

Computational Topological Spintronics: from Hall effects to chiral skyrmions

Yuriy Mokrousov Topological Nanoelectronics Group PGI and IAS, Forschungszentrum Jülich, Germany

Jülich: Topological Nanoelectronics Group Frank Freimuth Jürgen Weischenberg Timo Schena Hongbin Zhang Gustav Bihlmayer Vikas Kashid Phivos Mavropoulos Bernd Zimmermann Guillaume Geranton Stefan Blügel

Köln: Robert Bamler Achim Rosch

Berlin, Göttingen:

T. Kampfrath's group M. Münzenberg's group Nijmegen: A. V. Kimel's group

Prague: Jakub Zelezny T. Jungwirth's group Mainz: Jacob Gayles Jairo Sinova Hamburg: R. Wiesendanger's group Garching: Ch. Pfleiderer's group Leeds: Ch. Marrows' group **Funding agencies:** Helmholtz Gemeinschaft Deutsche Forschungsgemeinschaft

To name just a few...

Topological Hall effect Skyrmions

Dzyaloshinskii-Moriya interaction

Spin-Orbit Torque

Electric Polarization

Pumping effects

Thermal Hall effect

Magnon Hall effect Exchange interactions

Gilbert damping

Anomalous Hall effect Orbital Magnetization Spin Hall effect Quantized Hall effects Topological Insulators

Outline

- Geometry and Solids
- Hall effects in metals
- Skyrmions
- Dzyaloshinskii-Moriya Interaction
- Spin-Orbit Torque

Geometry and Solids

Berry Curvature characterizes how the electrons are glued together

Berry curvature = magnetic field

Picked phase = Berry phase Aharonov-Bohm effect

Curvature determines electron dynamics!

ICH **Berry curvature in solids** Ferromagnet with spin-orbit interaction: $\mathbf{\Omega} = -2\mathrm{Im}\left\langle \nabla_{x} u \middle| \nabla_{y} u \right\rangle$ push here induce **Anomalous Hall effect** (e.g. E-field) motion here! Semiclassical picture (1950s – 2000s) velocity = $abla_{\mathbf{k}} \varepsilon - \mathbf{E} imes \mathbf{\Omega}$ Hall conductance: **Anomalous Hall effect** $\sigma^{H} = \frac{1}{2\pi} \int_{k-\text{space}} \mathbf{\Omega} \, d^2 k$ with magnetization M SU (carrier spin polarization) CU Hall voltage and ex S spin accumulation

Metals

Berry curvature can be very complex in metals

Motivates the use of complex computational techniques

density functional theory (DFT)

Topological origin of spin and anomalous Hall effects

Weischenberg, Freimuth, Sinova, Blügel, Mokrousov, PRL 2011

studied from DFT for one decade

Dirac monopoles at band degeneracies

Beyond Berry curvature

www.flapw.de

eur

Kubo linear response formalism

$$\sigma_{\alpha\beta}^{I} = \frac{1}{4\pi V} \operatorname{Tr} \left[v^{\alpha} G^{R}(E_{F}) v^{\beta} G^{A}(E_{F}) - (\alpha \leftrightarrow \beta) \right]$$
$$\sigma_{\alpha\beta}^{II} = \frac{1}{2\pi V} \int_{-\infty}^{E_{F}} dE \Re \left\{ \operatorname{Tr} \left[v^{\alpha} G^{R}(E)^{2} v^{\beta} G^{R}(E) - (\alpha \leftrightarrow \beta) \right] \right\}$$

Disorder potential:
$$\hat{V} = U \sum_{i} \delta(\hat{\mathbf{r}} - \mathbf{R}_{i})$$

All scattering-independent contributions to the AHE:

Weischenberg, Czaja, Freimuth, Blügel, Sinova, Mokrousov, PRL 2011, PRB 2014, ...

 $R \leftrightarrow A$

Scattering-independent Hall effects

 $\sigma_{lphaeta} =$

R

 $\sigma^{isk}_{\alpha\beta}$

True not only for static, but also high-frequency electric fields

 $\sigma^{sj}_{\alpha\beta}$

Weischenberg, Czaja, Freimuth, Sinova, Kampfrath's group, Münzenberg's group, Blügel, Zimmermann, Long, Mavropoulos, Mokrousov,

PRLs, PRBs, Nature Nano.: 2009 and on...

