Quantum order-by-disorder in 'Kitaev model' on a triangular lattice

George Jackeli

Max-Planck Institute & University of Stuttgart, Germany Andronikashvili Institute of Physics, Tbilisi, Georgia

GJ & Avella, arXiv'15

SPICE @Mainz , May 23 , 2015

Transition metal oxides: Plethora of Challenging Phenomena

Relativistic in origin, Spin-orbit coupling

Orbital Spin Charge Lattice

Enhance interplay by going to heavy TM elements

	21	22	23	24	25	26	27	28	29	30
	Sc	Ti	v	Cr	Mn	Fe	Co	Ní	Cu	Zn
	44.9559	47.867	50.9415	51.9961	54.938	55.845	58.9332	58.6934	63.546	65.4089
	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc
0	39	40	41	42	43	44	45	46	47	48
ati	Y	Zr	Nb	Мо	TC	Ru	Rh	Pd	Ag	Cd
U U	88.9058	91.224	92.9064	85.94	98	101.07	102.9055	106.42	107.8682	112.411
	Yitrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rbodium	Palladium	Silver	Cadmium
ō	71	72	73	74	75	76	77	78	79	80
Ö	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg
_	174.967	178.49	180.9497	183.84	186.207	190.23	192.217	195.084	196.9666	200.59
	Lutetium	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury

spin-orbit

V

Kramers doublet of Ir4+

A. Abragam and B. Bleaney, "EPR of Transition Ions"

etween: Iridate Sompounds

Trianglar lattice Ba₃IrTi₂O₉

from Becker et al PRB'15

Frustration from anisotropy

CMC simulations on Classical model: Rousochatzakis et al, arXiv'14

DMRG and ED on Quantum model: Becker et al, PRB'15

We can thus focus on the case all couplings being FM

In FM state Classical energy E=-(M^xM^x+M^yM^y+M^zM^z)=-M² Global moment M can be freely rotated: accidental symmetry

Coupling between NN chains $E_{12}=-(M_1 M_2 + M_1 M_2)$

Kx=Ky=Kz>0

Coupling between NN chains E₁₂=-(M₁^xM₂^x+M₁^yM₂^y) M^z of each chain can be individually flipped

Accidental degeneracies - not related to symmetry: can be lifted by fluctuations

For magnets we need to calculate SW spectra for each Classical state and compare

$$\frac{1}{2}\sum \hbar\omega_n(k)$$

Not always possible!

Accidental degeneracies - not related to symmetry: can be lifted by fluctuations

Linked cluster expansion: calculate corrections from short wave-length fluctuations

Selection of quantum easy axes

Selection of quantum easy axes

Linked cluster expansion: calculate corrections from short wave-length fluctuations

 $\delta \mathcal{H} = -D(S_1^z S_3^z) S_2^z S_4^z$

Gives the coupling between NNN chains, forming two sub-lattices decoupled from each other

from Becker et al PRB'15

 $\langle S^x_{\mathbf{r}} S^x_{\mathbf{r}_0} \rangle$

Symmetry protected degeneracy

Canonical transformation: A: (x,y,z) B: (-x,-y,z)C:(x,-y,-z) D:(-x,y,-z)Hamiltonian remains unchanged, but z-comp. every 2nd chain gets flipped. No correlations of z-comp between NN chains