Neutron scattering as a tool to study quantum magnetism

Radu Coldea
Oxford
Outline

- principles of (magnetic) neutron scattering
- spin waves in a Heisenberg ferromagnet
- spin waves in square-lattice AFM La$_2$CuO$_4$
- quantum renormalization, spinons and method to determine Hamiltonian – triangular AFM $S = 1/2$ Cs$_2$CuCl$_4$
- quantum phase transition in the Ising chain CoNb$_2$O$_6$ in transverse field
Neutron reactors
(Institute Laue Langevin)
- nuclear fission of Uranium

\[k_i - k_f = Q \]
\[E_i - E_f = E \]
Spallation neutron sources (ISIS, SNS …)

- “evaporation” when fast protons hit a heavy nucleus (Ta)

proton synchrotron accelerator $\sim 800\text{MeV}$

p^+

neutron guide

time-of-flight spectrometer

$\sim 40,000$ detector elements count simultaneously (time-stamp each arriving neutron)
Magnetic neutron diffraction

Neutrons have
- no charge
- spin-1/2 moment

Periodic magnetic order
=> magnetic Bragg peaks at $Q = \tau \pm q$

- Intensity $\sim |M_{\perp}(Q)|^2$

Fourier transform of magnetic moment density (perp to scattering wavevector Q)
Inelastic magnetic neutron scattering matrix element for transition

\[\langle \lambda | S^\alpha(Q) | 0 \rangle \]

\[S^\alpha(Q) = \frac{1}{\sqrt{N}} \sum_j e^{iQ \cdot R_j} S_j^\alpha \]

\[S^{\alpha \alpha}(Q, \omega) = \sum \left| \langle \lambda | S^\alpha(Q) | 0 \rangle \right|^2 \delta(\hbar \omega + E_0 - E_\lambda) \]

\[\frac{d^2 \sigma}{d\Omega dE'} \equiv \frac{k'}{k} Nr^2 \left| \frac{g}{2} F(Q) \right| e^{-2w(Q)} \sum_{\alpha \beta} \left(\delta_{\alpha \beta} - \hat{Q}_\alpha \hat{Q}_\beta \right) S^{\alpha \beta}(Q, \omega) \]

Fourier transform of magnetic e- density

polarization factor
Single crystals for inelastic neutron scattering

La$_2$CuO$_4$

Cs$_2$CuCl$_4$
(solution growth)

CoNb$_2$O$_6$
(mirror furnace growth)

7 single-crystal mount ~50 g
(flux growth)

2.5 cm

4 cm

floating-zone mirror furnace
Spin waves in a Heisenberg ferromagnet

\[H = - \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j \] if all \(J_{ij} > 0 \) \(T=0 \) ground state is \(\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \)

- neutrons flip over one spin \(S^- \uparrow \uparrow \uparrow \uparrow \uparrow \ldots = \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \)

magnon energy

\[\omega(q) = -J(q) + J(0) + h \]

exact result

Fourier transform of magnetic couplings

\[J(q) = \frac{1}{2} \sum_{ij} J_{ij} e^{iqr_{ij}} \]

Zeeman energy

Wavevector \((q) \)

Energy

Gap \(\Delta \)

Coherent propagation of spin-flip states

(if Hamiltonian conservs \(S^z \))

Dispersion images exchange Hamiltonian

\[|\varphi_q> = \frac{1}{\sqrt{N}} \sum_i e^{iqr_i} |\downarrow_i> \]
Neutron scattering by ferromagnetic magnons

incident neutron k_i
$S^z = -1/2$

scattered
$S^z = +1/2$

k_f

$k = k_i - k_f$

$E_i - E_f = \hbar \omega(k)$
Spin waves in the square-lattice anti-ferromagnet

Ground state has Neel order
(<S> reduced by quantum fluctuations)

$$S_i \cdot S_j = S_i^z S_j^z + \frac{1}{2} \left(S_i^+ S_j^- + S_i^- S_j^+ \right)$$