All scattering-independent contributions can be identified

Dominant for moderately dirty metals

Nature Nanotech. 8, 256 '13

Chiral magnetic skyrmions

T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962)

Skyrmions: soliton-like solutions for baryons in non-linear sigma model

Tony Skyrme

Chiral magnetic skyrmions

T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962)

Observed in magnetic systems:

2D, 3D, metals, insulators

C. Pfleiderer, A. Rosch, Nature **465**, 880 (2010) T. Schultz et al., Nature Physics **8**, 301 (2012)... Tokura & Nagaosa Nat. Nano. **8**, 899 (2013) Schulzet al. Nat. Phys. **8**, 301 (2012) Fert et al. Nature Nano. **8**, 152 (2013) Iwasaki et al., Nat. Comms., **4**, 1463 (2013)

Tony Skyrme

Chiral magnetic skyrmions

Many things are believed to do with:

non-trivial topology of skyrmions

Albert Fert, Vincent Cross and João Sampaio, Nature Nanotechnology **8**, 152 (2013)

Fascinating properties for spintronics:

- low currents to move around
- suppressed scattering at defects
- various "skyrmion" transport effects

"Classical" skyrmions: very large objects

MnSi B₂₀ compounds etc....

Simplify the problem

Electron dynamics in skyrmions

Equations of adiabatic electron dynamics:

 $H = H(\mathbf{k}, \mathbf{R})$

$$(\mathbf{\Omega} - I)\dot{\mathbf{x}} = \frac{\partial\varepsilon}{\partial\mathbf{x}}, \quad \mathbf{x} = (\mathbf{R}, \mathbf{k})$$

Freimuth, Bamler, Mokrousov, Rosch, PRB 2013

Berry curvature tensor:

"skyrmionic" cup

k-space Berry curvature Ω_k due to k-dependence of the statesreal-space Berry curvature Ω_R due to R-dependence of the statesmixed Berry curvature \square_{RR} due to states' k- and R-dependence

Real-space Berry curvature

Real space Berry curvature:

$$\Omega_{\mathbf{R}}^{ij,\sigma} = -2\mathrm{Im} \left\langle \partial_{\mathbf{R}_{i}} \psi_{\sigma}(\mathbf{R}) | \partial_{\mathbf{R}_{j}} \psi_{\sigma}(\mathbf{R}) \right\rangle$$
$$\Omega_{\mathbf{R}}^{ij,\sigma} = \sigma \,\mathbf{n} \cdot \left(\partial_{\mathbf{R}_{i}} \mathbf{n} \times \partial_{\mathbf{R}_{j}} \mathbf{n} \right) / 2$$

emergent magnetic field

"topological charge" "quantization" "topological protection"

Emergent field and Hall effects

Neubauer *et al.* PRL 2009 Bruno *et al.* PRL 2004

MnSi: emergent B-field ≈ 13 T

can reach gigantic values

 $\Omega^{\sigma}_{\mathbf{R}}$ produces Lorentz force opposite for opposite spin \downarrow **Topological Hall Effect** (THE): primary manifestation of skyrmionic topology

Mn_{1-x}Fe_xSi alloys

AHE versus THE in Mn_{1-x}Fe_xSi alloys

- Tuning Mn spin moment to fit experiment
- Alloying treated within virtual crystal approximation

Franz, Freimuth, ..., Blügel, Rosch, Mokrousov, Pfleiderer, PRL 112, 186601 (2014)

AHE versus THE in Mn_{1-x}Fe_xSi alloys

k-space Berry curvature AHE Boltzmann theory for OHE

$$\rho_{yx}^{\text{top}}(B^{\text{eff}}) = \frac{\sigma_{xy}^{\text{OHE},\uparrow}(B^{\text{eff}}) - \sigma_{xy}^{\text{OHE},\downarrow}(B^{\text{eff}})}{(\sigma_{xx}^{\uparrow} + \sigma_{xx}^{\downarrow})^2} = R_{yx}^{\text{top}} \cdot B_e$$

Franz, Freimuth, ..., Blügel, Rosch, Mokrousov, Pfleiderer, PRL 112, 186601 (2014)

AHE versus THE in Mn_{1-x}Fe_xSi alloys

Excellent agreement between theory and experiment!

- \rightarrow skyrmionic Berry phase picture is relevant
- \rightarrow ab initio is precise enough to describe it

Same conclusions for Mn-rich Mn_xFe_{1-x}Ge alloys:

Gayles, Freimuth, Schena, Lani, Mavropoulos, Duine, Blügel, Sinova, Mokrousov arXiv:1503.04842 (2015)

Franz, Freimuth, ..., Blügel, Rosch, Mokrousov, Pfleiderer, PRL 112, 186601 (2014)

Dzyaloshinskii-Moriya interaction

$$\Delta E \sim \mathbf{D} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$$

Suggestion goes back to the 50s...

