
George Jackeli
Max-Planck Institute & University of Stuttgart, Germany 

Andronikashvili Institute of Physics, Tbilisi, Georgia

Quantum order-by-disorder in  
‘Kitaev model’ on a triangular lattice

Correlated Electon Systems 
  

- Concepts and Materials - 

Special Lecture Course 
Winter Semester 2014/15 
2 hours per week 

Andreas W. Rost Hindenori Takagi 
Quantum Materials Department   
Max-Planck Institute for Solid State Research 
 
Institute for Functional Materials and Quantum Technologies 
Physics Department – University of Stuttgart 

www.fkf.mpg.de/takagi 

Lecturers 

UNIVERSITY OF

STUTTGART

INSTITUTE FOR FUNCTIONAL MATTER
AND QUANTUM TECHNOLOGIES

Prof. Dr. M. Daghofer

Pfaffenwaldring 57/VI
Postadr.: 70550 Stuttgart
Hausadr.: 70569 Stuttgart

Telefon (07 11) 6 85–65255
Telefax (07 11) 6 85–65271
maria.daghofer@fmq.uni-stuttgart.de
http://www.fmq.uni-stuttgart.de/
h·rt/br

12. Februar 2015

Institute for Functional Matter and Quantum Technologies
Pfaffenwaldring 57/VI · 70550 Stuttgart

Sehr geehrte Damen und Herren,

Mit freundlichen Grüßen
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beam. The polarization of the scattered x rays was ana-
lyzed with pyrolytic graphite (0 0 8) and (0 0 10) reflec-
tions for the L3 and L2 edges, respectively. A single crystal
was mounted on a closed-cycle cryostat, and data were
collected at a temperature of about 5 K. No indications of
change in the magnetic structure were found in the mea-
surements repeated at 120 and 250 K. X-ray absorption
spectra were recorded simultaneously in partial fluores-
cence mode using an energy-dispersive detector.

Figure 1 shows the magnetic structure solved in the
present study along with the underlying crystal structure.
Sr3Ir2O7 was first reported to adopt the space group
I4= mmm [16] but was later assigned to Bbcb based on
single crystal diffraction and transmission electron micros-
copy [17–19]. In this orthorhombic structure, all neighbor-
ing octahedra are rotated in an opposite sense about the c
axis, breaking inversion symmetries with respect to the
shared oxygen ions and thereby allowing DM interactions.

The c-axis collinear AF structure [Fig. 1(b)] is unam-
biguously solved from analysis of data presented in
Figs. 2 and 3. Figure 2(a) shows magnetic Bragg peaks
scanned over a wide range of l, with (h, k) fixed at (1,0)
and (0,1). The crystallographically forbidden hþ k ¼ odd
reflections imply AF ordering within an IrO2 plane, and the
observed large intensity modulation along the l direction
reflects the bilayer magnetic structure factor. The magnetic
peaks were refined at each l, and the corresponding inten-
sities obtained from integrating rocking curves are plotted
in Fig. 2(b). The intensity modulation has a periodicity set
by the ratio between the lattice parameter c and the bilayer

distance d (see Fig. 1), i.e., c=d # 5:13 and agrees well
with the profile expected for AF ordering between two
neighboring IrO2 planes. Thus, it follows that all nearest-
neighbor pairs are AF ordered. The fact that the l scans do
not contain either (1 0 odd) or (0 1 even) reflections shows
that a single magnetic domain is sampled in our measure-
ment [15,20]. Figure 2(c) shows the temperature depen-
dence of the intensity of (0 1 19) reflection, which
disappears above# 285 K and correlates with the reported
anomalies in the magnetization and the resistivity data
[17], implying that these anomalies are associated with
the onset of long range AF ordering.
To determine the orientation of the magnetic moment,

we performed polarization analysis on two magnetic Bragg
peaks, as shown in Fig. 3. The (1 0 18) reflection was
recorded at the azimuthal angle ! ¼ 0$ defined such that
it is zero when the reference vector (1 0 0) is in the
scattering plane. The data show that (1 0 18) reflection
appears only in the !-" channel, demonstrating that the
component of the magnetic moment contributing to this
reflection is confined to the scattering plane defined by
(1 0 0) and (1 0 18) vectors. This implies the easy axis is in
the ac plane. Rotating ! by 90$, now (0 1 0) and (0 1 19)
vectors are contained in the scattering plane. In this

