, the nucleon’s internal

degrees of freedom must be included in the scattering amplitudes. At second order,

the effective Hamiltonian (given in the Heaviside unit system) has the form,

H
(2)
eff = −

1

2

[

4παE1E
2 + 4πβM1H

2
]

, (2.6)

with two new terms, αE1(ω) and βM1(ω), which are the electric and magnetic scalar

dipole polarisabilties respectively [6]. These scalar dipole polarisabilities, functions

of ω, describe the response of the nucleon’s structure to an electric or magnetic field.

They can be understood by thinking of the nucleon as a composite system formed

by its quark core surrounded by a charged virtual pion cloud. This pion charge
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cloud, often referred to as the sea quarks, arises due to the nucleon’s emission and

subsequent absorption of virtual pions. Similar to an atomic polarisability, where an

atom within an electric field acquires a dipole moment associated with an electron

cloud surrounding the nucleus, the nucleon itself acquires an electric dipole moment

asociated with its pion charge cloud. This induced electric dipole moment, p, is

proportional to the electric field, E, through the electric dipole polarisability, αE1,

p = 4παE1E. (2.7)

Similarly, a nucleon in a magnetic field will obtain a magnetic dipole moment, m,

proportional to the magnetic field, B, through the magnetic dipole polarisability, βM1,

m = 4πβM1B. (2.8)

αE1 is often referred to as the “electric stretchability” which can be related to a

stretching of the pion charge cloud within the electric field. There are two competing

processes which contribute to the magnetic scalar polarisability. The core quarks

exhibit paramagnetism while the pion charge cloud exhibits both paramagnetism and

diamagnetism. The paramagnetism is, however, the stronger of the two and the

overall dipole moments align with the magnetic field. For this reason, βM1 is often

referred to as the “magnetic align-ability”. While αE1 and βM1 are functions of ω, a

set of static scalar polarisabilities can be determined as ω → 0. These static scalar

polarisabilities are denoted by ᾱE1 and β̄M1.

Higher order scalar polarisabilites, related to electric or magnetic quadrupole mo-

ments and higher, can be defined in a similar fashion. However, these terms do not

appear in the scattering amplitudes below fourth order. The quadrupole terms for the

electric and magnetic scalar polarisabilities are denoted by αE2 and βM2. Similarly,

the quadrupole terms of the static scalar polarisabilities are denoted by ᾱE2 and β̄M2.

2.1.1.3 Third order expansion: Spin Polarisabilties

Degrees of freedom related to the nucleon’s spin appear in the third order (ω3) effective

Hamiltonian, given by,

H
(3)
eff = −

1

2

[

4πγE1E1σ · (E× Ė) + 4πγM1M1σ · (H× Ḣ)
]

+ 4π [γE1M2HijσiEj − γM1E2EijσiHj] , (2.9)
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where Ė and Eij are partial derivatives with respect to time and space, defined re-

spectively as Ė = ∂tE and Eij = 1
2
(∇iEj + ∇jEi). Ḣ and Hij are defined in a

similar fashion. The new terms appearing in the third order effective Hamiltonian -

γE1E1, γM1M1, γE1M2 and γM1E2 - are the leading order spin polarisabilities and they

quantify the spin dependent repsonse of the proton to an electromagnetic interaction.

Although it is difficult to establish a classical analog for the spin polarisabilities, they

can be understood as an induced precession of the nucleon spin. Using this under-

standing, the frequency of this precession is proportional to the magnitude of the

spin polarisabilities and the direction of precession is connected to the sign. Each

polarisability quantifies a unique spin response term and the nomenclature of the

spin polarisability terms can be related to the multipole fields associated with the

electromagnetic interaction. In terms of the Compton scattering interaction, each

term corresponds to the specific combination of total angular momenta and parities

of the incident and scattered photons. If the total angular momentum of a photon

is denoted by L, an electric or magnetic multipole field is denoted by EL or ML

respectively. The parity is then given by:

πL = (−1)L, (2.10)

for an electric multipole field, and:

πL = (−1)L+1, (2.11)

for a magnetic multipole field. The γM1E2 polarisability, for example, can thus be

described in terms of the incident and scattered photon properties: the incident and

scattered photons carry total angular momentum and parity given by 2+ and 1+

respectively. Due to parity and angular momentum conservation rules, the photon

properties place corresponding restrictions on the allowed initial and final states of

the proton. To form a complete picture, we can again relate this to the γM1E2 spin

polarisability. Since the Compton scattering interaction involves a 1
2

+
proton in its

initial and final states, it is straightforward to show that one possible intermediate

state could be the excitation of the proton to the 3
2

+
state (the excitation of a ∆+)

through the absorption of an E2 photon. This can be followed by the emission of an

M1 photon and de-excitation of the proton back to the 1
2

+
state:

γ(2+) + p(1
2

+
) → ∆+(3

2

+
) → γ(1+) + p(1

2

+
). (2.12)
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Higher order spin polarisabilities, beyond the dipole-dipole (γE1E1, γM1M1) and dipole-

quadrupole (γE1M2, γM1E2) terms, appear in the higher order effective Hamiltonians.

Similar to the scalar polarisabilities, the spin polarisabilities are also functions

of ω and a set of static spin polarisabilities can be determined as ω → 0 where the

leading order terms are denoted by γ̄E1E1, γ̄M1M1, γ̄E1M2, and γ̄M1E2. Two linear

combinations of the static spin polarisabilities, γ̄E1E1, γ̄M1M1, γ̄E1M2, and γ̄M1E2, can

be defined. These are known as the forward spin polarisability, given by,

γ0 = −γ̄E1E1 − γ̄M1M1 − γ̄E1M2 − γ̄M1E2, (2.13)

and the backward spin polarisability, given by,

γπ = −γ̄E1E1 + γ̄M1M1 − γ̄E1M2 + γ̄M1E2. (2.14)

The forward and backward polarisabilities appear directly in the Compton scattering

cross section at θγ′ = 0◦ or 180◦ respectively. For example, the differential cross

section for Compton scattering off the proton at forward angles is given in the lab

frame by [7],

(

dσ

dΩ

)

(θ=0)

=

[

e2

4πM
− ω2

(

ᾱE1 + β̄M1

)

]2

+
e4κ4ω2

64π2M3
−

e2ω4

2πM

−
e2ω4

24πM

(

12ᾱEν + 12β̄Mν + ᾱE2 + β̄M2

)

−
e4κ2ω4

4πM
γ0 +O(ω6), (2.15)

where γ0 appears directly in the last term of the cross section equation.

In equation 2.15, additional terms appear which are related to expansions of the

scattering amplitude beyond third order. The Compton scattering amplitude can

be extended to even higher orders in ω, resulting in additional terms in the effective

Hamiltonian. A fourth order expansion is given by Babusci, Giordano, L’vov, Matone,

and Nathan [7],

H
(4)
eff = −

1

2

[

4παEνĖ
2
+ 4πβMνḢ

2
]

−
1

12

[

4παE2E
2
ij + 4πβM2H

2
ij

]

. (2.16)

As discussed previously, ᾱE2 and β̄M2 are the quadrupole terms of the electric and

magnetic scalar polarisabilities. Two additional terms, ᾱEν and β̄Mν , known as the

dispersion polarisabilities also appear. These dispersion polarisabilities, which ap-

peared in equation 2.15, can be thought of as correction factors to the scalar dipole

polarisabilities, related to the ω-dependence of the dipole polarisabilties [8].
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2.1.2 Low-energy expansion

The low-energy expansion, developed by Petrun’kin [9][10], calculated the Compton

scattering amplitude to order ω2. This expansion gives an expression for the differ-

ential cross section, given in Gaussian units, as,
(

dσ

dΩ

)

=

(

dσ

dΩ

)

Born

+

(

dσ

dΩ

)

NB

where,

(

dσ

dΩ

)

NB

= −ωω′

(

ω′

ω

)2
e2

M

[

ᾱE1 + β̄M1

2
(1 + z)2 +

ᾱE1 − β̄M1

2
(1− z)2

]

, (2.17)

where z = cos θγ′ and ω′ is the energy of the scattered photon, given by,

ω′ =
ω

1 + (ω/M)(1 + z)
(2.18)

The Born term, as described in Section 2.1.1.1, describes Compton scattering off a

point-like particle. The non-Born (NB) term includes the structure related terms αE1

and βM1. Since the Petrun’kin low-energy expansion only includes up to order ω2,

the spin polarisabilties do not appear in equation (2.17). The low-energy expansion

was further developed by Guiasu, Pomponiu and Radescu to include terms up to the

fourth order [11].

2.1.3 Dispersion relations at fixed-t

An expansion of the Compton scattering amplitude in terms of ω provides powerful in-

sight into the scattering dependencies. However, as ω increases, the low-energy expan-

sions can not be applied. Dispersion relations (DRs), which are partially constrained

by experimental data, can provide a more powerful approach to study the Compton

scattering amplitudes in these higher energy regions (eg. ∆-resonance region). Figure

2.1 shows the comparison of fixed-t dispersion relations to the low-energy expansion

(LEX) and scattering from a point-like proton (Born terms). Above ≈ 20 MeV, the

Born terms no longer agree with LEX and DR theory curves. LEX and DRs begin

to diverge at ω ≈ 100 MeV. A comparison of DRs to low energy Compton scat-

tering experiments shows that data were in agreement with DRs (not LEX) above

ω ≈ 100 MeV, showing the importance of theories beyond the low-energy expansion.
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The T-matrix for the Compton scattering amplitude is expressed in the lab frame as,

N(t)Tfi =

[(

1−
t

4M2

)

(−A1 − A3)−
ν2

M2
A5 − A6

]

2mωω′e′∗ · e

+

[(

1−
t

4M2

)

(A1 − A3) +
ν2

M2
A5 − A6

]

2mωω′h′∗ · h

+

[

A2 +

(

1−
ω′

M

)

A4 +
ν

M
A5 + A6

]

iω2ω′σ · k̂h′∗ · e

−
[

A2 −
(

1 +
ω

M

)

A4 −
ν

M
A5 − A6

]

iωω′2σ · k̂′h′∗ · e

+

[

A2 +

(

1 +
ω′

M

)

A4 +
ν

M
A5 − A6

]

iω2ω′σ · k̂e′∗ · h

−
[

A2 −
(

1−
ω

M

)

A4 −
ν

M
A5 + A6

]

iωω′2σ · k̂′e′∗ · h

+
[

A5 − A6

]

2iνωω′σ · h′∗ × h

−
[

A5 + A6

]

2iνωω′σ · e′∗ × e (2.23)

where e and e′ are the polarization vectors of the incident and scattered photons, h

and h′ are given by,

h = k̂× e, h′ = k̂
′
× e′, (2.24)

and N(t) is a function of the Mandelstam variable, t, given by,

N(t) =

√

1−
t

4M2
. (2.25)

The scattering amplitudes can be seperated into Born and non-Born terms, given by,

Ai(ν, t) = ABorn
i (ν, t) + ANB

i (ν, t). (2.26)

Dispersion relations have been used to study the scattering amplitudes, for example,

see Pasquini, Drechsel, and Vanderhaeghen [14][15]. The real part of the scattering

amplitudes, ReAi(ν,t), can be related to their imaginary parts through dispersion

relations at fixed-t:

ReAi(ν, t) = ABorn
i (ν, t) +

2

π
P

∫ ∞

νth

ImsAi(ν
′, t)

ν ′ 2 − ν 2
dν ′, (2.27)

where P denotes the Cauchy principal value and ImsAi are discontinuities in the s-

channel of the Compton scattering process. In nuclear Compton scattering, s-channel



13

processes require that the photon and nucleon join to form an intermediate state. The

integrand is integrated from the pion photoproduction threshold, νthr, where

νthr = mπ +
2m2

π + t

4M
. (2.28)

As ν goes to ∞, the integral term of the dispersion relation does not converge for

scattering amplitudes A1 and A2. To ensure that all terms converge, dispersion

relations are calculated at fixed-t, subtracting the case at ν = 0. In this case, the

subtracted dispersion relations are given by,

ReAi(ν, t) = ABorn
i (ν, t)+

[

Ai(0, t)− ABorn
i (0, t)

]

+
2

π
ν2P

∫ ∞

νth

ImsAi(ν
′, t)

ν ′(ν ′ 2 − ν 2)
dν ′. (2.29)

This process, of subtracting the case at ν = 0, results in a class of dispersion relations

known as once-subtracted fixed-t dispersion relations. Equation (2.26) can be re-

arranged to isolate the non-Born scattering amplitudes,

ANB
i (ν, t) = Ai(ν, t)− ABorn

i (ν, t), (2.30)

and a set of low-energy constants can be defined as,

ai = ANB
i (0, 0), ai,t =

(

∂ANB
i

∂t

)

ν=t=0

. (2.31)

The scalar and spin polarisabilities can be directly connected to these low-energy

constants allowing the polarisabilities to be expressed in terms of ai and ai,t. The

leading order scaler and spin polarisabilities (these are the polarisabilities which ap-

pear in the second and third order effective Hamiltonian for Compton scattering),

can be expressed in terms of the low-energy constants, ai. These are shown in the left

column of equation (2.32). It is also possible to express higher order polarisabilities

in terms of the low-energy constants. The next to leading order polarisabilities, can

be expressed in terms of the low-energy constants, ai,t. These are shown in the right

column of equation (2.32).
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ᾱE1 = −
1

4π
(a1 + a3 + a6),

β̄M1 =
1

4π
(a1 − a3 − a6),

γ̄E1E1 =
1

8πM
(a2 − a4 + 2a5 + a6),

γ̄M1M1 =
−1

8πM
(a2 + a4 + 2a5 − a6),

γ̄E1M2 =
1

8πM
(a2 − a4 − a6),

γ̄M1E2 =
−1

8πM
(a2 + a4 + a6),

ᾱE2 = −
3

π
(a1,t + a3,t + a6,t),

β̄M2 =
3

π
(a1,t − a3,t − a6,t),

γ̄E2E2 =
1

24πM
(a2,t − a4,t + 3a5,t + 2a6,t),

γ̄M2M2 =
−1

24πM
(a2,t + a4,t + 3a5,t − 2a6,t),

γ̄E2M3 =
1

12πM
(a2,t − a4,t − a6),

γ̄M2E3 =
−1

12πM
(a2,t + a4,t + a6,t). (2.32)

The forward and backward polarisabilities, described in equations (2.13) and (2.14),

can also be expressed in terms of the low-energy constants, ai,

γ0 = −γ̄E1E1 − γ̄M1M1 − γ̄E1M2 − γ̄M1E2 =
1

2πM
a4,

γπ = −γ̄E1E1 + γ̄M1M1 − γ̄E1M2 + γ̄M1E2 = −
1

2πM
(a2 + a5). (2.33)

Similarly, the sum of the scalar dipole polarisabilities is given by,

ᾱE1 + β̄M1 = −
1

2π
(a3 + a6), (2.34)

and the difference of the scalar dipole polarisabilities is given by,

ᾱE1 − β̄M1 = −
1

2π
a1. (2.35)
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2.2 Sum Rules

Four quantities were described in equations (2.33), (2.34) and (2.35): (1) ᾱE1 + β̄M1

and (2) ᾱE1 - β̄M1, the sum and difference between the scalar dipole polarisabilities

respectively, and (3) γ0 and (4) γπ, the forward and backward polarisability respec-

tively. A set of sum rules relate these quantities to the total photoabsorption cross

section.

2.2.1 Baldin sum rule

The sum of the static (ω = 0) dipole scalar polarisabilities, denoted by ᾱE1 and β̄M1,

can be constrained by the Baldin sum rule [16], given by,

ᾱE1 + β̄M1 =
1

2π2

∫ ∞

ωth

σtot(ω)

ω 2
dω, (2.36)

where σtot(ω) is the total cross section. The lower limit of the integrand is ωth, the

threshold energy for photon-nucleon interactions. When considering the contribution

from meson photoproduction to the total cross section (ex. γN→ πN), the threshold

energy corresponds to the minimum energy required to produce a pion, the lightest

meson, which is ωth ≈ 140 MeV. There are, however, contibutions to the total cross

section from electromagnetic interactions (ex. Compton scattering or pair produc-

tion) with thresholds much lower than 140 MeV. Compared to the strong interaction

of meson photoproduction, electromagnetic interactions will have very small cross sec-

tions. This is due to the relatively small EM coupling constant (αe ≈ 1/137) which

appears in the scattering amplitude of EM interactions. Considering only strong in-

teractions in the Baldin sum rule (ωth ≈ 140 MeV), neglecting the contribution to

the total cross section from electromagnetic interactions, only results in an error on

the order of 1/137 ≈ 1%.

Physics related to the ∆-resonance region (single pion photoproduction) will dom-

inate the integrand for two main reasons: (1) the integrand in equation (2.36) is

weighted by ω2, making the contribution from lower energies dominant, and (2)

the single pion photoproduction cross section is the largest contribution to the total

photoabsorption cross section.
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2.2.2 BEFT sum rule

The difference between the static dipole scalar polarisabilities can be constrained

by the BEFT sum rule. First developed by Bernabeu, Ericson, Ferro Fontan, and

Tarrach [17], the BEFT sum rule is given by,

ᾱE1 − β̄M1 = (ᾱE1 − β̄M1)s + (ᾱE1 − β̄M1)t, (2.37)

where the s-channel contribution is given by,

(

ᾱE1 − β̄M1

)

s
=

1

2π2

∫ ∞

ωth

(

1 +
2ω

M

)
1

2 σtot(ω)P − σtot(ω)NP

ω 2
dω, (2.38)

where σtot(ω)P and σtot(ω)NP are the total photoabsorption cross sections for inter-

actions where there is a parity change between intermediate state and nucleon, and

where there is no parity change, respectively. Recalling equations (2.10) and (2.11),

the parity of an electric (EL) or magnetic (ML) multipole were given as (−1)L and

(−1)L+1 respectively. Consider a photon (EL or ML) incident upon a proton with

Jπ = 1
2

+
. Conservation of parity requires a parity change in the intermediate state

for multipoles E1, M2, E3, etc. Similarly, conservation of parity requires no parity

change in the intermediate state for multipoles M1, E2, M3, etc.

The t-channel contribution is given by,

(

ᾱE1 − β̄M1

)

t
=

1

16π2

∫ ∞

4m2
π

(

16

4M2 − t

)(

t− 4m2
π

t

)
1

2

[

f 0
+(t)F

0∗
0 (t)−

(

M2 t

4

)(

t

4
−m2

π

)

f 2
+(t)F

2∗
0 (t) + ...

]

, (2.39)

where fJ
+(t) and F J

0 (t) are the partial wave helicity amplitudes of NN̄ → ππ and

ππ → γγ processes. An evaluation by Schumacher [18] gives a rather simple evalua-

tion assuming the dominance of the S-wave σ-meson contribution. In this case, the

t-channel contribution is approximated as,

(

ᾱE1 − β̄M1

)

t
=

gσNNFσγγ

2m2
σ

, (2.40)



17

where gσNN is the σ-nucleon coupling constant, Fσγγ is the two-photon σ decay am-

plitude and mσ is the mass of the σ-meson.

2.2.3 GDH γ0 sum rule

A sum rule can be determined for the forward spin polarisability [19], given by,

γ0 = −
1

4π2

∫ ∞

ωth

σ3/2(ω)− σ1/2(ω)

ω3
dω, (2.41)

where σn(ω) is the total photoabsorption cross section for circularly polarised photons

and longitudinally polarised protons. The cases n=3/2 and n=1/2 are determined

from photoabsorption where the helicity of the photon beam and polarisation of the

proton target are parallel and anti-parallel respectively. A similar relation, known

as the Gerasimov-Drell-Hearn (GDH) sum rule [20][21], relates the polarised total

photoabsorption cross sections to the static structure properties of the nucleon which

appear in the Born terms of the Compton scattering amplitude. This relation is given

by,

αeκ
2

2M2
=

1

4π2

∫ ∞

ωth

σ3/2(ω)− σ1/2(ω)

ω
dω, (2.42)

where αe is the electromagnetic coupling constant and, as before, M and κ are the

nucleon’s mass and anomalous magnetic moment respectively.

2.2.4 LN γπ sum rule

A sum rule for the backward spin polarisability, γπ, has been defined by L’vov and

Nathan.

γπ = γs
π + γt

π, (2.43)

Similar to the GDH γ0 sum rule, the LN sum rule relates the backward polarisabil-

ity to the total photoabsorption cross section for circularly polarised photons and

longitudinally polarised protons. The s-channel contribution is given by,

γs
π =

1

4π2

∫ ∞

ωth

(

1 +
ω

M

)

(

1 +
2ω

M

)
1

2 ∑

n

Pn

σn
3/2(ω)− σn

1/2(ω)

ω3
dω, (2.44)
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where Pn is +1 for cases were there is no parity change in the s-channel intermediate

state, and Pn is -1 for cases where there is a parity change. As discussed in Section

2.2.2, multipoles E1, M2, E3, etc. lead to parity changes (Pn = −1) in the interme-

diate state, while multipoles M1, E2, M3, etc. have no parity change (Pn = +1).

The t-channel contribution is given by,

γt
π =

[

gπNNFπ0γγ

2m2
π0

τ3 +
gηNNFηγγ

2m2
η

+
gη′NNFη′γγ

2m2
η′

]

. (2.45)

This t-channel term is a sum of contributions from the t-channel exchange of a π, η

and η′ meson. For each meson, gxNN is the meson-nucleon coupling constant, Fxγγ is

the two-photon decay amplitude, mx is the meson mass, and τ3 is equal to 1 or -1 for

the proton or neutron, respectively.

2.3 Polarised Compton scattering

Single and double polarisation observables can be measured for nuclear Compton

scattering involving polarised photons or nucleons. These polarisation observables,

known as asymmetries, quantify the effect of polarisation on the scattering process.

2.3.1 Stokes parameters

Stokes parameters, denoted by ξi (i = 1,2,3), characterise the photon polarisation.

They are constrained by the relation,

√

ξ21 + ξ22 + ξ23 ≤ 1 (2.46)

While the Stokes parameters are frame dependent, the ξ2 component and the quantity,

ξL =
√

ξ21 + ξ23 . (2.47)

are Lorentz invariant. The degree of circular polarisation of a photon is characterised

by ξ2, where ξ2 of 1 and -1 correspond to right and left helicity cases respectively.

The degree of linear polarisation of a photon is characterised by ξ1 and ξ3. Assuming

a photon has its momentum along the z-axis, the angle between the electric field and

x-z plane, ϕ, is given by,
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cos(2ϕ) =
ξ3
ξL

, sin(2ϕ) =
ξ1
ξL

. (2.48)

ξ3 of 1 and -1 corresponds to linearly polarised photons polarised parallel and per-

pendicular, ϕ = 0 and π
2
, to the scattering plane. ξ1 = ± 1 corresponds to linearly

polarised photons polarised with an angle ϕ=±π
4
.

2.3.2 Asymmetries

A set of polarisation observables, known as asymmetries, can be defined which quan-

tify the change in the cross section due to a specific polarisation orientation. Single

polarisation asymmetries, where either the photon or nucleon is polarised, are de-

noted by Σi or Σj. For polarised photons, the subscript i = (1,2,3) indicates which of

the photon’s Stokes parameter is equal to ± 1. For polarised nucleons, the subscript

j = (x,y,z) indicates the polarisation axis of the nucleon. Double polarisation asym-

metries, where both the photon and nucleon are polarised, are denoted similarly by

Σij.

Many asymmetries can be defined, which are either single or double polarisation

asymmetries. For example, Σy is a single polarisation asymmetry where the photon is

unpolarised and the nucleon is polarised along the ±y axis. Similarly, Σ3y is a double

polarisation asymmetry where the photon is polarised either parallel or perpendicular

to the scattering plane.

2.3.2.1 Defined by the polarised cross section

Each Σ can be defined by its connection to the polarised cross section. As an example,

the Σ3 asymmetry is a single polarisation observable where the nucleon is unpolarised,

and the photon is linearly polarised either parallel or perpendicular to the scattering

plane (ξ3 = ±1). In this case, the polarised cross section can be related to the

unpolarised cross section by,

(−→
dσ

dΩ
(θ, φ)

)

=

(

dσ

dΩ
(θ)

)

[1 + pγΣ3cos(2φ)] , (2.49)
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where pγ is the degree of linear polarisation. It is straight forward to show that the

Σ3 asymmetry can be expressed in terms of the polarised cross section with a flip in

the polarisation axis. Using dσ‖ and dσ⊥ to denote the polarised differential cross

section where the photon polarisation is parallel (ξ3 = 1) or perpendicular (ξ3 = −1)

to the scattering plane, the Σ3 asymmetry can be expressed,

Σ3 =
dσ‖ − dσ⊥

dσ‖ + dσ⊥
. (2.50)

This definition of the asymmetries can be extended to the other possible single and

double polarisation asymmetries. For nucleons polarised along the ± y-axis, two

asymmetries can be defined: Σy and Σ3y. For Σy, the photons are unpolarised. For

Σ3y, the photons are polarised parallel or perpendicular to the scattering plane (ξ3±1).

Σy =
dσy − dσ−y

dσy + dσ−y

, Σ3y =
(dσ‖ − dσ⊥)y − (dσ‖ − dσ⊥)−y

(dσ‖ + dσ⊥)y + (dσ‖ + dσ⊥)−y

(2.51)

For linearly polarised photons, with ϕ = ±π
4
(ξ1 = ±1), two asymmetries can be de-

fined, Σ1x and Σ1z, which have nucleons polarised along the x- and z-axis respectively.

Σ1x =
dσ

π/4
x − dσ

−π/4
x

dσ
π/4
x + dσ

−π/4
x

, Σ1z =
dσ

π/4
z − dσ

−π/4
z

dσ
π/4
z + dσ

−π/4
z

, (2.52)

Finally, for circularly polarised photons with right (R) and left (L) helicity (ξ2 = ±1),

two asymmetries can be defined, Σ2x and Σ2z, which have nucleons polarised along

the x- and z-axis respectively.

