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My goal:

To get workshop participants, particularly those 
specializing in numerical calculations, interested in
looking at  unconventional ordered state in triangular AFM

And also to show that there is interesting physics not falling
under the umbrella of a “spin liquid” 



I consider a rather simple 2D system of localized spins
on a triangular lattice 

H

If J=J’, at zero field 
spins form a 120o

configuration

Now   
apply 
a field

A seemingly obvious choice: a non-co-planar state with
all three spins in a triad equally rotating towards a field 

J J

Such an order breaks U(1) * Z2



Is this the right result for the 2D model?  



H One “end point” of the set is the
non-co-planar cone state (umbrella)

H The other “end point” is
the co-planar state

Classical degeneracy in 2D:  for classical spins, an infinite number of
different spin configurations at a given H have the same energy at T=0

The co-planar state breaks the discrete Z3 symmetry by 
selecting which of the three spins in a triad is opposite to H  

The degeneracy is broken by thermal and quantum fluctuations



Quantum phase diagram (J=J’):
co-planar state wins!

0

An intermediate 
up-up-down phase,

M = Msat/3
Only Z3

hc2hc1

All 3 branches of spin-wave 
excitations are gapped

J=J’

U(1) x Z3

U(1) x Z3



The two mostly studied antiferromagnets on a  
triangular lattice are Cs2CuCl4 and Cs2CuBr4

They do have non-equal exchange interactions 

Experiment: 

For both systems J > J’ (anisotropy towards 1D chains)



Cs2CuCl4  (J’ =0.3-0.35 J) 

R. Coldea et al, 2002

No magnetization plateau

Magnetic field



Cs2CuBr4   (J’ =0.7 J)

Tsujii et al, 2007

Ono et al, 2002

Magnetization plateau
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Why the behavior depends
on J’/J?

and

Classical
fluctuations
select a cone

state   

Quantum
fluctuations

select a
co-planar state

0 anisotropy  (J-J’)/J 

When J=J’
When J>J’

Quantum mechanics 
competes with 

classical mechanics



Chen, Ju, Jiang, Starykh, Balents
Coletta, Zhitomirsky, Mila

Tay, Motrunich



To see how classical mechanics competes with 
quantum mechanics, let’s start with up-up-down

phase and do spin-wave calculations 

All 3 branches of spin-wave 
excitations are gapped

hc1 hc2

Part I



k=0 instabilities
Instabilities at a  
finite  k or –k

J. Alicea, O. Starykh, A.C. anisotropy  (J-J’)/J/S1/2J. Alicea, O. Starykh, A.C

k1 -k1

k2 -k2

“Spin-wave” analysis  



Once there is a spin-wave instability at a finite momentum |k|,
there are two options for a system:

It can develop  condensates y simultaneously at +k and –k  

Sx (r) = y (Cos k r + Cos (-k r)) = 2 Cos k r  
Sy (r) = y (Sin k r + Sin (-k r)) = 0  

A co-planar state
(spins in XZ plane)

Or, it can develop a condensate y at +k OR at –k  

Sx (r) = y Cos k r,  Sy (r) = y Sin k r  A non-coplanar state
(spins have all 3 components)

How to distinguish? One has to derive Landau functional 

F = a (y2
k + y2

-k) + b1(y4
k + y4

-k) +2 b2 y2
ky2

-k

A non co-planar state if b2 > b1, and a co-planar state if b1 > b2 

?



Instability towards a
non-co-planar chiral
state with, say k=k1

Instability towards a
non-co-planar chiral

state with, say,  k=k2

Instabilities at a finite 
momentum  k or -k

J. Alicea, O. Starykh, A.C.

The system
spontaneously chooses

either +k2 or –k2

The system
spontaneously chooses

either +k1 or –k1

anisotropy  (J-J’)/J 

The two chiralities
don’t know about
each other: must
be interm. phase

J. Alicea, O. Starykh, A.C

We derived Landau functional. The results:



We decided to do one thing at a time and search for 
a potential pre-emptive two-magnon instability

At a first glance, this is waist of time:
magnon-magnon interaction  is repulsive in an antiferromagnet,
so no reasons to expect a two magnon  bound state

Indeed, we considered interaction between magnons within 
one branch and found only repulsion. 

But a conventional reasoning does
not work when the two magnons,
which we try to pair, belong to
different spin-wave branches
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As a result, the system develops a pre-emptive 
instability, in which two magnons from different spin-wave 
branches  form a q=0 bound state with an imaginary order parameter
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One needs to check that I(d) can overcome 1/S



What is the spin configuration in this state? 

