Quantum order-by-disorder in 'Kitaev model' on a triangular lattice

George Jackeli

Max-Planck Institute \& University of Stuttgart, Germany Andronikashvili Institute of Physics, Tbilisi, Georgia

GJ \& Avella, arXiv'15

SPICE @Mainz , May 23,2015

Transition metal oxides: Plethora of Challenging Phenomena

Metall to Insulator transitions

Colossal
Magnetoresistance

Unexpected variety of phases and transitions between them

Relativistic in origin, Spin-orbit coupling

Coulomb force

Enhance interplay by going to heavy TM elements

Kramers doublet of Ir^{4+}

A. Abragam and B. Bleaney, "EPR of Transition Ions"

'Zoo' of Iridate compounds

Heisenberg-like

Ising-like

Trianglar lattice $\mathrm{Ba}_{3} \mathrm{IrTi}_{2} \mathrm{O}_{9}$

from Becker et al PRB'15

Frustration from anisotropy

Impossible to satisfy simultaneously every pairwise interactions

Infinitely many classical ground states

G. Khaliullin, PTPS'05

CMC simulations on Classical model:

Rousochatzakis et al, arXiv'14
DMRG and ED on Quantum model:
Becker et al, PRB'15

Model on Triangular Lattice: Symmetry

$$
\left(S^{\times}, S^{y}, S^{z}\right) ~->\left(-S^{x}, S^{y},-S^{z}\right)
$$

Kz -> - Kz

We can thus focus on the case all couplings being FM

Classical Ground State Manifold

$K x=K y=K z>0$

In FM state Classical energy
$E=-\left(M^{x} M^{x}+M^{y} M^{y}+M^{z} M^{z}\right)=-M^{2}$
Global moment M can be freely rotated: accidental symmetry

Classical Ground State Manifold

$$
K x=K y=K z>0
$$

Coupling between NN chains
$E_{12}=-\left(M_{1} \times M_{2}{ }^{x}+M_{1}{ }^{y} M_{2}{ }^{y}\right)$

Classical Ground State Manifold

$$
K x=K y=K z>0
$$

Coupling between NN chains
$E_{12}=-\left(M_{1} \times M_{2}{ }^{x}+M_{1} y M_{2}{ }^{y}\right)$
M^{z} of each chain can be individually flipped

Classical Ground State Manifold

Accidental degeneracies - not related to symmetry: can be lifted by fluctuations

For magnets we need to calculate SW spectra for each Classical state and compare

$$
\frac{1}{2} \sum \hbar \omega_{n}(k)
$$

Not always possible!

Classical Ground State Manifold

Accidental degeneracies - not related to symmetry: can be lifted by fluctuations

Linked cluster expansion:
calculate corrections from short wave-length fluctuations

Selection of quantum easy axes

Selection of quantum easy axes

$$
\delta E^{(2)}(\mathbf{m})=-\sum_{\gamma} \frac{T_{\gamma}^{2}}{\Delta_{\gamma}} \simeq-\frac{3}{64}\left(1+\frac{1}{6} \sum_{\gamma} m_{\gamma}^{4}\right)
$$

Linked cluster expansion:

calculate corrections from short wave-length fluctuations

Gives the coupling between NNN chains, forming two sub-lattices decoupled from each other

from Becker et al PRB'15

Symmetry protected degeneracy

Canonical transformation:
A: (x, y, z) B: $(-x,-y, z)$
C:(x,-y,-z) D:(-x,y,-z)
Hamiltonian remains unchanged, but
z-comp. every 2 nd chain gets flipped.
No correlations of z-comp between NN chains

