Tensor network algorithms and quantum frustrated magnetism

F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland

Collaborators

Theorists

S. Miyahara (Fukuoka), F. Becca (Trieste)
K. Schmidt (Dortmund), J. Dorier (Lausanne)
S. Manmana, A. Honecker (Göttingen)
P. Corboz (Amsterdam)

Experimentalists

M. Takigawa, Y. Matsuda (ISSP, Tokyo) C. Berthier, M. Horvatic (Grenoble)

Introduction: \rightarrow Numerical simulations in 2D \rightarrow Tensor network algorithms → Models of 2D frustrated quantum magnetism Shastry-Sutherland model: \rightarrow Zero-field phase diagram \rightarrow Magnetization plateaux Conclusions

Numerical simulations in 2D

Exact diagonalizations \rightarrow small clusters **Quantum Monte Carlo** \rightarrow minus sign Degenerate pertubation theory \rightarrow effective model still to be solved **Series expansion** \rightarrow choice of initial state Variational Monte Carlo with Gutzwiller projected wave functions \rightarrow not general **DMRG** \rightarrow breaks lattice rotational symmetry

Tensor network ansatz

$$|\psi\rangle = \sum_{i_1...i_N} c_{i_1...i_N} |i_1\rangle \otimes \cdots \otimes |i_N\rangle$$

 $c_{i_1...i_N} \simeq$ trace over a product of tensors

Example: Matrix product state in 1D

$$c_{i_1 i_2 i_3 \dots} \simeq \sum_{j_1 j_2 \dots} A_{i_1}^{j_1} B_{i_2}^{j_1 j_2} C_{i_3}^{j_2 j_3} \cdots$$

Generalization to 2D

PEPS = product of entangled pair states Verstraete and Cirac, 2004

$$A_{i}^{j_1 j_2 j_3 j_4} = \text{rank-5 tensor}$$

$$j_1, j_2, j_3, j_4 = 1, \dots, D$$

Variational approach

PEPS: minimize the energy w.r.t. tensor elements
 Other schemes: renormalization (MERA,...)
 Advantage: dim=pol(D,N), not exp(N)
 Why can it work?
 → reproduces the 'area law' for the entanglement entropy in the GS of a local Hamiltonian

$$S = -\mathrm{tr}\left(\rho_A \log \rho_A\right) \sim \partial A$$

How large should D be? It depends...

Spin-1/2 Heisenberg model on square lattice

Excellent energy with D=10

Frustrated quantum magnetism

$$\mathcal{H} = \sum_{(i,j)} J_{ij} \ ec{S}_i \cdot ec{S}_j$$

Infinite degeneracy of classical GS

Kagome lattice

Spin liquid? Gapped? Algebraic? Valence-bond crystal?

Square lattice

J₁-J₂

Neel

0

Checkerboard

Shastry-Sutherland

 J_2/J_1

Results on frustrated magnets

Kagome: single site does not work. Needs 3 sites. \Box J₁-J₂ on square lattice: intermediate phase around $J_2/J_1 = 1/2$, but no consensus on its nature \rightarrow Plaquette? Yu and Kao, PRB 2012 \rightarrow Topological spin liquid? Mezzacapo, PRB 2012; Wang, Gu, Verstraete, Wen 2012 Checkerboard: intermediate plaquette phase, in agreement with previous results Chan, Han, Duan, PRB 2011

Shastry-Sutherland

Isacsson and Syljuasen, PRE 2006 \rightarrow D=2, no intermediate phase in zero field Lou, Suzuki, Harada, Kawashima, arxiv 2012 \rightarrow MERA \rightarrow intermediate plaquette phase \rightarrow plateaux and supersolid phases in a field P. Corboz and FM, PRB 2013, PRL 2013 and 2014 \rightarrow plateau sequence of SrCu₂(BO₃)₂

$SrCu_2(BO_3)_2$

Smith and Keszler, JSSC 1991

Cu²⁺ -> Spin 1/2 J ≈ 85 K J′/J ≈ 0.65

Shastry-Sutherland model

Ground-state = Product of singlets on J-bonds if J'/J not too large Shastry and Sutherland, '81

iPEPS zero-field phase diagram

P. Corboz and FM, PRB 2013

Agrees qualitatively with former studies Koga-Kawakami 2000, Läuchli-Wessel-Sigrist 2002, etc.

