

Effects of thermal spin fluctuations on the electronic properties of itinerant magnets *Surprises from ab initio calculations*

Kirill Belashchenko

Department of Physics and Astronomy, University of Nebraska-Lincoln

SPICE Workshop on Computational Quantum Magnetism (May 2015)

Thermal spin fluctuations \rightarrow Electrons \rightarrow Properties (T)

Fluctuating spin moments polarize and scatter the conduction electrons
T-dependent electronic spectrum, resistivity, magnetic anisotropy, etc.

Outline

□ Magnetic anisotropy K(T) in $(Fe_{1-x}Co_x)_2B$ alloys

- Thermal spin disorder can increase K(T)
- □ Thermal depolarization of half-metallic NiMnSb
 - Dominant mechanism is due to Mn_{sb} defects
- □ Resistivity in rare-earths (spin fluct. + phonons)
 - Hidden resistivity saturation effect in Gd

Methods

- Adiabatic approximation for spin fluctuations (static spin correlations)
- Coherent potential approximation (CPA) for chemical and spin disorder
- Disordered local moment (DLM) model of spin fluctuations ("static limit" of DMFT) (Oguchi et al, 1983; Gyorffy *et al.*, 1985)

e.g. $p(\theta) \sim \exp(\alpha \cos \theta)$

- Vector model (Staunton *et al.*, 2004)
- Implemented in Green's function LMTO
- Full charge self-consistency available, constraining fields
- Spin-orbit coupling (perturbation of potential parameters)
- Landauer-Büttiker method for transport calculations (supercell averaging over spin disorder)

"Components":

Anomalous T dependence of magnetic anisotropy

(Fe_{1-x}Co_x)₂B: exotic K(x,T), spin reorientations

Three spin reorientation transitions *vs* x **Anomalous temperature dependence**

The Callen-Callen model gives: $K(T) \sim M^3(T)$ (single-site) or $M^2(T)$ (two-site) - monotonic

Known anomalies due to thermal expansion: hcp Co (Carr, 1958), MnBi

(Fe_{1-x}Co_x)₂B: anomalies due to spin fluctuations First known case?

A. Iga, Jpn J. Appl. Phys. (1970)

Spin moments and magnetization

- Co spin moment is too large in DFT (LDA or GGA): 1.1 μ_B vs 0.76 μ_B (missing quantum spin fluctuations in DFT)
- Anisotropy is sensitive to exchange splitting (it affects band filling)
- ↔ Correction: Scale the B_{xc} field for Co by 0.8 everywhere
- Accelerated decline of the Co spin moment at x > 0.6 (agrees with expt)

Magnetocrystalline anisotropy, spin resolution

• Separation in spin channels (exact in 2nd order PT): $\Delta E_2 \approx \frac{1}{2} \langle H_{SO} \rangle = K_{SO} = K_{\uparrow\uparrow} + K_{\downarrow\downarrow} + K_{\downarrow\downarrow} + K_{\downarrow\downarrow}$

◆ Spin-flip terms are small except near Co₂B
◆ K_{↑↑} is positive and nearly constant; variation comes from K_{↓↓}
SPICE Workshop, May 2015

Brillouin zone map of MCA in Fe_2B (\downarrow spin)

MCA in $(Fe_{0.2}Co_{0.8})_2B$ (\downarrow only)

Г

- Odd→even mixing: negative contribution
- Even doublet at E_F : split for M||z, positive contribution around Γ (reduced by disorder)
- Minimum of K(x) at x = 0.8

Red: xy and $x^2 - y^2$ (even, $m = \pm 2$) Blue: xz and yz (odd, $m = \pm 1$) Green: $3z^2 - r^2$ (even, m = 0)

* Non-monotonic K(x): \downarrow band filling, SO selection rules, disorder

SPICE Workshop, May 2015

Γ

2

1

0

-1

-2

Г

Temperature dependence of MCA

Anomalous temperature dependence from spin fluctuations SPICE Workshop, May 2015

Strong broadening at Fe-rich end, Stoner-like at Co-rich end
Spin fluctuations affect MCA through disorder and band shift

Spin fluctuations affect MCA through disorder and band shifts

Effect of disorder on magnetic anisotropy

 Disorder suppresses "hot spots" from degenerate bands at E_F

* Disorder does not uniformly suppress all MCA contributions

Temperature dependence of MCA

- *K*[↓] suppressed by disorder
- K_{\uparrow} grows due to band filling
- Spin reorientation transition
- Anomalous K(T) through band broadening, Stoner band shifts

KB *et al.*, APL 106, 062408 (2015) Zhuravlev *et al.*, arXiv:1503.04790

- "Hot spot" near Γ suppressed in K_{\downarrow}
- Non-monotonic K(T)