Σ2x =
dσR

x − dσL
x

dσR
x + dσL

x

, Σ2z =
dσR

z − dσL
z

dσR
z + dσL

z

, (2.53)

2.3.2.2 Defined by the scattering amplitudes

It is possible to define the asymmetries in terms of the scattering amplitudes, Ai,

which were discussed in detail in Section 2.1.3. It was shown in equation (2.21) that

the differential cross section can be expressed as a function of the scattering T-matrix.

This T-matrix can be expressed as a function independent functions, denoted by Wij.
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In the case of polarised Compton scattering, we can express the T-matrix in the

following way,

|Tfi(
−→γ

−→
N → γN)|2 = W00 +W03ξ3 +N · S(W30 +W+

33ξ3)

+K · S(W+
11ξ1 +W+

12ξ2) +Q · S(W+
21ξ1 +W+

22ξ2), (2.54)

where N, Q, and K are orthogonal four-vectors, S is the nucleon polarisation four-

vector which is orthogonal to the nucleon four-momentum, and ξi are the Stokes

parameters. In cases where the photon and nucleon are unpolarised (ξi = S = 0),

only the W00 term survives in the T-matrix. In cases where the photon is polarised,

but the nucleon is unpolarised (S = 0), only the W00 and W03 terms survive.

It was shown in equation (2.23) that the T-matrix can be expressed as a function

of the independent amplitudes, Ai. Wij can also be defined in terms of Ai, however

many of these Wij will be imaginary. The W30 term, for example, can be expressed,

W30 = −8νIm(tA1A
∗
5 + νA3A

∗
5). (2.55)

At energies below the pion photoproduction threshold the T-matrix, and the ampli-

tudes Ai, are real [15], and therefore not all Wij terms contribute below threshold.

Only six amplitudes, W00, W03, W
±
12, and W±

22, are non-zero below pion photoproduc-

tion threshold. The W00 term is directly proportional to the unpolarised cross section

by,

(

dσ

dΩ

)

=
1

64π2s
W00, (2.56)

where the W00 function is given by,

W00 =
1

4
(4M2 − t)(t2|A1|

2 + ν2|A3|
2)−

1

4
(t3|A2|

2 + ν3|A4|
2)

− ν2t(t+ 8ν2)|A5|
2 +

ν

2
(t2 + 2M2ν2)|A6|

2

+ Re

[

2ν2t2(A1 + A2)A
∗
5 +

ν2

2
(4M2A3 + tA4)A

∗
6

]

. (2.57)
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The remaining terms which are non-zero below pion production threshold, W03, W
±
12,

W±
22, are given by,

W03 =
νt

2
Re

[

(

(4M2 − t)A1 + 4ν2A5)
)

A∗
3 + 4M2A1A

∗
6

]

,

W±
22 = 2Re

[

−Mt
(

tA2 − 4ν2A5

)

A∗
1 ∓ νηA3 (ηA

∗
4 + tA∗

6)

]

,

W±
12 = Re

[

−
ν

2M

(

(4M2 − t)A3 + 4M2A6)
)

(νA∗
4 + tA∗

6))

]

± 2νt(tA2 − 4ν2A5)A
∗
5, (2.58)

where,

η =
(

4ν2 + t− t2/4M2
)

. (2.59)

Each asymmetry can also be defined in terms of Wij, and therefore in terms of the

scattering amplitudes, Ai. However, of the asymmetries defined in Section 2.3.2.1,

only three asymmetries can be written in terms of the six amplitudes (W00, W03, W
±
12,

and W±
22) which are non-zero below pion production threshold. These asymmetries

are given by,

Σ3 =
dσ‖ − dσ⊥

dσ‖ − dσ⊥
=

W03

W00

, (2.60)

Σ2x =
dσR

x − dσL
x

dσR
x + dσL

x

=
CxW

+
12 + CxW

+
22

W00

, where: Cx = −
ω′

2
sin θ, (2.61)

Σ2z =
dσR

z − dσL
z

dσR
z + dσL

z

=
C−

z W
+
12 + C+

z W
+
22

W00

, where: C±
z = −

1

2
(±ω − ω′ cos θ), (2.62)

where Cx, and C±
z are defined in terms of the lab frame photon energies, ω and ω′.
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2.3.2.3 Sensitivity to spin polarisabilities

A detailed sensitivity study was completed by Martel [1] based on the dispersion

relations of Pasquini, Drechsel and Vanderhaeghen [14][15]. These studies investigated

the sensitivity of the Σ3, Σ2x, and Σ2z asymmetries to the spin polarisabilities.

The fixed-t dispersion relation calculation of Pasquini, Drechsel, and Vander-

haeghen [14][15] was used to study the sensitivity of the asymmetries. This code,

along with other theoretical predictions, will be discussed in chapter 3. The DR

analysis of Pasquini et al. predicts nominal values of the spin polarisabilities given

by,

γ̄E1E1 = −4.3× 10−4 fm4

γ̄M1M1 = 2.9× 10−4 fm4

γ̄E1M2 = −0.01× 10−4 fm4

γ̄M1E2 = 2.1× 10−4 fm4 (2.63)

It should be noted, however, that the nominal values predicted by the DRs should not

be considered important when discussing the sensitivity of the asymmetries to the

spin polarisabilities. Using the Pasquini DR analysis, it is possible to produce a set

of asymmetry predictions for Σ3, Σ2x, and Σ2z based on these nominal values. As a

simple sensitivity test, asymmetries are produced first using nominal values and then

again varying each spin polarisability individually by ±1.0×10−4 fm4. The results of

these studies are reproduced here for Σ2z in Figure 2.2, for Σ2x in Figure 2.3, and for Σ3

in Figure 2.4. The asymmetries are each shown for a low energy region, corresponding

to an incident photon energy of 240 MeV, and a high energy region, corresponding

to an incident photon energy of 280 MeV. Within these energy regions, Σ2x is most

sensitive to variations in γ̄E1E1, Σ2z is most sensitive to variations in γ̄M1M1, and Σ3

is most sensitive to variations in γ̄M1M1 and γ̄M1E2. More rigorous sensitivity tests,

varying multiple spin polarisabilities at once, showed the same sensitivity dependence

of the asymmetries.
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2.4 π0 photoproduction

For photons impinging on a proton target, Compton scattering is only one of many in-

teractions which can occur. Equation (2.12) showed that the γM1E2 spin polarisability

could be understood by an s-channel process which excited a ∆ as an intermediate

state. Although not the only contribution to Compton scattering, within the ∆-

resonance region, the excitation of a ∆ intermediate state is a dominant channel.

However, the de-excitation of the ∆ back into a photon-proton pair, as depicted in

equation (2.12), is not the dominant decay channel. The branching ratios of ∆ → γp

and ∆ → πN are given by,

Γ∆→γp

Γ
≈ 0.6 %,

Γ∆→πN

Γ
> 99 %. (2.64)

Decays into a pion-nucleon pair are much more likely. Within the ∆-resonance region,

the dominant reaction is neutral pion photoproduction, given by,

γ + p → π0 + p′. (2.65)

The dominant decay channel of the π0 is an electromagnetic decay into a photon-

photon pair, π0 → 2γ, with a branching ratio given by,

Γπ0→γγ

Γ
> 99 %. (2.66)

The final state of π0 photoproduction is then almost exclusively γp → π0p → γγp.

Experimentally, due to the similarity in final states, π0 photoproduction can be a

challenging background process to separate from Compton scattering. In cases where

one of the decay photons is undetected, the final detected state appears identical to

Compton scattering.

Despite the challenge π0 photoproduction poses to Compton scattering exper-

iments, it can also serve as a useful reaction for systematic tests of experimental

detection systems. Due to our equipment’s ability to reconstruct the decay photons,

and by imposing a requirement that the invariant mass of the two-photon system be

close to the pion mass, π0 photoproduction is a relatively background-free reaction

with our experimental setup. Therefore, along with a detailed study of Compton

scattering, a detailed study of π0 photoproduction will be presented. Additionally,

where appropriate, π0 photoproduction will be used to constrain parameters in the

analysis of Compton scattering.



Chapter 3

Studies of the Proton Polarisabilities

As introduced in chapter 1, expanding the Compton scattering amplitude in terms of

incident photon energy, ω, to third order results in six leading order scalar and spin

polarisability terms:

• αE1, βM1 - scalar electric and magnetic dipole polarisability terms,

• γE1E1, γM1M1 - dipole-dipole spin polarisability terms,

• γE1M2, γM1E2 - dipole-quadrupole spin polarisability terms.

The static polarisabilities, ω = 0, are related to the total photoabsorption cross section

through sum rules given in equations (2.36) and (2.41).

3.1 Baldin sum rule

Experimental evaluations of the Baldin sum rule, from photoabsorption experiments

on the proton, date back over 40 years. An evaluation by Damashek and Gilman [22]

extracted a value for the Baldin sum rule from experimental data measured at SLAC

and DESY in the late 1960s. Damashek and Gilman determined the Baldin sum rule

for the proton to be,

(ᾱE1 + β̄M1)p = (14.2± 0.3)× 10−4 fm3 (3.1)

Modern extractions have re-evaluated the Baldin sum rule in light of additional

experimental data. An experiment by Armstrong et al. [23] at the Daresbury Nuclear

Physics Lab measured the photoabsorption cross section in hydrogen over the energy

range ω=265-4215 MeV. This comprehensive dataset is complimented by precise data

taken by MacCormick et al. [24] at the tagged photon beam facility of the MAMI

accelerator in Mainz, which cover an energy range ω=200-800 MeV. Although these

datasets agree quite well, there is a small discrepancy within the ∆-resonance region.

28
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Partial wave analyses show good agreement with the Mainz data within this region

of discrepancy.

An evaluation of the Baldin sum rule was performed by Babusci, Giordano, and

Matone [25] using the Daresbury and Mainz datasets. In their analysis, the experi-

mental data were fitted to obtain a function which represented the data well. The total

photoabsorption cross sections were determined using the SAID partial wave analysis

[26] (solution SP97K). Babusci, Giordano, and Matone determined the Baldin sum

rule for the proton to be,

(ᾱE1 + β̄M1)p = (13.69± 0.14)× 10−4 fm3 (3.2)

A re-evaluation, using the same datasets, was performed by Olmos de Leòn et al. [27].

In this case, no fitting function was used and the total photoabsorption cross sections

were determined using partial wave analysis. Near the threshold region (below 200

MeV), multiple solutions of the partial wave analysis by Arndt, Strakovsky, and

Workman [28] were used and the average value was adopted. Above this energy, the

SAID partial wave analysis [26] (solution SM99K) was used. The Baldin sum rule for

the proton was determined by Olmos de Leòn et al. as,

(ᾱE1 + β̄M1)p = (13.8± 0.4)× 10−4 fm3 (3.3)

3.2 Scalar Polarisabilities

Low-energy Compton scattering experiments were performed by Olmos de Leòn et al.

[27] to extract values for the scalar dipole polarisabilities, ᾱE1 and β̄M1. Differential

cross sections for Compton scattering were measured using the TAPS setup at the

MAMI tagged photon facility for incident photon energies, ω, from 55 MeV to 165

MeV. The data set of Olmos de Leòn et al. was combined with three other low-energy

Compton scattering experiments [27]:

1. MacGibbon et al. - 70 MeV to 100 MeV [12],

2. Federspiel et al. - 32 MeV to 72 MeV [29], and

3. Zieger et al. - 98 MeV to 132 MeV (backward angles) [30].
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Until recently, the scalar dipole polarisabilties given in equation (3.5) were accepted

by the particle data group, PDG. However, recently the PDG values for the scalar

dipole polarisabilties were re-evaluated considering new χPT calculations by Lensky

and Pascalutsa [31] and McGovern, Phillips, and Grießhammer [32]. In both cases,

the magnetic scalar polarisabilitiy was determined to be greater than 3 ×10−4 fm3.

After re-evaluation, ᾱE1 and β̄M1 for the proton were determined to be,

(ᾱE1)p = (11.2± 0.4)× 10−4 fm3

(β̄M1)p = (2.5± 0.4)× 10−4 fm3. (3.6)

Although this more recent evaluation results in an increased value for β̄M1, in all

cases β̄M1 is determined to be much smaller than ᾱE1. This can be connected to the

competing paramagnetic and diamagnetic contributions to the magnetic polarisability

cancelling, resulting in a small value for β̄M1.

3.3 Forward spin polarisability

The forward spin polarisability, γ0, given in equation (2.13), is a linear combination

of the four leading order spin polarisabilities. A sum rule, relating γ0 to the to-

tal photoabsorption cross section for circularly polarised photons and longitudinally

polarised protons, is given in equation (2.41). Additionally, in equation (2.33), the

forward spin polarisability is shown to depend only on the a4 low-energy constant.

The forward spin polarisability sum rule was evaluated from data taken at the

tagged photon facilities at MAMI and ELSA. The MAMI data set covered a range of

incident photon energies, ω, from 200 MeV to 800 MeV [19] while the ELSA data set

covered energies from 700 MeV to 1800 MeV [33]. Within this analysis, the forward

spin polarisability was determined to be,

γ0 = (−1.00± 0.08 stat. ∓ 0.10 sys.)× 10−4 fm4. (3.7)

3.4 Backward spin polarisability

The backward spin polarisability, γπ, given in equation (2.14), is also a linear com-

bination of the four leading order spin polarisabilities. Experiments at the tagged
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backward spin polarisability, leaving a “dispersive” term given by,

γdisp
π = (8.0± 1.8)× 10−4 fm4. (3.9)

The π0-pole term contributes only to the A2 scattering amplitude, and therefore only

to the a2 low-energy constant. While the a2 term contributes to all four leading order

spin polarisabilities, it cancels in γ0 leading to a very small forward spin polarisability

in comparison to the backward polarisability.

3.5 Spin Polarisabilities

The spin polarisabilities of the proton have only been studied experimentally through

the forward and backward polarisabilities, discussed in Sections 3.3 and 3.4. A series

of polarised Compton scattering experiments have been proposed to determine the

proton spin polarisabilities experimentally. This experimental program, which is the

focus of this dissertation, is discussed in Section 3.5.2. Despite the lack of experi-

mental measurements, theoretical interest has resulted in a large set of theoretical

predictions, in particular from dispersion relations calculations and from chiral per-

turbation calculations. In Section 3.5.1, theoretical predictions of the proton spin

polarisabilities are discussed.

3.5.1 Theoretical predictions

Significant theoretical interest in the nucleon polarisabilities has resulted in numerous

theoretical predictions for the spin polarisabilities of the proton. Table 3.1 outlines

a subset of these theoretical predictions. These predictions come from a variety of

theoretical frameworks including dispersion relation calculations, chiral perturbation

theory calculations, and a “dressed” K-matrix model based upon K-matrix formalism

combined with dispersion relations.

Fixed-t dispersion relations (DRs), discussed previously in Section 2.1.3, produce

a set of low-energy constants which are directly connected to the scaler and spin

polarisabilities. Within dispersion relations, the real part of the scattering amplitudes,

Ai can be related to their imaginary parts through DRs, given previously in equation

(2.27). However, not all scattering amplitudes converge, and a set of once-subtracted

fixed-t dispersion relations can be defined (subtracting off the case of ν = 0), given
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previously in equation (2.29). The low-energy constants of these fixed-t dispersion

relations were previously defined in equation (2.31). Fixed-t DRs are calculated with a

fixed Mandelstam variable t. Similarly, it is also possible to define dispersion relations

for fixed-angle, rather than fixed-t. These DRs are known as fixed-angle dispersion

relations or hyperbolic dispersion relations. Due to the convergence behaviour of

the DR scattering amplitudes, Ai, fixed-t DRs are best applied to small values of

t (corresponding to forward angles, θlab = 0◦). Similarly, fixed-angle DRs are best

applied at backward angles [15]. Table 3.1 shows proton spin polarisabilities from two

dispersion relation calculations: (1) HDPV, a once-subtracted fixed-t DR [8], and (2)

DPV, a fixed-angle (hyperbolic) DR [15] calculated at θlab = 180 ◦.

Chiral perturbation theory (χPT) is an effective field theory (EFT) which can be

used to study the low-energy region of QCD. As discussed in Chapter 1, as the energy

scale decreases, or distance increases, pertubative QCD is no longer useful. In this

low-energy regime, QCD is dominated by confinement, and therefore QCD-inspired

models that incorporate hadronic degrees of freedom are used instead of the quarks

and gluons. In other words, at low energies, pions and nucleons appear as the de-

grees of freedom, rather than the more fundamental quarks and gluons. EFTs can

be used to calculate physical quantities, such as the polarisabilities. As the QCD

Lagrangian cannot be directly solved, and pertubative QCD is not useful in the low-

energy regime, an effective Lagrangian is constructed which, as stated by Stephen

Weinberg, is “the most general possible Lagrangian, including all terms consistent

with assumed symmetry principles” [38]. However, the resulting effective Lagrangian

consists of an infinite number of terms. Thus, calculating physical quantities using

χPT requires a power counting scheme which allows terms in the effective Lagrangian

to be organised in terms of importance. A power counting scheme allows a χPT calcu-

lation to be considered up to a given order, with higher order terms being neglected.

The effective Lagrangian terms carry coefficients, known as coupling constants or low-

energy constants, which are typically treated as free parameters and determined and

constrained by fitting to experimental data. Power counting schemes, and degrees

of freedom applied vary between χPT calculations. Table 3.1 shows proton spin po-

larisabilities from five chiral perturbation calculations: (1-2) O(p4)a and O(p4)b, two

fourth order (p-expansion) calculations [39][40], (3) O(ǫ3), a small scale (ǫ-expansion)
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calculation [41], (4) HBχPT, a heavy baryon chiral perturbation calculation [32], and

(5) BχPT, a covariant baryon chiral perturbation calculation [42]. Calculations (3)

through (5) have ∆(1232) degrees of freedom.

In addition to calculations based upon dispersion relations and chiral perturbation

theory, K-matrix formalism has been applied to Compton scattering (for a review

of K-matrix formalism, see Ref. [43]). In the dressed K-matrix formalism of Ref.

[44], traditional K-matrix formalism (satisfying unitarity) is combined with dispersion

relations (satisfying analycity). Within this framework, the imaginary parts of the

scattering amplitudes are generated under the K-matrix formalism, and a requirement

that the real parts of the amplitudes satisfy DRs is imposed. Table 3.1 shows proton

spin polarisabilities obtained from the the dressed K-matrix model calculations of

Ref. [44].

HDPV DPV O(p4)a O(p4)b O(ǫ3) HBχPT BχPT K-matrix

γ̄E1E1 -4.3 -3.8 -5.4 1.3 -1.9 -1.1 ± 1.8 -3.3 -4.8
γ̄M1M1 2.9 2.9 1.4 3.3 0.4* 2.2 ± 1.2 3.0 3.5
γ̄E1M2 -0.02 0.5 1.0 0.2 0.7 -0.4 ± 0.4 0.2 -1.8
γ̄M1E2 2.2 1.6 1.0 1.8 1.9 1.9 ± 0.4 1.1 1.1
γ0 -0.8 -1.1 1.9 -3.9 -1.1 -2.6 -1.0 2.0
γπ 9.4 7.8 6.8 6.1 3.5 5.6 7.2 11.2

Table 3.1: Theoretical predictions of the proton spin polarisabilties are shown for
various theoretical frameworks. HDPV is a once-subtracted fixed-t dispersion relation
calculation [8]. DPV is a fixed-angle (hyperbolic) dispersion relation calculation [15]
calculated at θ(lab) = 180 ◦. O(p4)a and O(p4)b are both fourth order (p-expansion)
calculations [39][40]. O(ǫ3) is a small scale (ǫ-expansion) calculation [41]. HBχPT
is a heavy baryon chiral perturbation calculation [32]. BχPT is a covariant baryon
chiral perturbation calculation [42]. Finally, K-matrix is a dressed K-matrix model
[44], based on K-matrix formalism and dispersion relations. All polarisabilities are
given in units of 10−4 fm4 with the γπ0-pole

π removed.

*Note: Ref. [45] suggests the γ̄M1M1 determined by Ref. [41], O(ǫ3) small scale calculation,
should be adjusted by +2.5 due to a missing ∆-pole contribution.

Table 3.1 shows a subset of all theoretical calculations of the proton spin polaris-

abilties. It is interesting to note that HDPV, DPV, BχPT, and K-matrix calculations

all produce similar spin polarisability predictions. The only exception being the large

(negative) γ̄E1M2 predicted by the K-matrix calculation. These predictions however

seem to be quite different from the remaining chiral pertubation calculations, which
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themselves produce a variety of different spin polarisabilities predictions. Given that

the forward and backward polarisabilities have been measured experimentally, it is in-

teresting to directly compare the different theoretical predictions for γ0 and γπ. DPV

produces a γπ very close to the experimental value of 8.0 ± 1.8. This is not surprising

as DPV is a fixed-angle DR, calculated at θlab = 180 ◦. Many of the calculations

produce values of γ0 and γπ significantly different from the experimental values. It

is interesting to note that only the DPV and BχPT calculations show agreement

to experiment for both the forward and backward polarisabilities. Given the wide

range of values for each spin polarisability term, an experiment to measure the spin

polarisabilities could be a useful test and constraint of the various theories.

3.5.2 Experimental studies

A series of experiments has been proposed to extract the spin polarisabilities of the

proton from single and double polarisation asymmetries for Compton scattering off

the proton. This experimental program, which is the focus of this dissertation, is

currently ongoing at the MAMI tagged photon facility in Mainz, Germany. In total,

three asymmetries will be measured within the ∆-resonance region, ω ≈ 300 MeV:

1. Beam Asymmetry - Σ3

Linearly polarised photons (ξ3 ± 1) and unpolarised protons.

Σ3 is defined in terms of the polarised cross section in equation (2.60).

2. Beam-target Asymmetry - Σ2x

Circularly polarised photons (ξ2 ± 1) and transversely (±x) polarised protons.

Σ2x is defined in terms of the polarised cross section in equation (2.61).

3. Beam-target Asymmetry - Σ2z

Circularly polarised photons (ξ2±1) and longitudinally (±z) polarised protons.

Σz is defined in terms of the polarised cross section in equation (2.62).

The choice to measure these specific asymmetries was motivated by their sensitivity

to the underlying spin polarisabilities. In each case, an experimental measurement of

the asymmetry results in a statistical accuracy sufficient to provide reasonable con-

straints on the spin polarisability values, within a reasonable amount of beamtime.
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Additionally, these asymmetries have a varying sensitivity to the different polarisabil-

ities with Σ2x most sensitive to variations in γ̄E1E1, Σ2z most sensitive to variations

in γ̄M1M1, and Σ3 sensitive to variations in γ̄M1M1 and γ̄M1E2. These sensitivities

were presented in Section 2.3.2.3. Along with constraints from the Baldin sum rule,

γ0, and γπ, a global fit to all experimental measurements of the Compton scattering

asymmetries can be used to extract the spin polarisabilities.

As part of the current experimental program, data for the beam-target asymmetry,

Σ2x, were measured at the MAMI tagged photon facility and analysed by Martel [1].

The spin polarisabilities of the proton were extracted using the once-subtracted fixed-

t dispersion relation approach of Holstein, Drechsel, Pasquini and Vanderhaeghen [8],

previously discussed in Section 3.5.1 as HDPV. Figure 3.3 shows Σ2x measured for

incident photon energies, ω, from 273 MeV to 303 MeV along with dispersion relation

calculations for varied values of γ̄E1E1. Data were fit using the HDPV calculations,

allowing (ᾱ + β̄), (ᾱ − β̄), γ̄E1E1, γ0 and γπ, to vary. The fitting routine assumed

a fixed value of γ̄M1M1 of 2.9 (the nominal prediction of HDPV in Table 3.1). An

extraction of γ̄E1E1 from this [1] analysis gives,

γ̄E1E1 = (−4.5± 1.5)× 10−4 fm4. (3.10)

The analysis of Σ2x by Martel was not only the first measurement of a double polari-

sation observable for Compton scattering, but also allowed for the first experimental

determination of γ̄E1E1 for the proton. A comparison of this result to the theoretical

predictions in Table 3.1 shows that, despite the relatively large error, it is already pos-

sible to identify some disagreement between theoretical predictions and experiments

for the γ̄E1E1spin polarisability term.

A more recent analysis by Martel [2] determined the four leading order terms of

the proton’s spin polarisabilities, combining Σ3 results from the LEGS collaboration

[4] and Σ2x results from the MAMI tagged photon facility. Data taken by the LEGS

collaboration measured the beam asymmetry, Σ3, for Compton scattering off the

proton for incident energies from 213 MeV to 333 MeV and an angular range of θγ′

from 70◦ to 130◦ (CM frame)[3]. As before, data were fit using the HDPV calculations.

However, in this case γ̄M1M1 was no longer fixed, but allowed to vary along with

(ᾱ + β̄), (ᾱ− β̄), γ̄E1E1, γ0 and γπ.
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An extraction of all four spin polarisabilities, combining the LEGS data set and

Martel Σ2x results, gives the result,

γ̄E1E1 = (−3.5± 1.2)× 10−4 fm4,

γ̄M1M1 = (3.16± 0.85)× 10−4 fm4,

γ̄E1M2 = (−0.7± 1.2)× 10−4 fm4,

γ̄M1E2 = (1.99± 0.29)× 10−4 fm4, (3.11)

which are in good agreement with the dispersion theory, K-matrix theory, and Heavy

Baryon chiral perturbation theory calculations shown in Table 3.1.

Figure 3.3: Σ2x measured for incident photon energies from 273 MeV
to 303 MeV. Also shown are dispersion relation calculations for values of
γ̄E1E1 holding other spin polarisabilities fixed to the nominal values given
in Table 3.1 (HDPV). DR curves are shown in coloured bands for values
of γ̄E1E1, from top to bottom, of -2.3, -3.3, -4.3, -5.3, and -6.3, in standard
spin polarisability units of 10−4 fm4). Reproduced from [1].

