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Thermal spin fluctuations  
Electrons  Properties (T) 

T > 0 T = 0 

𝐻SCF = 𝐻0 −
1

2
𝐼 𝐒𝑖𝛔 𝑖

𝑖

 

 Fluctuating spin moments polarize and scatter the conduction electrons 
 T-dependent electronic spectrum, resistivity, magnetic anisotropy, etc. 

𝐒𝑖 
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Outline 

 Magnetic anisotropy K(T) in (Fe1-xCox)2B alloys 

• Thermal spin disorder can increase K(T) 

 

 Thermal depolarization of half-metallic NiMnSb 

• Dominant mechanism is due to MnSb defects 

 

 Resistivity in rare-earths (spin fluct. + phonons) 

• Hidden resistivity saturation effect in Gd 
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Methods 

 Adiabatic approximation for spin fluctuations (static spin correlations) 

 Coherent potential approximation (CPA) for chemical and spin disorder 

 Disordered local moment (DLM) model of spin fluctuations (“static limit” of DMFT) 

(Oguchi et al, 1983; Gyorffy et al., 1985) 

• Vector model (Staunton et al., 2004)  

• Implemented in Green’s function LMTO 

• Full charge self-consistency available, constraining fields 

• Spin-orbit coupling (perturbation of potential parameters) 

 

 Landauer-Büttiker method for transport calculations 
(supercell averaging over spin disorder) 

“Components”: 

e.g.  𝑝 𝜃 ∼ exp 𝛼 cos 𝜃  



Anomalous 
T dependence of 

magnetic anisotropy 
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(Fe1-xCox)2B: exotic K(x,T), spin reorientations 

Three spin reorientation transitions vs  x 

Anomalous temperature dependence 

 
The Callen-Callen model gives: 𝐾 𝑇 ~𝑀3 𝑇  
(single-site) or 𝑀2 𝑇  (two-site) - monotonic 
 
Known anomalies due to thermal expansion: 
hcp Co (Carr, 1958), MnBi 
 
(Fe1-xCox)2B: anomalies due to spin fluctuations 
 First known case? 

 

A. Iga, Jpn J. Appl. Phys. (1970) 
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Spin moments and magnetization 

Cadeville and Vincze, JPF 1975 

• Co spin moment is too large in DFT (LDA or GGA): 1.1 𝜇𝐵 vs 0.76 𝜇𝐵 
(missing quantum spin fluctuations in DFT) 

• Anisotropy is sensitive to exchange splitting (it affects band filling) 

 Correction: Scale the Bxc field for Co by 0.8 everywhere 

 Accelerated decline of the Co spin moment at x > 0.6 (agrees with expt) 



SPICE Workshop, May 2015 8 

Magnetocrystalline anisotropy, spin resolution 

• Separation in spin channels (exact in 2nd order PT): 

Δ𝐸2 ≈
1

2
𝐻𝑆𝑂 = 𝐾𝑆𝑂 = 𝐾↑↑ + 𝐾↑↓ + 𝐾↓↑ + 𝐾↓↓ 

 

 Spin-flip terms are small except near Co2B 
 𝐾↑↑ is positive and nearly constant; variation comes from 𝐾↓↓ 

 Experiment (2 K) 
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Brillouin zone map of MCA in Fe2B ( spin) 

Red: 𝑥𝑦 and 𝑥2 − 𝑦2 (even, 𝑚 = ±2) 
Blue: 𝑥𝑧 and 𝑦𝑧 (odd, 𝑚 = ±1) 
Green: 3𝑧2 − 𝑟2 (even, 𝑚 = 0) 

• Parity selection rule for 
𝑧 → −𝑧 on the ΓMX plane 

• 𝐿 𝑧 even, 𝐿 𝑥 odd 

• 𝐿 𝑥 couplings: in-plane MCA 

2 
1 
0 

-1 
-2 
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MCA in (Fe0.7Co0.3)2B ( spin) 

2 
1 
0 

-1 
-2 

• 𝑥𝑧, 𝑦𝑧 bands are filled 
• Small MCA from spin , 

spin  dominates 
• Band shifts + disorder 

Red: 𝑥𝑦 and 𝑥2 − 𝑦2 (even, 𝑚 = ±2) 
Blue: 𝑥𝑧 and 𝑦𝑧 (odd, 𝑚 = ±1) 
Green: 3𝑧2 − 𝑟2 (even, 𝑚 = 0) 
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MCA in (Fe0.2Co0.8)2B ( only) 

2 
1 
0 

-1 
-2 

• Oddeven mixing: negative contribution 
• Even doublet at EF: split for M||z, positive 

contribution around Γ (reduced by disorder) 
• Minimum of K(x) at x = 0.8 

Red: 𝑥𝑦 and 𝑥2 − 𝑦2 (even, 𝑚 = ±2) 
Blue: 𝑥𝑧 and 𝑦𝑧 (odd, 𝑚 = ±1) 
Green: 3𝑧2 − 𝑟2 (even, 𝑚 = 0) 

