Ferromagnetic semiconductor (Ga,Mn)As:

Electronic and magnetic structure, spin-dependent phenomena and device concepts

Tomas Jungwirth

Institute of Physics Prague, Czech Republic

University of Nottingham, UK

TJ, Jairo Sinova, J. Mašek, J. Kučera, A.H. MacDonald, Rev. Mod. Phys. 78, 809 (2006)

K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, **Rev. Mod. Phys. 82, 1633 (2010)**

T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014)

TJ, J. Wunderlich, V. Novak, K. Olejnik, B. L. Gallagher, R. P. Campion, K. W. Edmonds, A. W. Rushforth, A. J. Ferguson, and P. Nemec, **Rev. Mod. Phys. 86, 855 (2014)**

Dense-moment intrinsic magnetic semiconductors

more AFMs than FMs and high- T_N in AFMs

III-V	FM T _c (K)	AFM T _N (K)	
FeN		100	
FeP		115	
FeAs		77	
FeSb		100-220	
GdN	72		
GdP		15	
GdAs		19	
GdSb		27	
II-V-IV-V	FM T _c (K)	AFM T _N (K)	
MnSiN ₂		490	
I-II-V	FM T _c (K)	AFM T _N (K)	
Ia=Li, Na, Ib=Cu II=Mn V=Sb,As, P		> room T	

TJ et al. PRB'11, Cava Physics '11

Dense-moment intrinsic magnetic semiconductors more AFMs than FMs and high- T_N in AFMs

II-VI	FM T _c (K)	AFM T _N (K)	III-V	FM T _c (K)	AFM T _N (K)
MnO		122	FeN		100
MnS		152	FeP		115
MnSe		173	FeAs		77
MnTe		323	FeSb		100-220
FuO	67		GdN	72	
EuS	16		GdP		15
EuSe	10	5	GdAs		19
EuTe		10	GdSb		27
			II-V-IV-V	FM T _c (K)	AFM T _N (K)
I-VI-III-VI	FM T _c (K)	AFM T _N (K)	MnSiN ₂		490
CuFeO ₂		11	I-II-V	FM T _c (K)	AFM T _N (K)
CuFeS ₂		825	la=Li, Na,		LiMnAs
CuFeSe ₂		70	Ib=Cu		> room T
CuFeTe ₂		254	V=Sb,As, P		

TJ et al. PRB'11, Cava Physics '11

Magnetically-doped semiconductors

Molecular beam epitaxy of (Ga,Mn)As

GaAs – common III-V semiconductor

Group-II Mn - magnetic moment, hole

(Ga,Mn)As – feromagnetic semiconductor

Ohno Science '98

FM (Ga,Mn)As doped semiconductor

FM (Ga,Mn)As doped semiconductor

MIT reminiscent of p-GaAs:Zn

FM (Ga,Mn)As doped semiconductor

Ferromagnetically split itinerant bands reminiscent of conventional FMs Fe, Co, Ni,..

From FM (Ga,Mn)As doped semiconductor to FM MnAs metal (wurtzite or ZB-inclusions)

Mn in III-V's: carrier – local moment (Kondo or "s-d") coupling

Microscopic Tight-Binding Anderson (TBA) model

$$H_A = \sum_{k,s} \epsilon_k n_{ks} + \sum_s \epsilon_d n_{ds} + U n_{d\uparrow} n_{d\downarrow} + \sum_{ks} (V_{kd} c_{ks}^{\dagger} c_{ds} + c.c.)$$

Weak-hybridization \rightarrow Schrieffer-Wolf transformation

Zener kinetic-exchange model

$$J_0 \mathbf{s}_d \cdot \mathbf{s}_{k=0} \quad J_0 = 2|V_{pd}|^2 \left(\frac{1}{\epsilon_d + U} - \frac{1}{\epsilon_d}\right)$$

TJ et al., Rev. Mod. Phys. '06

p-d hybridization

Large T_c^{MF} but low stiffness

Strong hybrid.

GaP

More localized holes

(Ga,Mn)As: ferromagnetic semiconductor

Curie temperature and magnetic moment direction controlled by electrostatic gates

(Ga,Mn)As: ferromagnetic semiconductor

Magnetic moment direction controlled by photo-carriers

(Ga,Mn)As

OSTT

Nemec et al. Nature Phys.'12

(Ga,Mn)As: spin-orbit coupled carriers

p-d hybridization

Anomalous Hall effect in FMs

Hall 1881

Mott scattering in (NM) vacuum

Mott, N. F. Proc. R. Soc. Lond. A 1929

Spin Hall effect in PMs

Dyakonov and Perel 1971 Kato et al., Science'04 Intrinsic anoumalous Hall effect in (Ga,Mn)As

FM (Ga,Mn)As

TJ et al. PRL'02

Intrinsic AHE in many FMs including

Fe, Co, Ni,... Nagaosa et al. RMP'10

Intrinsic spin Hall effect in GaAs

PM GaAs

Murakami, Nagaosa, & S.-C. Zhang, Science'03 Sinova et al. PRL'04

Wunderlich, TJ et al. Phys. Rev. Lett. '05

Intrinsic SHE in many PMs including Pt, Pd, Ta,...