The LEGS data set measured the Σ3 asymmetry for Compton scattering over a very

wide range of energies and angles. Such a large data set is ideal for fitting and extract-

ing the spin polarisabilities. However, the validity of this comprehensive data set has

been questioned. In Figure 3.2, the Compton scattering cross sections showed a sig-

nificant discrepancy between data taken at Mainz, LARA, and Saskatoon. Although
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it is possible that a discrepancy exists only in cross sections, and not in asymmetries,

a discrepancy so large motivates a cross check of the LEGS data set. For this reason,

in addition to the beam-target asymmetries, the Σ3 asymmetry was remeasured at

the MAMI tagged photon facility. Once complete, a global fit to all asymmetry re-

sults can be performed to extract the leading order spin polarisabilities of the proton.

Results from the Σ3 experiment at MAMI are presented in the following chapters.



Chapter 4

Experiment

The following chapter outlines the execution of an experiment during a run period in

December 2012 at the MAMI tagged photon facility in Mainz, Germany. To study

the Σ3 asymmetry for Compton scattering and π0 photoproduction, a source of lin-

early polarised photons and unpolarised protons is required. Electrons, accelerated

using the Mainz Microtron electron accelerator, were incident upon a diamond radi-

ator to create a source of linearly polarised photons via a coherent bremsstrahlung

process. The energy of the incident photon was inferred by a momentum analysis

the bremsstrahlung electrons using the Glasgow Tagged Photon Spectrometer. The

photon beam was then collimated and impinged upon a 10 cm liquid hydrogen, LH2,

unpolarised proton target. Detection of final state particles was accomplished using

the Crystal Ball and TAPS detectors, a detector system with a roughly 4π angular

coverage. Each of these detector systems is comprised of a highly segmeted photon

calorimeter, coupled with additional detectors to detect and identify charged parti-

cles. The CB-TAPS detector system provides excellent energy and angular resolution

for studying Compton scattering and the large angular acceptance helps to identify

and reject background reactions.

4.1 Linearly polarised photon beam

During the run period, a linearly polarised photon beam was produced at the MAMI

tagged photon facility via a coherent bremsstrahlung process. Coherent bremsstrahlung

is produced by high-energy electrons incident upon a crystalline radiator, typically a

thin diamond crystal. A 30 µm diamond radiator was used during the run period.

This radiator was aligned within the electron beam, using the Stonehenge technique

[46]. Using this technique, along with collimation of the photon beam, a linearly

polarised photon beam with a high degree of polarisation was produced.

40
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4.1.1 MAMI electron accelerator

The Mainz Microtron, MAMI, is a continuous wave (100% duty factor) electron ac-

celerator capable of providing electrons with energies up to 1.6 GeV. Acceleration

of electrons is accomplished in three distinct stages: (1) electron injector linear ac-

celerator, LINAC, (2) a cascade of three racetrack microtrons, RTMs, and (3) the

Harmonic Double Sided Microtron, HDSM [47].

Electrons are first boiled off a 100 keV electron gun via thermionic emission. After

this, they are accelerated via an injector LINAC. The electrons are ejected from the

injector LINAC with a total energy of 4.1 MeV. After this stage, the electrons enter a

cascade of racetrack microtrons, RTMs. Each RTM is composed of a LINAC section

coupled with two large dipole bending magnets. After being accelerated through a

LINAC, the electron is bent by 180◦ via a large dipole magnet and passed through

focusing devices. A second dipole magnet is then used to bend the electron back

into the LINAC section, further accelerating the electron. With each successive turn,

the electron gains energy and the radius of curvature through the bending magnet

increases. The increase of path length per turn, ∆s, is related to the increase in

energy per turn, ∆TRTM, by [48],

∆s = 2π
∆TRTM

eβcB
(4.1)

where B is the strength of the dipole magnet field. For relativistic electrons, β ≈ 1.

After the initial injector LINAC, the electron is accelerated through three successive

racetrack microtrons with a final ejection energies of 15.3 MeV, 185.9 MeV, and

883.1 MeV for each RTM respectively. By recirculating the electron through the

linear accelerating section, the racetrack microtron design creates a relatively compact

electron accelerator. As the energy increases, larger dipole magnets are required to

bend the electron beam. By RTM 3, the combined weight of the dipole bending

magnets exceeds 900 metric tons, making the Mainz Microtron the world’s largest

racetrack microtron system. A diagram of the injector LINAC leading into a racetrack

microtron system is shown in Figure 4.1.

For energies beyond 883 MeV, an additional racetrack microtron is not feasible

due to the increased size of the dipole magnets. For this reason, energies up to 1.6

GeV are provided by the Harmonic Double Sided Microtron, HDSM. The HDSM is
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An overview of the entire MAMI electron accelerator is shown in Figure 4.2. Dur-

ing the run period, electrons were accelerated through a series of racetrack microtrons.

The three racetrack microtrons are pictured, along with the HDSM which was not

used during the run period. Also shown in Figure 4.2 are four experimental halls (A1,

A2, A4, and X1). The experiment outlined within this work took place in the A2

experimental hall. Once an electron is accelerated through the cascade of racetrack

microtrons, it is guided into the A2 experimental hall using a series of bending and

focusing magnets.

Figure 4.2: An overview of the entire MAMI electron accelerator is shown. The MAMI
electron accelerator comprises three racetrack microtrons, along with the Harmonic
Double Sided Microtron, which can accelerate electrons up to 1.6 GeV. Four experi-
mental halls are also pictured (A1, A2, A4, and X1). Reproduced from [47].
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4.1.2 Bremsstrahlung production

Bremsstahlung radiation occurs when a high-energy electron interacts with an elec-

tromagnetic field, transfers a small amount of momentum to the field’s source,, and

creates a bremsstrahlung photon in this process. For an incident electron with initial

state (Eo, po) and final state (E, p), with a produced photon (k, k) and momentum

transfer q, energy and momentum conservation requires,

Eo = E + k, (4.2)

po = p+ k+ q. (4.3)

The set of all allowed momentum transfers is restricted both by kinematics, which set

a lower limit on q, and the fact that the bremsstrahlung cross section falls off rapidly

with increasing values of q, setting an effective upper limit. One can define the set of

allowed q, defined relative to the incoming electron momentum vector, po, in terms

of transverse (qT ) and longitudinal (qL) components [49],

0 ≤ qT > 2x,

δ(x) ≤ qL > 2δ(x), (4.4)

where x is the fractional photon energy, given by,

x =
k

Eo

, (4.5)

and δ(x), defined as the minimum qL allowed, is given by,

δ(x) =
x

2Eo(1− x)
. (4.6)

The allowed momentum transfer region is referred to as the pancake region since the

transverse component extends across a much larger region than that of the longitu-

dinal component. This gives rise to a pancake centered on, and normal to, po.

4.1.2.1 Incoherent Bremsstrahlung production

Electrons incident upon an amorphous radiator produce incoherent bremsstrahlung.

In this case, the incident electron interacts with the Coulomb field of an atomic nu-

cleus. The cross section for incoherent bremsstrahlung, σin, is a Bethe-Heitler spec-

trum which decreases quickly as photon energy increases (roughly 1
k
). The momentum
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transfer, q, for incoherent bremsstrahlung can lie anywhere within the pancake re-

gion. This produces a uniform azimuthal distribution in the polarisation vector of

the photon, thus producing an unpolarised photon beam.

4.1.2.2 Coherent Bremsstrahlung production

Electrons incident upon a crystalline radiator produce incoherent bremsstrahlung.

In this case, the incident electron interacts with, and transfers momentum to, the

crystal as a whole (as opposed to individual nuclei). Instead of the smooth (roughly

1
k
) distribution of incoherent bremsstahlung, coherent bremsstahlung shows a cross

section with structure related to the lattice structure of the crystal.

A crystalline radiator, as used in the production of linearly polarised photons, is

a material which has a structure composed of a regularly repeating pattern of atoms.

This base pattern, often referred to as the crystal’s unit cell, repeats at a point known

as a lattice point and these lattice points combine to form the direct crystal lattice.

The axes of the unit cell are described by three primitive lattice vectors, a1, a2, and

a3. From this direct crystal lattice, it is possible to define the reciprocal crystal

lattice. Similar to the direct lattice, we can define a set of primitive reciprocal lattice

vectors, b1, b2, and b3. These can be expressed in terms of ai by [50],

b1 = 2π
(a2 × a3)

(a1 × a2) · a3

,

b2 = 2π
(a3 × a1)

(a1 × a2) · a3

, (4.7)

b3 = 2π
(a1 × a2)

(a1 × a2) · a3

.

Planes and vectors in the lattice can be described using a set of indices, the Miller

indices [51], g1, g2, g3. A reciprocal lattice vector, g, can then be defined in terms of

its Miller indices by,

g = g1b1 + g2b2 + g3b3. (4.8)

Planes orthogonal to g are denoted by (g1g2g3) and negative indices are denoted gi.

While the momentum transfer, q, is still constrained by the pancake region, the

coherent bremsstrahlung process places an additional constraint upon q. Namely, in
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the coherent case, q must simultaneously lie within the pancake region and coincide

with a reciprocal lattice vector of the crystal. Recalling that the reciprocal lattice is

defined by the primitive reciprocal lattice vectors, bi, one can define two important

angles, θ and α. The angle θ is defined as the angle between the po and b1 vec-

tors while α is defined as the angle between the (po, b1) and (b2, b3) planes. The

longitudinal and transverse components of the reciprocal lattice vector are [49],

gT ≈
√

(g2)2 + (g3)2,

gL ≈ g1 + θ(g2 cosα + g3 sinα). (4.9)

When the condition gL = δ(x), the lower limit of the pancake region (defined in

Equation 4.4) is satisfied, the coherent bremsstrahlung spectrum shows a sharp dis-

continuity. As the fractional photon energy crosses over the discontinuity, the co-

herent bremsstrahlung cross section falls off. The fractional photon energy at this

discontinuity point, xd, is given by,

xd =
2EogL

1 + 2EogL
. (4.10)

The orientation of the crystal relative to the incident electron determines the set of

reciprocal vectors within the pancake region. As the momentum transfer, q, must

align with a reciprocal vector, the orientation of the crystal also determines the set

of allowed momentum transfers. In contrast to incoherent bremsstrahlung, the con-

straint on the momentum transfer in coherent bremsstrahlung results in a constraint

upon the polarization vector of the produced photon.

In addition to the coherent contribution, the total cross section for electron scat-

tering off a crystalline radiator includes an incoherent contribution arising from lattice

vibrations, or phonons. The total cross section for a crystal can be expressed,

σcrystal = σco + σin. (4.11)

The incoherent contribution for a crystalline radiator is still well approximated by the

Bethe-Heitler distribution. For diamond, the incoherent cross section for a crystalline

radiator is approximately 15% less than the incoherent cross section for an amorphous

carbon radiator of the same thickness [52].
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4.1.2.3 Degree of linear polarisation

A linearly polarised photon beam can by produced by bringing an electron beam

incident upon a crystalline radiator. The enhancement, R, in the cross section due

to coherent bremsstrahlung production can be given by,

R =
σcrystal

σin
. (4.12)

A plot of the enhancement as a function of photon energy will show sharp drops

at photon energies associated with discontinuity points, xd. The sharp decrease in

the spectrum is known as a coherent edge. In cases where more than one reciprocal

lattice vector lies within the pancake region, the enhancement spectrum will show

multiple peaks. An example enhancement spectrum from the December 2012 run

period is shown in Figure 4.3 for coherent bremsstrahlung on a 30 µm diamond

radiator. This enhancement spectra was determined by measuring the distributions

of retarded electrons as a function of energy. This is accomplished using the Glasgow

Tagged Photon Spectrometer, discussed in Section 4.1.3. The incoherent contribution

is approximated by measuring the same electron distribution using an amorphous

radiator. The enhancement distribution is then simply produced by dividing the two

distributions. The primary peak, with a coherent edge positioned near 300 MeV,

corresponds to coherent bremsstrahlung production off the [022] reciprocal lattice

vector. The bremsstrahlung distribution from the diamond radiator was divided by

a distribution from an amorphous 10 µm Copper radiator to model the incoherent

contribution. Although Copper itself has a lattice structure, standard copper is made

of grains, each a few microns in size. Each grain has a lattice structure, but since

they are all randomly orientated, the total distribution is effectively amorphous.

To describe the resulting degree of polarisation in the photon beam, it is useful to

define a reference frame. If one defines the horizontal plane of the lab frame as (po,ex)

then the plane which describes the polarization reference frame can be described by

(b1,ex). The coherent component of σcrystal can then be expressed in terms of the

perpendicular and parallel components,

σco = σ⊥ + σ‖, (4.13)

where σ⊥ (σ‖) has a photon polarisation vector perpendicular (parallel) to the polari-

sation reference frame (b1,ex). The degree of linear polarisation of the photon beam,
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4.1.2.5 Collimation

Collimation of the produced photon beam can be used to increase the degree of linear

polarisation. This effect arises due to differences within the angular distributions of

incoherent and coherent bremsstrahlung. In the case of incoherent bremsstrahlung,

photons are emitted in a cone around po with a characteristic angle given by [54],

θγ =
mec

2

Eo

. (4.16)

Thus, for incoherent bremsstrahlung, this distribution depends only on the inci-

dent electron energy and is independent of the photon energy. Therefore, collimation

of the incoherent bremsstrahlung photons will reject a roughly even distribution of

photons over the photon energy. However, in the case of coherent bremsstrahlung,

the angular distribution of the emitted photon does depend on the photon energy.

For each peak in the bremsstrahlung enhancement spectrum, the emission angle of

the photon becomes smaller (more forward) as the photon energy approaches each xd,

the coherent edges. Collimation of the coherent bremsstahlung photons will there-

fore preferentially remove photons from the lower-energy region of the peak. This

reduces the polarisation (by rejecting polarised photons) in these low-energy regions,

thus narrowing the peaks of the bremsstrahlung enhancement spectrum. However,

by accepting the forward emitted coherent photons, while simultaneously rejecting

incoherent photons of the same energy, one increases the degree of polarisation in

this higher-energy regions of each peak. During the run period, the photon beam was

collimated using a 3 mm lead collimator situated 2.5 m downstream of the radiator.

4.1.3 Glasgow Tagged Photon Spectrometer

The energy of the photon was inferred from a momentum analysis of the bremsstrahlung

electron using the Glasgow Tagged Photon Spectrometer. The incident electron en-

ergy, Eo, is well known and re-arranging equation (4.2), the photon energy can be

given by,

k = Eo − E. (4.17)

The process of inferring the photon energy by detecting the bremsstrahlung electron

is known as tagging. The Glasgow Tagged Photon Spectrometer, or Tagger, uses a
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Each scintillator is roughly 2 cm × 8 cm × 2 mm and is coupled to a photo-

multiplier tube, PMT. Additionally, each scintillator overlaps with the neighbouring

scintillators by roughly 50%. To identify electron signals, a “hit” is formed in the

focal plane detector when there is a coicidence between two overlapping scintilla-

tors. The requirement of a coincidence between two scintillators results in 352 tagger

channels. Bremsstrahlung photons are tagged by making a time coincidence between

detected reaction particles and the electron’s time signal. An example distribution of

the tagger channel hits, produced during the run period, is shown in Figure 4.6. The

corresponding distribution of photon energies is also shown. The incoherent Bethe-

Heitler distribution is clearly visible, along with an enhancement associated with the

primary polarisation near 310 MeV.

During the run period, a maximum rate of 106 electrons per second per active

scintillator was maintained to preserve the lifetime of the PMTs. Tagger channels

above 320 were not used to increase the electron rate in the region of interest. This

resulted in a range of tagged photon energies between 125 and 820 MeV. The current

of the incident electron beam was 30 nA for coherent bremsstrahlung produced with

the 30 µm diamond radiator and 10 nA for incoherent bremsstrahlung produced with

the 10 µm copper radiator.
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(a) Tagger channel distribution
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(b) Photon energy distribution

Figure 4.6: Example distribution of electrons within the Glasgow Tagged photon
spectrometer (left) and the associated photon energies (right).

To measure the flux of electrons, Ne− , a discriminated signal from each tagger

channel was sent to a scaler module and counted. Due to the collimation of the

bremsstrahlung photon beam, the flux of photons incident upon the target cannot be
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directly inferred from the measured electron flux, and therefore dedicated measure-

ments must be made to relate the electron flux to the photon flux on target. For such

dedicated measurements, a lead glass detector, 20 cm × 20 cm × 20 cm, was placed

in the beam line, 15 m downstream from the radiator. The Pb-glass was assumed to

have 100% efficiency and a time coincidence between the lead glass and a signal in a

tagger channel was counted as a tagged photon, NTagg. The tagging efficiency for a

given channel, i, is then given by,

ǫTagg(i) =
NTagg(i)

Ne−(i)
, (4.19)

which allows the direct relation between measured electron flux the resulting flux of

photons on target. During the run period, ten tagging efficiency measurements were

performed. The current of the incident electron beam was reduced such that the rate

of photons on the Pb-glass detector was 105 photons per second. A full analysis of

the tagging efficiency measurements is discussed later in Section 5.3.

4.2 Liquid hydrogen target

During the run period, linearly polarised photons were incident upon an unpolarised

liquid hydrogen, LH2, target. A cylindrical target cell, made of 125 µm Kapton, was

filled with LH2 at 1080 mb pressure. Additional layers of insulating material were

wrapped around the target cell. The target cell length was 100.0 ± 1.0 mm, with a

density of 4.249 × 1023 protons/cm2 [55]. The LH2 target cell is shown in Figure 4.7.

Figure 4.7: Inner Kapton cell of the liquid hydrogen, LH2, target.
The length of the target cell was 100.0 ± 1.0 mm, with a density of
4.249 × 1023 protons/cm2. Reproduced from [55].
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Photons deposit energy within the CB via the development of electromagnetic

showers, predominently through pair production. Since pair production scales with

Z2, the high density and atomic number of sodium iodide make it an ideal material for

photon detectors. Additionally, the high light output of NaI helps to ensure a good

energy resolution over a wide range of photon energies. As photons typically deposit

energy within a large number of crystals, a weighted energy algorithm is used to

determine the position of the photon. This is similar to a center of gravity calculation.

For the CB, this weighted energy determination gives an angular resolution better

than the crystal size. By comparison, hadrons tend to deposit their energy within

only one or two crystals. This results in an angular resolution in the NaI which is

worse for hadrons than photons.

4.3.1.1 Multiwire proportional chambers

To improve the angular resolution of charged particles, two coaxial multiwire pro-

portional chambers sit within the CB, surrounding the target. Each chamber is

constructed from three layers of wound wire. The wires of the inner and outer layer

are wound at ± 45◦ and act as a cathode. The wires of the middle layer run parallel

to the beam axis and act as an anode. An ionizing gas mixture of 66% Argon, 28.5%

Ethane, 5% Ethanol, and 0.5% Freon was used within the MWPCs and a voltage of

2400V was applied to each wire chamber. The information from all six layers can

be combined to provide much better tracking and position information for charged

particles than possible from the CB alone.

4.3.1.2 Particle Identification Detector

The inner radius of the Crystal Ball is 25.3 cm. The timing resolution of the CB is

not sufficient enough to perform particle identification using time of flight methods

because of the short distance between target and detectors. An additional detector,

the Particle Identification Detector, was designed to work with the existing Crystal

Ball and MWPCs detectors and provide particle identification of charged particles.

The PID detector is composed of 24 thin plastic scintillators, each 1.5 cm × 50 cm ×

4 mm, forming a barrel around the target. Due to spatial constraints, the PID was

installed between the target and the MWPCs. With the PID surrounding the target,
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4.3.2 TAPS

The Crystal Ball was originally designed for colliding beam experiments. However, for

a fixed target experiment, reaction products are Lorentz boosted forward introducing

a need for an additional detector in the forward region. The TAPS detector, Two-

Armed Photon Spectrometer, was introduced to provide detection in the forward

polar region not covered by the Crystal Ball.

TAPS, a highly segmented photon calorimeter, comprises 366 barium fluoride,

BaF2, crystals and 72 lead tungstate, PbWO4, crystals. Each BaF2 crystal is shaped

as a hexagonal prism with a length of 22.5 cm. The crystals are arranged in a

honeycomb pattern to form a solid hexagonal wall downstream of the Crystal Ball

detector, approximately 145 cm from the target. The PbWO4 crystals are shaped

such that four crystals combine to have the same shape and size as a BaF2 crystal.

The PbWO4 crystals form the two inner rings of the TAPS detector and are used

to handle the high rates expected near the beam. Each BaF2 and PbWO4 crystal is

coupled to a PMT. The signal from each PMT is then fed into an ADC and TDC.

Similar to the Crystal Ball, photons will deposit their energy in many TAPS crystals

through electromagnetic showers. An energy weighted position, similar to a center

of gravity calculation, is also applied to determine the position. The coverage of the

polar angle from the BaF2 crystals is 4
◦ to 20◦. The PbWO4 crystals extend the polar

angle coverage of TAPS to be 2◦ to 20◦. During the run period, many of the PMTs

connected to PbWO4 crystals were broken. Additionally, the readout electronics were

not completely implemented. For these reasons, the PbWO4 are not considered for

this analysis.

The distance from the target to TAPS, along with the excellent timing resolution

of BaF2 crystals, make particle identification using time of flight methods possible. A

two dimensional plot of the time of a particle detected within TAPS, t, and the energy

deposit in TAPS, E, will produce distinct bands associated with different particle

masses (similar to the PID). Particle identification is also possible using pulse shape

analysis, PSA. BaF2 crystals produce two light components with a fast and slow

relaxation time. The relative intensity of the fast and slow components is inversely

related to the ionizing power of the incoming particle. Hadrons, for example, have a

high ionizing power for the rate of energy loss and therefore a small fast/slow ratio.
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4.3.2.1 Veto wall

An additional detector, the Veto wall, provides a third method for particle identifica-

tion. The Veto wall is composed of 384 thin plastic scintillators, each 5mm thick and

hexagonally shaped to match a BaF2 crystal. Each BaF2 crystal, and each group of

four PbWO4 crystals, has a dedicated Veto scintillator which is coupled to a PMT via

a wavelength shifting fiber. Similar to the PID, the fractional energy deposition in a

Veto wall scintillator, ∆E, can be matched to the total energy deposition in TAPS, E.

A two dimensional histogram, similar to the one shown in Figure 4.9, can be created

for charged particle identification.

4.3.3 Detector summary

The main parameters of the CB-TAPS detector system are given in Table 4.2. An

estimate of the angular and energy resolutions is given for both the Crystal Ball and

TAPS detector systems for photons and charged particles within the energy region of

interest. Only an estimate is given as the resolution of charged particles and photons

can differ, and the full resolution is a function of energy and polar angle.

Crystal Ball TAPS

Main Spectrometer Design 672 NaI(Tl) 72 PbWO4 and 366 BaF2

Additional Detectors PID Veto wall
MWPCs

Polar (θ) coverage 21◦ to 159◦ 2◦ to 20◦

Azimuthal (φ) coverage 0◦ to 360◦ 0◦ to 360◦

Polar (θ) resolution 2◦ 1◦

Azimuthal (φ) resolution 2◦ 1◦

FWHM γ Energy resolution 2% 3%
Charged Particle Detection PID - dE/E method Veto - dE/E method

2 MWPCs - tracking Pulse shape analysis
Time of flight

Table 4.2: Main parameters of the CB-TAPS detector system.
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4.3.4 Event readout

4.3.4.1 Trigger system

The total energy deposited in the Crystal Ball is used to form a trigger condition for

event readout. The trigger condition, known as the Energy Sum trigger, is designed

to be the sum of all energy deposits in the NaI crystals of the Crystal Ball. To

accomplish this trigger, each NaI crystal is coupled to a dedicated PMT and the

analog signals from all PMTs are summed together giving an analog signal which is

the total energy in the Crystal Ball. This summed analog signal is then duplicated

and passed through one discriminator with a low threshold and one discriminator

with a high threshold. The low threshold forms a first level trigger condition which

initiates a trigger signal and inhibits the system to future signals. The high threshold

forms the final experimental trigger. If the energy sum signal passes both the low and

high thresholds, the information from all ADCs and TDCs in the detector system are

read out and stored and the system is un-inhibited. The information associated with

a single readout of the detector system is referred to as an event. In cases where the

energy sum signal passes the low threshold but not the high threshold, a “fast clear”

signal is passed to all ADCs and TDCs. This resets the hardware and un-inhibits

the system. The two-tiered discriminator setup is used, rather than a single high

threshold discriminator, to give a better timing resolution to the trigger.

During the run period, the Energy Sum trigger was used for event readout. The

low threshold setting was 45mV and the high threshold setting was 180mV, corre-

sponding to an energy deposit of roughly 20 MeV and 80 MeV respectively. The

rate of fast clear signals - which passed the low threshold setting, but not the high

threshold setting - was roughly 6 kHz. The rate of trigger signals - which passed both

the low and high threshold settings - was roughly 2 kHz. Due to a faulty wire con-

nection, the fast clear signal was not delivered to the PID. Thus, in cases where the

Energy Sum signal passed the low threshold discriminator, but not the high threshold

discriminator, the ADC and TDC information in the PID was not cleared. When an

Energy Sum signal does finally pass the high threshold, and the entire event informa-

tion is read out, it is possible that the PID information is from an earlier time. While

it is expected that this error would result in a severe reduction in the PID efficiency,
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the data acquisition system is inhibited. In this way, the ratio of the inhibited scaler

and free running scaler determines the livetime.