La$_2$CuO$_4$

- insulating parent of high-T_C cuprates
- square-lattice of CuO$_2$ planes, Cu$^{2+}$ S=1/2

Spin wave excitations
(approximate eigenstates)

Magnetic Bragg peak (1/2,1/2,0)

Keimer at al, PRB (1992)
Neutron scattering experiments on La$_2$CuO$_4$

7 single crystal mount, ~50 g

RC et al, PRL 86, 5377 (2001)
Magnetic excitations in La$_2$CuO$_4$

Collect maps of magnetic scattering in the whole 2D Brillouin zone (h,k) at increasing energies E

Spin-wave dispersion surface

RC et al, PRL 86, 5377 (2001)
Dispersion relations

La$_2$CuO$_4$, $T=293$ K

RC et al, PRL 86, 5377 (2001)
Dispersion relation and interactions

- dispersion shape is a direct fingerprint of the magnetic interactions

- “wiggle” in high-energy dispersion is evidence for a cyclic-exchange between the 4 spins on a plaquette in addition to the main exchange J

\[\mathcal{H} = J \sum_{\langle i,j \rangle} S_i \cdot S_j + J_c \sum_{\langle i,j,k,l \rangle} \{(S_i \cdot S_j)(S_k \cdot S_l) + (S_i \cdot S_l)(S_k \cdot S_j) - (S_i \cdot S_k)(S_j \cdot S_l)\}, \] (1)

$J = 138 \text{ meV}$ \hspace{0.5cm} $J_c = 38 \text{ meV}$
Ring exchange in the Hubbard model

Expand up to 4 electron hops

\[\mathcal{H} = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J' \sum_{\langle i,i' \rangle} \mathbf{S}_i \cdot \mathbf{S}_{i'} + J'' \sum_{\langle i,i'' \rangle} \mathbf{S}_i \cdot \mathbf{S}_{i''} + J_c \sum_{\langle i,j,k,l \rangle} \left\{ (\mathbf{S}_i \cdot \mathbf{S}_j)(\mathbf{S}_k \cdot \mathbf{S}_l) + (\mathbf{S}_i \cdot \mathbf{S}_l)(\mathbf{S}_k \cdot \mathbf{S}_j) \right\} - (\mathbf{S}_i \cdot \mathbf{S}_k)(\mathbf{S}_j \cdot \mathbf{S}_l) \]

(1)

A.H. MacDonald (1990), Takahashi (1977)
Hubbard model parameters for \(\text{La}_2\text{CuO}_4 \)

- dispersions and intensities well described by linear spin-wave theory

\[\begin{align*}
t &= 0.30(2) \text{ eV}, \quad U = 2.2 (4) \text{ eV} \\
U/t &= 7.3 \pm 1.3 \text{ (10 K)}
\end{align*} \]

Intensity renormalization factor
\[Z_c = 0.51 \pm 0.13 \text{ (predicted 0.61)} \]

RC et al, PRL 86, 5377 (2001)
Magnetic excitations in $S = 1/2$ triangular lattice AFM Cs$_2$CuCl$_4$

- sharp spin-wave mode only very small weight
- dominant scattering continuum with strongly-dispersive boundaries

=> Quantum fluctuations very strong, spin-wave theory inadequate

Experimental method to determine Hamiltonian via spin waves in the fully-polarized state in high field

\[\omega(k) = J(k) - J(0) + h \]

\[J(k) = \frac{1}{2} \sum d J_d \exp(i k \cdot \delta) \]

- B=0
- B >> J
- \(J \) antiferromagnetic
- State with AF correlations
- Fully-polarized state
- Magnetic field
- \(B_C \)
- Bose condensation of magnons at \(B_C \)
- Exact eigenstate if Hamiltonian conserves \(S_z \)
- Dispersion is the Fourier transform of exchange couplings
- Gapped magnons
- Magnetically ordered, spin liquid etc.
Excitations in the saturated ferromagnetic phase at $B=12$ T

