Magnetism and doping effects in spin-orbit coupled Mott insulators

Giniyat Khaliullin

Max Planck Institute for Solid State Research, Stuttgart

Witczak-Krempa, Chen, Y-B.Kim, Balents (Annu. Rev. 2014)

Hubbard model with spin-orbit coupling: unconventional magnets, insulators, metals

correlation U

spin-orbit coupling λ

Witczak-Krempa, Chen, Y-B.Kim, Balents (Annu. Rev. 2014)

Hubbard model with spin-orbit coupling: unconventional magnets, insulators, metals

correlation U

spin-orbit coupling λ

Ionic multiplets vs Fermionic bands

Spin-orbit coupled Mott insulators

spin-orbit coupling

spin-orbit coupling

The origin of "unconventionality": ORBITAL magnetism

Orbital moment L has a "shape":

Hopping amplitude: A real (inversion) (inversion)

ORBITAL MAGNETISM

L-moment direction and chemical bonding: one-to-one correspondence

ORBITAL MAGNETISM

Simple cubic lattice:

$$\mathcal{H}_{ij}^{(c)} = (L_i^x L_j^x)^2 + (L_i^y L_j^y)^2 + L_i^x L_i^y L_j^y L_j^x + L_i^y L_i^x L_j^x L_j^y$$

GKh & Okamoto (PRL 2002)

non-coplanar multi-Q no LRO at finite T

Pseudospin J=S+L inherits bond-dependent and frustrated nature of orbitals

"unconventional" magnetism

Spin-orbit multipleIs of TM-ions

Kramers: dipole, octupole,... non-Kramers: quadrupole,...

The "old" pseudospin J=1/2

3d Co-fluoride, neutron scattering

Two branches split by spin-orbit: magnon & exciton

spin one-half 2D Mott systems similar to cuprates?

spin one-half 2D Mott systems similar to cuprates

"..apart from cuprates, Sr₂IrO₄ would be the second S=1/2 2D AF "

spin one-half 2D Mott systems similar to cuprates

J=1/2 magnetism in iridates: *basic theory*

Jackeli, GKh (2009) Chaloupka, Jackeli, GKh (2010, 2013)

Two-parameter Hamiltonian = Ising^(x,y,z) + Heisenberg:

 $\mathcal{H}_{ij}^{(\gamma)} = 2K S_i^{\gamma} S_j^{\gamma} + J S_i \cdot S_j$

dominant in 90-bonding (honeycomb Na₂IrO₃) = Kitaev model (2006) Majorana world" ? dominant in 180-bonding (Sr₂IrO₄ perovskite) = "cuprate" model \downarrow high-T_cSC ?

J=1/2 magnetism in iridates: *basic theory*

Jackeli, GKh (2009) Chaloupka, Jackeli, GKh (2010, 2013)

Two-parameter Hamiltonian = Ising^(x,y,z) + Heisenberg:

 $\mathcal{H}_{ij}^{(\gamma)} = 2K S_i^{\gamma} S_j^{\gamma} + J S_i \cdot S_j$

dominant in 90-bonding (honeycomb Na₂IrO₃)

= Kitaev model (2006)

"Majorana world"?

Pseudospin 1/2 in perovskites:

-theory predicts "nearly" Heisenberg AF

Sr₂IrO₄

Sr₂IrO₄ T_N∼240 K

La₂CuO₄ T_N~320 K

Coldea et al.(2001)

Fermiology of electron doped Sr₂IrO₄

"Fermi-arcs" at low doping

"normal" FS

B.J. Kim et al. (Science 2014)

B.J. Kim et al. (Science 2014) T-dependent "pseudogap" in Sr₂IrO₄

"Fermi-arcs" at low doping

Fermi surface angle (deg.)

"normal" FS

...and closes at 110 K

YES or NO? -- no definite answer yet...

J=1/2 magnetism in iridates: *basic theory*

Jackeli, GKh (2009) Chaloupka, Jackeli, GKh (2010, 2013)

Two-parameter Hamiltonian = Ising^(x,y,z) + Heisenberg:

 $\mathcal{H}_{ij}^{(\gamma)} = 2K S_i^{\gamma} S_j^{\gamma} + J S_i \cdot S_j$

dominant in 90-bonding (honeycomb Na₂IrO₃) = Kitaev model (2006) Majorana world" ?

dominant in 180-bonding (Sr₂IrO₄ perovskite)

= "cuprate" model

high-T_cSC?