Tanaka et al. PRB '08, TJ et al. Nature Mater. '12, Sinova et al. RMP '15

relativistic & scattering-independent

Linear response I. (condensed matter class)

Boltzmann theory : non-equilibrium distribution function and equilibrium states

Extrinsic (skew-scattering) SHE/AHE

Linear response II. (quantum mechanics class)

Perturbation theory: equilibrium distribution function and non-equilibrium states

Intrinsic SHE/AHE

$$J_{y}^{z} = \sum_{l} \langle \psi_{l}(t) | \hat{j}_{y}^{z} | \psi_{l}(t) \rangle f_{0}(\varepsilon_{l})$$

$$|\psi_{l}(t)\rangle = |l\rangle e^{-i\varepsilon_{l}t/\hbar} + \frac{e}{i\omega} \sum_{l'\neq l} |l'\rangle \frac{\langle l'|\vec{E}\cdot\hat{v}|l\rangle e^{-i\omega t}}{\varepsilon_{l} - \varepsilon_{l'} + \hbar\omega} e^{-i\varepsilon_{l'}t/\hbar} + \cdots$$

$$J_{y}^{z} = \frac{e\hbar}{V} \sum_{\vec{k}, n \neq n'} (f_{\vec{k}, n'}^{0} - f_{\vec{k}, n}^{0}) \frac{\operatorname{Im}[\langle k, n' \mid \hat{j}_{y}^{z} \mid \vec{k}, n \rangle \langle \vec{k}, n \mid \vec{v} \cdot \vec{E} \mid \vec{k}, n' \rangle]}{(\varepsilon_{\vec{k}, n'} - \varepsilon_{\vec{k}, n})^{2}}$$

(Ga,Mn)As: spin-orbit coupled and inversion asymmetric carrier bands

Bernevig & Vafek, PRB '05, Chernyshev et al. Nature Phys. '09, Fang et al. Nature Nanotech.'11

Linear response I. (condensed matter class)

Boltzmann theory : non-equilibrium distribution function and equilibrium states

Extrinsic inverse spin galvanic effect (ISGE)

$$\vec{S} = \frac{1}{V} \sum_{k,n} \vec{s}_{0n,\vec{k}} g_{n,\vec{k}}(E_j)$$

$$g_{n,\vec{k}} = f_{n,\vec{k}} - f_0(\varepsilon_{n,\vec{k}})$$

$$e\vec{E}\cdot\vec{v}_{0n,\vec{k}}\frac{\partial f_0(\varepsilon_{n,\vec{k}})}{\partial \varepsilon_{n,\vec{k}}} = -\frac{1}{V}\sum_{k,n}W_{n,\vec{k},n',\vec{k}'}(f_{n,\vec{k}}-f_{n',\vec{k}'})$$

Linear response II. (quantum mechanics class)

Perturbation theory: equilibrium distribution function and non-equilibrium states

Intrinsic SHE

$$S^{z} = \frac{cn}{V} \sum_{\vec{k}, n \neq n'} (f^{0}_{\vec{k}, n'} - f^{0}_{\vec{k}, n}) \frac{\operatorname{IIII}(\kappa, n + s + \kappa, n/(\kappa, n + v + L + \kappa))}{(\varepsilon_{\vec{k}, n'} - \varepsilon_{\vec{k}, n})^{2}}$$

Kurebayashi et al., Nature Nanotech. '14

Spin torques

Infrared absorption

Resonant tunneling spectroscopy

Curie temperature

Dobrowolska et al. Nature Mat. '12

short-range *p*-*d* hybridization

short-range *p-d* hybridization

Impurity-band picture: binding primarily due to short-range potentials (screening and IB broadening play minor role)

Microscopic realization of IB picture #1 cannot use DFT (too much *ab initio*) → TBA ideal tool

short-range central cell

TBA^p : no bound-state even for Mn *p*-level shifts > 10's eV

 $|\langle d | V | p \rangle|^2$ $|E_d|$

TBA^d : no detached narrow (<0.1eV) IB at >0.2% Mn

Exchange splitting $N_0\beta$ > then experimental limits (1-3 eV)

Masek et al. PRL '10

____ Mn *d* ↑

Microscopic realization of IB picture #3

short-range *p-d* hybridization

 $|E_d|$

Masek et al. PRL '10

no detached narrow (<0.1eV) IB at >0.2% Mn

Exchange splitting $N_0\beta$ > then experimental limits (1-3 eV)

Masek et al. PRL '10

Angle-resolved photoemission

Resonant tunneling spectroscopy

Optimized synthesis of (Ga,Mn)As

Nemec et al. Nature Commun. '13

Curie temperature

Infrared absorption

E,

. (c) (d) IB Energy HH LH Momentum (eV) 600 0.01 0.1 T= 7K x73 500 400 σ₁(Ω⁻¹cm⁻¹) 300 **x52**/ 200 x52 100 **x4**(x28 0 10² 10³ 10 Frequency (cm⁻)

(b)

E

 \mathbf{E}_{F}

HH

LH

TJ et al. PRL'10

Burch et al. PRL '06

Infrared absorption

(Ga,Mn)As favorable model material for spintronics

Strong intrinsic disorder (alloy rather than doped SC) \rightarrow only qualitative/semiquantitave theory

Gao et al. PRB'15

Magnetically-doped semiconductors

Molecular beam epitaxy of (Ga,Mn)As

GaAs – common III-V semiconductor

Group-II Mn - magnetic moment, hole

(Ga,Mn)As - feromagnetic semiconductor

(Ga,Mn)As: magnetic anistropies

p-d hybridization

Chemical potential of magnetic gate changes

Charge on magnetic gate changes

Polarisation charge on non-magnetic channel

Ciccarelli et al. APL '12

Chemical potential of magnetic gate changes

Charge on magnetic gate changes

Polarisation charge on non-magnetic channel

Chemical potential of magnetic gate changes

Charge on magnetic gate changes

Polarisation charge on non-magnetic channel

Ciccarelli et al. APL '12

Spintronics

From Wikipedia, the free encyclopedia Spintronics - a pormanteau meaning spin transport electronics

(Ga,Mn)As: Spintronics without spin transport

Ciccarelli et al. APL '12