FIG. 1 (color online). (a) Crystal structure of Sr3Ir2O7 as
reported in Ref. [17]. Every neighboring IrO6 octahedra are
rotated in opposite sense about the c axis by ’ 12$.
(b) Magnetic order has a c-axis collinear G-type antiferromag-
netic structure. The up and down magnetic moments correlate
with counterclockwise and clockwise rotations of the IrO6

octahedra, respectively.

FIG. 2 (color online). (a) l scan measured in !-" polarization
channel showing magnetic Bragg peaks. (b) Integrated inten-
sities at each peak obtained from rocking curves (red dots). Red
solid (green dashed) line is bilayer structural factor expected for
antiferromagnetic (ferromagnetic) alignment of two adjacent
IrO2 planes in a bilayer expressed by cos2 2!d

c (sin2 2!d
c ).

(c) Temperature dependence of (0 1 19) peak.
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We used resonant inelastic x-ray scattering to reveal the nature of magnetic interactions in Sr2IrO4, a 5d
transition-metal oxide with a spin-orbit entangled ground state and Jeff ¼ 1=2 magnetic moments. The

magnon dispersion in Sr2IrO4 is well-described by an antiferromagnetic Heisenberg model with an

effective spin one-half on a square lattice, which renders the low-energy effective physics of Sr2IrO4 much

akin to that in superconducting cuprates. This point is further supported by the observation of exciton

modes in Sr2IrO4, whose dispersion is strongly renormalized by magnons, which can be understood by

analogy to hole propagation in the background of antiferromagnetically ordered spins in the cuprates.

DOI: 10.1103/PhysRevLett.108.177003 PACS numbers: 74.10.+v, 74.72."h, 75.30.Ds, 78.70.Ck

Quantum magnetism in transition-metal oxides (TMOs)
arises from superexchange interactions among spin mo-
ments that depend on spin-orbital configurations in the
ground and excited states. The array of magnetism in 3d
TMOs is now well-understood within the framework of
Goodenough-Kanamori-Anderson [1], which assumes
conservation of spin angular momentum in the virtual
charge fluctuations. However, it has been recently realized
that strong relativistic spin-orbit coupling (SOC) can dras-
tically modify the magnetic interactions and yield a far
richer spectrum of magnetic systems beyond the standard
picture. Such is the case in 5d TMOs, in which the energy
scale of SOC is on the order of 0.5 eV (as compared to
#10 meV in 3d TMOs). For example, A2IrO3 ((A ¼
Li;Na) is being discussed as a possible realization of the
long-sought-after Kitaev model with bond-dependent mag-
netic interactions [2–4]. Furthermore, strong SOC may
result in nontrivial band topology to realize exotic topo-
logical states of matter with broken time reversal symme-
try, such as a topological Mott insulator [5], a Weyl
semimetal, or an axion insulator [6]. Despite such intrigu-
ing proposals, the nature of magnetic interactions in sys-
tems with strong SOC remains experimentally an open
question.