Thermal depolarization of a half-metallic ferromagnet

Half-metallic ferromagnet at finite T

- Ideally 100% polarization at the Fermi level
- Case study: NiMnSb (half-Heusler alloy)
- Low-T anomaly in resistivity

Hordequin *et al.*, JMMM 1996 Borca *et al.*, PRB 2001

X₂YZ: full Heusler XYZ: half-Heusler

Anomaly linked to excess Mn

Wang et al., Jpn J Appl Phys 2010

✤ Regular band structure at T = 0

Crossover to conventional ferromagnet (raising VBM at Γ)

Negligible "shadow weight" from dispersive majority-spin bands

Ideal NiMnSb: VBM moves up at finite T, half-metallic gap persists up to ~400 K

- VBM moves up with T due to unmixing of Mn t_{2q} states from Sb
- Crossover to conventional FM around 400 K

Excess Mn: exchange coupling to bulk

Host Mn atoms: $E(\pi) = 730 \text{ meV}$

✤ Mn_E, Mn_{Sb} weakly coupled to bulk M, disorder at low T

✤ Collinear Mn_E ($\theta = 0$), Mn_E ($\theta = \pi$), Mn_{Ni}, Mn_{Sb} preserve the gap (cf. Alling *et al.*, PRB 2006)

Mn_E with spin disorder (6.25%)

Disordered spins on Mn_F

 Spin disorder on Mn_E broadens VBM, but changes at E_F are not large

Mn_{Sb} with spin disorder

27

Defects in NiMnSb: Experimental data

Polarized neutron diffraction [Brown et al., JPCM 22, 206004 (2010)]

NiMnSb (A): grain growth, annealed 60 days in Ar at 1000°C NiMnSb (B): Bridgeman technique

Site		PdMnSb	NiMnSb (A)	NiMnSb (B)
A	$b (fm) Occ (\%) \mu (\mu_B)$	-2.62(2) Mn 85(8) Sb 10(1) 4.52(3)	-3.73(4) Mn 100.0(5) 4.11(5)	-2.60(4) Mn 87.5(5) Sb 11.7(5) 3.98(4)
В	$b (fm) Occ (\%) \mu (\mu_B)$	4.62(2) Sb 90.0(2) Mn 9.4(9) 0	5.33(4) Sb 95.5(4) 0	4.20(4) Sb 81.6(6) Mn 12.5(5) 3.98(4)
С	b (fm) Sb (%) μ (μ _B)	5.68(5) Pd 95.0(5) Mn 5.0(5) 0	10.39(4) Ni 100.0(3) 0.15(2)	9.00(12) Ni 85(2) Sb 6(1) 0.05(4)
D	$b (fm) (%) \mu (\mu_B)$	0.03(5) Pd 0.5(8) Mn 0.0(1) 0	0.14(4) Ni 1.6(3)Sb 0.2(1) 0	9.00(12) Ni 15(2) Sb 1(1) 1.0(3)

Mn/Sb (B2 type) disorder and Ni_E in lower-quality sample B

Spin disorder resistivity in rare earth metals

Spin-disorder resistivity

Scattering on spin fluctuations – no *ab initio* results until recently

Calculations for Fe and Ni: see Wysocki, KB et al. (PRB 2009)

Spin-disorder resistivity of rare earths

f-d model prediction (mean-field approximation):

 $\label{eq:rho_PM} lpha J_{fd} S(S+1),$ weak spin-orbit $ho_{\rm PM} \propto J_{fd} (g-1)^2 J(J+1),$ strong spin-orbit

Kasuya, 1956 De Gennes, 1958 Brout and Suhl, 1959

de Gennes factor $(g-1)^2 J(J+1)$

- Raw data: $(g 1)^2 J(J + 1)$ for *c*-axis; *S*(*S*+1) for in-plane
- Rescaling based on dp/dT above T_c (assumes large FS changes, contradicts *ab initio* data)

$$v_{\alpha}^2 \delta(E-E_F) d\mathbf{k}$$

Element	In-plane	<i>c</i> -axis		
Gd	0.679	1.247		
Tb	0.655	1.257		
Dy	0.609	1.217		
Но	0.571	1.166		
Er	0.548	1.135		
Tm	0.532	1.108		

Resistivity vs (exchange splitting)²

- Linear trend for both directions
- Larger *m* and ρ with 4*f* states treated using LDA+U

SPICE Workshop, May 2015

J. K. Glasbrenner, KB *et al.*, PRB 85, 214405 (2012) 32

Results (supercell and DLM methods)