4.3.4.3 Data acquisition software: Acqu

Acqu is a C++ based data acquisition framework, developed by John Annand (MAMI

A2 collaborator, from University of Glasgow), which is used to control event readout

for the CB-TAPS detector system. It comprises two main components, AcquDAQ and

AcquRoot. When a trigger condition is satisfied, the ADC and TDC information of

all detector elements is read out. To accomplish this, AcquDAQ uses a large network

of slave VME CPUs to control data acquisition of sub-components of the CB-TAPS

system. A single computer, running AcquRoot, collects and merges multiple data

streams across a network connection. During data taking, AcquRoot is responsible

for the data merging. Post data taking, AcquRoot can also unpack and analyse data

offline.



Chapter 5

Event Reconstruction

The following chapter outlines the event reconstruction applied for this analysis. Sec-

tion 5.1 outlines the two pieces of software used for event reconstruction, (1) Acqu-

Root, which decodes raw ADC and TDC information into particle tracks, and (2)

GoAT, which performs particle identification and data sorting. Section 5.2 outlines

the calibration process, necessary to convert raw ADC and TDC information into

energy and time. Finally, section 5.3 outlines the process of determining the degree

of photon polarisation.

5.1 Software

When an event passes the trigger condition, the ADC and TDC information from

each component of the detector system is read out and stored for offline analysis.

AcquRoot, part of the Acqu analysis framework designed by John Annand, unpacks

raw data into particle tracks which can be analysed. An extension to the standard

Acqu framework, known as GoAT, was developed for this analysis. GoAT provides

particle identification, event selection, and also provides an option to perform physics

reconstructions. Although GoAT was developed (by the author) for this analysis, it

provides comprehensive particle reconstruction up to 1.6 GeV and has been adopted

as the standard method for analysis using the CB-TAPS detector system.

5.1.1 AcquRoot

AcquRoot is a C++ based analysis framework which analyses data from the CB-TAPS

detector system. AcquRoot is built upon ROOT, an object-oriented framework de-

veloped at CERN which has become a standard for experimental physics analyses.

AcquRoot contains a hierarchy of classes which first decode the ADC and TDC in-

formation of the CB-TAPS detector system to form hits in the individual detector

elements. These hits contain the energy and timing information associated with an

62
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element of the detector system. A clustering algorithm is applied to the hits within

the NaI and BaF2 detectors. The cluster information, and the hit information from

the Veto wall, the PID, and the MWPCs are then linked to form particle tracks. A

special C++ class, TA2GoAT, was designed to store the output from AcquRoot into

ROOT trees, a useful storage format which retains event-by-event information. This

output is used as the input for GoAT.

5.1.1.1 Decode Hits

As discussed in Section 4.3, the individual detector elements of the CB-TAPS detector

system are each coupled to an individual PMT. The signal from each PMT is then

fed into an analog-to-digital converter, ADC, and a time-to-digital converter, TDC.

An ADC and TDC stores a digital value proportional to the energy and time of the

analog signal respectively. These digital values are discretized into ADC or TDC

channels. An ADC or TDC channel can be converted by,

E = aE(C - P), T = aT(C - O), (5.1)

where C is the digital ADC or TDC channel, P is the pedestal channel of the ADC,

and O is the offset channel of the TDC. A linear energy and time gain factor, aE

and aT respectively, are needed to convert the digital values into energy and time.

These gain factors, as well as the pedestal or offset channel, must be determined

through calibrations, discussed in Section 5.2. For each ADC and TDC, a low and

high software threshold is applied. A hit is formed when both the ADC and TDC

for a detector element pass the thresholds simultaneously. Shown in Table 5.1 is an

example set of parameters for a single BaF2 crystal in TAPS. The ADC and TDC

distributions for the example channel are shown in Figure 5.3.

5.1.1.2 Cluster Hits

Both the Crystal Ball and TAPS are highly segmented detectors. Due to this seg-

mentation, particles — especially photons, which deposit energy via electromagnetic

showers — will tend to deposit energy across multiple crystals. For this reason, a clus-

tering algorithm is applied to the hits pattern. Clusters are formed by first searching

for the hit with the highest deposited energy. This hit becomes the central crystal of
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CB and 7 for TAPS. A cluster energy is determined by summing the energies of the

composite crystals. A cluster threshold is then applied to all clusters such that any

clusters which fall below a minimum energy deposition are discarded. For both the

Crystal Ball and TAPS, a 15 MeV cluster threshold has been applied.

5.1.1.3 Particle tracks

Particle tracks are formed by linking cluster information, from either CB or TAPS,

to hits detected in the charged particle detectors. In the case of the Crystal Ball, hits

in the PID or MWPC are linked with clusters in the NaI. In the case of TAPS, hits

in the Veto wall are linked with clusters in the BaF2.

For the Crystal Ball, angular cuts are used to form particle tracks. The PID de-

tector only provides information about the azimuthal scattering angle (φ) of particle

tracks. Therefore, a φ-difference is used to link hits in the PID and clusters in the NaI,

or hits in the PID and MWPCs. The resulting distributions are shown in Figure 5.2a

and 5.2b respectively. For this analysis, angular cuts of ∆φPID - NaI = [-20◦, 20◦] and

∆φPID - MWPC = [-50◦, 50◦] were applied. As the MWPCs can provide information

about the particle’s azimuthal (φ) and polar (θ) scattering angles, a vector-angle is cal-

culated between hits in the MWPCs and clusters in the CB. The resulting distribution

is shown in Figure 5.2c. For this analysis, an angular cut of ∡MWPC - NaI = [0◦, 20◦]

was applied. By linking the MWPCs and PID, it is possible to form particle tracks

which do not involve a cluster in the NaI. This can provide significant improvement

in the detection of low-energy charged particles which may not be detected by the

CB.

For TAPS, linking between the BaF2 clusters and hits in the Veto wall is compara-

tively easier than the Crystal Ball. As discussed in Section 4.3.2.1, each BaF2 crystal

has a dedicated Veto scintillator shaped to match a BaF2 crystal. To form particle

tracks, hits in Veto scintillators directly in front of a BaF2 cluster are linked together.

Once particle tracks have been formed, the particles are added to a particle class

in AcquRoot. The energy of the particle track is taken to be the cluster energy, which
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Figure 5.2: The angular distributions between PID hits, MWPC hits, and NaI clusters
are shown. Angular cuts are used to determine which detector information is linked
to form particle tracks. For this analysis, angular cuts of ∆φPID - NaI = [-20◦, 20◦],
∆φPID - MWPC = [-50◦, 50◦], and ∡MWPC - NaI = [0◦, 20◦] were applied.

was determined as the sum of the individual hit energies,

Etrack =
∑

hits

Ei . (5.2)

For particle tracks which do not involve a cluster — only possible for PID-MWPC

combinations — a zero energy is stored. The time is taken to be the time of the

central crystal of the cluster. Again, in cases which do not involve a cluster, a zero

time is stored. An energy weighted algorithm determines the angle of the particle

track. The position of each NaI or BaF2 crystal, ~r, is well known and a weighted

track vector, ~rtrack, is determined by,

~rtrack =
∑

hits

~ri
√

Ei . (5.3)
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The angular position, θ and φ, of the particle track are taken from the weighted track

vector. Determining the particle track’s position using an energy weighted position,

it is possible to achieve an angular resolution better than a single crystal size. For

particle tracks which do not involve a cluster, at least one MWPC must be involved.

In these cases, θ and φ are taken from the MWPC track information.

5.1.1.4 TA2GoAT - Output to ROOT trees

Historically, within the MAMI A2-Collaboration, AcquRoot has been used as a com-

plete physics analysis program. Users could implement a C++ based physics class

which had access to all event information, including particle tracks. Within this

physics class, particle identification and meson reconstruction would be completed

followed by a physics analysis. Although functional, this method was relatively in-

flexible.

Rather than perform a complete physics analysis within AcquRoot, AcquRoot

stores the event information as a ROOT tree to be further analysed. A C++ class,

TA2GoAT, was designed for this purpose. Particle tracks are collected from the

Crystal Ball and TAPS. Parameters for each particle track — including energy, time,

and angular information — are stored. Additionally, event information related to the

trigger, detector hits, Tagger, and photon polarisation is stored. This output is used

as the input for GoAT.

5.1.2 GoAT

GoAT — Generation of Analysis Trees — is a C++ based analysis framework which

is an extension of AcquRoot. ROOT trees, output by AcquRoot, containing full

event-by-event information are used as input. Using these trees, GoAT provides

methods for particle identification, meson reconstruction, and data sorting. Within

GoAT, particle identification is done in two stages: first, individual particle tracks are

identified, and second, particle tracks are combined to reconstruct mesons. Finally,

data can be sorted to select specific particles and energy ranges and event information

is stored in ROOT trees designed for physics analysis.
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5.1.2.1 Particle identification

As a first step to particle identification, individual particle tracks are identified. As

discussed in Section 4.3, the CB-TAPS detector system provides a multitude of dif-

ferent methods for charged particle identification. A ∆E/E cut, discussed in detail

in Section 4.3.1.2, can be used to identify protons, electrons and charged pions for

both the Crystal Ball and TAPS. Alternate methods, such as time of flight (TOF) or

pulse shape analysis (PSA) can also be used for TAPS. Neutral particles (photons and

neutrons) can be identified by their lack of energy deposition in any charged particle

detector. Separation of photons and neutrons can be accomplished through PSA and

TOF for TAPS. Separation of photons and neutrons is considerably more difficult

for the Crystal Ball, which cannot make use of PSA or TOF. One possible method

of separation is a cut on the cluster size of the particle track. Photons will tend to

deposit energy across multiple crystals, resulting in a higher cluster size. Neutrons

however will tend to deposit their energy within a few crystals. Thus, a cut placed

on the cluster size can act as tool to separate photons and neutrons.

Although complex particle identification is possible within GoAT, a simplified

approach was adopted for this analysis. Rather than particle identification, all particle

tracks were categorised as either charged or neutral. An energy deposition in any

charged particle detector — PID, MWPC, or Veto — was used to mark a particle track

as charged. A pseudo particle, known as a rootino, was used to label and store these

unidentified charged tracks. All other tracks, those without any energy deposition in

charged particle detectors, were marked as neutral and stored as photons.

5.1.2.2 Meson reconstruction

All mesons are unstable and decay within a very short time, much too fast to be

detected directly within the Crystal Ball or TAPS. Instead, their presence must be

inferred by examining the decay products which are detected. Once individual par-

ticle tracks have been identified, GoAT provides a method to reconstruct meson de-

cays. Below 1.6 GeV, the maximum incident photon energy possible with the MAMI

electron accelerator, meson production is dominated by three mesons: π0, η, and η′

mesons. Therefore, meson reconstruction within GoAT focuses on these three mesons.
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Although not directly detected, a meson can be inferred by determining the in-

variant mass of the sum of the detected decay particles. For a particle with an energy,

E, and momentum, ~p, the invariant mass, m, is given by,

m =
√

E2 − ~p 2, (5.4)

Similarly, an invariant mass can be determined for a system of particles,

m =
√

(E1 + E2 + · · ·+ En)2 − (~p1 + ~p2 + · · ·+ ~pn)2, (5.5)

To deal with complicated meson decays, two different invariant masses are calculated,

mπ-test and mη-test, given by,

m =

√

√

√

√

(

∑

tracks

Ei

)2

−

(

∑

tracks

~pi

)2

, (5.6)

where,

{

mπ-test : i 6= proton, neutron, charged pion, electron

mη-test : i 6= proton, neutron

}

.

For mπ-test, designed to test for pion decays, particle tracks identified as protons or

neutrons are ignored as they are assumed to be target recoils. Additionally, particle

tracks identified as charged pions or electrons are ignored as π0 decays involving

charged particles are extremely uncommon. As charged meson decay is common for

η and η′ mesons, only protons and neutrons are ignored when calculating mη-test.

A weighted invariant mass, m, is then calculated for each meson using a unique

weighting factor. This is given by,

mπ0 =
|mπ-test −mπ0 |

ωπ0

, mη =
|mη-test −mη|

ωη

, mη′ =
|mη-test −mη′ |

ωη′
. (5.7)

For this analysis, the following weighting factors were adopted,

ωπ0 = 20 MeV, ωη = 44 MeV, ωη′ = 66 MeV. (5.8)

Finally, a cut is placed on each weighted invariant mass, requiring,

mmeson ≤ 1. (5.9)

This cut essentially acts as an invariant mass cut, requiring that mmeson is within

a window defined by mmeson ± ωmeson. If two weighted invariant masses pass this
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condition simultaneously, the smallest of the two is accepted. If these conditions are

met, a meson is reconstructed and stored.

If no meson is reconstructed, a secondary meson reconstruction is possible. Due

to the dominance of 2γ decay modes for π0 and η mesons, a two particle invariant

mass is constructed. For two particles, i and j, the invariant mass can be written,

mij =
√

(Ei + Ej)2 − (~pi + ~pj)2, (i 6= j), (5.10)

where,

{

i 6= proton, neutron, charged pion, electron

j 6= proton, neutron, charged pion, electron

}

.

A two particle invariant mass is computed for all possible i, j pairs. Again, a weighted

invariant mass is computed as outlined in Equation 5.7 and a weighting factor is

applied as in Equation 5.8. A cut on the weighted invariant mass is applied, as in

Equation 5.9. If more than one particle pair satisfies this cut, the list of accepted

pairs is sorted by their weighted invariant mass values. Iterating through the list, pairs

with the smallest weighted invariant mass are accepted first. However, each particle

index is included only once. If these conditions are met, a meson is reconstructed and

stored.

As mesons are reconstructed from multiple particle tracks, the meson information,

such as energy, and angle, is a combination of the particle tracks. The energy, E, and

momentum, ~p, of a reconstructed meson are given by,

Emeson =
∑

tracks

Ei , ~pmeson =
∑

tracks

~pi . (5.11)

The angular position, θ and φ, of the meson are are taken from the meson momentum

vector. Finally, the time associated with the meson is taken as the average time of

all particle tracks.

5.1.2.3 Data sorting

Once particle identification and meson reconstruction is complete, event-by-event

information is stored into ROOT trees. These ROOT trees are designed to be used for

a physics-based analysis, and contain full event information. This data sorting, if used,

acts as a preliminary event selection. For this analysis, two unique sorting conditions
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were applied. A first sorting criteria was applied to select Compton Scattering events.

Under this first selection criteria, events were accepted if there was exactly 1 photon

and 1 rootino reconstructed, with no other particles or mesons reconstructed in the

same event. A second sorting criteria was applied to select π0-photoproduction events.

Under this second selection criteria, events were accepted if there was exactly 1 π0, and

either 0 or 1 rootino reconstructed, with no other particles or mesons reconstructed

in the same event. Events passing these conditions were stored in ROOT files to be

analysed.

5.2 Detector Calibrations

As discussed in Section 5.1.1.1, an ADC and TDC stores a digital value proportional

to the energy and time of the analog signal respectively. As outlined in equation 5.1,

a gain factor and an offset, or pedestal, are needed to convert the digital values into

energy and time. These gain factors, as well as the pedestal and offset channel, must

be determined through calibrations.

5.2.1 a2CaLib

A program developed by the University of Basel, a2CaLib, is used to calibrate data

for the CB-TAPS detector system. AcquRoot, previously discussed in Section 5.1.1,

first decodes hits, clusters hits together, and creates particle tracks. As calibration

parameters are needed to decode the raw hit information, an initial set of calibration

parameters is used. Within AcquRoot, a C++ based physics class, TA2MyCaLib,

collects particle track information and creates a set of calibration histograms. These

histograms are then used by a2CaLib to determine a new set of calibration parameters.

For some calibratons, parameters are determined from the analysis of many detector

elements at once. Because of this, the calibration process is sometimes iterative.

5.2.2 ADC pedestals and TDC offsets

For each ADC and TDC, a pedestal and offset channel must be calibrated. These

calibrations are done by fitting the raw ADC and TDC distributions. Shown in

Figure 5.3 are example ADC and TDC distributions for a single BaF2 crystal. The
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distributions shown correspond to the ADC and TDC discussed in Table 5.1. The

ADC pedestal channel appears as a sharp peak below the main signal and the TDC

offset channel is fitted such that the timing peak would be centered on zero. For the

example channel shown below, the ADC pedestal channel and TDC offset channel

were determined to be 102.15 and 2957.27 respectively.
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Figure 5.3: Example set of ADC and TDC distributions for a single BaF2 crystal
in the TAPS detector. An ADC pedestal channel and TDC offset channel were
determined to be 102.15 and 2957.27 respectively. The example BaF2 crystal shown
here corresponds to the same example crystal used in Table 5.1.

Fitting of the ADC pedestals and TDC offsets must be done for each BaF2 crystal,

Veto element, and PID scintillator. However, for NaI crystals in the Crystal Ball,

ADC pedestals are not calibrated. Instead, sampling ADCs are used in the place of

conventional ADCs. Along with providing a digital measurement of the signal region,

sampling ADCs provide a measurement of the pedestal region simulatanously. Using

this approach, the pedestals are actively measured and need not be calibrated. As the

pedestal has already been substracted, the pedestal channel, P, of each NaI crystal is

assumed to be zero in equation 5.1.

5.2.3 Time calibrations

Time calibrations were performed to align the time signatures of each detector element

of the NaI, PID, BaF2, and Veto wall. For the PID and Veto wall, the time of each

hit was plotted for each detector element. For the NaI and BaF2, the times for
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each detector were extracted from all reconstructed clusters. As discussed in Section

5.1.1.3, the cluster time is equal to the central crystal of a cluster. Thus, for the NaI

and BaF2, the cluster time was plotted as a function of the central crystal.

Figure 5.4 shows example time distributions for a single detector element in the

NaI, PID, BaF2, and Veto wall. Two-dimensional histograms, shown in Fig. 5.5,

show the distribution for all detector elements. In all cases, the gain factors and

TDC offsets were calibrated such that the peak of the time distribution is centered

upon zero.
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Figure 5.4: The timing distributions of NaI clusters, PID hits, BaF2 clusters, and Veto
hits are each shown for an example detector element. Each distribution is calibrated
such that the peak is aligned to zero.
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Figure 5.5: The timing distributions of NaI clusters, PID hits, BaF2 clusters, and
Veto hits are each shown as a function of detector element. After calibration, all
timing distributions are aligned to zero.

5.2.4 Energy calibrations

Energy calibrations were performed to ensure that the energy response of all crystals

in the Crystal Ball and TAPS was uniform. A two particle invariant mass, mij, is

calculated from all particle track pairs, given by,

mij =
√

(Ei + Ej)2 − (~pi + ~pj)2, (i 6= j). (5.12)

Due to the dominance of single π0 photoproduction, the two-particle invariant mass

will show a distinctive peak near the π0 rest mass, at roughly 135 MeV. Calibration

of the NaI energies was done using particle pairs where both particle tracks were

detected in the Crystal Ball. The energy gain of both central crystals was calibrated

such that the peak of the invariant mass distribution would be 135 MeV, or mπ0 . As

the invariant mass involves two particle tracks, each of which involves NaI crystals
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beyond the central crystal, this approach requires many iterations to calibrate the

energy. After each successive calibration, the peak position of the invariant mass

converges closer to the expected π0 mass. In total, 20 iterations of the CB energy

calibration were completed. Figure 5.6a shows an example invariant mass distribution

for a single detector element in the NaI. A two-dimensional histogram, shown in 5.6b,

shows the distribution for all NaI crystals. For all crystals, the gain factors were

calibrated such that the peak of the invariant mass distribution is centered upon the

pion mass, mπ0 . After the calibration of all NaI crystals, the energy of BaF2 crystals

was calibrated using the same method. For BaF2 crystals, calibration was done using

particle pairs where one particle track was detected in the Crystal Ball and the other

was detected in TAPS. Invariant mass distributions for a single BaF2 crystal, and all

BaF2 crystals, are shown in Figures 5.6c and 5.6d respectively.
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Figure 5.6: The invariant mass distribution of NaI and BaF2 clusters is shown. A
two particle invariant mass is used to calibrated the energy crystals. Each crystal is
calibrated such that the invariant mass peak is aligned to the pion mass, mπ0 .
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5.3 Determination of photon polarisation

A polarised photon beam was produced via coherent bremsstrahlung production on

a diamond radiator. This linearly polarised photon beam was polarised in two polar-

isation settings, referred to as “para” or “perp”, with polarisation planes seperated

by 90◦. This process was described in detail in Section 4.1.2.2. For photons produced

through coherent Bremsstrahlung production, the degree of polarisation is a relatively

complex function of the diamond’s lattice structure and the bremsstrahlung photon’s

energy. A fitting routine, designed by Ken Livingston (MAMI A2 collaborator, from

University of Glasgow), was used to determine the degree of photon polarisation.

The degree of photon polarisation was determined from daily tagging efficiency

measurements. During these measurements, the current of the incident electron beam

was reduced such that the rate of photons on the Pb-glass detector was 105 photons

per second. For each tagging efficiency, a background measurement was made at the

beginning and end of the tagging efficiency set. During these background measure-

ments, no electron beam was incident upon the radiators. While this contribution

was small, the background measurements are still subtracted from the tagging effi-

ciency runs. A 30 minute tagging efficiency run was performed for each polarisation

orientation using the 30 µm diamond radiator and an amorphous run was performed

using the 10 µm Copper radiator. A tagging efficiency, previously given in equation

4.19, can be calculated for each Tagger channel by,

ǫTagg(i) =
NTagg(i)

Ne−(i)
,

where, Ne− is measured from free running scalers attached to each tagger channel,

and NTagg is the number of electrons measured from each tagger channel triggered

by the lead glass detector. In total ten tagging efficiency measurments were taken.

The unpolarised tagging efficiency, measured using the Copper radiator, is shown in

Figure 5.7a. A roughly uniform tagging effiency of 30% was measured for all tagging

efficiency channels, and all tagging efficiency sets. The polarised tagging efficiencies,

measured using the diamond radiator, are shown for each polarisation orientation in

Figures 5.7b and 5.7c. A clear enhancement in the tagging efficiency, which is most

predominant in the energy region between 200 MeV and 300 MeV, is expected. This

occurs in regions of increased photon polarisation due to the characteristic angle of
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the coherent bremsstrahlung distribution, which is more forward peaked for highly

polarised photons.

An enhancement, R, can be calculated for each Tagger channel by,

R(i) =
NTagg(i) coherent

NTagg(i) incoherent

, (5.13)

where NTagg(i) coherent and NTagg(i) incoherent are the number of electrons measured in a

tagger channel using the diamond and copper radiator respectively. An enhancement

was determined for each polarisation orientation, “para” and “perp”. The resulting

enhancements are shown in Figure 5.8. All ten measurements are in general agreement

with one another, however a close-up view of the energy range between 270 MeV and

350 MeV shows a significant spread in the reconstructed enhancements. This effect

is directly related to the position of the coherent edge, which varies slightly for each

tagging efficiency measurement. The coherent edge, given previously in equation

4.10, is highly sensitive to slight variations in the orientation of the diamond’s lattice

structure within the electron beam.

A fitting routine, designed by Ken Livingston, has been developed to model the

coherent bremsstrahlung distribution. A complete discussion of the fitting algorithm

is presented in [56]. The fitting routine attempts to model the coherent contribu-

tion from the two primary reciprocal lattice vectors, [022] and [[044]]. Experimental

parameters which can be fixed, such as the incident electron energy and collimator

diameter, are fixed for the fitting routine. The enhancement distributions are first

normalised to 1 at the lowest photon energy. After this, the fitting routine uses

a MINUIT minimization function to fit the enhancement distribution. A gaussian

smearing accounts for parameters which cannot be measured, including beam diver-

gence and the effect of multiple scattering in the radiator. The parameters of the

gaussian smear is determined by fitting to data.

The enhancements and resulting fits, for a single tagging efficiency measurement,

are shown in Figure 5.9. For both polarisation orientations, “para” and “perp”, the

fitting routine provides good reconstruction of the enhancement distribution up to

roughly 450 MeV. Beyond this energy, higher order reciprocal lattice vectors, [066]

and higher, would need to be included in the MINUIT fit. However, the contribution

of higher order lattice vectors to the primary polarisation peak is negligible and

therefore they have not been included.
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(a) Tagging efficiency - Unpolarised Copper radiator
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(b) Tagging efficiency - Polarised Diamond radiator (para)
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(c) Tagging efficiency - Polarised Diamond radiator (perp)

Figure 5.7: Unpolarised and polarised tagging efficiencies are shown for ten tagging
efficiency measurements taken during the run period. For unpolarised photons, a
tagging efficiency of roughly 30 % was measured. For polarised photons, an enhance-
ment in the tagging efficiency is observed in regions of high photon polarisation. Low
efficiency regions reflect the location of a few damaged PMTs of the Tagger.
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(a) Enhancement (para)
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(b) Enhancement (para): (270-350) MeV
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(c) Enhancement (perp)
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(d) Enhancement (perp): (270-350) MeV

Figure 5.8: Polarisation enhancements are shown for ten daily tagging efficiency
measurements. An enhancement distribution, along with a close-up view of the energy
range 270 MeV to 350 MeV, is shown for each polarisation orientation, para and perp.
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(b) Enhancement and fit (perp)

Figure 5.9: Polarisation enhancements and the resulting fits are shown for a sin-
gle tagging efficiency measurement, set 0. The fit line, shown in red, shows good
agreement with the enhancement distribution up to 450 MeV.
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(a) Polarisation (para)
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(b) Polarisation (para): (270-350) MeV
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(c) Polarisation (perp)
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(d) Polarisation (perp): (270-350) MeV

Figure 5.10: Polarisation distributions, determined from fitting the enhancement dis-
tributions, are shown for ten daily tagging efficiency measurements. A polarisation
distribution, along with a close-up view of the energy range 270 MeV to 350 MeV, is
shown for each polarisation orientation, para and perp.

Once an enhancement distribution has been fit, a model of the coherent bremm-

strahlung distribition can be used determine the degree of polarisation (see equation

4.15). The fitting routine is repeated for each tagging efficiency set and the resulting

degree of polarisation for each set is shown in Figure 5.10.