Fourier transform of couplings $J(q)

\[J = 0.374(5) \text{ meV} \]

\[J' = 0.128(5) \text{ meV} \]

\[J'' = 0.017(2) \text{ meV} \]

interlayer coupling

\[D_a = 0.020(0) \text{ meV} \]

DM anisotropy \(\perp \) bc plane

$B_c = 8.42$ T

$T = 60$ mK

Magnon condensation below critical field induces transverse order

Link magnetic order with magnon wavefunctions

2 condensates at +Q and -Q

The two condensates interact via the inter-layer couplings \(J'' \)

Asymmetric shape

\[\langle S_b \rangle / \langle S_c \rangle \]

predicted asymmetry using magnon wavefunctions

Quantum renormalization of incommensurate ordering wavevector

$B = B_c$

$B < B_c$

Strong quantum renormalization

$\varepsilon_0 / \varepsilon_{cl} = 0.56$

$\epsilon = 0.0536(5)$

$B(T) || a$

Classical instability

Large-S

Spin-1/2

Collinear spins

Q

Mean-field result

Magnetic excitations at zero field: spin-waves fractionalize into pairs of $S=1/2$ spinons

$J'/J \sim 1/3, \; J=0.37$ meV

$S_i^+ S_j^- + S_j^- S_i^+$

Kohno, Starykh, Balents, Nat. Phys. (07)
anisotropic triangular lattice $S=1/2$ AFM Cs_2CuCl_4 has spiral order coexisting with strong quantum fluctuations

- renormalization of Q-vector and zone-boundary energy measured by quenching quantum fluctuations via field and revealing “classical” behaviour
- dominant continuum scattering (spin-waves fractionalize into pairs of spinons)
Ising magnets and phase transitions

- classical Ising model
 \[H = - \sum_{i,j} J S_i^z S_j^z \]

- 2D model Onsager exact solution (1944)

add transverse field
- \(B S^x \)
- \(B (S^+ + S^-) / 2 \)

quantum fluctuations
quantum tunneling

Classical thermally-driven continuous phase transition

Quantum fluctuations driven continuous phase transition

\(T=0 \) “quantum melting of order”
An Ising ferromagnet in transverse field

\[H = - \sum_i J S_i^z S_{i+1}^z - B S_i^x \]

- transverse field
 \[-B S^x = -B (S^+ + S^-) / 2 \]

generates quantum fluctuations that “melt” the spontaneous magnetic order at \(B_C \sim J/2 \)

- continuous quantum phase transition

ordered moment

\[\langle S^z \rangle \]

Magnetization

\[\langle S^x \rangle \]
- what is **microscopic mechanism of transition**, can one observe the quantum fluctuations that drive transition?

- how **quasiparticles** evolve near critical point?

- what are the **fundamental symmetries** that govern physics of QCP?

- what are **finite-T properties** (interplay of thermal and quantum fluctuations, under what conditions universal scaling?)
1D Ising chain in transverse field

\[H = - \sum_i J \, S_i^z S_{i+1}^z \]

2 ground states: \(\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \) or \(\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \)

- transverse field \(B \, S^x \sim - B \, (S^++S^-) \)
flips spins \(\uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow \uparrow \)

\(\Rightarrow \) propagating solitons (Jordan Wigner fermions)

classical soliton (large-\(S \) limit)
Ising chain at criticality

- ω/T scaling expected, special “conformal” symmetry

- different universality class from Luttinger liquids (1D Heisenberg and XY AFM chains)

gapless linear (Dirac) spectrum

$\omega = c|k|$

for critical solitons
Experimental requirements

1) good 1D character to see solitons
2) low-exchange $J \sim 1$ meV to access critical field $BC \sim J/2 < 10$ T
3) strong uniaxial anisotropy (Ising character) but not perfect to still have transverse g-factor