LB = Landauer-Buttiker

Flomont	t a, c	m, μ_B	In-plane		c-axis		Polycrystal				
Element			LB	DLM	Exp	LB	DLM	Exp	\mathbf{LB}	DLM	Exp
Cd	6.858	7.72	58.9	59.1	$108, 105^{23}$	44.9	41.5	$96, 95^{23}$	54.2	53.2	106.4
Gu	10.952	7.44	42.0	40.2		31.3	26.9		38.4	35.7	
Th	6.805	6.64	45.6	46.0	82	33.5	30.2	66	41.6	40.7	85.7
ID	10.759	6.35	29.1	27.7		22.2	17.6		26.8	24.3	
Dw	6.784	5.58	35.4	35.3	$62, 57^{21}$	25.1	22.6	$44, 45^{21}$	32.0	31.1	57.6
Dy	10.651	5.27	19.4	18.6		14.1	11.7		17.6	16.3	
Чо	6.760	4.46	23.8	22.8	41	16.8	14.3	24	21.5	20.0	32.3
110	10.612	4.20	12.0	10.8		7.93	6.8		10.6	9.43	
Fr	6.725	3.33	13.4	12.2	$21, 32.4^{25}$	8.56	7.5	$13, 18.0^{25}$	11.8	10.6	23.6
EA	10.559	3.14	6.68	5.94		4.11	3.44		5.82	4.81	
Tm	6.685	2.21	5.96	5.23	$22.3, 21.2^{24}$	3.43	3.2	$7.4, 9.0^{24}$	5.12	4.56	14.9
1 111	10.497	2.088	3.00	2.32		1.67	1.44		2.56	2.02	

J. K. Glasbrenner et al., PRB 85, 214405 (2012)

Exp. data: Legvold *et al.*, Maezawa *et al.*, Ellerby *et al.*

- CPA and supercell methods agree
- Anisotropy (ρ_c/ρ_a) grows with Z, well reproduced
- Magnitude is underestimated

Comparison with experiment, quantum corrections

- Heavier elements: (S+1)/S correction improves agreement
- Lighter elements (Gd, Tb): large *S* and *J*, corrections too small
- Deviations from Matthiessen rule?

Combination of phonon and spin disorder

• Classical Einstein oscillator model

$$H = \frac{1}{2}k\mathbf{u}^{2}; Z = \int_{-\infty}^{\infty} e^{-H/k_{B}T} dx$$
$$\Delta_{ph}^{2} \equiv \left\langle \mathbf{u}^{2} \right\rangle \propto T$$

See also Liu et al., PRB 84, 014412 (2011) (Gilbert damping)

Test for deviations from Matthiessen's rule:

- Maintain random spin disorder and add lattice displacements
- For independent phonon and spin scattering, expect $\rho = \rho_{SDR} + \alpha \Delta_{ph}^2$

Resistivity crossover and "hidden" saturation in Gd

Glasbrenner et al., PRB 89, 174408 (2014)

Effect of Anderson disorder in Gd

- Effect of Anderson disorder is similar to lattice displacements
- Resistivity saturation irrespective of the scattering mechanism
- Saturation trend in experiment

Spectral function of Gd: Parts of Fermi surface destroyed by disorder

✤ Electron and hole-like Fermi surface sheets are degenerate on ALH plane

✤ Parts of Fermi surface are destroyed by disorder \rightarrow resistivity saturation

Comparison with photoemission

Conclusions

- CPA-DLM treatment of spin fluctuations is a method of choice to study temperature-dependent electronic properties of magnetic alloys as long as dynamic correlations are irrelevant
- Implementation in TB-LMTO: vector DLM model with full charge self-consistency, constraining fields, total energy, spin-orbit coupling
- Anomalous temperature dependence of magnetic anisotropy in (Fe_{1-x}Co_x)₂B is entirely due to spin fluctuations changing the electronic structure (band shifts and broadening)
- Strong thermal depolarization of half-metallic NiMnSb due to thermal spin disorder on Mn_{Sb} defects; testable dependence of the crossover temperature on Mn_{Sb} concentration
- Resistivity of Gd reinterpreted: collapsing parts of the Fermi surface and hidden resistivity saturation

Collaborators

Ivan Zhuravlev

Jeevaka Weerasinghe

Sai Mu (PhD 2014)

Bhalchandra Pujari

James Glasbrenner (PhD: UNL, now at NRL) Vladimir Antropov, Liqin Ke (Ames) Mark van Schilfgaarde (King's College London) Josef Kudrnovský, Vaclav Drchal, Ilja Turek (Czech AS) Sergii Khmelevskyi (TU-Wien)

Supported by NSF DMR-1005642, DMR-1308751, Nebraska MRSEC (DMR-0820521)