Similar to the enhancement distributions, the polarisations derived from the fitting

algorithm for each tagging efficiency measurement are in general agreement with

one another. However a close-up view of the energy range between 270 MeV and

350 MeV shows a significant spread in the reconstructed polarisations. Again, this

effect is directly related to the position of the coherent edge, which varies slightly

for each tagging efficiency measurement. For energies below roughly 300 MeV, the

spread in the polarisations from each tagging efficiency set is approximately 10%.

However, as the polarisation drops off rapidly at the coherent edge position, the
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polarisation predicted by each tagging efficiency set differs by up to 60% in the region

near 310 MeV.

In Figure 5.10, the polarisation distributions show a significant spread related

to the position of the coherent edge during each tagging efficiency measurement.

Once an enhancement distribution has been fit, however, it is possible to produce

a polarisation distribution for any coherent edge position. Figure 5.11 shows the

resulting polarisation distributions generated for two edge positions, 300 MeV and

320 MeV. For a specific coherent edge, the spread in the polarisations from each

tagging efficiency set is less than 1% within the primary polarisation peak. Thus, a

polarisation distribution — produced for a known coherent edge position – is relatively

independent of the tagging efficiency set used. The spread in polarisation values is

still significant in the secondary polarisation peak. Modelling the contribution of the

[066] and [088] reciprocal lattice vectors would improve the reconstructed polarisation

for this higher energy region.

During the run period, a nominal coherent edge position of 310 MeV was set.

However, the edge position is highly sensitive to small changes in the orientation of

the crystal lattice. These changes can occur if the diamond radiator shifts, and can

also occur due to normal drifting of the electron beam. It is, therefore, normal for the

coherent edge position to drift with time. To determine the degree of polarisation with

a high degree of accuracy, an active determination of the edge position is necessary.

Every 1000 events, an enhancement distribution is calculated and the position of the

coherent edge is determined. The enhancement, given previously in equation 5.13,

requires the incoherent contribution to be known. During the run period, 60 minutes

of unpolarised data were taken daily with the 10 µm Copper radiator and used to

model this incoherent contribution. Figures 5.12a and 5.12c show an example of

the edge position for 2 million events, which corresponds to roughly 30 minutes, for

each polarisation orientation. Figures 5.12b and 5.12d show the reconstructed edge

position for all data taken during the run period.

Without such an active edge determination, the uncertainty in the degree of po-

larisation would be at least 10%, as demonstrated in Figure 5.10. However, for active

edge fitting, estimating the true uncertainty in the polarisation is relatively difficult.
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(a) Edge 300 MeV (para)
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(b) Edge 300 MeV (para): (270-350) MeV
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(c) Edge 320 MeV (perp)
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(d) Edge 320 MeV (perp): (270-350) MeV

Figure 5.11: Polarisation distributions, determined from fitting the enhancement dis-
tributions, are shown for two coherent edge positions, 300 MeV and 320 MeV. A
polarisation distribution, along with a close-up view of the energy range 270 MeV to
350 MeV, is shown for each coherent edge position.

For active edge fitting, there are three main sources of error: (1) errors in the en-

hancement fitting routine, (2) errors resulting from the choice of the tagging efficiency

set used to model the coherent bremsstrahlung distribution, and (3) the error in the

coherent edge position. First, an error in the enhancement fitting routine will pro-

pogate through to become an error in the final degree of polarisation. In Figure 5.9,

it was shown that the fitting algorithm produces a very good representation of the

enhancement data. In general, errors in the enhancement are roughly 1%. The rela-

tionship between an error in the enhancement, ε, and an error in the polarisation, P,

is given by [56],
∆P

P
=

1

(ε− 1)
×

∆ε

ε
(5.14)

According to equation 5.14, a 1% error in an enhancement, with an enhancement value

of 2.5, results in an error below 1%. Second, a single tagging efficiency measurement
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(c) Example edge reconstruction (perp)
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Figure 5.12: The distribution of coherent edge positions from active fitting is shown.
The edge position for 2 million events, along with the reconstructed edge position for
all data taken during the run period, is shown for both polarisation settings.

is used to model the coherent bremmstrahlung distribution. An error can be defined

which estimates the dependence of the final polarisation on the tagging efficiency

measurement. However, in Figure 5.11, it was shown that the polarisation is relatively

independent of the tagging efficiency set used, resulting in an error less than 1% within

the primary polarisation peak. Finally, the third source of error in the polarisation

is the fitting of the coherent edge position. Unfortunately, it is relatively difficult to

assign an uncertainty to the position of the coherent edge. In Figures 5.12a and 5.12c,

two examples of the edge reconstruction were shown. If the edge position fitting was

not very accurate, one would expect the edge position to experience artificial jumps

and edges. However, in both cases, a gradual oscillation of the edge position was

observed. Specifically, small changes in the edge position, changes of much less than



84

1 MeV, are reconstructed smoothly. Figure 5.13 shows the polarisation distributions

for a nominal setting of 310 MeV with pertubations of either 1 MeV, 2 MeV or 3

MeV. Assuming the coherent edge could be fit with an uncertainty of 1 MeV, an

error in the polarisation of 1% would be expected. This is derived from the spread in

the polarisation values. Similarly, an uncertainty in the edge position of 2 MeV or 3

MeV would propogate to give an error in the polarisation of 2% and 3% respectively.

Due to the smooth edge reconstruction, which shows oscillations with structure below

1 MeV, an uncertainty in the edge position between 1 MeV and 2 MeV is expected.

A maximum uncertainty in the polarisation (∆P/P), from all three sources of error,

can be estimated to be 2-3%.
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(b) Coherent edge ±1 MeV: (270-350) MeV
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(c) Coherent edge ±2 MeV
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(d) Coherent edge ±2 MeV: (270-350) MeV
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Figure 5.13: Polarisation distributions are shown at a nominal setting of 310 MeV
with pertubations of 1 MeV, 2 MeV or 3 MeV. A close-up view of the energy range
270 MeV to 350 MeV shows a polarisation shift of 1%, 2%, and 3% respectively.



Chapter 6

Analysis

6.1 Overview

In chapter 4, experimental conditions for a December 2012 run period at the MAMI

tagged photon facility were presented. This run period will be used to study the beam

asymmetry, Σ3, for Compton scattering and π0 photoproduction. The Σ3 asymmetry

is a single polarisation observable which connects the polarised and unpolarised cross

sections for linearly polarised photons incident upon unpolarised protons,

dσ

dΩ
(θ, φ, E) =

dσ

dΩ
(θ, E)[1 + pγΣ3 cos(2φ+ φo)]. (6.1)

In the equation above, pγ is the degree of linear polarisation, and φo is a polarisation

offset related to the orientation of the polarisation plane. If the unpolarised cross

section is well known, the beam asymmetry can be determined by fitting a cos(2φ)

distribution to the polarised cross section. It is possible, however, to determine the

beam asymmetry without knowledge of the unpolarised cross section by measuring

polarised Compton scattering, or π0 photoproduction, with two polarisation settings

(“para” and “perp”), which have polarisation planes separated by 90◦. During the

run period, this is accomplished by shifting the orientation of the diamond radiator.

Using this approach, the beam asymmetry can be defined by the relation,

Σ3(θ, φ, E) cos(2φ+ φo) =
σ⊥(θ, φ, E)− σ‖(θ, φ, E)

pγ⊥σ⊥(θ, φ, E) + pγ‖σ‖(θ, φ, E)
. (6.2)

A fit of the form A ∗ cos(2φ + φo) to the asymmetry distribution is used to extract

Σ3(θ, E), where the amplitude of the fit (A) corresponds to Σ3(θ, E). Using yields, as

opposed to complete cross sections, is possible if the incident photon flux is properly

accounted for. In general, the photon flux can be given by,

Fγ = Ne− × ǫDAQ × ǫTagg, (6.3)

86
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where Ne− is the incident electron flux, ǫDAQ is the livetime of the data acquisition

system, and ǫTagg is the tagging efficiency. In this case, the detection efficiency terms

cancel and the beam asymmetry can be defined,

Σ3(θ, φ, E) cos(2φ+ φo) =
N⊥(θ, φ, E)− F ×N‖(θ, φ, E)

pγ⊥N⊥(θ, φ, E) + F × pγ‖N‖(θ, φ, E)
, (6.4)

where F is the ratio of the photon fluxes, (Fγ⊥/Fγ‖). Although the incident electron

flux and livetime of the data acquisition system can be accounted for, the tagging effi-

ciency is relatively difficult to incorporate. In Figures 5.7b and 5.7c, the results of ten

daily tagging efficiency measurements were shown for each polarisation orientation.

Small variations in the tagging efficiency, related to the position of the coherent edge,

are seen in the polarised tagging efficiency measurements. Similar to the degree of

photon polarisation, drifting of the coherent edge results in a tagging efficiency which

is non-constant. The Σ3 asymmetry, integrated over all φ, equals zero. It is therefore

possible to determine the correction factor, F , by requiring that the integral of the

asymmetry defined in equation 6.4 is equal to zero,
∫

φ

Σ3(θ, φ, E)dφ = 0 =

∫

φ

N⊥(θ, φ, E)− F ×N‖(θ, φ, E)

pγ⊥N⊥(θ, φ, E) + F × pγ‖N‖(θ, φ, E)
dφ, (6.5)

In practice, the correction factor F can simply be iterated to find a value of F which

produces an asymmetry with an integral of zero. Using this approach, it would not

be necessary to have direct knowledge of the photon flux corrections. Rather, a

correction factor would be calculated for each energy and theta bin. Assuming the

flux of electrons and the position of the average coherent edge is relatively equal for

each polarisation setting, the correction factor will be close to 1.

Although the focus of this dissertation is the study of Compton scattering within

the ∆(1232) region, a detailed study of π0 photoproduction will also be presented.

Within the ∆(1232) energy range, π0 photoproduction is the dominant source of

background for Compton scattering. This large background introduces a significant

challenge when studying Compton scattering. However, the relatively large cross

section and background-free signal makes π0 photoproduction a useful reaction for

systematic tests of the experimental set-up and constraints upon the analysis. In

Section 6.2, Σ3 results for π
0 photoproduction are shown for an incident photon energy

range of 210 MeV to 307 MeV. In Section 6.3, Σ3 results for Compton scattering are

shown for an incident photon energy range of 267 MeV to 307 MeV.
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6.2 π0 photoproduction

6.2.1 Event selection

Sections 5.1.2.1 and 5.1.2.2 outlined the particle and meson reconstruction applied

for this analysis. From π0 mesons identified through this reconstruction, only those

produced from two photons are considered for this analysis. In addition to the π0,

a single charged particle track is allowed but not required. In the context of π0

photoproduction, this charged particle track would be assumed to be the recoil proton.

However, due to energy losses of the proton in the target, it is difficult to detect

the proton and therefore it is not required. In Figure 6.1, an example invariant

mass distribution for reconstructed π0 mesons from this run period is shown. The

distribution shows a peak position at the mass of the π0. The sharp cut-off, seen at

115 MeV and 155 MeV, correspond to the invariant mass cut established by equation

5.7 and 5.8.
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Figure 6.1: An example invariant mass distribution for reconstructed π0 mesons.

Determination of the incident photon energy is accomplished through the process

known as tagging. This process involves measuring the energy of the retarded electron

in the Tagger, allowing the energy of the bremsstrahlung photon to be inferred. This

process is complicated by the relatively high electron beam current used during the

run period, which results in a large number of accidental/random hits in the Tagger.
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When a π0 meson is reconstructed, a time difference is calculated between the π0

and each hit in the Tagger. An example time distribution, shown in Figure 6.2,

shows a sharp time peak near zero along with a flat background distribution. The

peak region, known as the prompt peak, is associated with electrons which are in

timing coincidence with the reconstructed π0. The prompt peak sits on top of a flat

background, associated with random electrons. The ratio of the prompt peak to the

random background is roughly 6:1 for this run period. To determine the incident

photon energy, a cut on the timing coincidence of -20 ns and 15 ns is used to identify

prompt electrons. Two large windows, each 450 ns wide, are defined on either side of

the prompt peak and can be used to model the accidental/random contribution within

the prompt region. In Figure 6.2, the prompt and random time windows are shown

in blue and red respectively. For this analysis, time differences which fall outside of

the prompt and random windows are ignored.
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Figure 6.2: An example time distribution for reconstructed π0 mesons. A time dif-
ference between the π0 and each hit in the tagger is calculated. Cuts on the time
difference are used to identify prompt and random electrons. The prompt and random
windows are shown in blue and red respectively.

For any particle, a four momentum can be defined as,

~P = (E, px, py, pz) . (6.6)

For π0 photoproduction, the total energy and momentum of the initial system is
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defined as the sum of the incident photon and target proton’s four momenta. The

total energy and momentum of the final system is defined as the sum of the π0 and

recoil proton’s four momenta. Conservation of energy and momentum requires,

~Pγin +
~Ptarget = ~Pπ0 + ~Precoil (6.7)

By requiring a time coincidence between the π0 and hit in the tagger, the energy

of the incident photon can be determined. Due to the high electron flux, there will

typically be many π0-tagger hit pairs which need to be considered. If the target

proton is assumed to be at rest, the initial system is completely defined. The recoil

proton suffers from significant energy loss, and often goes undetected. If the proton is

ignored, or even undetected, a missing four momentum can be defined by re-arranging

equation 6.7 to solve for the recoil proton,

~Pmiss = ~Pγin +
~Ptarget − ~Pπ0 . (6.8)

A missing mass can then be defined in terms of the energy and momentum of the

missing four momentum by,

mmiss =
√

E2
miss − ~p 2

miss. (6.9)

If the missing vector corresponds to the recoil proton, the missing mass should equal

the mass of the proton. Due to detector resolution and energy losses, in experimen-

tal data, the missing mass will typically produce a gaussian distribution centered

upon the proton mass. The missing mass is calculated separately for prompt and

random tagger hits and the random contribution to the prompt missing mass can be

subtracted by,

msub = mprompt −R×mrandom, (6.10)

where R is the ratio of the prompt to random window sizes. Figure 6.3a shows an

example missing mass distribution for π0 mesons. The random distribution is shown

on top of the prompt distribution, scaled according R. A subtracted missing mass

is shown in 6.3b. After the random subtraction, the missing mass distribution is a

roughly gaussian distribution centered upon the proton mass. A final cut is applied to

the missing mass and only π0-tagger hit pairs with a missing mass between 900 MeV

and 1000 MeV are considered.
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(a) Missing mass: prompt (blue) and random (red)
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(b) Missing mass: prompt-random subtracted

Figure 6.3: Example missing mass distribution of π0 mesons. In figure (a), the prompt
and random distributions are shown together. A prompt-random subtracted missing
mass is shown in figure (b).
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6.2.2 Empty target contribution

During the run period, photons were incident upon an unpolarised liquid Hydrogen,

LH2, target. The liquid Hydrogen is contained within a cylindrical target cell, which

is surrounded by layers of insulating material. The contribution from all target ma-

terials, other than the liquid Hydrogen, can be subtracted using data taken with an

empty target cell. During the run period, a small amount of data were collected with

an empty target cell. Figure 6.4 shows an example missing mass distribution, includ-

ing an empty target subtraction. The empty target contribution has been scaled such

that the incident electron flux is equal for full and empty target data. Although the

empty target contribution is relatively small, the contribution within the region of

interest — 900 MeV to 1000 MeV — is non-negligible. Equation 6.4 can be modified

to reflect the empty target contribution. In this case, the beam asymmetry can be

defined,

Σ3(θ, φ, E) cos(2φ+ φo) =
N∗

⊥(θ, φ, E)− F ×N∗
‖ (θ, φ, E)

pγ⊥N∗
⊥(θ, φ, E) + F × pγ‖N

∗
‖ (θ, φ, E)

, (6.11)

where,

N∗(θ, φ, E) = N(θ, φ, E)Full target −N(θ, φ, E)Empty target (6.12)
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Figure 6.4: Example missing mass distribution of π0 mesons is shown. The full and
empty target missing mass distributions are showed in blue and red respectively, along
with an empty target subtracted distribution shown in green.
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6.2.3 Example calculation

For a given incident photon energy, E, and π0 angle, θ, the Σ3 asymmetry can be

determined by fitting φ-distributions calculated using equation 6.11. A fit of the form

A ∗ cos(2φ+B) is applied, where,

A = Σ3 B = φo. (6.13)

For a given θ and energy range, angular distributions over φ can be produced. For each

π0-tagger hit pair which passes the event selection criteria, outlined in Section 6.2.1,

a φ-distribution is filled separately for prompt and random electrons. As discussed in

Section 6.2.1, a prompt-random subtraction is necessary to eliminate the contribution

of accidental tagger hits. Beyond a prompt-random subtraction, it is also necessary

to perform an empty target subtraction. Shown in Figure 6.5 is an example φ-

distribution for each polarisation orientation. The φ-distributions shown correspond

to a θ range of 90◦ to 95◦, and an energy range of 246.93 MeV to 254.76 MeV. In

both cases, a random subtracted φ-distribution is shown for full target and empty

target data. Finally, the empty target contribution is subtracted from the full target.

This φ-distribution, including both prompt-random subtraction and empty target

subtraction, corresponds to N∗(θ, φ, E) given in equation 6.12.

As discussed previously, a correction factor F must be determined to account for

the incident photon flux (see equation 6.5). This correction factor forces the integral

of the asymmetry, over all φ, to be zero. For the φ-distributions shown in Figure 6.5,

an asymmetry is calculated for a wide range of correction factors. In each case, the

integral over all φ is calculated. Figure 6.6 shows the integral of the asymmetry as a

function of F . In the example shown, an integral of zero corresponds to a correction

factor of 0.920. With a correction factor determined, an example asymmetry can be

calculated according to equation 6.11. This is shown in Figure 6.7.

6.2.4 Determination of the polarisation offset, φo

An example calculation of an asymmetry was presented in Section 6.2.3. As mentioned

there, an asymmetry distribution can be calculated using equation 6.11 for a given θ

and energy range. A fit of the form A ∗ cos(2φ+B) can be applied to the asymmetry

distribution, where the fit parameter A gives Σ3 for that θ and energy range. The
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(a) φ-distribution: para
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(b) φ-distribution: perp

Figure 6.5: Example φ-distribution of π0 mesons is shown for a θ range of 90◦ to
95◦, and an energy range of 246.93 MeV to 254.76 MeV. A distribution is shown
for each polarisation orientation, (a) para, and (b) perp. The full and empty target
distributions are showed in blue and red respectively, along with an empty target
subtracted distribution shown in green.
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Figure 6.6: The integral of the asymmetry over all phi,
∫

Σ3dφ, is shown as a function
of the correction factor, F , for a θ range of 90◦ to 95◦, and an energy of 246.93 MeV
to 254.76 MeV. The correction factor for this angle and energy range is F = 0.920.
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Figure 6.7: Example asymmetry distribution of π0 mesons is shown for a θ range of 90◦

to 95◦, and an energy of 246.93 MeV to 254.76 MeV. A fit of the form A∗cos(2φ+B) is
applied, shown in red. An extraction of the fit parameter A determines the asymmetry
for this θ and energy range to be Σ3 = 0.318 ± 0.017.

fit parameter B, known as the polarisation offset, is related to the orientation of the

polarisation planes and should be independant of the theta and energy bin of interest.

For this reason, while the polarisation offset needs to be treated as a free parameter

for a dataset, it should not be treated as a free parameter for all energy and theta
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bins. Rather, a global offset parameter must be determined and then fixed for all

asymmetry bins. This is especially important for regions with low statistics, as B can

provide a false degree of freedom when not fixed.

Given the high cross section and relatively background-free signal, π0 photopro-

duction is the ideal reaction to determine the polarisation offset for this run period.

To fix the offset parameter, Σ3 is calculated for tagger channels 247 to 285. This

tagger channel range corresponds to the region of the primary polarisation peak and

covers an incident photon energy range of 211.0 MeV to 305.8 MeV. For each tagger

channel, an asymmetry distribution is calculated over all θ and fit with a fit of the

form A ∗ cos(2φ + B), where B is kept as a free parameter. The polarisation offset,

B, is then extracted and the resulting offset parameters are shown in Figure 6.8. Fi-

nally, a constant line is fit to the offset parameters and a global polarisation offset is

determined to be,

φo = (1.541± 0.001) radians = (88.293± 0.057)◦ (6.14)
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Figure 6.8: Polarisation offset parameters determined for π0 photoproduction as a
function of tagger channel. A constant line is fit to all points to extract a ”global”
polarisation offset. This fit produces a value of φo = 1.541 radians = 88.293◦.
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6.2.5 Results

The following section outlines the complete analysis of the December 2012 run period

to study the Σ3 asymmetry for π0 photoproduction within the ∆(1232) region. Figure

6.9 shows the available statistics in energy and θ. Each distribution, in energy and

θ, has had a prompt-random subtraction applied. The incident (tagged) photon

energy distribution shows a structure directly related to the polarisation distribution.

As discussed previously, regions of high polarisation have a correspondingly high

tagging efficiency. In Figure 6.9, the energy distribution appears as discrete bins of

energy because only the central energy of each tagger channel is displayed. A gap

in the energy distribution appears just above 260 MeV due to a set of broken tagger

channels.
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(d) Energy statistics: perp

Figure 6.9: Available π0 photoproduction statistics for the December 2012 run period.
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Previous studies of the Σ3 asymmetry for π0 photproduction have been performed

- both experimental and theoretical studies. An earlier measurement by Leukel, com-

pleted at the MAMI tagged photon facility, studied the Σ3 asymmetry over an incident

photon energy range of 240 MeV to 440 MeV [57]. In addition to studying the Σ3

for Compton scattering, the LEGS collaboration (discussed previously in chapter 3)

measured the Σ3 asymmetry for π0 photoproduction over an incident photon energy

range of 213 MeV to 333 MeV [4]. Three theoretical models will also be compared,

(1) the Dubna-Mainz-Taipei (DMT) model [58], (2) MAID model [59][60], and (3)

SAID model (CM12 solution) [26]. The treatment of background terms differs signif-

icantly between the models. The MAID model, for example, considers only Born and

vector meson exchange terms, combined with nucleon and Delta resonances (no pion

loop contribution is considered). By comparison, in the DMT model the pion loop

contributions are explicitly calculated. A full discussion of each model is presented

in the references cited and a comparison of DMT and MAID is presented in [61].

An example calculation of an asymmetry for a single θ and energy bin was pre-

sented in Section 6.2.3. This calculation involved producing an asymmetry distribu-

tion including a prompt-random subtraction, empty target subtraction, determination

of a photon flux correction factor F , and finally fitting the asymmetry distribution to

extract an asymmetry. In the example calculation, the φo offset was a free parameter,

however φo is now fixed by the result indicated in equation 6.14. For a given θ range,

an asymmetry can be extracted as a function of incident photon energy. Figures 6.10

through 6.13 show the resulting asymmetries for two sample theta ranges, (1) 60 to 65

degrees (lab angle), and (2) 90 to 95 degrees (lab angle). In both cases, a comparison

to LEGS and Leukel data is shown, as well as to theoretical predictions. Figures 6.10

and 6.11 show the Σ3 asymmetry as a function of incident photon energy, with a fixed

θ range. It is also possible to examine the Σ3 asymmetry as a function of π0 scattering

angle, for a fixed incident energy range. Figure 6.14 shows the resulting asymmetries

for an example incident photon energy range of 297.0 ± 5.1 MeV. A comparison to

LEGS and Leukel data is shown, as well as to theoretical predictions from MAID,

DMT, and CM12. For each data point, only statistical errors are shown. As discussed

in Section 5.3, a total systematic error in the photon polarisation is roughly 2-3%.

Since the exact uncertainty is difficult to specify, only statistical errors are shown.
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Figure 6.10: Σ3 asymmetry is shown for θ range of 60 to 65 degrees (lab angle) as a
function of incident photon energies. Data covers an energy range of 202.15 MeV to
307.19 MeV. LEGS [4] and Leukel [57] data are shown for comparison. Additionally
MAID, DMT, and CM12 model curves are shown. Only statistical errors are shown.
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Figure 6.11: Σ3 asymmetry is shown for θ range of 90 to 95 degrees (lab angle) as a
function of incident photon energies. Data covers an energy range of 202.15 MeV to
307.19 MeV. LEGS [4] and Leukel [57] data are shown for comparison. Additionally
MAID, DMT, and CM12 model curves are shown. Only statistical errors are shown.
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(a) 209.62 - 217.42 MeV
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(b) 217.03 - 224.87 MeV
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(c) 222.01 - 229.84 MeV
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(d) 232.00 - 239.78 MeV
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(f) 246.93 - 254.76 MeV
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(g) 254.43 - 259.74 MeV
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(h) 266.94 - 277.24 MeV
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(i) 276.88 - 284.71 MeV
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(j) 284.39 - 292.19 MeV
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Figure 6.12: Asymmetry distributions are shown for a θ range of 60 to 65 degrees (Lab
angle), for a range of incident photon energies. A fit to each asymmetry distribution
of the form A cos(2φ+φo) is shown in red. The resulting asymmetry as a function of
photon energy is shown in Figure 6.11.
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Figure 6.13: Asymmetry distributions are shown for a θ range of 90 to 95 degrees (Lab
angle), for a range of incident photon energies. A fit to each asymmetry distribution
of the form A cos(2φ+φo) is shown in red. The resulting asymmetry as a function of
photon energy is shown in Figure 6.10.
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Figure 6.14: Σ3 asymmetry is shown for incident photon energy of 297.0 ± 5.1 MeV,
as a function of π0 θ angle (lab frame). LEGS [4] and Leukel [57] data are shown for
comparison. Additionally MAID, DMT, and CM12 model curves are shown. Only
statistical errors are shown.