In this Letter, we report on the magnetic interactions in a
5d TMO, Sr2IrO4, with a spin-orbit entangled ground state
carrying Jeff ¼ 1=2 moments [7,8], probed by resonant
inelastic x-ray scattering (RIXS). These Jeff ¼ 1=2 mo-
ments are distinct from pure spins because their interac-
tions are predicted to depend strongly on lattice and
bonding geometries [2] due to an admixture of spatially
anisotropic orbital moments in the Jeff ¼ 1=2 wave

function. In the particular case of corner-sharing oxygen
octahedra on a square lattice, relevant to Sr2IrO4 [9]
[Fig. 1(a)], the magnetic interactions of Jeff ¼ 1=2 mo-
ments are described by a pure Heisenberg model, barring
Hund’s coupling that contributes a weak dipolarlike an-
isotropy term [2,10]. This is surprising, considering that
strong SOC typically results in anisotropic magnetic cou-
plings that deviate from the pure Heisenberg-like spin
interaction in the weak SOC limit. A compelling outcome
is that a novel Heisenberg antiferromagnet can be realized

(a) (b)

Sr

O

Sr2IrO4

Ir

Jeff=1/2 moments

FIG. 1 (color online). (a) Because of a staggered in-layer
rotation of oxygen octahedra, Sr2IrO4 has four IrO2 layers in
the unit cell [9], which coincides with the magnetic unit cell.
(b) Jeff ¼ 1=2 moments lie and are canted in the IrO2 plane [8].
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Trianglar lattice  Ba3IrTi2O9 
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(a) crystal structure (c) Ir-O-O-Ir exchange path

Ir O

BaTi

(b) single Iridium layer 
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FIG. 1. (Color online) (a) Crystal structure of Ba3IrTi2O9. (b) View of single iridium layers from two different perspectives. Within the
plane, the x, y, and z exchange paths are indicated by the gray planes. The planes labeled by x (y, z) are normal to the coordinate axis x̂ (ŷ, ẑ).
(c) The exchange between the iridium moments (blue) is mediated by two coplanar exchange paths.

First, every pair of iridium ions is coupled via two separate
exchange paths as indicated in Fig. 1(c) leading to a destructive
interference and subsequent suppression of the isotropic
Heisenberg exchange [6–8]. In comparison to the tricoordi-
nated iridates (Na,Li)2IrO3, which exhibit Ir-O-Ir exchange
paths, the triangular Ba3IrTi2O9 exhibits somewhat longer
Ir-O-O-Ir exchange paths, resulting in an overall lessening
of the magnetic exchange strength. Second, the three principal
bond directions of the triangular lattice structure cut through
three different edges of the IrO6 oxygen cages, resulting in
a distinct locking of the exchange easy axis along the three
directions [6–8] as illustrated in Fig. 1(a) and ultimately giving
rise to the three components of the Kitaev exchange. Note that
the Ir layer is normal to the (111) direction, hence, the three di-
rections are all equivalent. The description of the microscopic
physics is thus given in terms of a Heisenberg-Kitaev (HK)
Hamiltonian

HHK = JH

∑

⟨ij ⟩
Si · Sj + JK

∑

γ ∥⟨ij⟩
S

γ
i S

γ
j , (1)

where Si is a spin operator located on site i of the triangular
lattice spanned by the lattice vectors ax = (1,0)T , ay =
(−1/2,

√
3/2)T , and az = −ax − ay [see Fig. 2(a)]. Here

and in the following, we measure lengths in units of the
lattice constant a. The first term is the standard Heisenberg
coupling JH that describes an SU(2) invariant interaction
between the spin-orbit entangled j = 1

2 moments on nearest-
neighbor lattice sites. The Kitaev interaction JK , on the other
hand, explicitly breaks spin-rotation invariance and acts only
between single components Sγ of adjacent spins. The precise
component depends on the link between the lattice sites [see

FIG. 2. (Color online) (a) The triangular lattice with the three
lattice vectors aγ . Solid, dashed, and dotted bonds carry the three
distinct Kitaev interactions (see text). (b) First Brillouin zone of
the triangular lattice. The position and size of the colored dots indicate
the position and weight of Bragg peaks, respectively, expected
in the static spin structure factor for the Z2-vortex crystal. Each color
corresponds to a different spin component as listed in panel (a).

Fig. 2(a)]; for our particular choice here, the γ components of
spins interact via JK if sites are connected by a lattice vector
aγ with γ = x,y,z.