Convergence with D

Neel (J=0)

Magnetization of Néel AF

 $\mathcal{H} = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j - g\mu_B H \sum_i S_i^z$

Exact Dimer Ground State and Quantized Magnetization Plateaus in the Two-Dimensional Spin System SrCu₂(BO₃)₂

H. Kageyama,^{1,2,*} K. Yoshimura,^{1,3,†} R. Stern,³ N. V. Mushnikov,² K. Onizuka,² M. Kato,¹ K. Kosuge,¹ C.P. Slichter,³ T. Goto,² and Y. Ueda²

Anomalies

M=0
M=1/8
M=1/4

Journal of the Physical Society of Japan Vol. 69, No. 4, April, 2000, pp. 1016-1018

LETTERS

1/3 Magnetization Plateau in SrCu₂(BO₃)₂ - Stripe Order of Excited Triplets -

Kenzo ONIZUKA, Hiroshi KAGEYAMA^{*}, Yasuo NARUMI^{1,2}, Koichi KINDO^{2,1}, Yutaka UEDA and Tsuneaki GOTO

Plateaus
M=0
M=1/8
M=1/4
M=1/3

Fractalization drives crystalline states in a frustrated spin system

Suchitra E. Sebastian^{a,1}, N. Harrison^b, P. Sengupta^c, C. D. Batista^c, S. Francoual^b, E. Palm^d, T. Murphy^d, N. Marcano^a, H. A. Dabkowska^e, and B. D. Gaulin^e

www.pnas.org/cgi/doi/10.1073/pnas.0804320105

PNAS | December 23, 2008 | vol. 105 | no. 51 | 20157-20160

1/9, 1/8, 1/7, 1/6, 1/5, 2/9, 1/4

Incomplete Devil's Staircase in the Magnetization Curve of SrCu₂(BO₃)₂

M. Takigawa,^{1,*} M. Horvatić,² T. Waki,³ S. Krämer,² C. Berthier,² F. Lévy-Bertrand,^{2,†} I. Sheikin,² H. Kageyama,⁴ Y. Ueda,¹ and F. Mila⁵

1/8, 2/15, 1/6, 1/4,...

Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu₂(BO₃)₂

Marcelo Jaime^{a,b,1}, Ramzy Daou^{c,d}, Scott A. Crooker^{a,b}, Franziska Weickert^b, Atsuko Uchida^{a,b}, Adrian E. Feiguin^e, Cristian D. Batista^f, Hanna A. Dabkowska^g, and Bruce D. Gaulin^{g,h}

12404-12407 | PNAS | July 31, 2012 | vol. 109 | no. 31

www.pnas.org/cgi/doi/10.1073/pnas.1200743109

Magnetization of SrCu₂(BO₃)₂ in Ultrahigh Magnetic Fields up to 118 T

Y. H. Matsuda,^{1,*} N. Abe,¹ S. Takeyama,¹ H. Kageyama,² P. Corboz,³ A. Honecker,^{4,5} S. R. Manmana,⁴ G. R. Foltin,⁶ K. P. Schmidt,⁶ and F. Mila⁷

Critical summary I

0, 1/9, 1/8, 2/15, 1/7, 1/6, 1/5, 2/9, 1/4, 1/3, 2/5, 1/2

Too many suspects!

Critical summary II

Only pulsed field Only magnetostriction

0, 1, 9, 1/8, 2/15, 1, 7, 1/6, 1, 5, 2, 9, 1/4, 1/3, 2, 5, 1/2

0, 1/8, 2/15, 1/6, 1/4, 1/3, 1/2

Quantum Hall Effect or broken spatial symmetry?