0  d  d k2,k1, =><=>< ++

f(k)  i  dd 2,-kk1, F=>< ++

A

B

C
<SA SB> = <SB SC> = <SC SA> = 0

<SA,perp> = <SB,perp> = <SC,perp>  = 0

A B

C <z (SA x SC)> = <z (SC x SB)> = <z (SB x SA)> ~ F

Vector chirality

< SA (SB  x SC)>~ F Scalar chirality

N.B.   No non-collinear incommensurate spin order!

Hz

d0dcr



Spin current

n

m

A

B

C

<cr ar> = - <crbr>= <a+
rbr> = i F

F>0 F<0



This may be the tip of the iceberg

The state we found may exist in a finite range of 
anisotropies and then become unstable towards 
multi-magnon condensation

Sudan, Luscher, Lauchi
Hikihars, Kecke, Momoi, Furusaki
Shannon, Momoi, Sindzingre, 
A.C., Balents….

An example of such behavior – 1D  J1/J2 model



Phases of a triangular-lattice antiferromagnet near saturation:

Part II

Chen, Ju, Jiang, Starykh, Balents

Earlier papers: 



hsat

B

plateau, Z3

U(1)*Z3

U(1)*U(1)
U(1)*Z2

A
fully polarized state

h

commensurate
planar (V)

0

~~
C

D

Low-density expansion

Spin-wave instability
at momenta k and -k

k -k

y1 y2

G1 >G2: both condensates appear simultaneously, the result is co-planar state
G2>G1:  only one condensate emerges,  this leads to cone state (chiral) 

Classical physics vs 
quantum physics

Incomm.
planar cone

Do spin-wave calculations 



hsat

B

plateau, Z3

U(1)*Z3

U(1)*U(1)
U(1)*Z2

A

fully polarized state

h

commensurate
planar (V)

0

~~
C

D

Incomm.
planar cone

U(1)*U(1)
U(1)*Z2

U(1)*U(1) == translational symmetry  + the choice of the plane

U(1)*Z2  == translational symmetry + chirality 

How the transition between the two occurs? 

• direct, first order
• via an intermediate phase



hsat
B

plateau, Z3

U(1)*Z3

U(1)*U(1)
U(1)*Z2

Ah

comm.
planar double cone

0

~~ U(1)*U(1)*Z2

C

D

Elementary excitation spectrum of the cone phase: 
Goldstone mode at k = +Q, gapped at k = -Q

+Q-Q-Q’

Transition at BD: softening of the mode at -Q’ 

Double cone, one with Q,
another with –Q’

Intermediate state is a double cone

coneplanar



hsat
B

plateau, Z3

U(1)*U(1)
U(1)*Z2

A fully polarized stateh

δ1 δ3
δ2

B

A C

A
cone

incomm.
planar

double cone

0

~~ U(1)*U(1)*Z2

C

D

Commensurate-incommensurate transition

U(1)*Z3

comm.
planar

This is NOT spin-wave driven transition 

Rather, we have commensurate-incommensurate transition

Classical mechanics wants incommensuration, 
quantum mechanics wants to keep state commensurate 



What I earlier called q=0 is actually Q0 = (4p/3,0)

In a generic case of order with |Q| we introduce 
condensates  with Q and –Q:   y1 and y2

G3 term is generally not allowed by momentum conservation, BUT
is allowed if Q is commensurate (= Q0)

quantum mechanics
favors comm. order

generic expression for
Sr in a co-planar phase 

Make the phase q coordinate-dependent

classical mech quantum mech



hsat
B

plateau, Z3

U(1)*U(1)
U(1)*Z2

A fully polarized stateh

δ1 δ3
δ2

B

A C

A
cone

incomm.
planar

double cone

0

~~ U(1)*U(1)*Z2

C

D

U(1)*Z3

comm.
planar

Phase diagram near saturation field: 
double cone and commensurate-incommensurate transition



The full phase diagram (our proposal) 

Need help from numerical studies



Conclusions

Spin-current order  at fields near 1/3 of saturation

Commensurate-incommensurate transition
near the saturation field

Incommensurate planar and cone states 
near the saturation field

Double cone state in between

Anisotropic 2D triangular AFM has very rich physics 



And, there is indeed one more reason to consider 120o structures

J J

120o

60 60

60 + 60 = 120



Dear Sasha and Igor:



Thank you