III. 120◦ ORDER AND Z2-VORTEX CRYSTAL

We will start our discussion of the ground states of Hamilto-
nian (1) by first elucidating the magnetic structure around the
antiferromagnetic Heisenberg point, where an extended Z2-
vortex crystal phase is found in agreement with Ref. [19]. The
ground state of the antiferromagnetic Heisenberg Hamiltonian
on the triangular lattice, which corresponds to couplings
JH > 0 and JK = 0 for Hamiltonian (1), is characterized
by a 120◦ ordering of spins [20]. At the classical level, this
ordering is captured by a spin orientation Si = S!̂(ri) with
the unit vector !̂120◦ (r) = e1 cos(Q · r) + e2 sin(Q · r) where
the commensurate wave vector Q connects the center with a
corner of the Brillouin zone Q = 4π

3 (1,0). The orthonormal
frame ei with i = 1,2,3 and e3 = e1 × e2 constitutes an SO(3)
order parameter. The energy per site for this classical state is
given by

ε120◦ = −S2 1
2 (3JH + JK ). (2)

Crucially, the 120◦ ordering possesses Z2 vortices [21] as
topologically stable point defects, which can be understood by
considering the first homotopy group of its order parameter
$1[SO(3)] = Z2.

A. Kitaev interaction destabilizes 120◦ ordering

For any finite JK , the 120◦ state becomes immediately
unstable with respect to fluctuations, which we demonstrate
in the following. We parametrize the fluctuations with the help
of two real fields π(r) = [π1(r),π2(r)]T :

!̂(r) = !̂120◦ (r)
√

1 − [π (r)]2 + π1(r)[−e1 sin(Q · r)

+ e2 cos(Q · r)] + π2(r)e3, (3)

so that !̂
2
(r) = 1 is maintained. Plugging this ansatz in

the Hamiltonian and expanding up to second order in the
fluctuation fields one obtains for the energy E = Nε120◦ + E (2)

with N denoting the number of lattice sites. The fluctuation

155135-2
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that a neutron is detected with spin ±eout is then given by

σ (q,eout,ein) =
∑

τout=±1

στoutσout,σin (q), (15)

#σ (q,eout,ein) =
∑

τout=±1

τoutστoutσout,σin (q), (16)

respectively. The polarization is then defined by the ratio
P(q,eout,ein) = #σ (q,eout,ein)/σ (q,eout,ein). In the following,
we concentrate on the magnetically ordered phase when the
scattering probabilities are dominated by magnetic Bragg
scattering so that we can neglect all nuclear contributions.
For the particular choice that the axis of polarizer and analyzer
coincide, eout = ein ≡ e, but are orthogonal to the transferred
momentum e ⊥ q, the polarization attributed to magnetic
scattering simplifies to [23,24]

Pmag(q,e,e)|ê⊥q = 2
eiχij (q)ej

χkl(q)(δkl − q̂kq̂l)
− 1, (17)

where q̂ = q
|q| is the orientation of momentum and χij (q) =

χij (q,ω = 0) is the spin susceptibility at zero frequency

χij (q,ω) = i

∫ ∞

0
dt eiωt ⟨[Si(q,t),Sj (−q,0)]⟩. (18)

The magnetic structure factor of the Z2-vortex crystal, that
follows from Eq. (13), has only nonzero diagonal components
χii , which however differ from each other and, moreover,
possess different Bragg peak positions. For example, for
our choice of the Kitaev interaction, the χzz component is
expected to exhibit a primary Bragg peak at q(1) = Q − taz =
1
a

[ 4π
3 (1,0,0) − t(− 1

2 ,−
√

3
2 ),0] where a is the lattice constant

and we assumed for simplicity that the two-dimensional
triangular lattice lies in the x-y plane. Measuring at this
particular Bragg peak, one expects for e = ẑ the value Pmag =
1 in contrast to Pmag = −1 that is obtained for e in the
direction perpendicular to ẑ and q. A systematic variation
of the analyzer/polarizer orientation e should therefore allow,
in principle, to resolve the correlation between the diagonal
components χii and their Bragg peak position.