6.2.6 Discussion

Given the large energy range covered by this run period, combined with full angular

coverage, only a small sample of the determined π0 asymmetries are presented. A

complete set of the determined π0 asymmetries is presented for all angles and energies

in Appendix A. In total, over 400 data points have been added to the world database

for Σ3 for π0 photoproduction. The asymmetry results derived from this work cover

the complete angular range, and an incident photon energy range of 210 MeV up

to 307 MeV (just below two-pion threshold). A comparison between this work and

the LEGS dataset shows very good agreement, an important point considering the

discrepancies previously observed in the cross sections of the LEGS dataset. Although

the two datasets are in agreement, this work shows a significant improvement over the

LEGS dataset, with complete angular coverage and smaller angular bins with similar

errors. Additionally, this work shows a significant improvement when compared to

the Leukel dataset; not only are the errors significantly reduced, the Leukel data

suffers from significant fluctuations which are not observed in this work.
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6.3 Compton scattering

6.3.1 Event Selection

Sections 5.1.2.1 and 5.1.2.2 outlined the particle and meson reconstruction applied

for this analysis. Only events with a single photon and single charged particle track

are considered. As discussed previously, an energy deposition in any charged particle

detector — PID, MWPC, or Veto — was used to mark a particle track as charged.

Although Compton scattering has a simple final reaction state, event selection within

the ∆(1232) resonance region is complicated by the dominant π0 photoproduction

background. When π0 photoproduction occurs, the π0 meson typically decays into

two photons. As discussed in Section 6.2, the invariant mass of this two photon

system can be used to identify the π0 meson. However, in cases where a decay

photon is undetected, the final state would be a single photon and proton, identical

to Compton scattering. Kinematic and angular cuts can be used to reject a portion of

this π0 photoproduction, however if the detected decay photon contains the majority

of the original π0 momentum, the π0 reaction can be nearly indistinguishable from

Compton scattering.

6.3.1.1 Kinematic cuts

Compton scattering is a two-body elastic scattering process. Kinematic cuts can be

applied to the reconstructed particles to identify Compton scattering and reject back-

ground reactions. For Compton scattering, conservation of energy and momentum

require the photon and proton to be coplanar in φ within both the center of mass

frame and lab frame. A coplanarity angle can be defined by,

φcop = | φγ − φp |. (6.15)

For Compton scattering, φcop should be centered around 180◦. A second condition

can be placed directly on the proton angle. Similar to equation 6.8, a missing four

momentum can be calculated for the recoil proton,

~Pmiss = ~Pγin +
~Ptarget − ~Pγ . (6.16)

For a detected photon, ~Pmiss corresponds to the predicted energy and momentum of

the recoil proton. This missing momentum can be compared to the detected charged
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particle to form an additional selection criteria. However, because the proton typically

suffers from significant energy losses, only the angle between the missing momentum

vector and charged particle is considered. This angle, known as an opening angle,

can be defined by,

cos(ΩOA) =
~pmiss · ~precoil

|~pmiss| × |~precoil|
. (6.17)

Figure 6.15 shows the coplanarity angle, and opening angle, calculated for each

photon-charged track pair. The coplanarity distribution shows a sharp peak cen-

tered around 180◦ while the opening angle shows a peak below 10◦.
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Figure 6.15: Coplanarity and opening angle distributions are shown for each photon-
charged track pair. A prompt-random subtraction has been applied to the opening
angle, which includes the incident photon energy.
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A coplanarity and opening angle condition can be defined by,

| φγ − φp | ∈ 180◦ ± Xcop , ΩOA ≤ XOA , (6.18)

where Xcop defines an acceptance window for the coplanarity angle and XOA defines

a cut for the opening angle.

A simulation of Compton scattering is used to set optimal coplanarity and open-

ing angle conditions. AcquMC, part of the AcquRoot analysis framework, is an event

generator capable of simulating different nuclear reactions. AcquMC was used to pro-

duce a simulation of Compton scattering and π0 photoproduction over an incident

photon energy range of 210 MeV to 310 MeV. Simulated events are then analysed

using a Geant4 simulation package specifically designed for the A2 collaboration [62].

Geant4 is a simulation toolkit capable of producing realistic models of particle inter-

actions in matter. A2Geant4 is based upon Geant4 and includes an accurate model

of the LH2 proton target and CB-TAPS detector system. The detector simulations

shown in Figure 4.8 are produced by the A2Geant4 package. Like real data, the out-

put of this simulation is then analysed using AcquRoot and GoAT. For events with a

single photon and single charged particle track reconstructed, a coplanarity angle and

opening angle are calculated. Figure 6.16 shows the resulting coplanarity and opening

angle distributions. Based on simulation, a coplanarity condition, Xcop = 15◦, and an

opening angle condition, XOA = 15◦, accept more than 98% of simulated Compton

scattering events.

Interestingly, the simulated π0 photoproduction distributions closely resemble

those from Compton scattering; the coplanarity distribution is centered upon 180◦

and the opening angle peaks towards 0◦. Beyond the primary opening angle peak, a

two-peak structure is seen in the opening angle distribution at roughly 45◦ and 70◦.

This structure is observed in both real and simulated data and can be related to an ac-

ceptance drop which occurs due to the PbWO4 which are turned off for this analysis.

When only a photon and charged track are reconstructed from π0 photoproduction,

this can be considered a mis-identification. The similarity of the simulated distribu-

tions can be easily understood when one considers the cause of this mis-identification.

This mis-identification arises from three main cases, (1) one decay photon is within

an angular region not covered by the detector system, (2) the proton is undetected

and a decay photon is mis-identified as charged, or (3) one decay photon carries the
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majority of the π0 momentum. The large angular coverage, and segmented charged

particle detectors, of the CB-TAPS detector system significantly reduce the effect of

cases 1 and 2. Thus, the predominant source of π0 mis-identification is due to case 3.

In cases where a single decay photon carries the majority of the π0 momentum, the

second decay photon can go undetected. In this case, the high energy decay photon

and recoil proton closely mimic the two-body kinematics of Compton scattering. This

specific case poses a very difficult challenge when studying Compton scattering, re-

quiring cuts beyond simple kinematic tests. Although a small portion of events from

π0 would be rejected by a 15◦ coplanarity and opening angle condition, the majority

of single photon and single charged particle track events survive these cuts.
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Figure 6.16: Coplanarity and opening angle distributions are shown for simulated
Compton scattering and π0 photoproduction events. Events are simulated using the
AcquMC event generator for an incident energy range of 210 to 310 MeV. Realistic
detector responses are modelled using A2Geant4.
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6.3.2 Missing Mass Cuts

A missing mass cut, previously discussed in Section 6.2.1, can be applied to identify

Compton scattering events and reject background processes. Equations 6.9 and 6.16

define a missing mass for Compton photons. An example missing mass distribution is

shown in Figure 6.17 for events with a single photon and charged track, and a copla-

narity and opening angle condition of φcop = ΩOA = 15◦. Although a coplanarity and

opening angle condition were applied, no cut on the incident photon energy or angle

of the Compton photon were applied. However, the requirement of a detected recoil

proton limits the energy and angle ranges which can be reconstructed. A minimum

energy is required for the proton to exit the liquid Hydrogen target and be detected in

the Crystal Ball or TAPS detectors. This requirement places a minimum threshold on

the incident photon energy of roughly 260 MeV. At these energies, recoil protons will

be scattered to forward angles, placing a minimum threshold on the Compton photon

angle of roughly 65◦. Simulation, discussed previously in Section 6.3.1.1, is used to

produce a missing mass distribution for comparison. From simulation, a gaussian-like

distribution centered upon the proton mass would be expected for Compton scattering

events. This gaussian distribution can be seen within the experimental data, however

a very large background at missing masses beyond the proton mass is evident.

It is necessary to examine the background contributions for specific angle and

energy regions as the background can vary significantly across both energy and angle.

Two energy bins have been chosen: (1) tagger channels 247 to 254, which corresponds

to an incident photon energy of 297.0 ± 10.1 MeV, and (2) tagger channels 255 to

262, which corresponds to an incident photon energy of 277.1 ± 10.1 MeV. The upper

and lower limits are based on both experimental and physics limitations. Tagger

channel 263 to 265 were broken during the run period, creating a low energy limit.

The nominal position of the coherent edge, 310 MeV, results in a drastic drop in

polarisation above 310 MeV, creating a higher energy limit. Additionally, to avoid

introducing additional background, a high energy limit below the threshold for two

π0 photoproduction is ideal. Six angular bins were chosen: (1) 70◦ to 80◦, (2) 80◦ to

90◦, (3) 90◦ to 100◦, (4) 100◦ to 115◦, (5) 115◦ to 130◦, and (6) 130◦ to 150◦. Angular

bins are larger at backwards angles to compensate for reduced statistics.
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Figure 6.17: Example missing mass distribution of (a/b) experimental data and (c)
simulated data. Prompt and random missing mass distributions are shown along
with a prompt-random subtracted distribution for experimental data. A missing
mass calculated from simulated Compton scattering is shown for comparison.
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To investigate the background contribution, Compton scattering and π0 photo-

production were simulated via AcquMC and A2Geant4. Events with a single pho-

ton and charged track are selected and a coplanarity and opening angle condition of

φcop = ΩOA = 15◦ are applied. Finally, a single energy and angle bin is selected and a

missing mass is calculated for simulated data and experimental data. A fitting routine

uses a MINUIT minimization function, scaling the simlated Compton scattering and

π0 photoproduction contributions, to match simulation to real data. An example of

this fitting process is shown in Figure 6.18 for incident energy bin 297.0 ± 10.1 MeV,

and an angular bin 90◦ to 100◦. Simulated events from Compton scattering and π0

photoproduction are shown in green and black respectively. The two contributions

are summed to create an expected distribution, shown in red. Experimental data, for

the same energy and angular region are shown in blue. This fitting method makes

a general assumption that no other process contributes to the background distribu-

tion. For the example case shown in Figure 6.18, this assumption appears to be valid.

Figures 6.20 and 6.19 show missing mass distributions for all energy and angular bins.
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Figure 6.18: A comparison of simulated and experimental data is shown for an inci-
dent energy of 277.1 ± 10.1 MeV, and an angular bin 90◦ to 100◦. Simulated events
from Compton scattering and π0 photoproduction are shown in green and black re-
spectively. The two contributions are summed to create an expected distribution,
shown in red. Experimental data, shown in blue, show good agreement with the
prediction from simulation.
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(a) θ = 70◦ to 80◦
Missing mass [MeV]

850 900 950 1000 1050 1100

C
o

u
n

ts

0

50

100

150

200

Data (Dec. 2012)

 0πCS + 

Compton scattering

 photoproduction0π

(b) θ = 80◦ to 90◦
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(c) θ = 90◦ to 100◦
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(d) θ = 100◦ to 115◦
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(e) θ = 115◦ to 130◦
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(f) θ = 130◦ to 150◦

Figure 6.19: A comparison of simulated and experimental data is shown for an inci-
dent energy of 277.1 ± 10.1 MeV. Simulated events from Compton scattering and π0

photoproduction are shown in green and black respectively. The two contributions
are summed to create an expected distribution, shown in red. Experimental data are
shown in blue.
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(a) θ = 70◦ to 80◦
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(b) θ = 80◦ to 90◦
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(c) θ = 90◦ to 100◦
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(d) θ = 100◦ to 115◦
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Figure 6.20: A comparison of simulated and experimental data is shown for an inci-
dent energy of 297.0 ± 10.1 MeV. Simulated events from Compton scattering and π0

photoproduction are shown in green and black respectively. The two contributions
are summed to create an expected distribution, shown in red. Experimental data are
shown in blue.
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In some cases, simulation could not replicate the experimental data, Figure 6.20d

for example. However, the majority of cases show good agreement to the simulated

curves. For Figures 6.20 and 6.19, an event selection was applied, considering only

events with a single photon and charged particle detected in either the Crystal Ball

or TAPS detector. However, if the recoil proton does not have enough energy to

be detected, it is still possible to reconstruct a charged particle track using the PID

and MWPCs. This case is only useful for the most forward photon angle bin, 70◦

to 80◦, where the recoil proton has the least energy. Figure 6.21 shows the result-

ing missing mass distributions for real and simulated data. In the low energy bin,

277.1 ± 10.1 MeV, there is a clear separation between the Compton scattering peak

and background distribution. For this analysis, only events reconstructed from re-

coils which did not deposit energy in the Crystal Ball are considered for the bin

E = 277.1 ± 10.1 MeV and θ = 70◦ to 80◦. For the higher energy bin, these events

will not be considered.
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(a) E = 277.1 ± 10.1 MeV
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Figure 6.21: A comparison of simulated and experimental data is shown for an angu-
lar bin of 70◦ to 80◦. Only events where the charged track is reconstructed from the
PID and MWPCs, without a Crystal Ball cluster, are shown. Simulated events from
Compton scattering and π0 photoproduction are shown in green and black respec-
tively. The two contributions are summed to create an expected distribution, shown
in red. Experimental data are shown in blue.

In general, simulation and experimental missing mass distributions show very good

agreement. In the majority of cases, it is possible to reconstruct the background dis-

tributions considering only π0 photoproduction as a possible source of background.

To reject any significant background contamination, it is necessary to set an upper
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missing mass limit which coincides with the turn-on-point of π0 photoproduction.

Based on simulation, there is very little background below a missing mass of approx-

imately 930-940 MeV. Although simulation is helpful to inform these missing mass

cuts, a more rigorous approach can be applied to determine ideal missing mass cuts.

For each energy and angular bin, the asymmetry is recalculated, slowly moving the

upper missing mass cut to higher values. As the missing mass cut is moved to higher

values, the asymmetry calculations should converge upon the same value with reduced

statistical errors. However, as the missing mass cut is moved into a region with back-

ground contamination, the asymmetry will begin to diverge. It is important to note

that each asymmetry calculation in not uncorrelated. For example, the asymmetry

calculated for an upper missing mass cut of 930 MeV uses the same data region as the

calculation at 928 MeV, plus a new data region of 928 MeV to 930 MeV. An example

of this process is shown in Figure 6.22 for incident energy bin 297.0 ± 10.1 MeV, and

an angular bin 70◦ to 80◦. For this example case, the asymmetry is roughly indepen-

dant of the upper missing mass cut up to values near 940 MeV. Beyond this region,

the asymmetry begins to diverge, suggesting a background which appears near 940

MeV.

A missing mass algorithm was developed to determined the maximum upper miss-

ing mass cut for each energy and angular bin. The goal of the algorithm is to design

a relatively automatic search algorithm which can be applied to all energies and an-

gles. First, a Σ3 distribution is generated as a function of the upper missing mass

cut. Next, a constant line is fit to the Σ3 distribution, considering only data points

below 934 MeV. As these data points are not uncorrelated, the fit value is only used

as a guide for the algorithm. Next each possible missing mass cut is considered and

two test conditions are evaluated. The primary test, requires that the asymmetry

agrees with the fit value within its one-standard deviation statistical uncertainty. A

second test, enforced only at missing mass cuts above the proton mass, requires that

the asymmetry does not vary by more than 5% by moving to a higher missing mass

cut, relative to asymmetry value below the proton missing mass. The second test

is a very restrictive test, and is enforced in regions where there is expected to be

background contamination from π0 photoproduction. The logic process of the miss-

ing mass algorithm is shown in Figure 6.23. This missing mass algorithm is applied
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Figure 6.22: An asymmetry is shown as a function of the upper missing mass cut
applied. Asymmetries are shown for an incident energy bin 297.0 ± 10.1 MeV, and
an angular bin 70◦ to 80◦.

to all energy and angle bins. However, a small adjustment is made for two bins,

(1) E = 277.1 ± 10.1 MeV and θ = 70◦ to 80◦, and (2) E = 297.0 ± 10.1 MeV and

θ = 100◦ to 115◦. In these cases, the same missing mass algorithm is applied, how-

ever the fitting range is reduced to consider only data points below a missing mass of

930 MeV. Additionally, the second test condition of the algorithm is applied at 930

MeV, rather than 938 MeV. An adjustment to the algorithm is made for the first bin

because, as discussed previously, only events reconstructed from recoils which did not

deposit energy in the Crystal Ball are considered. An adjustment to the algorithm is

made for the second bin due to the unexplained background distributions shown in

Figure 6.20d.

Figures 6.24 and 6.25 show missing mass distributions for all energy and angular

bins. The fitting algorithm described here has been applied to determine an optimal

missing mass cut for each data set. A horizontal line indicating the fit value is shown

for each set, and a vertical dashed line shows the position of the missing mass cut

determined from the algorithm. In each case, the algorithm appears to find very

reasonable cut positions. At backward angles, where the uncertainties are relatively
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large, the second test condition is the dominant reason for the algorithm to exit.

Generate
Σ3(Missing mass cut)

Fit
Σ3(Missing mass cut)

Start

cut = i

Does Σ3(i) ± dΣ3(i)
equal fit?

No

Yes (i ≥ 938)?

Stop

Noi = i+2

Is Σ3(i) more
than 5% different
from Σ3(i+2)?

No

Yes

Figure 6.23: Logic steps of missing mass algorithm

Angular bin Missing Mass cut [MeV] Missing Mass cut [MeV]
E = 277.1 ± 10.1 MeV E = 297.0 ± 10.1 MeV

70◦ to 80◦ 930 942
80◦ to 90◦ 938 936
90◦ to 100◦ 946 934
100◦ to 115◦ 940 932
115◦ to 130◦ 938 938
130◦ to 150◦ 938 938

Table 6.1: Missing mass cuts, determined from a missing mass algorithm, are shown
for all energy and angular bins for Compton scattering.



116

upper missing mass cut [MeV]
920 925 930 935 940 945 950 955 960

 A
s
y
m

m
e
tr

y
3

Σ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(a) θ = 70◦ to 80◦
upper missing mass cut [MeV]

925 930 935 940 945 950 955 960

 A
s
y
m

m
e
tr

y
3

Σ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b) θ = 80◦ to 90◦

upper missing mass cut [MeV]
925 930 935 940 945 950 955 960

 A
s
y
m

m
e
tr

y
3

Σ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(c) θ = 90◦ to 100◦
upper missing mass cut [MeV]

925 930 935 940 945 950 955 960

 A
s
y
m

m
e
tr

y
3

Σ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(d) θ = 100◦ to 115◦

upper missing mass cut [MeV]
925 930 935 940 945 950 955 960

 A
s
y
m

m
e
tr

y
3

Σ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(e) θ = 115◦ to 130◦
upper missing mass cut [MeV]

925 930 935 940 945 950 955 960

 A
s
y
m

m
e
tr

y
3

Σ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(f) θ = 130◦ to 150◦

Figure 6.24: An asymmetry is shown as a function of the applied upper missing mass
cut. Asymmetries are shown for an incident energy bin 277.1 ± 10.1 MeV. A missing
mass algorithm is applied. The horizontal line indicates the algorithm fit value and a
vertical dashed line shows the position of the missing mass cut determined from the
algorithm.
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Figure 6.25: An asymmetry is shown as a function of the upper missing mass cut
applied. Asymmetries are shown for an incident energy bin 297.0 ± 10.1 MeV. A
missing mass algorithm is applied. The horizontal line indicates the algorithm fit value
and a vertical dashed line shows the position of the missing mass cut determined from
the algorithm.
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6.3.3 Empty target contribution

In Section 6.2.2, the empty target contribution was discussed in context of an analysis

of π0 photoproduction. In this case, the empty target contribution was shown to

be small, but non-negligible. Figure 6.26 shows the empty target contributions for

each energy bin considered in this analysis. For both energy bins, the empty target

distributions are small enough that they can be considered to be negligible.
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(a) E = 277.1 ± 10.1 MeV
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(b) E = 297.0 ± 10.1 MeV

Figure 6.26: Missing mass distributions for events passing a Compton scattering event
selection are shown for full and empty target data in blue and red respectively.
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6.3.4 Example calculation

For a given incident photon energy, E, and photon angle, θ, the Σ3 asymmetry can

be determined by fitting an asymmetry distributon. As the empty target contribu-

tion is negligible for Compton scattering, equation 6.4 can be applied to produce the

asymmetry distribution. By convention, there exists a sign change between the defini-

tions of Σ3 chosen by theorists of either π0 photoproduction and Compton scattering.

To respect this convention, the previous definition of the asymmetry acquires a sign

change and the asymmetry is defined by,

Σ3(θ, φ, E) cos(2φ+ φo) = −
N⊥(θ, φ, E)− F ×N‖(θ, φ, E)

pγ⊥N⊥(θ, φ, E) + F × pγ‖N‖(θ, φ, E)
(6.19)

A fit of the form A ∗ cos(2φ + φo) is applied, where A = Σ3, and φo was previously

determined to be φo = (1.541± 0.001) radians through an analysis of π0 photopro-

duction . This determination was presented in Section 6.2.4.

For a given θ and energy range, angular distributions over φ can be produced. For

Compton photons which pass Compton scattering event selection, outlined in Section

6.3.1, a φ-distribution is filled separately for prompt and random electrons. Similar

to the example calculation shown in Section 6.2.3, a prompt-random subtraction is

applied to the φ-distributions. Figure 6.27 shows an example Compton scattering φ-

distribution for each polarisation orientation, along with an asymmetry distribution

shown in Figure 6.29. The φ-distributions shown correspond to a θ range of 80◦ to

90◦, and an energy range of 297.0 ± 10.1 MeV.

As discussed previously, a correction factor F must be determined to account for

the incident photon flux (see equation 6.5). This correction factor forces the integral

of the asymmetry, over all φ, to be zero. For the φ-distributions shown in Figure 6.27,

an asymmetry is calculated for a wide range of correction factors. In each case, the

integral over all φ is calculated. Figure 6.28 shows the integral of the asymmetry as a

function of F . In the example shown, an integral of zero corresponds to a correction

factor of 0.983. With a correction factor determined, an example asymmetry can be

calculated according to equation 6.19. This is shown in Figure 6.29.
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Figure 6.27: Example φ-distribution of Compton photons is shown for a θ range of
80◦ to 90◦, and an energy range of 297.0 ± 10.1 MeV. A distribution is shown for
each polarisation orientation, (a) para, and (b) perp.
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Figure 6.28: The integral of the asymmetry over all phi,
∫

Σ, is shown as a function
of the correction factor, F , for a θ range of 80◦ to 90◦, and an energy of 297.0 ± 10.1
MeV. The correction factor for this θ and energy range is F = 0.983.
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Figure 6.29: Example asymmetry distribution of Compton photons is shown for a
θ range of 80◦ to 90◦, and an energy range of 297.0 ± 10.1 MeV. A fit of the form
A ∗ cos(2φ + φo) is applied, shown in red. An extraction of the fit parameter A
determines the asymmetry for this θ and energy range to be Σ3 = 0.255 ± 0.027.
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6.3.5 Results

Asymmetry distributions are shown in Figures 6.30 and 6.31 for incident energy

ranges of 277.1 ± 10.1 MeV and 297.0 ± 10.1 MeV respectively. A fit of the form

A ∗ cos(2φ+ φo) was applied, where A = Σ3, is shown in red for each distribution.

The resulting asymmetries are given in Figures 6.32 and 6.33, and a table of calcu-

lation parameters, including the correction factor and χ2 for each angular bin, are

given in tables 6.2 and 6.3.

A comparison to Σ3 results from the LEGS collaboration [4] is shown. As discussed

previously, the LEGS data set shows significant discrepancies when the cross sections

determined from this dataset are compared to other data sets. Although it is possible

that a discrepancy exists only in cross sections, and not in asymmetries, a discrepancy

so large motivates a cross check of the LEGS data set. Two theoretical models are also

compared, (1) a fixed-t dispersion relation (HDPV) [15][8] provided by Pasquini, and

(2) a calculation from Baryon Chiral Perturbation Theory [63] provided by Pascalutsa.

For the fixed-t dispersion relation, asymmetry calculations are produced using a set

of input scalar and spin polarisabilities. Nominal values for the spin polarisabilities

are taken to be, γ̄E1E1 = -4.3, γ̄M1M1 = 2.9, γ̄E1M2 = -0.01, and γ̄M1E2 = 2.1. These

values are given in standard spin polarisability units of 10−4 fm4, and correspond to

the HDPV values given in Table 3.1 for the HDT partial wave solutions. Additionally,

scalar polarisabilities ᾱ and β̄ are taken to be ᾱ + β̄ = 13.82, and ᾱ− β̄ = 10.5, in

standard scalar polarisability units of 10−4 fm3.

6.3.6 Discussion

Within this work, Σ3 was measured for Compton scattering for the limited angular

range of 70◦ to 150◦, and the incident photon energy range of 267 MeV up to 307

MeV (just below two-pion threshold). The Σ3 results from the work were compared

to those from the LEGS collaboration. Even though the statistical errors from both

measurements are rather large, a shift in the asymmetries can be observed. This

is most predominant near 90◦ in the higher energy region. Despite this shift, the

results of this work and the LEGS dataset show a good general agreement. Finally,

asymmetries determined from this work suggest that the Σ3 asymmetry may fall off

faster than predicted at backward angles within the higher energy region.
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Figure 6.30: Σ3 Asymmetry distributions for Compton scattering with an incident
energy range of 277.1 ± 10.1 MeV. A fit of the form A ∗ cos(2φ+φo) is shown in red.
Fitting parameters, including a χ2 value for each fit, are given in Table 6.2 and the
final Σ3(E, θ) asymmetry is shown in Figure 6.32.
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Figure 6.31: Σ3 Asymmetry distributions for Compton scattering with an incident
energy range of 297.0 ± 10.1 MeV. A fit of the form A ∗ cos(2φ+φo) is shown in red.
Fitting parameters, including a χ2 value for each fit, are given in Table 6.3 and the
final Σ3(E, θ) asymmetry is shown in Figure 6.33.
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Figure 6.32: Σ3 Asymmetry for Compton scattering with an incident energy range
of E = 277.1 ± 10.1 MeV. LEGS [4] data are shown for comparison. Additionally
HDPV [15][8] and Pascalutsa [63] curves are shown. Only statistical errors are shown.