The Kitaev model

Exactly solvable

Short-range RVB, large spin gap

Low-energy excitations: free Majorana fermions

Honeycomb lattice:

-- Kitaev term is dominant but J is present as well

 $\mathcal{H}_{ii}^{(\gamma)} = 2K S_i^{\gamma} S_j^{\gamma} + J S_i \cdot S_j$ Heisenberg model Kitaev model liquid order What is in between?

-If "some liquid" is still left?

Chaloupka, Jackeli, GKh (2010)

Kitaev-Heisenberg K-J model with large K > J makes all these "for free" but…

real world: **Na₂IrO₃**

↓ Exp.data

AM order T_N~15K

- (1) Mag. bandwidth: 40 meV~30 T_N (Gretarrson et al.)
- (2) Intense q=0 scattering (Gretarrson et al.; B.J. Kim et al.)
- (3) SW gap is small < 2 meV (Coldea et al.; B.J. Kim et al.)

B.J. Kim et al., 2015: Unusual moment direction away from symmetry axes

need more terms beyond Kitaev-Heisenberg model

B.J. Kim et al., Nature Phys. 2015

Diffuse magnetic X-ray scattering intensities above T_N

inconsistent with pure KH-model

Phenomenological model ("extended-KH"):

(H.Y. Kee et al., van den Brink et al, ...)

 $\mathcal{H}_{\langle ij\rangle \parallel c} = J \mathbf{S}_i \cdot \mathbf{S}_j + K S_i^{\tilde{z}} S_j^{\tilde{z}} + D \left(S_i^{\tilde{x}} S_j^{\tilde{x}} - S_i^{\tilde{y}} S_i^{\tilde{y}} \right) + C \left(S_i^{\tilde{y}} S_i^{\tilde{z}} + S_i^{\tilde{z}} S_i^{\tilde{y}} \right)$

Two new terms: D and C

Chaloupka & GKh, condmat 2015

K,J,D,C model can make the moment angle 40°-45°.

However, zigzag is not then stable. We need longer range interactions. ... adding $J_{2,3}$ (Coldea et al. 2012)

 $\mathcal{H}_{\langle ij \rangle \parallel c} = J S_i \cdot S_j + K S_i^{\tilde{z}} S_j^{\tilde{z}} + D (S_i^{\tilde{x}} S_j^{\tilde{x}} - S_i^{\tilde{y}} S_j^{\tilde{y}}) + C (S_i^{\tilde{y}} S_j^{\tilde{z}} + S_i^{\tilde{z}} S_j^{\tilde{y}}) + J_{2,3}(SS)$

PHYSICAL REVIEW B 88, 035107 (2013)

Ab initio analysis of the tight-binding parameters and magnetic interactions in Na2IrO3

Kateryna Foyevtsova,¹ Harald O. Jeschke,¹ I. I. Mazin,² D. I. Khomskii,³ and Roser Valentí¹

... the nnKH model, is, apparently, inadequate.

Spatially extended, "quasimolecular" orbitals: longer-range couplings J_{2,3} PHYSICAL REVIEW B 88, 035107 (2013)

Ab initio analysis of the tight-binding parameters and magnetic interactions in Na₂IrO₃

Kateryna Foyevtsova,¹ Harald O. Jeschke,¹ I. I. Mazin,² D. I. Khomskii,³ and Roser Valentí¹

Spatially extended, "quasimolecular" orbitals: longer-range couplings J_{2,3}

Yes, indeed

(current status)

Data collected so far suggests that

Kitaev term seems to be dominant Other terms are substantial, yet to be sorted out

for more details, see: Chaloupka & GKh, condmat 2015 measure and fit, measure and fit...

most wanted: single-crystal S(q,w)

The streetlight effect

...and look for J=1/2 K-J model on other lattices

Pseudospin AND geometrical frustration: - amplify the chances to find exotic states ! ...farther away from the streetlight

d⁴ Mott insulators

 Re^{3+} , Ru^{4+} , Os^{4+} , Ir^{5+}

4d, 5d electrons

2. Unquenched L=1

...no spin left to play with ...