IV. FULL PHASE DIAGRAM

After a detailed discussion of the magnetic structure close to
the antiferromagnetic Heisenberg point in the previous section,
we now turn to the remaining part of the phase diagram.
It is represented in Fig. 4 by a circle with the help of the
parametrization (JH ,JK ) = (cos α, sin α).

Importantly, the HK model (1) exhibits a duality [6,25]
(also referred to as the Klein duality [14]) relating a pair
of interactions on the right-hand side of the circle to a pair
of interactions on the left-hand side, i.e., JH → −JH and
JK → 2JH + JK . The corresponding dual states are related
by a four-sublattice basis transformation (see Appendix A for
more explanations). As a consequence, the antiferromagnetic
α = 0, as well as the ferromagnetic Heisenberg point α = π ,
both possess a dual giving rise to four SU(2)-symmetric points
marked by red bars in Fig. 4. In particular, this maps the
ferromagnetic state for JH < 0 at α = π to a dual ferromagnet
at JH > 0 and JK < 0 consisting of alternating strips of up-

120◦ order

dual Z6 FM

dual O(3) FM

Z6 FM

nematic phase

Z2 vortex crystal

dual Z2
vortex crystal

FM

dual 120◦ order

FIG. 4. (Color online) Phase diagram of the Hamiltonian (1)
with parametrization (JH ,JK ) = (cos α, sin α) as obtained from exact
diagonalization data. Solid lines show the mapping between two
Klein-dual points. Red lines mark the location of the four SU(2)-
symmetric points. Yellow diamonds mark the two Kitaev points.

and down-pointing spins [see Fig. 5(a)]. Similarly, the 120◦

ordered state and its surrounding Z2-vortex crystal phase
around the JH > 0 Heisenberg point map to a dual phase
in the upper left quadrant with JH < 0 and JK > 0 with the
respective orderings illustrated in Figs. 5(b) and 5(c).

In the following, we first elaborate in Sec. IV A on the
ferromagnetic phase and the influence of a finite Kitaev
interaction on the order-parameter space. Second, in Sec. IV B
we examine the physics close to the Kitaev point α = π/2
where the classical ground-state manifold is macroscopically
degenerate so that quantum fluctuations have a profound effect.
Third, in Sec. IV C we finally discuss the ground-state energies
of the classical as well as of the quantum model that lead to
the phase diagram in Fig. 4.

A. Z6 ferromagnet

At the Heisenberg point JH < 0 and JK = 0, the exact
ground state of the Hamiltonian is the ferromagnetic spin

FM dual FM 120° dual 120°

Klein
duality

Z2 vortex crystal dual Z2 vortex crystal
(only one sublattice shown) (only one sublattice shown)

(a)

(c)

(b)

FIG. 5. (Color online) (a), (b) Spin configurations for the four
SU(2)-symmetric points of the HK model (1). The gray diamonds
indicate the unit cells of the order. (c) Snapshots of spin configurations
in the Z2-vortex crystal (left) and its dual Z2-vortex crystal (right).
For clarity, only one of the three sublattices of the triangular lattice
is shown. Yellow arrows point upwards out of the plane, while blue
arrows point downwards out of the plane.
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(a) (b)

FIG. 7. (Color online) Histogram of the spin expectation value
obtained with the help of finite-temperature Monte Carlo simulations
of the classical HK model close to the ferromagnetic Heisenberg
point. Whereas for JK = 0 in panel (a) the spin covers the full S2

sphere, thermal fluctuations in the presence of a finite JK ̸= 0 favor
the alignment along one of the six ⟨100⟩ directions.