Eγ = 277.1 ± 10.1 MeV
θγ (lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)

75.00 ± 5.0 1.0504 1.3844 0.2351 0.0455 0.0071
85.00 ± 5.0 1.0319 1.1856 0.1880 0.0529 0.0056
95.00 ± 5.0 0.9703 1.1118 0.1544 0.0293 0.0046
107.50 ± 7.5 0.9496 1.1001 0.0760 0.0325 0.0023
122.50 ± 7.5 1.0188 0.8993 -0.0031 0.0643 0.0001
140.00 ± 10.0 0.9595 1.2064 -0.0544 0.0496 0.0016

Table 6.2: Fitting parameters for Σ3 determined for incident photon energies of
E = 277.1 ± 10.1 MeV. For each fit, a χ2 per degree of freedom is given. Asym-
metry distributions, and corresponding fits, for each angular bin are shown in Figure
6.30.
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Figure 6.33: Σ3 Asymmetry for Compton scattering with an incident energy range
of E = 297.0 ± 10.1 MeV. LEGS [4] data are shown for comparison. Additionally
HDPV [15][8] and Pascalutsa [63] curves are shown. Only statistical errors are shown.

Eγ = 297.0 ± 10.1 MeV
θγ (lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)

75.00 ± 5.0 1.0030 0.4775 0.2697 0.0388 0.0081
85.00 ± 5.0 0.9833 1.2144 0.2551 0.0274 0.0077
95.00 ± 5.0 0.9536 1.0637 0.2228 0.0267 0.0067
107.50 ± 7.5 0.9997 0.9507 0.1097 0.0316 0.0033
122.50 ± 7.5 0.9371 1.4233 0.0169 0.0517 0.0005
140.00 ± 10.0 0.9675 0.5725 -0.0127 0.0389 0.0004

Table 6.3: Fitting parameters for Σ3 determined for incident photon energies of
E = 297.0 ± 10.1 MeV. For each fit, a χ2 per degree of freedom is given. Asym-
metry distributions, and corresponding fits, for each angular bin are shown in Figure
6.31.



Chapter 7

Discussion

The Σ3 asymmetry is a single polarisation observable which connects the polarised and

unpolarised cross sections for linearly polarised photons incident upon unpolarised

protons. In chapter 6, Σ3 results for π0 photoproduction and Compton scattering

were presented. These results were extracted from a December 2012 run period

at the MAMI tagged photon facility in Mainz, Germany. The motivation of this

work is largely directed towards the study of the proton’s spin polarisabilities, which

quantify the response of the proton’s spin to an applied electromagnetic field. The spin

polarisabilities, which appear in the third order effective Hamiltonian for Compton

scattering, can be studied through polarised Compton scattering.

An analysis by Martel [1] studied the double polarisation observable Σ2x for Comp-

ton scattering at the MAMI tagged photon facility. A recent analysis by Martel [2]

determined the proton’s spin polarisabilities for the first time, combining Σ3 results

from the LEGS collaboration [4] and Σ2x results from the MAMI tagged photon fa-

cility. This analysis used a fixed-t dispersion relation code, provided by Barbara

Pasquini [8], to fit asymmetry data. The fitting routine varies (ᾱ+ β̄), (ᾱ− β̄), γ̄E1E1,

and γ̄M1M1, γ0 and γπ, to fit the asymmetry data. Four constraints are applied in the

analysis,

ᾱ + β̄ = (13.8± 0.4)× 10−4 fm3 [27]

ᾱ− β̄ = ( 7.6± 1.7)× 10−4 fm3 [32]

γ0 = (−1.00± 0.18)× 10−4 fm4 [33]

γπ = (8.0± 1.8)× 10−4 fm4 [34] (7.1)

Although only γ̄E1E1, and γ̄M1M1 are perturbed during the fitting routine, allowing
γ0 and γπ to vary essentially allows γ̄E1M2, and γ̄M1E2 to vary as well. A global fit to

all data allows the spin polarisabilities to be extracted. Through this analysis, a set of

spin polarisabilities were determined to be γ̄E1E1 = -3.5 ± 1.2, γ̄M1M1 = 3.16 ± 0.85,

γ̄E1M2 = -0.7 ± 1.2, and γ̄M1E2 = 1.99 ± 0.29, in standard spin polarisability units

127



128

of 10−4 fm4. Final fitting parameters for the γ0 and γπ constraints were determined

to be γ0 = -1.03 ± 0.18 × 10−4 fm4 and γπ = 9.3 ± 1.6 × 10−4 fm4.

As discussed previously, the LEGS data set used in the fitting shows significant

discrepancies when compared to other data sets. In Section 3.4, a discussion of the

backward spin polarisability was presented. This backward spin polarisabilty, γπ, is

a linear combination of the four leading order spin polarisabilities. A value of γπ,

extracted from the LEGS data set, was determined to be γπ = −23.2 × 10−4 fm4.

A value of γπ, extracted from data from MAMI, LARA, and Saskatoon data sets,

was determined to be γπ = −38.7× 10−4 fm4. The extraction of γπ was based upon

differential cross sections measured by each collaboration. Although it is possible that

a discrepancy exists only in cross sections, and not in asymmetries, a discrepancy so

large motivates a cross check of the LEGS data set.

It is possible to apply the same fitting routine applied in the Martel analysis,

combining Σ2x results from Martel and Σ3 results from this work, rather than LEGS.

A fit to this data was performed (with the assistance of MAMI A2 collaborator, A.

Rajabi [64]). Similar to the Martel analysis, the fixed-t dispersion relation code of

Pasquini was used to fit asymmetry data. The fit varied ᾱ, β̄, γ̄E1E1, and γ̄M1M1,

with constraints applied on ᾱ + β̄, ᾱ − β̄, γ0 and γπ, to fit the asymmetry data.

Constraints applied are the same as those given in equation 7.1. Through this most

recent analysis, a set of spin polarisabilities was determined to be,

γ̄E1E1 = −5.0± 1.5× 10−4 fm4

γ̄M1M1 = 3.13± 0.88× 10−4 fm4

γ̄E1M2 = 1.7± 1.7× 10−4 fm4

γ̄M1E2 = 1.26± 0.43× 10−4 fm4 (7.2)

which corresponds to final fitting parameters for the backward and forward spin

polarisabilities of,

γ0 = −1.00± 0.18× 10−4 fm4

γπ = 7.8± 1.8× 10−4 fm4 (7.3)

This is the first extraction of all four spin polarisabilities from data taken only at the

MAMI tagged photon facility. A side by side comparison of both extractions is given

in Table 7.1.
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LEGS + Martel Collicott + Martel
[10−4 fm4] [10−4 fm4]

γ̄E1E1 -3.5 ± 1.2 -5.0 ± 1.5
γ̄M1M1 3.16 ± 0.85 3.13 ± 0.88
γ̄E1M2 -0.7 ± 1.2 1.7 ± 1.7
γ̄M1E2 1.99 ± 0.29 1.26 ± 0.43
γ0 -1.03 ± 0.18 -1.00 ± 0.18
γπ 9.3 ± 1.6 7.8 ± 1.8

ᾱ + β̄ 14.0 ± 0.4 13.8 ± 0.4
ᾱ− β̄ 7.4 ± 0.9 6.6 ± 1.7
χ2/dof 1.05 1.25

Table 7.1: Spin polarisabilities determined using either the LEGS and Martel data
sets, or the Collicott (this work) and Martel data set. In both cases a fixed-t dispersion
code is used to fit and extract the spin polarisabilities. Also shown are the final fitting
parameters for the constraints (ᾱ+ β̄), (ᾱ− β̄), γ0, and γπ, and the χ2 per degree of
freedom for each fit.

It is important to note that the LEGS Σ3 data set covers a wide angular and

energy range, and consists of 58 data points. This work, by comparison, is only

12 data points. Comparing the spin polarisabilities determined through this new

analysis, some differences are clear.

• The errors on the individual spin polarisabilities increase slightly. However,

considering the reduced data set in comparison to LEGS, this could be expected.

• Although γ̄M1M1 remains relatively unchanged, a significant shift is seen in the

other three spin polarisabilities.

• As discussed previously, the LEGS data set shows a large discrepancy from all

other data sets when used to extract the backward spin polarisability. It is

therefore interesting to compare the final fit parameter γπ from each extraction.

The fit for γπ was determined to be 9.3 ×10−4 fm4 and 7.8 ×10−4 fm4 while

using the LEGS data set and this work respectively. While the errors are large

enough to allow these parameters to agree, the shift is noteworthy. Because

γ̄E1M2 and γ̄M1E2 are determined through their linear relation to γ0 and γπ, a

large shift in γπ helps to explain the differing spin polarisabilities.
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In Section 6.3.5, Σ3 results from this work were compared to theoretical predictions

from the fixed-t dispersion relation used in this fitting method. Curves were shown

for nominal spin polarisabilities given in Table 3.1. It is possible to reproduce new

dispersion relation curves, using each set of spin polarisabilities given in Table 7.1.

In Figure 7.1, a new dispersion relation calculation for the Martel analysis, which

combines the Σ3 results from the LEGS collaboration and Σ2x results from Martel,

is shown. This calculation uses the parameters for the scaler and spin polarisabilties

given in Table 7.1 under LEGS+Martel. A second dispersion relation calculation is

shown for the analysis presented in this work, which combines the Σ3 results from

this work and Σ2x results Martel. This second calculation uses the parameters for the

scaler and spin polarisabilties given in Table 7.1 under Collicott+Martel. These new

dispersion relation curves are shown along side BχPT calculations from Pascalutsa.

7.1 Outlook

A three part experimental program was proposed at the MAMI tagged photon facil-

ity to study the proton’s spin polarisability using polarised Compton scattering. The

first achievment towards this program was the measurement of the double polarisa-

tion observable Σ2x, measured by Martel [1]. The second achievment towards this

program was the measurement of the single polarisation observable Σ3, presented in

this work. A combination of these results allowed for a new extraction of the proton’s

spin polarisabilities, using only data collected at the MAMI tagged photon facility.

In addition to these measurements, a final measurement is ongoing to measure the

double polarisation observable Σ2z. Once measured, a complete extraction of the spin

polarisabilities can be completed using all three data sets. This experimental pro-

gram has provided the first experimental determination of the four leading order spin

polarisabilities (γE1E1, γM1M1, γE1M2, and γM1E2) of the proton for the first time.

The two extractions of the proton spin polarisabilities, first by Martel and second

within this work, are in good agreement with the dispersion theory, K-matrix theory,

and Heavy Baryon chiral perturbation theory calculations shown in Table 3.1. Some

calculations, the fourth order (p-expansion) χPT calculation of Ref. [40] as an ex-

ample, do not agree well with the experimentally determined spin polarisabilities. It
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Figure 7.1: Σ3 asymmetry results are shown from this work. LEGS [4] data are shown
for comparison. Additionally HDPV [15][8] and Pascalutsa [63] curves are shown. For
HDPV, curves are shown for both nominal spin polarisabilities given in Table 3.1 and
new spin polarisabilities determined from this analysis. Only statistical errors are
shown.
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is expected that results from Lattice QCD calculations [65] could provide theoreti-

cal predictions of the proton’s spin polarisabilities in the near future. Lattice QCD,

which uses a discretized spacetime, provides a solution to solving QCD within the

non-perturbative region. These Lattice QCD calculations will provide a crucial test

of our understanding of the spin-structure of nucleons as well as an extension of QCD

to low energies.



Appendix A

Σ3 results for π0 photoproduction

Eγ = 213.5 ± 3.9 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
12.50 ± 2.5 1.0930 0.7281 0.3926 0.2353 0.0118
17.50 ± 2.5 1.0200 0.6638 -0.0806 0.1792 0.0024
22.50 ± 2.5 0.9480 0.8277 0.0566 0.1285 0.0017
27.50 ± 2.5 0.9030 0.9576 0.2017 0.1094 0.0061
32.50 ± 2.5 0.9200 0.9405 0.2957 0.0953 0.0089
37.50 ± 2.5 0.8570 0.9024 0.1770 0.0830 0.0053
42.50 ± 2.5 0.9280 1.1463 0.2931 0.0708 0.0088
47.50 ± 2.5 0.9080 0.9229 0.1730 0.0638 0.0052
52.50 ± 2.5 0.9380 1.0203 0.2583 0.0577 0.0077
57.50 ± 2.5 0.9530 0.9830 0.3069 0.0526 0.0092
62.50 ± 2.5 0.9180 0.6352 0.2426 0.0508 0.0073
67.50 ± 2.5 0.9240 1.1079 0.1813 0.0483 0.0054
72.50 ± 2.5 0.9230 0.8336 0.2928 0.0465 0.0088
77.50 ± 2.5 0.9270 1.1356 0.2768 0.0463 0.0083
82.50 ± 2.5 0.9290 0.9381 0.1952 0.0463 0.0059
87.50 ± 2.5 0.9210 0.6561 0.2792 0.0479 0.0084
92.50 ± 2.5 0.9200 1.0165 0.2164 0.0484 0.0065
97.50 ± 2.5 0.9140 0.9275 0.1430 0.0493 0.0043
102.50 ± 2.5 0.9320 0.8644 0.1593 0.0514 0.0048
107.50 ± 2.5 0.9150 1.0076 0.1794 0.0526 0.0054
112.50 ± 2.5 0.9200 0.8091 0.2954 0.0562 0.0089
117.50 ± 2.5 0.9320 0.6985 0.1233 0.0594 0.0037
122.50 ± 2.5 0.9330 1.0411 0.0884 0.0624 0.0027
127.50 ± 2.5 0.8830 1.2548 0.1209 0.0682 0.0036
132.50 ± 2.5 0.9110 1.0890 0.1790 0.0710 0.0054
137.50 ± 2.5 0.9010 0.8367 0.1862 0.0793 0.0056
142.50 ± 2.5 0.9090 1.1129 0.0489 0.0885 0.0015
147.50 ± 2.5 0.9170 0.7941 0.0192 0.0938 0.0006
152.50 ± 2.5 0.9250 1.3434 -0.0983 0.0999 0.0029
157.50 ± 2.5 0.8830 0.7507 -0.0381 0.1053 0.0011
162.50 ± 2.5 0.9090 0.8678 -0.2370 0.1376 0.0071

Table A.1: Σπ0
for incident photon energies 213.52 ± 3.90 MeV. A photon flux cor-

rection factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.
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Eγ = 220.9 ± 3.9 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
7.50 ± 2.5 0.0000 3.6845 -0.7264 0.4625 0.0218
12.50 ± 2.5 0.9890 1.1577 -0.2189 0.1743 0.0066
17.50 ± 2.5 0.8970 1.0670 0.4219 0.1200 0.0127
22.50 ± 2.5 0.9840 0.8708 -0.0146 0.0929 0.0004
27.50 ± 2.5 0.9110 0.7681 0.1809 0.0765 0.0054
32.50 ± 2.5 0.9870 0.9951 0.2781 0.0648 0.0083
37.50 ± 2.5 0.9370 1.3139 0.3023 0.0559 0.0091
42.50 ± 2.5 0.9070 1.2817 0.3280 0.0500 0.0098
47.50 ± 2.5 0.9040 1.2932 0.2166 0.0452 0.0065
52.50 ± 2.5 0.9130 1.0843 0.3045 0.0409 0.0091
57.50 ± 2.5 0.9230 1.0652 0.3304 0.0385 0.0099
62.50 ± 2.5 0.9020 1.3545 0.2858 0.0367 0.0086
67.50 ± 2.5 0.9160 1.4727 0.2688 0.0357 0.0081
72.50 ± 2.5 0.9180 1.0528 0.3062 0.0341 0.0092
77.50 ± 2.5 0.9410 0.9797 0.2351 0.0337 0.0071
82.50 ± 2.5 0.9110 0.7196 0.3387 0.0346 0.0102
87.50 ± 2.5 0.9400 1.1658 0.3008 0.0352 0.0090
92.50 ± 2.5 0.9060 1.0733 0.2672 0.0356 0.0080
97.50 ± 2.5 0.9290 1.5332 0.2226 0.0364 0.0067
102.50 ± 2.5 0.9320 1.0170 0.3078 0.0383 0.0092
107.50 ± 2.5 0.9330 0.7036 0.2256 0.0389 0.0068
112.50 ± 2.5 0.9170 1.1346 0.2342 0.0425 0.0070
117.50 ± 2.5 0.9230 0.9171 0.1504 0.0441 0.0045
122.50 ± 2.5 0.9050 1.0305 0.1401 0.0472 0.0042
127.50 ± 2.5 0.9420 1.9763 0.2097 0.0498 0.0063
132.50 ± 2.5 0.9290 0.7825 0.2030 0.0526 0.0061
137.50 ± 2.5 0.9440 0.8659 0.1639 0.0563 0.0049
142.50 ± 2.5 0.9220 0.6812 0.1394 0.0627 0.0042
147.50 ± 2.5 0.9110 0.9861 0.0604 0.0683 0.0018
152.50 ± 2.5 0.8330 1.1314 0.0923 0.0805 0.0028
157.50 ± 2.5 0.9220 1.1510 0.0553 0.0888 0.0017
162.50 ± 2.5 0.9170 0.8151 -0.1258 0.1011 0.0038

Table A.2: Σπ0
for incident photon energies 220.95 ± 3.92 MeV. A photon flux cor-

rection factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.
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Eγ = 225.9 ± 3.9 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
7.50 ± 2.5 0.9300 0.8325 0.3379 0.2439 0.0101
12.50 ± 2.5 0.9350 0.9183 0.0168 0.1384 0.0005
17.50 ± 2.5 0.9770 1.3324 0.3063 0.0954 0.0092
22.50 ± 2.5 0.9440 1.1268 0.1396 0.0732 0.0042
27.50 ± 2.5 0.9440 0.8276 0.3044 0.0585 0.0091
32.50 ± 2.5 0.9480 1.4698 0.2554 0.0519 0.0077
37.50 ± 2.5 0.9000 0.9552 0.2847 0.0456 0.0085
42.50 ± 2.5 0.9110 0.8396 0.3213 0.0389 0.0096
47.50 ± 2.5 0.9290 1.2962 0.2583 0.0350 0.0077
52.50 ± 2.5 0.9310 1.1687 0.2884 0.0325 0.0087
57.50 ± 2.5 0.9140 0.9719 0.3502 0.0299 0.0105
62.50 ± 2.5 0.9210 1.4915 0.3600 0.0291 0.0108
67.50 ± 2.5 0.9500 1.1372 0.2787 0.0278 0.0084
72.50 ± 2.5 0.8990 0.7839 0.3128 0.0272 0.0094
77.50 ± 2.5 0.9200 1.0820 0.3248 0.0268 0.0097
82.50 ± 2.5 0.9070 1.1912 0.3009 0.0273 0.0090
87.50 ± 2.5 0.9530 0.7118 0.2725 0.0278 0.0082
92.50 ± 2.5 0.9480 1.2284 0.2411 0.0279 0.0072
97.50 ± 2.5 0.9260 1.2124 0.2891 0.0283 0.0087
102.50 ± 2.5 0.9140 1.3564 0.2179 0.0316 0.0065
107.50 ± 2.5 0.9400 1.4233 0.1966 0.0312 0.0059
112.50 ± 2.5 0.9240 0.8786 0.2348 0.0332 0.0070
117.50 ± 2.5 0.9390 1.2145 0.1832 0.0352 0.0055
122.50 ± 2.5 0.9040 1.0466 0.2041 0.0380 0.0061
127.50 ± 2.5 0.9230 0.9384 0.1422 0.0410 0.0043
132.50 ± 2.5 0.9260 1.1077 0.1893 0.0425 0.0057
137.50 ± 2.5 0.9440 1.0836 0.1524 0.0457 0.0046
142.50 ± 2.5 0.9100 0.8732 0.0914 0.0519 0.0027
147.50 ± 2.5 0.9210 1.1044 0.0960 0.0557 0.0029
152.50 ± 2.5 0.8410 1.4936 -0.0301 0.0644 0.0009
157.50 ± 2.5 0.9030 1.4375 -0.0108 0.0713 0.0003
162.50 ± 2.5 0.8820 0.8152 -0.0482 0.0859 0.0014

Table A.3: Σπ0
for incident photon energies 225.92 ± 3.91 MeV. A photon flux cor-

rection factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.
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Eγ = 235.9 ± 3.9 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
7.50 ± 2.5 0.9710 0.8455 -0.1691 0.1782 0.0051
12.50 ± 2.5 0.9570 1.3786 0.1249 0.1053 0.0037
17.50 ± 2.5 0.9110 1.1815 0.0813 0.0723 0.0024
22.50 ± 2.5 0.8650 1.1336 0.2001 0.0546 0.0060
27.50 ± 2.5 0.9310 1.0432 0.2992 0.0416 0.0090
32.50 ± 2.5 0.9430 0.9712 0.2353 0.0350 0.0071
37.50 ± 2.5 0.9100 1.3333 0.3012 0.0312 0.0090
42.50 ± 2.5 0.9140 1.4306 0.3381 0.0280 0.0101
47.50 ± 2.5 0.9100 0.8931 0.3612 0.0252 0.0108
52.50 ± 2.5 0.8900 0.8017 0.3527 0.0233 0.0106
57.50 ± 2.5 0.9090 0.6738 0.3594 0.0218 0.0108
62.50 ± 2.5 0.9140 1.2442 0.3234 0.0207 0.0097
67.50 ± 2.5 0.9210 1.1619 0.3938 0.0202 0.0118
72.50 ± 2.5 0.9210 0.7284 0.3643 0.0198 0.0109
77.50 ± 2.5 0.9050 1.1680 0.3689 0.0201 0.0111
82.50 ± 2.5 0.9170 0.5643 0.3380 0.0204 0.0101
87.50 ± 2.5 0.9150 1.3118 0.3103 0.0209 0.0093
92.50 ± 2.5 0.9160 1.1006 0.3526 0.0224 0.0106
97.50 ± 2.5 0.9180 1.0606 0.3229 0.0227 0.0097
102.50 ± 2.5 0.9160 1.1506 0.2183 0.0237 0.0065
107.50 ± 2.5 0.9320 0.8071 0.2249 0.0248 0.0067
112.50 ± 2.5 0.9320 1.2721 0.2872 0.0263 0.0086
117.50 ± 2.5 0.9030 0.8352 0.2571 0.0277 0.0077
122.50 ± 2.5 0.9050 1.0072 0.2297 0.0299 0.0069
127.50 ± 2.5 0.9040 1.0940 0.1504 0.0317 0.0045
132.50 ± 2.5 0.8910 0.8960 0.1942 0.0335 0.0058
137.50 ± 2.5 0.9100 1.2680 0.0686 0.0362 0.0021
142.50 ± 2.5 0.9330 1.6209 0.1153 0.0396 0.0035
147.50 ± 2.5 0.9200 1.4295 0.0770 0.0457 0.0023
152.50 ± 2.5 0.9060 1.3079 0.1196 0.0510 0.0036
157.50 ± 2.5 0.9100 0.9958 0.0486 0.0557 0.0015
162.50 ± 2.5 0.9160 1.4647 0.0385 0.0627 0.0012

Table A.4: Σπ0
for incident photon energies 235.89 ± 3.89 MeV. A photon flux cor-

rection factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.
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Eγ = 243.4 ± 3.9 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
7.50 ± 2.5 0.8000 0.7191 0.0733 0.1653 0.0022
12.50 ± 2.5 0.8480 0.9942 0.1343 0.0900 0.0040
17.50 ± 2.5 0.9160 1.4063 0.2800 0.0622 0.0084
22.50 ± 2.5 0.8970 1.0930 0.1644 0.0461 0.0049
27.50 ± 2.5 0.9310 1.2530 0.2545 0.0360 0.0076
32.50 ± 2.5 0.9140 0.6833 0.3380 0.0300 0.0101
37.50 ± 2.5 0.9040 0.8714 0.3367 0.0260 0.0101
42.50 ± 2.5 0.9100 1.0862 0.3452 0.0236 0.0104
47.50 ± 2.5 0.9150 1.2010 0.4033 0.0220 0.0121
52.50 ± 2.5 0.8970 0.6475 0.3753 0.0202 0.0113
57.50 ± 2.5 0.9140 0.7760 0.3921 0.0194 0.0118
62.50 ± 2.5 0.9090 1.5435 0.3838 0.0182 0.0115
67.50 ± 2.5 0.8940 1.5955 0.4085 0.0178 0.0123
72.50 ± 2.5 0.8980 0.8201 0.3534 0.0179 0.0106
77.50 ± 2.5 0.9060 0.6361 0.3818 0.0183 0.0115
82.50 ± 2.5 0.9080 0.9615 0.3536 0.0184 0.0106
87.50 ± 2.5 0.9260 0.6627 0.3344 0.0190 0.0100
92.50 ± 2.5 0.9160 0.9864 0.3020 0.0201 0.0091
97.50 ± 2.5 0.9090 0.9743 0.3395 0.0218 0.0102
102.50 ± 2.5 0.9090 1.3830 0.2756 0.0231 0.0083
107.50 ± 2.5 0.8980 0.9143 0.3272 0.0245 0.0098
112.50 ± 2.5 0.9030 1.1224 0.2631 0.0270 0.0079
117.50 ± 2.5 0.9000 0.8594 0.2977 0.0281 0.0089
122.50 ± 2.5 0.9130 1.2060 0.2001 0.0297 0.0060
127.50 ± 2.5 0.8950 1.0398 0.2162 0.0303 0.0065
132.50 ± 2.5 0.9060 1.4110 0.1303 0.0312 0.0039
137.50 ± 2.5 0.8870 1.0714 0.0777 0.0343 0.0023
142.50 ± 2.5 0.9120 1.2858 0.1196 0.0371 0.0036
147.50 ± 2.5 0.9200 1.0117 0.0437 0.0425 0.0013
152.50 ± 2.5 0.8940 0.7359 0.1329 0.0464 0.0040
157.50 ± 2.5 0.9330 1.6744 0.0480 0.0540 0.0014
162.50 ± 2.5 0.8940 1.0715 0.0302 0.0637 0.0009