Magnetic Superstructure in the Two-Dimensional Quantum Antiferromagnet SrCu₂(BO₃)₂

K. Kodama,¹ M. Takigawa,^{1*} M. Horvatić,² C. Berthier,^{2,3} H. Kageyama,¹ Y. Ueda,¹ S. Miyahara,^{1,4} F. Becca,⁴ F. Mila⁴

www.sciencemag.org SCIENCE VOL 298 11 OCTOBER 2002

Broken symmetry in 1/8 plateau

Incomplete Devil's Staircase in the Magnetization Curve of SrCu₂(BO₃)₂

M. Takigawa,^{1,*} M. Horvatić,² T. Waki,³ S. Krämer,² C. Berthier,² F. Lévy-Bertrand,^{2,†} I. Sheikin,² H. Kageyama,⁴ Y. Ueda,¹ and F. Mila⁵

Effect of frustration

Triplet Hopping

Triplet Repulsion

Kinetic energy << potential energy
 Long-range repulsion

 → Crystals of triplets with high commensurability
 → Magnetization plateaux

PHYSICAL REVIEW B

VOLUME 61, NUMBER 5

1 FEBRUARY 2000-I

Superstructures at magnetization plateaus in SrCu₂(BO₃)₂

Shin Miyahara and Kazuo Ueda

 Simple ansatz for long-range triplet-triplet interaction
 Many plateaus

Magnetization plateaus of the Shastry-Sutherland model for SrCu₂(BO₃)₂: Spin-density wave, supersolid, and bound states

Tsutomu Momoi*

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

Keisuke Totsuka Department of Physics, Kyushu University, Hakozaki, Higashi-ku, Fukuoka-shi 812-8581, Japan (Received 1 June 2000)

Effective model to third order in (J'/J)³
 Only short-range triplet-triplet interaction
 Only 1/3 and 1/2 plateaus
 Spin-supersolids

Effective Theory of Magnetization Plateaux in the Shastry-Sutherland Lattice

A. Abendschein^{1,2} and S. Capponi^{1,2,*}

Effective model with CORE (Contractor Renormalization) Exact diagonalization on small clusters

 Large finite-size effects
 No 2/15 plateau
 No information on plateau structures

Theory of Magnetization Plateaux in the Shastry-Sutherland Model

J. Dorier,¹ K. P. Schmidt,^{2,*} and F. Mila¹

Long-range triplet-triplet interaction with high-order perturbation theory in J'/J

Triplet crystals: not the right sequence (at least up to J'/J=0.5)

Magnetization of SrCu₂(BO₃)₂ in Ultrahigh Magnetic Fields up to 118 T

Y.H. Matsuda,^{1,*} N. Abe,¹ S. Takeyama,¹ H. Kageyama,² P. Corboz,³ A. Honecker,^{4,5} S. R. Manmana,⁴ G. R. Foltin,⁶ K. P. Schmidt,⁶ and F. Mila⁷

iPEPS

A variational approach derived from quantum information

Verstraete & Cirac, 2004

Crystals of Bound States in the Magnetization Plateaus of the Shastry-Sutherland Model

Philippe Corboz¹ and Frédéric Mila²

Triplets versus bound-states

Triplet crystal

Bound state crystal

Why are bound state crystals favoured?
Why did it take 15 years to identify them?

Why are bound states favoured?

Correlated hopping

Single particle hopping

α (J'/J)⁶

α (J'/J)² \rightarrow gain in kinetic energy

Boundstates as pinwheels

Order (J'/J)³

Higher order

Magnetization plateaus of the Shastry-Sutherland model for SrCu₂(BO₃)₂: Spin-density wave, supersolid, and bound states

Tsutomu Momoi*

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

Keisuke Totsuka Department of Physics, Kyushu University, Hakozaki, Higashi-ku, Fukuoka-shi 812-8581, Japan (Received 1 June 2000)

Bound state dispersion: minimum at the zone corner

Localized bound state

Negative reference energy!

P. Corboz, FM, PRL 2014

Conclusions on $SrCu_2(BO_3)_2$

Natural plateau sequence \rightarrow 1/8, 2/15, 1/6: crystals of bound states \rightarrow new predictions for their symmetry To be done next \rightarrow revisit effective triplet model \rightarrow compare predictions with NMR \rightarrow X-ray or neutron in high field (>27 T)?

Conclusions

Tensor network algorithms

 very promising new method in 2D
 encouraging results on various
 frustrated models
 solved the 15-year old puzzle of magnetization plateaux in SrCu₂(BO₃)₂