 Non-monotonic K(x):  band filling, SO selection rules, disorder 
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Temperature dependence of MCA 

A. Iga, Jpn J. Appl. Phys. (1970) 

 Excellent agreement with experiment 
 Anomalous temperature dependence from spin fluctuations 
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Electronic structure at elevated T (with SOC) 
Fe2B (Fe0.05Co0.95)2B 

T = 0 

T/TC = 0.7 

 Strong broadening at Fe-rich end, Stoner-like at Co-rich end 
 Spin fluctuations affect MCA through disorder and band shifts 



SPICE Workshop, May 2015 14 

Effect of disorder on magnetic anisotropy 

 Reduced  term (flat bands near EF) 

𝒙 = 𝟏. 𝟎 

𝒙 = 𝟎. 𝟗 

𝒙 = 𝟎. 𝟖 

 Disorder suppresses “hot spots” 
from degenerate bands at EF 

Virtual crystal vs CPA 

 Disorder does not uniformly suppress all MCA contributions 
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Temperature dependence of MCA 
Fe2B (Fe0.05Co0.95)2B 

 𝐾↓ suppressed by disorder 
 𝐾↑ grows due to band filling 
 Spin reorientation transition 

 “Hot spot” near  suppressed in 𝐾↓ 
 Non-monotonic 𝐾 𝑇  

 Anomalous 𝐾 𝑇  through band 

broadening, Stoner band shifts 

 

 (+) 

 (–) 

 

 
 

Total Total 

𝑇 = 0 

0.7𝑇𝐶 

KB et al., APL 106, 062408 (2015) 
Zhuravlev et al., arXiv:1503.04790  



Thermal depolarization of a 
half-metallic ferromagnet 
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 Ideally 100% polarization at the Fermi level 

 Case study: NiMnSb (half-Heusler alloy) 

 Low-T anomaly in resistivity 

Half-metallic ferromagnet at finite T 

Hordequin et al., JMMM 1996 
Borca et al., PRB 2001 

Wang et al., Jpn J Appl Phys 2010 

Anomaly linked to excess Mn 

X2YZ: full Heusler 
XYZ: half-Heusler 
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Evolution of NiMnSb spectral function with 
temperature 

 Majority Minority 
T = 0 

Color scheme: Ni  Mn  Sb 

 Regular band structure at T = 0 
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Evolution of NiMnSb spectral function with 
temperature 

 Majority Minority 
T = 167 K 

Color scheme: Ni  Mn  Sb 
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Evolution of NiMnSb spectral function with 
temperature 

 Majority Minority 
T = 257 K 

Color scheme: Ni  Mn  Sb 
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Evolution of NiMnSb spectral function with 
temperature 

 Majority Minority 
T = 399 K 

Color scheme: Ni  Mn  Sb 

 Crossover to conventional ferromagnet (raising VBM at Γ) 
 Negligible “shadow weight” from dispersive majority-spin bands 
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Evolution of NiMnSb spectral function with 
temperature 

 Majority Minority 
T = 490 K 

Color scheme: Ni  Mn  Sb 
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Evolution of NiMnSb spectral function with 
temperature 

 Majority Minority 
T = 586 K 

Color scheme: Ni  Mn  Sb 
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Ideal NiMnSb: VBM moves up at finite T, 
half-metallic gap persists up to ~400 K 

M/M0=0.8 

Mn t2g 

Mn eg 

(Sb states 
removed) 
 
Sb (Mn,Ni 
3d states 
removed) 

VBM and CBM: energy and width 

Hybridization analysis 

 VBM moves up with T due to 
unmixing of Mn t2g states from Sb 

 Crossover to conventional FM 
around 400 K 
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Excess Mn: exchange coupling to bulk 

 MnE, MnSb weakly coupled to bulk M, disorder at low T 

 Collinear MnE (𝜃 = 0), MnE (𝜃 = 𝜋), MnNi, MnSb preserve the gap 
(cf. Alling et al., PRB 2006) 

Host Mn atoms: 
𝐸 𝜋 = 730 meV  

VASP 
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MnE with spin disorder (6.25%) 

MnE spin  to bulk M Disordered spins on MnE 

 Spin disorder on MnE broadens VBM, 
but changes at EF are not large 
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MnSb with spin disorder 
MnSb spin  to bulk M Fully disordered MnSb spins 

Spin polarization at EF 

 Gap is destroyed by spin disorder on MnSb 

 Likely source of low-T anomaly 

6.25% MnSb 

VASP 

CPA 

DLM@MnSb 

KB et al., PRB(R) 2015, in press (arXiv:1501.00969) 
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Defects in NiMnSb: Experimental data 

Polarized neutron diffraction [Brown et al., JPCM 22, 206004 (2010)] 