subextensive ground-state degeneracy where L is the linear
system size. Each ground state breaks the combined symmetry
of the HK Hamiltonian of a C6 lattice rotation and a cyclic
spin exchange so that the ordering is that of a spin nematic.
While the ferromagnetic Kitaev point JK < 0 only separates
the ferromagnetic and the dual ferromagnetic order, which
is immediately stabilized for any finite JH , an extended
nematic phase arises close to the antiferromagnetic Kitaev
point JK > 0 [19]. For later reference, the energy per site of
the classical ground state close to the antiferromagnetic Kitaev
point is given by

εnematic = −S2(JH + JK ). (22)

In order to investigate this nematic ordering of the quantum
model, we calculated the energies of the ground state and the
first few excited states using the density matrix renormalization
group (DMRG) [27,28]. Once the ground state was found,
we targeted excited states by successively calculating states
of lowest energy that are orthogonal to all previously found
states. While the DMRG is highly successful for 1D systems,
it can also be extended to systems with a small finite width,
and we considered triangular lattice systems of width 3 and
4 and varying length with open boundary conditions. We ran
calculations at bond dimensions M = 600,800,1000 making
sure that the energies converged.

The geometry of the considered lattice clusters breaks
the C6 symmetry of the lattice and the spins order antifer-
romagnetically in the spin component corresponding to the
interaction term along the longer direction. In Fig. 8, we
show the energy differences between the lowest eight excited
states and the ground state, alongside spin-spin correlators.
The first three excited states collapse exponentially onto the
ground-state energy as the length of the system increases.
Likewise, the next four excited states collapse to the same
energy, however, growing linearly in system length. From
the calculated spin-spin correlators we can identify this
excitation to be given by a breaking of the antiferromagnetic
ordering between next-nearest-neighbor chains. Finally, the
eighth excited level corresponds to a local defect in a chain,
which is indicated by the vanishing spin correlation in the
center left corner of the lattice cluster. Figure 9 shows the
spin-spin correlations in the ground states for systems of

FIG. 8. (Color online) Energy gaps of a 3 × L triangular lattice
strip with open boundary conditions. All values are given in relation to
the ground-state energy E0, i.e., "E1 = E1 − E0. The figures on the
right show numerical results for ⟨Sx

r0
Sx

r ⟩ spin correlations, where the
black disk with the white dot indicates the position r0, the diameter
of the disks indicates the strength of the correlation, and the color
indicates the sign, with red corresponding to negative (antiferromag-
netic) and black to positive (ferromagnetic) correlations. For details,
see the main text.

width 3 and 4 at the antiferromagnetic Kitaev point (JH = 0).
While nearest-neighbor chains are uncorrelated, there is a clear
antiferromagnetic correlation between next-nearest-neighbor
chains in the spin component given by the chain direction.
This mechanism locks the spin alignment of next-nearest-
neighbor chains to each other and thus reduces the macroscopic
degeneracy of the ground state from 3 × 2L to the nonextensive
value 3 × 22. Other spin components show only very short-
ranged correlations as shown in the lower two panels of
Fig. 9. Upon including a nonvanishing Heisenberg interaction
correlations also form between nearest-neighbor chains further
lifting the degeneracy to 3 × 2 states (not shown), which
however preserve the nematic nature of the Kitaev point.

C. Phase boundaries and ground-state energies

The phase boundaries in Fig. 4 have been determined by
calculating the ground-state energy for clusters with N = 6 ×
4 = 24 lattice sites and periodic boundary conditions as well

3-leg ladder 4-leg ladder

FIG. 9. (Color online) Spin-spin correlations in the ground state
of the antiferromagnetic Kitaev model on the triangular lattice.
Black circles indicate positive correlations ⟨Sγ

i S
γ
j ⟩ > 0, whereas

the red circles denote negative correlations. The small white dot
indicates the position r0. The geometry of the lattice clusters lifts
the degeneracy of the lattice direction, favoring chains antiferro-
magnetically coupled with their x component along the x direction
while correlations along the y and z directions are suppressed.
Whereas adjacent chains remain uncoupled, next-nearest-neighbor
chains couple antiferromagnetically.
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Model on Triangular Lattice: Symmetry
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(Sx,Sy,Sz) ->(-Sx,Sy,-Sz)