- best Ising magnets are based on Co$^{2+}$ 3d7

lowest Kramers doublet effective spin-1/2 Ising-like

Strong Crystal field + Spin Orbit

$\lambda \, L \cdot S$

2D Ising AF K2CoF4 \textit{(Birgeneau ‘73, Cowley ‘84)}
1D Ising AF CsCoCl3 \textit{(Goff ’95) also CsCoBr3 (Nagler)}

$J \sim 12$ meV $BC > 50$ T not accessible
Quasi-1D Ising ferromagnet CoNb$_2$O$_6$

zig-zag Co$^{2+}$ spin chain along c

Ferromagnetic superexchange
\sim 90^\circ \text{ bond Co-O-Co}
\sim 20K \sim 2\text{meV}

Ferromagnetic order along chain
Strong easy-axis (Ising) in \textit{ac} plane

Single crystal of CoNb$_2$O$_6$
(Oxford image furnace)

[Diagram of the crystal structure with Co$^{2+}$ ions and oxygen ions, showing the zig-zag chain and the ferromagnetic superexchange bonds.]
Magnetic excitations in 1D phase seen by neutron scattering

$T = 5 \, \text{K}, \ 1\text{D phase above } T_N$

- gapped continua characteristic of 2-soliton excitations

RC et al, Science 327, 177 (2010)
Magnetic excitations in zero field

- rich structure: continuum as characteristic of 2-soliton excitations
 + sharp modes (bound states)

RC et al, Science 327, 177 (2010)
Excitations have 1D character – no measurable dispersion \(\perp \) chains

\[\parallel \text{chain direction} \]

\[\perp \text{chain direction} \]
Zeeman ladder of bound states in 3D ordered phase

Continuum of free 2-soliton states

Bound states in confining potential

Soliton separation costs energy:

\[V(x) = \lambda x \]

\[\lambda \sim J' \langle S^z \rangle \]

Longitudinal mean-field: \(-hS^x\), \(\lambda = 2h\langle S^z \rangle\)
Zeeman ladder of bound states in 3D ordered phase

Continuum of free 2-soliton states

Bound states in confining potential

Soliton separation costs energy

$V(x) = \lambda \cdot x$

$\lambda \sim J' \langle S^z \rangle$

Longitudinal mean-field $-hS^z$, $\lambda = 2 \, h \langle S^z \rangle$
Zeeman ladder of bound states in 3D ordered phase

$T = 5 \text{ K}$

$T = 40 \text{ mK}$

Continuum of free 2-soliton states

Bound states in confining potential

Soliton separation costs energy

$V(x) = \lambda \cdot x$

$\lambda \sim J' \langle S^z \rangle$

Longitudinal mean-field $-hS^z$, $\lambda = 2 \ h \langle S^z \rangle$
Soliton confinement

Mccoy&Wu (’78)

Schrödinger’s equation

\[-\frac{\hbar^2}{\mu} \frac{d^2 \varphi}{dx^2} + \lambda |x| \varphi = (m - 2m_o) \varphi\]

kinetic energy **string tension**

\[m_j = 2m_o + z_j \lambda^{2/3} \left(\frac{\hbar^2}{\mu} \right)^{1/3}\]

Ai function

\[\text{Ai}(-z_n) = 0\quad \text{Airy function}\]

\[z_n = 2.33, 4.08, 5.52, 6.78…\]

Energy (meV)

0.0 1.0 1.2 1.4 1.6

Intensity (arb units)

0.0 0.1 0.2 0.3

\[\hbar^2/(2\mu \tilde{c}^2) = 0.23(2) \text{ meV}\]

\[\lambda \tilde{c} = 0.033(1) \text{ meV.}\]
Phenomenological model of soliton gas

- work perturbatively around the Ising limit (spin clusters)

\[J \uparrow\uparrow\downarrow\downarrow\downarrow\uparrow \uparrow \quad \text{2-soliton states} \]

\[H = J \left| \uparrow\uparrow\downarrow\downarrow\downarrow\uparrow \uparrow \right> \quad \text{a 2 soliton state} \]

\[-\alpha \left| \uparrow\uparrow\downarrow\downarrow\downarrow\downarrow\uparrow \right> + \ldots \quad \text{soliton hopping} \]

\[-\beta \delta_{n,1} \left(\left| \uparrow\downarrow\uparrow\leftarrow \right> + \left| \uparrow\uparrow\uparrow\uparrow \right> \right) \quad \text{from XY term} \]

\[-J_{xy} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y \right) \sim S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ \]