J=O physics: spin-orbit driven magnetic QCP

d⁴ ion: Van-Vleck magnetism

(i) There are no "pre-existing" moments

Singlet-triplet examples

(A) Weakly coupled dimers

THIERRY GIAMARCHI^{1*}, CHRISTIAN RÜEGG^{2*} AND OLEG TCHERNYSHYOV^{3*} (Nat.Phys. 2009)

(B) 4f Pr compounds (broad literature since 1970's)

(C) e_g orbital FeSc₂S₄ (Chen, Balents, Schnyder, 2009)

(D) Spin-state-crossover in Fe-based SC (Chaloupka & GKh, 2013)

QUANTUM CRITICALITY

FEMPERATURE

Sachdev, Keimer, Phys.Today, 2011

birthplace for "unconventional" physics

Inter-ionic dimers

-small energies -special geometry **d⁴**: Intra-ionic "dimer" made of S and L

energetic (~100 meV)
 generic (any lattice)
 GKh (2013)

d⁴ Mott insulator: single-ion states

d⁴ Mott insulator: singlet-triplet model (180°) GKh (2013) (e.g. 214-perovskite) T_x T_{v} T_z $H = \lambda \sum_{i} n_i + J \frac{2}{9} \sum_{ij} [T_i^{\dagger} \cdot T_j - \frac{7}{16} (T_i \cdot T_j + H.c.)]$ exchange spin-orbit J=0S=1 boson M∧ (triplon gas) PM **AFM** QCP $M_z = 2\sqrt{6\rho(1-\rho)}$ LRO moment: $\rho = \frac{1}{2}(1 - \frac{1}{2})$ cond.density $= \kappa/\kappa_c > 1$ T distance from QCP

GKh (2013)

Excitations:

1. The amplitude mode *changing the lengths of S & L*

2. The phase modes in-phase rotation of S & L

GKh (2013)

Excitations:

1. The amplitude mode *changing the lengths of S & L*

2. The phase modes *in-phase rotation of S & L*

Van Vleck-type d⁴ Mott insulators: **EXCITONIC** magnetism

Candidate material:

Summary

J=1/2 S≪·····>I

J=S+L inherits bond-dependent & frustrated nature of orbitals "nonmagnetic" J=O Mott insulators

unconventional magnetism

Phys. Rev. Lett. 87, 077202 (2001)

Spin-Orbit Coupling in the Mott Insulator Ca2RuO4

T. Mizokawa,^{1,2} L. H. Tjeng,² G. A. Sawatzky,² G. Ghiringhelli,^{3,4} O. Tjernberg,^{3,5} N. B. Brookes,³ H. Fukazawa,⁶ S. Nakatsuji,⁶ and Y. Maeno^{6,7}

 $\langle \sum_i l_{x'}(i) \cdot s_x(i) \rangle$ is about -0.28 ± 0.07 , using $N_d = 4$. This value is comparable to that measured for CoO [16], where the orbital moment was found to be of the order of 1 μ_B . These measurements thus demonstrate that the

PRL 112, 127002 (2014)

Spin-Orbital Entanglement and the Breakdown of Singlets and Triplets in Sr₂RuO₄

C. N. Veenstra,¹ Z.-H. Zhu,¹ M. Raichle,¹ B. M. Ludbrook,¹ A. Nicolaou,^{1,2,7} B. Slomski,^{3,4} G. Landolt,^{3,4} S. Kittaka,^{5,6} Y. Maeno,⁵ J. H. Dil,^{3,4} I. S. Elfimov,^{1,2} M. W. Haverkort,^{1,2,7} and A. Damascelli^{1,2,*}

Singlet-triplet model $H_{eff}(90^\circ)$

(triangular, honeycomb, kagome...)

c-bond exchange:

x and y type bosons only involved

Bond-dependent "xy-model":

Exchange anisotropy, 90° bonding: d⁴ vs d⁵

(triangular, honeycomb, kagome...)

bond-dependent "xy": spin-one T boson

Honeycomb lattice: dimensionality reduction

Each flavor T_x, T_y, T_z has its own zigzag to move along

1D dispersion:

$$\omega_z(k) \equiv \omega_z(k_y) \simeq \lambda \sqrt{1 + (\kappa/\kappa_c)c_y}$$

□ J=J_{crit}: *zero-energy lines*

unusual singlet-triplet model, yet to be solved...

VBS? zigzag order? spin nematic?