Kz -> - Kz

We can thus focus  on the case all couplings being FM



Classical Ground State Manifold
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In FM state Classical energy  
E=-(MxMx+MyMy+MzMz)=-M2 

Global moment  M can be freely rotated: accidental symmetry 



Classical Ground State Manifold

S
x x

S−Kx S
y y

S−Ky

SS
z z−Kz

Kx=Ky=Kz>0 

Coupling  between NN chains  
E12=-(M1xM2x+M1yM2y) 

S
x x

S−Kx S
y y

S−Ky

SS
z z−Kz



Classical Ground State Manifold
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Coupling  between NN chains  
E12=-(M1xM2x+M1yM2y) 

Mz of each chain can be individually flipped 



Accidental  degeneracies - not related to symmetry:	

can be lifted by fluctuations

Classical Ground State Manifold
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For magnets we need to calculate SW spectra 
for each Classical state and compare  
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Accidental  degeneracies - not related to symmetry:	

can be lifted by fluctuations

Classical Ground State Manifold
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Linked cluster expansion: 
 calculate corrections from short wave-length fluctuations



Selection of quantum easy axes
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Selection of quantum easy axes
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y x
z

Figure 1. (color online). (a) Ising-type spin couplings on
the three non-equivalent bonds of the triangular lattice of
model (1). The lattice lies in the (1, 1, 1) plane of the spin-
quantization axes. On a (�)-bond, the one perpendicular to
the �(= x, y, z) spin quantization axis, only the �-components
of neighboring spins are coupled. (b) Four-sublattice struc-
ture of the triangular lattice used for the unitary transfor-
mations discussed in the text. (c) Sketch of the 4th order
perturbation process leading to the coupling, via quantum
fluctuations, of the four spins siting around a diamond [see
Eq. (3)]. In the virtual states, the location of the misaligned
spins (spin-flips are performed in pairs at one of the 4 bonds of
the diamond at each step: top-left) bottom-right) bottom-
left ) top-right) are shown by filled circles and the wavy lines
mark the broken (z)-bonds.

tonian takes the following form

H = �
X

i,�

K
�

S�

i S
�

i+a
�

. (1)

In model (1), the signs of the K
�

couplings can be indi-
vidually flipped by means of a canonical transformation.
For instance, to flip the sign of K

z

independently from
the signs of the other two couplings, K

x

and K
y

, one
needs to perform spin rotations around the y axis by an
angle 180� on sites belonging to the sublattices B and C
[see Fig. 1(b)], i.e., [(Sx

i , S
y

i , S
z

i ) ! (�Sx

i , S
y

i ,�Sz

i ) for
i 2 B � C]. The signs of K

x

(K
y

) can be flipped inde-
pendently in the very same way by performing 180� spin
rotations around z (x) axis on the sublattices B and D (A
and B). In what follows, without any loss of generality,
we consider all K

�

to be positive (FM couplings).
Ground state manifold.– In the isotropic FM case

K
�

= K > 0, the classical ground-state energy is sim-
ply proportional to M2 where M = hSii. This acciden-
tal symmetry implies that the ordered moment M can
be freely rotated, i.e., no preferred axis exists. More-
over, the coupling between NN chains, along any of the
three lattice directions (e.g., spanning along (z)-bonds),
does not involve the corresponding projections of the

spins (e.g., Sz

i ). Therefore, these latter projections of
the spins can be freely flipped along any of those chains
individually. In the anisotropic case, when the cou-
plings K