NiMnSb (A): grain growth, annealed 60 days in Ar at 1000C 
NiMnSb (B): Bridgeman technique 

 Mn/Sb (B2 type) disorder and NiE in lower-quality sample B 



Spin disorder resistivity 
in rare earth metals 
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 Scattering on spin fluctuations – no ab initio results until recently 

Spin-disorder resistivity 

Gd 

Maezawa et al., JPSJ 1977 Weiss and Marotta, 1959 

Calculations for Fe and Ni: see Wysocki, KB et al. (PRB 2009) 



Spin-disorder resistivity of rare earths 

f-d model prediction (mean-field approximation): 

Kasuya, 1956 
De Gennes, 1958 
Brout and Suhl, 1959 
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) • Raw data: 𝑔 − 1 2𝐽(𝐽 + 1) for c-
axis; S(S+1) for in-plane 

• Rescaling based on d/dT above Tc  
(assumes large FS changes, 
contradicts ab initio data) 

de Gennes factor 𝑔 − 1 2𝐽(𝐽 + 1) 

𝜌PM ∝ 𝐽𝑓𝑑𝑆(𝑆 + 1),     weak spin-orbit 

𝜌PM ∝ 𝐽𝑓𝑑 𝑔 − 1 2𝐽 𝐽 + 1 , strong spin-orbit 

Element In-plane c-axis 

Gd 0.679 1.247 

Tb 0.655 1.257 

Dy 0.609 1.217 

Ho 0.571 1.166 

Er 0.548 1.135 

Tm 0.532 1.108 

 𝑣𝛼
2𝛿 𝐸 − 𝐸𝐹 𝑑𝐤 



SPICE Workshop, May 2015 32 

Resistivity vs (exchange splitting)2 

• Linear trend for both directions 
• Larger m and  with 4f states treated using LDA+U 

J. K. Glasbrenner, KB et al., PRB 85, 214405 (2012) 
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Results (supercell and DLM methods) 

• CPA and supercell methods agree 
• Anisotropy (c/a) grows with Z, well reproduced 
• Magnitude is underestimated  

J. K. Glasbrenner et al., PRB 85, 214405 (2012) 

LB = Landauer-Buttiker 

Exp. data: Legvold et al., 
Maezawa et al., Ellerby et al. 
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Comparison with experiment, quantum corrections 

Expt. 

Calc (FM) 

(S+1)/S 

(J+1)/J 

• Heavier elements: (S+1)/S  correction improves agreement 
• Lighter elements (Gd, Tb): large S and J, corrections too small 
• Deviations from Matthiessen rule?  
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Combination of phonon and spin disorder 

/2

2 2

1
;

2
BH k T

ph

H k Z e dx

T







 

  

u

u

• Classical Einstein oscillator model 

See also Liu et al., PRB 84, 014412 (2011) 
(Gilbert damping) 

Test for deviations from Matthiessen’s rule: 
• Maintain random spin disorder and add lattice displacements 
• For independent phonon and spin scattering, expect 𝜌 = 𝜌SDR + 𝛼Δ𝑝ℎ

2  
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Resistivity crossover and “hidden” saturation in Gd 

Only phonons 
in FM state 

Spin disorder (PM) + phonons 

• “Hidden” resistivity saturation effect 
• Violation of the Matthiessen rule 

Glasbrenner et al., PRB 89, 174408 (2014) 



• Effect of Anderson disorder is similar to lattice displacements 
• Resistivity saturation irrespective of the scattering mechanism 
• Saturation trend in experiment 

Experiment 
Vedernikov et al., 1977 

Effect of Anderson disorder in Gd 

Calculation 
Anderson disorder 
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Spectral function of Gd: 
Parts of Fermi surface destroyed by disorder 

 Electron and hole-like Fermi surface sheets are degenerate on ALH plane 
 Parts of Fermi surface are destroyed by disorder  resistivity saturation 

Δ=0 

Δ=0.95 eV 

Δ=1.8 eV CPA-DLM + Anderson disorder 
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Comparison with photoemission 

Dӧbrich et al., PRB 81, 012401 (2010) 
T = 300 K 
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 CPA-DLM treatment of spin fluctuations is a method of choice to 
study temperature-dependent electronic properties of magnetic 
alloys as long as dynamic correlations are irrelevant 

 Implementation in TB-LMTO: vector DLM model with full charge 
self-consistency, constraining fields, total energy, spin-orbit coupling 

 Anomalous temperature dependence of magnetic anisotropy in 
(Fe1-xCox)2B is entirely due to spin fluctuations changing the 
electronic structure (band shifts and broadening) 

 Strong thermal depolarization of half-metallic NiMnSb due to 
thermal spin disorder on MnSb defects; testable dependence of the 
crossover temperature on MnSb concentration 

 Resistivity of Gd reinterpreted: collapsing parts of the Fermi surface 
and hidden resistivity saturation 

Conclusions 
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