Table A.5: Σπ0
for incident photon energies 243.40 ± 3.90 MeV. A photon flux cor-

rection factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.
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Eγ = 250.8 ± 3.9 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
7.50 ± 2.5 0.8620 0.8250 -0.2128 0.1304 0.0064
12.50 ± 2.5 0.9510 1.2276 0.1588 0.0713 0.0048
17.50 ± 2.5 0.9100 0.7774 0.1515 0.0458 0.0045
22.50 ± 2.5 0.9470 1.0267 0.2284 0.0358 0.0069
27.50 ± 2.5 0.8950 1.3935 0.2766 0.0282 0.0083
32.50 ± 2.5 0.9260 0.9906 0.3218 0.0233 0.0097
37.50 ± 2.5 0.9300 1.1336 0.3684 0.0200 0.0111
42.50 ± 2.5 0.9040 0.9896 0.3598 0.0179 0.0108
47.50 ± 2.5 0.9200 1.2001 0.4069 0.0167 0.0122
52.50 ± 2.5 0.9070 1.0131 0.4070 0.0158 0.0122
57.50 ± 2.5 0.8960 0.6774 0.4067 0.0147 0.0122
62.50 ± 2.5 0.9100 1.1410 0.4144 0.0143 0.0124
67.50 ± 2.5 0.9280 0.9501 0.3838 0.0140 0.0115
72.50 ± 2.5 0.9140 0.7989 0.3967 0.0139 0.0119
77.50 ± 2.5 0.9150 1.2966 0.4019 0.0144 0.0121
82.50 ± 2.5 0.9060 1.3502 0.3790 0.0150 0.0114
87.50 ± 2.5 0.8990 0.6407 0.3953 0.0160 0.0119
92.50 ± 2.5 0.9200 1.0608 0.3182 0.0170 0.0095
97.50 ± 2.5 0.8910 1.1560 0.3455 0.0191 0.0104
102.50 ± 2.5 0.9370 0.6564 0.3183 0.0219 0.0095
107.50 ± 2.5 0.9240 1.1728 0.3371 0.0241 0.0101
112.50 ± 2.5 0.9100 1.0762 0.2944 0.0266 0.0088
117.50 ± 2.5 0.9300 1.1816 0.2692 0.0275 0.0081
122.50 ± 2.5 0.9310 1.1670 0.1695 0.0284 0.0051
127.50 ± 2.5 0.8890 1.1927 0.1457 0.0278 0.0044
132.50 ± 2.5 0.9380 1.2786 0.2055 0.0278 0.0062
137.50 ± 2.5 0.9250 1.1630 0.1157 0.0291 0.0035
142.50 ± 2.5 0.9250 1.2367 0.2031 0.0301 0.0061
147.50 ± 2.5 0.9430 0.9270 0.1348 0.0333 0.0040
152.50 ± 2.5 0.8870 0.6253 0.0495 0.0378 0.0015
157.50 ± 2.5 0.9070 0.4725 0.0733 0.0438 0.0022
162.50 ± 2.5 0.8370 0.8945 0.0587 0.0529 0.0018

Table A.6: Σπ0
for incident photon energies 250.85 ± 3.92 MeV. A photon flux cor-

rection factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.
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Eγ = 257.1 ± 2.7 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
7.50 ± 2.5 0.8770 0.8731 0.0372 0.1402 0.0011
12.50 ± 2.5 0.8480 0.9294 0.1169 0.0737 0.0035
17.50 ± 2.5 0.8900 1.0960 0.1672 0.0439 0.0050
22.50 ± 2.5 0.9190 1.1084 0.2027 0.0344 0.0061
27.50 ± 2.5 0.9220 1.2172 0.2840 0.0275 0.0085
32.50 ± 2.5 0.9060 0.8874 0.3411 0.0225 0.0102
37.50 ± 2.5 0.9190 0.8491 0.3195 0.0189 0.0096
42.50 ± 2.5 0.9200 0.4604 0.3560 0.0170 0.0107
47.50 ± 2.5 0.9190 0.8908 0.3867 0.0158 0.0116
52.50 ± 2.5 0.9120 1.3025 0.4259 0.0147 0.0128
57.50 ± 2.5 0.9000 1.0527 0.4048 0.0141 0.0121
62.50 ± 2.5 0.9050 0.8950 0.4153 0.0139 0.0125
67.50 ± 2.5 0.9230 0.9080 0.4190 0.0136 0.0126
72.50 ± 2.5 0.9180 0.8413 0.4222 0.0138 0.0127
77.50 ± 2.5 0.9150 0.6112 0.4130 0.0141 0.0124
82.50 ± 2.5 0.9070 1.0428 0.3844 0.0148 0.0115
87.50 ± 2.5 0.9280 0.8990 0.4073 0.0167 0.0122
92.50 ± 2.5 0.9110 0.8876 0.3640 0.0184 0.0109
97.50 ± 2.5 0.8830 1.1951 0.3902 0.0214 0.0117
102.50 ± 2.5 0.9260 1.3115 0.3328 0.0232 0.0100
107.50 ± 2.5 0.8910 1.5651 0.3092 0.0259 0.0093
112.50 ± 2.5 0.9160 0.8831 0.3534 0.0273 0.0106
117.50 ± 2.5 0.8950 0.9724 0.2663 0.0290 0.0080
122.50 ± 2.5 0.9360 0.9577 0.2235 0.0296 0.0067
127.50 ± 2.5 0.9320 1.5244 0.1796 0.0307 0.0054
132.50 ± 2.5 0.9430 1.1697 0.1778 0.0310 0.0053
137.50 ± 2.5 0.9060 1.2386 0.1242 0.0309 0.0037
142.50 ± 2.5 0.9420 0.7404 0.1325 0.0311 0.0040
147.50 ± 2.5 0.8940 0.8008 0.1013 0.0348 0.0030
152.50 ± 2.5 0.9160 1.2327 0.0561 0.0380 0.0017
157.50 ± 2.5 0.9320 1.1504 0.0291 0.0461 0.0009
162.50 ± 2.5 0.9390 0.8104 0.0725 0.0508 0.0022

Table A.7: Σπ0
for incident photon energies 257.09 ± 2.66 MeV. A photon flux cor-

rection factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.
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Eγ = 272.1 ± 5.2 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
7.50 ± 2.5 0.9670 0.7334 0.0277 0.0544 0.0008
12.50 ± 2.5 0.9000 1.1986 0.1456 0.0304 0.0044
17.50 ± 2.5 0.9110 0.8462 0.1340 0.0199 0.0040
22.50 ± 2.5 0.8930 1.1910 0.2514 0.0144 0.0075
27.50 ± 2.5 0.9120 1.0684 0.3127 0.0113 0.0094
32.50 ± 2.5 0.9030 1.1765 0.3488 0.0094 0.0105
37.50 ± 2.5 0.9170 0.9189 0.3607 0.0081 0.0108
42.50 ± 2.5 0.9090 1.0913 0.4107 0.0074 0.0123
47.50 ± 2.5 0.9060 0.7933 0.4181 0.0068 0.0125
52.50 ± 2.5 0.9030 0.8097 0.4345 0.0065 0.0130
57.50 ± 2.5 0.9070 1.0257 0.4390 0.0062 0.0132
62.50 ± 2.5 0.9030 1.3875 0.4472 0.0061 0.0134
67.50 ± 2.5 0.9090 1.3471 0.4368 0.0062 0.0131
72.50 ± 2.5 0.9130 1.2718 0.4459 0.0064 0.0134
77.50 ± 2.5 0.9080 1.1727 0.4359 0.0068 0.0131
82.50 ± 2.5 0.9080 0.8820 0.4345 0.0073 0.0130
87.50 ± 2.5 0.9060 1.5141 0.4207 0.0077 0.0126
92.50 ± 2.5 0.8940 0.9873 0.4095 0.0085 0.0123
97.50 ± 2.5 0.9100 1.0117 0.3961 0.0094 0.0119
102.50 ± 2.5 0.9040 1.0957 0.3865 0.0104 0.0116
107.50 ± 2.5 0.9070 1.1760 0.3473 0.0114 0.0104
112.50 ± 2.5 0.8940 0.7787 0.3572 0.0120 0.0107
117.50 ± 2.5 0.9110 1.0982 0.2972 0.0126 0.0089
122.50 ± 2.5 0.8890 0.8921 0.2805 0.0130 0.0084
127.50 ± 2.5 0.9050 1.2580 0.2436 0.0138 0.0073
132.50 ± 2.5 0.9160 1.2607 0.2204 0.0142 0.0066
137.50 ± 2.5 0.8950 0.9357 0.1994 0.0150 0.0060
142.50 ± 2.5 0.9010 0.8519 0.1482 0.0157 0.0044
147.50 ± 2.5 0.8920 0.7340 0.1392 0.0166 0.0042
152.50 ± 2.5 0.9170 0.7990 0.0981 0.0183 0.0029
157.50 ± 2.5 0.9170 1.1817 0.0734 0.0214 0.0022
162.50 ± 2.5 0.9240 1.1853 0.0138 0.0243 0.0004

Table A.8: Σπ0
for incident photon energies 272.09 ± 5.15 MeV. A photon flux cor-

rection factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.



141

Eγ = 280.8 ± 3.9 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
7.50 ± 2.5 0.9850 1.2157 0.0398 0.0481 0.0012
12.50 ± 2.5 0.8990 0.7496 0.1221 0.0262 0.0037
17.50 ± 2.5 0.9380 1.3221 0.1930 0.0165 0.0058
22.50 ± 2.5 0.9150 1.1224 0.2347 0.0120 0.0070
27.50 ± 2.5 0.8990 1.2152 0.2827 0.0093 0.0085
32.50 ± 2.5 0.9120 1.1778 0.3450 0.0077 0.0103
37.50 ± 2.5 0.9200 1.5956 0.3709 0.0068 0.0111
42.50 ± 2.5 0.9170 0.7389 0.4055 0.0061 0.0122
47.50 ± 2.5 0.9100 1.6094 0.4283 0.0057 0.0129
52.50 ± 2.5 0.9200 1.0141 0.4350 0.0054 0.0130
57.50 ± 2.5 0.9120 1.4891 0.4441 0.0053 0.0133
62.50 ± 2.5 0.9140 1.2059 0.4619 0.0052 0.0139
67.50 ± 2.5 0.9190 0.9681 0.4594 0.0053 0.0138
72.50 ± 2.5 0.9240 1.4503 0.4633 0.0056 0.0139
77.50 ± 2.5 0.9170 1.9813 0.4514 0.0059 0.0135
82.50 ± 2.5 0.9220 1.0920 0.4401 0.0060 0.0132
87.50 ± 2.5 0.9210 1.6159 0.4254 0.0064 0.0128
92.50 ± 2.5 0.9180 1.1365 0.4234 0.0071 0.0127
97.50 ± 2.5 0.9200 1.4862 0.4244 0.0081 0.0127
102.50 ± 2.5 0.9220 1.8767 0.4001 0.0091 0.0120
107.50 ± 2.5 0.9180 1.2270 0.3576 0.0098 0.0107
112.50 ± 2.5 0.9290 1.1575 0.3589 0.0104 0.0108
117.50 ± 2.5 0.9190 0.8720 0.3305 0.0109 0.0099
122.50 ± 2.5 0.9160 0.8976 0.2958 0.0110 0.0089
127.50 ± 2.5 0.9250 1.3682 0.2933 0.0116 0.0088
132.50 ± 2.5 0.9290 0.7492 0.2622 0.0121 0.0079
137.50 ± 2.5 0.9410 1.0029 0.2099 0.0128 0.0063
142.50 ± 2.5 0.9180 1.2271 0.1644 0.0135 0.0049
147.50 ± 2.5 0.9210 0.7715 0.1390 0.0145 0.0042
152.50 ± 2.5 0.8990 1.1756 0.1200 0.0160 0.0036
157.50 ± 2.5 0.9270 1.0992 0.0882 0.0185 0.0026
162.50 ± 2.5 0.9420 0.8445 0.0832 0.0218 0.0025

Table A.9: Σπ0
for incident photon energies 280.80 ± 3.92 MeV. A photon flux cor-

rection factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.
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Eγ = 288.3 ± 3.9 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
7.50 ± 2.5 0.9080 0.7178 0.0656 0.0418 0.0020
12.50 ± 2.5 0.9240 1.0012 0.1614 0.0237 0.0048
17.50 ± 2.5 0.9170 1.2924 0.2194 0.0155 0.0066
22.50 ± 2.5 0.9270 1.1812 0.2220 0.0111 0.0067
27.50 ± 2.5 0.9150 1.0848 0.3053 0.0086 0.0092
32.50 ± 2.5 0.9210 1.5869 0.3524 0.0070 0.0106
37.50 ± 2.5 0.9180 0.9830 0.3975 0.0061 0.0119
42.50 ± 2.5 0.9220 1.1955 0.4284 0.0057 0.0129
47.50 ± 2.5 0.9160 1.8780 0.4375 0.0053 0.0131
52.50 ± 2.5 0.9130 1.0587 0.4543 0.0051 0.0136
57.50 ± 2.5 0.9200 1.4262 0.4699 0.0049 0.0141
62.50 ± 2.5 0.9160 1.7415 0.4733 0.0050 0.0142
67.50 ± 2.5 0.9230 1.0836 0.4733 0.0051 0.0142
72.50 ± 2.5 0.9190 1.0739 0.4732 0.0053 0.0142
77.50 ± 2.5 0.9160 1.0833 0.4847 0.0054 0.0145
82.50 ± 2.5 0.9210 1.0899 0.4686 0.0057 0.0141
87.50 ± 2.5 0.9200 0.8749 0.4611 0.0061 0.0138
92.50 ± 2.5 0.9130 0.8970 0.4431 0.0068 0.0133
97.50 ± 2.5 0.9270 0.9137 0.4281 0.0078 0.0128
102.50 ± 2.5 0.9140 0.9464 0.4189 0.0089 0.0126
107.50 ± 2.5 0.9140 1.0165 0.4081 0.0095 0.0122
112.50 ± 2.5 0.9160 1.1854 0.3704 0.0099 0.0111
117.50 ± 2.5 0.9310 1.0015 0.3518 0.0103 0.0106
122.50 ± 2.5 0.9190 0.6966 0.3122 0.0105 0.0094
127.50 ± 2.5 0.9210 1.1858 0.2876 0.0109 0.0086
132.50 ± 2.5 0.9220 0.7391 0.2668 0.0118 0.0080
137.50 ± 2.5 0.9320 0.9759 0.2089 0.0121 0.0063
142.50 ± 2.5 0.9200 0.8969 0.1945 0.0133 0.0058
147.50 ± 2.5 0.9270 1.6095 0.1504 0.0142 0.0045
152.50 ± 2.5 0.9180 0.6588 0.1213 0.0154 0.0036
157.50 ± 2.5 0.9260 0.9900 0.0870 0.0180 0.0026
162.50 ± 2.5 0.8970 0.9495 0.0195 0.0215 0.0006

Table A.10: Σπ0
for incident photon energies 288.29 ± 3.90 MeV. A photon flux

correction factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.



143

Eγ = 295.8 ± 3.9 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
7.50 ± 2.5 0.8930 0.8082 0.0767 0.0411 0.0023
12.50 ± 2.5 0.9200 0.7248 0.1343 0.0231 0.0040
17.50 ± 2.5 0.9350 1.2911 0.1660 0.0152 0.0050
22.50 ± 2.5 0.9130 0.9945 0.2515 0.0107 0.0075
27.50 ± 2.5 0.9270 0.9740 0.3112 0.0083 0.0093
32.50 ± 2.5 0.9280 0.9669 0.3702 0.0068 0.0111
37.50 ± 2.5 0.9160 1.1275 0.4075 0.0060 0.0122
42.50 ± 2.5 0.9180 0.6804 0.4239 0.0054 0.0127
47.50 ± 2.5 0.9180 1.4386 0.4571 0.0051 0.0137
52.50 ± 2.5 0.9290 1.2027 0.4734 0.0049 0.0142
57.50 ± 2.5 0.9190 1.5618 0.4816 0.0048 0.0144
62.50 ± 2.5 0.9220 1.0909 0.4926 0.0049 0.0148
67.50 ± 2.5 0.9200 1.3978 0.4987 0.0051 0.0150
72.50 ± 2.5 0.9220 1.4887 0.5016 0.0052 0.0150
77.50 ± 2.5 0.9220 1.4989 0.5003 0.0053 0.0150
82.50 ± 2.5 0.9180 1.2295 0.5040 0.0056 0.0151
87.50 ± 2.5 0.9170 0.9781 0.4878 0.0061 0.0146
92.50 ± 2.5 0.9250 1.2831 0.4705 0.0069 0.0141
97.50 ± 2.5 0.9210 0.7010 0.4603 0.0078 0.0138
102.50 ± 2.5 0.9210 1.1353 0.4521 0.0087 0.0136
107.50 ± 2.5 0.9100 1.4135 0.4148 0.0093 0.0124
112.50 ± 2.5 0.9220 0.9478 0.3965 0.0096 0.0119
117.50 ± 2.5 0.9180 1.2133 0.3888 0.0100 0.0117
122.50 ± 2.5 0.9240 0.8232 0.3580 0.0104 0.0107
127.50 ± 2.5 0.9250 1.1631 0.3279 0.0108 0.0098
132.50 ± 2.5 0.9130 0.6543 0.2852 0.0114 0.0086
137.50 ± 2.5 0.9140 1.3329 0.2053 0.0120 0.0062
142.50 ± 2.5 0.9060 0.8252 0.2358 0.0133 0.0071
147.50 ± 2.5 0.9110 0.9184 0.1734 0.0140 0.0052
152.50 ± 2.5 0.9010 1.3922 0.1534 0.0157 0.0046
157.50 ± 2.5 0.9290 1.1104 0.1182 0.0180 0.0035
162.50 ± 2.5 0.9530 1.3146 0.0938 0.0220 0.0028

Table A.11: Σπ0
for incident photon energies 295.78 ± 3.88 MeV. A photon flux

correction factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.
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Eγ = 303.3 ± 3.9 MeV
θπ0 (Lab) Correction, F χ2 of fit Σ3 ∆Σ3(stat.) ∆Σ3 (3% pol.)
7.50 ± 2.5 0.9690 0.7517 0.0112 0.0438 0.0003
12.50 ± 2.5 0.9250 1.1165 0.1206 0.0271 0.0036
17.50 ± 2.5 0.9560 1.2117 0.2066 0.0172 0.0062
22.50 ± 2.5 0.9690 1.1551 0.2738 0.0119 0.0082
27.50 ± 2.5 0.9710 1.1665 0.3424 0.0094 0.0103
32.50 ± 2.5 0.9610 1.0463 0.3794 0.0076 0.0114
37.50 ± 2.5 0.9670 1.4494 0.4356 0.0067 0.0131
42.50 ± 2.5 0.9680 1.4200 0.4677 0.0061 0.0140
47.50 ± 2.5 0.9560 1.3778 0.4996 0.0058 0.0150
52.50 ± 2.5 0.9640 2.0887 0.5057 0.0055 0.0152
57.50 ± 2.5 0.9620 1.2455 0.5124 0.0055 0.0154
62.50 ± 2.5 0.9700 0.9873 0.5387 0.0057 0.0162
67.50 ± 2.5 0.9620 0.5227 0.5397 0.0058 0.0162
72.50 ± 2.5 0.9660 1.2097 0.5358 0.0058 0.0161
77.50 ± 2.5 0.9770 1.2609 0.5428 0.0060 0.0163
82.50 ± 2.5 0.9680 1.2848 0.5445 0.0065 0.0163
87.50 ± 2.5 0.9660 0.7551 0.5291 0.0071 0.0159
92.50 ± 2.5 0.9600 0.7855 0.5288 0.0079 0.0159
97.50 ± 2.5 0.9690 1.0955 0.5070 0.0089 0.0152
102.50 ± 2.5 0.9710 0.9399 0.4810 0.0097 0.0144
107.50 ± 2.5 0.9750 1.4109 0.4574 0.0104 0.0137
112.50 ± 2.5 0.9610 0.6621 0.4341 0.0110 0.0130
117.50 ± 2.5 0.9710 0.6934 0.4014 0.0115 0.0120
122.50 ± 2.5 0.9640 0.8647 0.3860 0.0118 0.0116
127.50 ± 2.5 0.9610 0.9083 0.3630 0.0125 0.0109
132.50 ± 2.5 0.9510 0.9029 0.3039 0.0133 0.0091
137.50 ± 2.5 0.9510 1.0898 0.2847 0.0144 0.0085
142.50 ± 2.5 0.9700 0.7832 0.2171 0.0149 0.0065
147.50 ± 2.5 0.9520 0.8061 0.1886 0.0164 0.0057
152.50 ± 2.5 0.9600 1.2569 0.1717 0.0181 0.0052
157.50 ± 2.5 0.9880 1.1359 0.1216 0.0209 0.0036
162.50 ± 2.5 0.9800 1.0355 0.0718 0.0244 0.0022

Table A.12: Σπ0
for incident photon energies 303.30 ± 3.89 MeV. A photon flux

correction factor, F , and a χ2 (per degree of freedom) is given for each angular bin.
Statistical errors are shown, along with a 3% polarisation error.



Bibliography

[1] P. Martel, “Measuring proton spin polarizabilities with polarized compton scat-
tering,” Ph.D dissertation, University of Massachusetts Amherst, 2013.

[2] P. Martel et al. , “Measurements of the proton spin polarizabilities with double-
polarized compton scattering,” Phys. Rev. Lett., 2014.

[3] G. Blanpied et al. , “N → ∆ transition from simultaneous measurements of
p(γ, π0) and p(γ, γ),” Phys. Rev. Lett., vol. 79, 1997.

[4] G. Blanpied et al. , “N → ∆ transition and proton polarizabilities from mea-
surements of p(γ, γ),p(γ, π0), and p(γ, π+),” Phys. Rev. C., vol. 64, 2001.

[5] M. Levchuk and A. Lvov, “Deuteron compton scattering below pion photopro-
duction threshold,” Nucl. Phys. A, vol. 674, pp. (449–492), 2000.

[6] M. Schumacher, “Polarizability of the nucleon and compton scattering,” Progress
in Particle and Nuclear Physics, vol. 55, pp. (567–646), 2005.

[7] D. Babusci, G. Giordano, A. Lvov, G. Matone, and A. Nathan, “Low-energy
compton scattering of polarized photons on polarized nucleons,” Phys. Rev. C,
vol. 58, pp. 1013–1041, 1998.

[8] B. Holstein, D. Drechsel, B. Pasquini, and M. Vanderhaeghen, “Higher order
polarizabilities of the proton,” Phys. Rev. C., vol. 61, 2000.

[9] V. Petrun’kin, “Scattering of low-energy photons on a system with spin 1/2,”
Sov. Phys. JETP., vol. 13, 1961.

[10] V. Petrun’kin, “Scattering of low-energy photons on a zero-spin particle,” Nucl.
Phys., vol. 55, 1964.

[11] I. Guiasu, C. Pomponiu, and E. Radescu, “Elastic γ-proton scattering at low
and intermediate energies,” Annals of Physics, vol. 114, pp. 296–331, 1978.

[12] B. MacGibbon et al. , “Measurement of the electric and magnetic polarizabilities
of the proton,” Phys. Rev. C., vol. 52, 1995.

[13] A. Lvov, V. Petrun’kin, and M. Schumacher, “Dispersion theory of proton comp-
ton scattering in the first and second resonance regions,” Phys. Rev. C., vol. 55,
1997.

[14] B. Pasquini, D. Drechsel, and M. Vanderhaeghen, “Proton spin polarizabilities
from polarized compton scattering,” Phys. Rev. C., vol. 76, 2007.

145



146

[15] D. Drechsel, B. Pasquini, and M. Vanderhaeghen, “Dispersion relations in real
and virtual compton scattering,” Phys. Rept., vol. 378, 2003.

[16] A. Baldin, “Polarizability of nucleons,” Nucl. Phys., vol. 18, pp. (310–317), 1960.

[17] J. Bernabeu, T. Ericson, and C. Ferro Fontan, “The nucleon electromagnetic
polarizabilities,” Phys. Lett. B, vol. 49, 1974.

[18] M. Schumacher, “Electromagnetic polarizabilities of the nucleon and properties
of the σ-meson pole contribution,” Eur. Phys. J, vol. 30, 2006.

[19] J. Ahrens et al. , “First measurement of the gerasimov-drell-hearn integral for
1h from 200 to 800 MeV,” Phys. Rev. Lett., vol. 87, 2001.

[20] S. Drell and A. Hearn, “Exact sum rule for nucleon magnetic moments,” Phys.
Rev. Lett., vol. 16, p. 908, 1966.

[21] S. Gerasimov, “A sum rule for magnetic moments and the damping of the nucleon
magnetic moment in nuclei,” Sov. J. Nucl. Phys., vol. 2, p. 403, 1966.

[22] M. Damashek and F. Gilman, “Forward compton scattering,” Phys. Rev. D,
vol. 1, 1970.

[23] T. Armstrong et al. , “Total hadronic cross section of γ rays in Hydrogen in the
energy range 0.265-4.215 GeV,” Phys. Rev. D, vol. 5, 1972.

[24] M. MacCormick et al. , “Total photoabsorption cross sections for 1H, 2H, and
3He from 200 to 800 MeV,” Phys. Rev. C, vol. 53, 1996.

[25] D. Babusci, G. Giordano, and G. Matone, “New evaluation of the baldin sum
rule,” Phys. Rev. C, vol. 57, 1998.

[26] R. Workman, W. Briscoe, M. Paris, and I. Strakovsky, “Updated SAID analysis
of pion photoproduction data,” Phys.Rev. C, vol. 85, 2012.
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