RC et al, Science 327, 177 (2010)
Phenomenological model of soliton gas describes full spectrum

\[T = 40 \text{ mK} \]

Gap: \(J \sim 1.94 \text{ meV} \) from Ising \(zz \) exchange

Bandwidth \(\alpha = 0.12 \, J \) domain-wall hopping term

[microscopic origin \(S^z S^x \ldots ? \)]

Kinetic bound state: transverse couplings for nn bond \(S^x S^x + S^y S^y \), \(J^\perp / J^z = 0.24 \)

and 2-nd neighbour AFM along chain \(J^{zz'} = -0.15 \, J^z \)

Weak confinement term: \(h_z \sim 0.02 \, J \) longitudinal field includes interchain mean-field numerical calculation agrees with exact analytic solution of effective Hamiltonian

Experiments in applied transverse field

Gap decreases with field

- field tunes quasiparticle dispersion

Field \sim kinetic energy

$B_x S^x = (S^+ + S^-)/2$

Place crystal in metallic cage to prevent movement under high torque

$\begin{array}{l}
\text{CoNb}_2\text{O}_6 \\
torque
\end{array}$
Excitations as a function of transverse field

Two-soliton states

Ordered

Paramagnetic

Excitations change character above critical field

Magnetic 3D LRO

Bragg peak

Counts (10^3/sec)

Energy (meV)

Intensity (a.u.)
Excitations in transverse field

2-soliton continuum

RC et al, Science 327, 177 (2010)
Summary

- realized experimentally field-tuned quantum phase transition in quasi 1D Ising magnet CoNb$_2$O$_6$

- observed transmutation of quasiparticles at critical point
Conclusions

- neutron scattering is a very versatile probe of magnetic ordering and dynamics (\(\mu\text{eV}->\text{eV}\), magnetic field (15 T->25 T), low T (mK)
- quantitative: probe dispersions of excitations through well-understood matrix element (quantitative comparison with theories)
- sample size limited, large crystals needed (advanced crystal growth)
- new neutron sources (ISIS 2\(^{\text{nd}}\) target station, USA + JAPAN, ESS) will bring new opportunities: higher flux, higher resolution, wider coverage

50 detectors, 2D data set

40,000 detectors, 4D data set, 4 energies measured simultaneously,

- complementary to resonant x-ray diffraction and inelastic (RIXS) (samples 10’s of \(\mu\text{m}\), resolution >30 meV, T > few K – beam heating)
Collaborators

La$_2$CuO$_4$
- S.M. Hayden (Bristol),
- G. Aeppli (UCL)
- T.G. Perring (ISIS)
- C.D. Frost (ISIS)
- T.E. Mason (Oak Ridge)
- S.W. Cheong (Rutgers)
- Z. Fisk (Florida)

CoNb$_2$O$_6$
- D.A. Tennant, (HZB Berlin)
- Elisa Wheeler (Oxford)
- Ewa Wawrzynska (Bristol)
- M. Telling (ISIS)
- K. Habicht, P. Smeibidl, K. Kieffer (HZB)
- D. Prabhakaran (Oxford)
- Ivelisse Cabrera (Oxford)
- Jordan Thompson (Oxford)
- R. Bewley, T. Guidi (ISIS)
- C. Stock, J. Rodriguez-Rivera (NIST)
- F. H.L. Essler, N. Robinson (Oxford)

Cs$_2$CuCl$_4$
- D. A. Tennant (HZB)
- A.M. Tsvelik (Brookhaven)
- K. Habicht, P. Smeibidl (HZB)
- Z. Tylczynski (Poland)
- Y. Tokiwa, F. Steglich (Dresden)