�

are di↵erent from one another, the easy axis
is dictated by the strongest coupling (e.g., z axis for
|K

z

| > |K
x

| , |K
y

|). However, the ground-state manifold
still has a sub-extensive degeneracy as it is character-
ized by completely decoupled either FM (for K

z

> 0) or
AF (for K

z

< 0) chains along (z)-bonds. Such a sub-
extensive degeneracy is inherent to models with Ising- or
compass-type bond-dependent anisotropies [8].
In principle, these accidental classical degeneracies, not

being related to apparent symmetries, can be lifted by
quantum fluctuations. We would need to calculate the
energy corrections due to zero-point quantum fluctua-
tions (e.g., within the spin-wave theory) for each degen-
erate classical ground state and single out a ground state
for which the corrected energy is minimized. For an in-
finitely degenerate manifold this is obviously not feasible
and we need to resort to some other procedure. The
linked-cluster expansion, [33] combined with degenerate
perturbation theory, allows to compute quantum cor-
rections to a ground-state energy from short-wavelength
quantum fluctuations and to identify the mechanism for
quantum selection of the ground state. [34–39]
Quantum selection of the ground state.– Easy axes:

In the isotropic case K
�

= 1, we consider a FM state
with the ordered moment M pointing in a generic direc-
tion identified by the unit vector m = (m

x

,m
y

,m
z

) =
(sin ✓ cos�, sin ✓ sin�, cos ✓). Then, we rotate the spin-
quantization frame xyz of the Hamiltonian (1) to a new
frame x0y0z0 in which m k z0. The transformed Hamil-
tonian on NN ij bond includes various terms in the new
spin-quantization frame: the Sz

0

i

Sz

0

j

terms represent the
unperturbed (mean-field) Hamiltonian and the remain-
ing ones, those creating misaligned spins at the cost of a
mean-field energy, are treated as perturbations. At the
second order in the perturbation expansion, the terms
creating only one spin-flip, e.g., Sx

0

i

Sz

0

j

, give energy cor-
rections that sum up to zero. Only the terms inducing
two spin-flips on a given (�)-bond give a cumulative finite
energy correction depending on the direction of m. The
creation/annihilation amplitude for two misaligned spins
on a (�)-bond is T

�

=
�
1�m2

�

�
/4 with a correspond-

ing energy cost �
�

= (2�m2
�

). This gives the following
quantum energy correction per site:

�E(2)(m) = �
X

�

T 2
�

�
�

' � 3

64

 
1 +

1

6

X

�

m4
�

!
(2)

In Fig. 2, we report the second-order quantum energy
correction (2) for an arbitrary direction m of the or-
dered moment via a color map. Each point on the sphere
stands for a specific direction of m within the original
spin-quantization frame xyz and the color scale gives the



S
x x

S−Kx S
y y

S−Ky

SS
z z−Kz

S
x x

S−Kx S
y y

S−Ky

SS
z z−Kz



Linked cluster expansion:	

 calculate corrections from short wave-length fluctuations
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Figure 12. (Color online) Energy gaps of a 3⇥ L triangular lattice strip with open boundary conditions. All values are given in relation to the
ground state energy E0, i.e. E1 = E1 � E0. The figures on the right show numerical results for hSx

r
0

S

x
r i spin correlations, where the black

disk with the white dot indicates the position r0, the diameter of the disks indicates the strength of the correlation and the color indicates the
sign, with red corresponding to negative (antiferromagnetic) and black to positive (ferromagnetic) correlations.. For details, see the main text.
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Figure 13. (Color online) Spin spin correlations in the ground state of the antiferromagnetic Kitaev model on the triangular lattice. Black
circles indicate a positive correlations, hS�

i S
�
j i > 0, whereas the red circles denote negative correlation. The small white dot indicates the

position r0. The geometry of the lattice clusters lifts the degeneracy of the lattice direction, favoring chains coupling antiferromagnetically in
their x-component along the x-direction. Chains are not coupling to their neighbor chains, however they couple antiferromagnetically to they
next-nearest neighbor chains. Along the y- and z-directions the correlations are suppressed.
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Symmetry protected degeneracy 
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