Menzel, Mokrousov, Wieser, Bickel, Vedmedenko, Blügel, Heinze, von Bergmann, Kubetzka, Wiesendanger, PRL **108**, 197204 (2012)

 \mathbf{S}_{j}

-θ

 \mathbf{S}_i

θ

Fe bi-atomic chains on Ir(001) substrate

Dzyaloshinskii-Moriya interaction (DMI)

DMI as a Berry phase theory

Response of free energy to a perturbation:

$$\delta F(\mathbf{R}) = D_{ij}(\mathbf{R}) \,\hat{\mathbf{e}}_i \cdot \left(\hat{\mathbf{n}} \times \partial_{R_j} \hat{\mathbf{n}} \right)$$

Spiralization:

$$D_{ij}(\mathbf{R}) = \frac{1}{(2\pi)^d} \sum_n \int d\mathbf{k} f_{\mathbf{k}n} \left[A_{n\mathbf{k}\mathbf{R}}^{ij} - (\varepsilon_{n\mathbf{k}\mathbf{R}} - \mu) B_{n\mathbf{k}\mathbf{R}}^{ij} \right]$$

"localized" contribution

	4.5.8	D_{yx} (meV Å/u.c.)
Co/Pt(111)	$\hat{\mathbf{n}} = \hat{\mathbf{e}}_z$	11.3
O/Co/Pt(111)	$\hat{\mathbf{n}} = \hat{\mathbf{e}}_z$	15.0
Al/Co/Pt(111)	$\hat{\mathbf{n}} = \hat{\mathbf{e}}_z$	20.7
	$\hat{\mathbf{n}} = \hat{\mathbf{e}}_x$	6.8

Ω_{kR} Berry curvature in real and reciprocal (*k*,*R*)-space

MnSi: D = -4.1 meV Å/u.c.agrees quite well to experiment

Freimuth, Blügel, Mokrousov, JPCM **26**, 104202 (2014) Freimuth, Blügel, Mokrousov, arxiv 2013 - 2014 Freimuth, Bamler, Mokrousov, Rosch PRB 88, 214409 '13

Microscopics of the DMI

- ➔ driven by crossings of bands of different *spin* and *orbital* character
- → spin-orbit on Ge not important

: SOC correction for a small spiral **q**

➔ difficult to understand the trend

FeGe

Gayles, Freimuth, Schena, Lani, Mavropoulos, Duine, Blügel, Sinova, Mokrousov, arXiv:1503.04842 (2015)

Gayles, Freimuth, Schena, Lani, Mavropoulos, Duine, Blügel, Sinova, Mokrousov, arXiv:1503.04842 (2015)

Berry curvature DMI

The electric field at the edge couples to the magnetization

Spin-Orbit Torque

Gambardella's group + Jülich, Nat. Nano. **8**, 587 '13 Freimuth, Geranton, Blügel, Mokrousov, PRBs, etc. '13 – '15 Kurebayashi, Sinova *et al.*, Nat. Nano. **9**, 211 '14

Spin-orbit torque = torque a current exerts on *collinear* magnetization

change magnetization (M) !

Beyond Berry curvature

Kubo linear response formalism for the SOT

$$\begin{split} t_{ij}^{\mathrm{I(a)}} &= -\frac{e}{h} \int_{-\infty}^{\infty} d\mathcal{E} \frac{df(\mathcal{E})}{d\mathcal{E}} & \mathrm{Tr} \langle \mathcal{T}_{i} G^{\mathrm{R}}(\mathcal{E}) v_{j} G^{\mathrm{A}}(\mathcal{E}) \rangle_{\mathrm{c}}, \\ t_{ij}^{\mathrm{I(b)}} &= \frac{e}{h} \int_{-\infty}^{\infty} d\mathcal{E} \frac{df(\mathcal{E})}{d\mathcal{E}} \mathrm{Re} \mathrm{Tr} \langle \mathcal{T}_{i} G^{\mathrm{R}}(\mathcal{E}) v_{j} G^{\mathrm{R}}(\mathcal{E}) \rangle_{\mathrm{c}}, \\ t_{ij}^{\mathrm{II}} &= \frac{e}{h} \int_{-\infty}^{\infty} d\mathcal{E} f(\mathcal{E}) & \mathrm{Re} \mathrm{Tr} \langle \mathcal{T}_{i} G^{\mathrm{R}}(\mathcal{E}) v_{j} \frac{dG^{\mathrm{R}}(\mathcal{E})}{d\mathcal{E}} \\ &- \mathcal{T}_{i} \frac{dG^{\mathrm{R}}(\mathcal{E})}{d\mathcal{E}} v_{j} G^{\mathrm{R}}(\mathcal{E}) \rangle_{\mathrm{c}}, \end{split}$$

Freimuth, Blügel, Mokrousov, Phys. Rev. B 90, 174423 '14 JPCM **26**, 104202 '14

SOT and **DMI**:

$$t_{ij} = \int d\mathcal{E} \,\vartheta_{ij}(\mathcal{E})$$
$$D_{ij} = \frac{1}{eV} \int d\mathcal{E}(\mathcal{E} - \mu)\vartheta_{ij}(\mathcal{E})$$

Disorder potential: $\hat{V} = U \sum_{i} \delta(\hat{\mathbf{r}} - \mathbf{R}_{i})$

Spin-Orbit Torque

The formalism for the SOT can be worked out and confirmed by DFT

theor

Pt/Co Pt/Co/O

- "even" anti-damping part (AHE): Berry curature, scattering-independent
- "odd" field-like part ("diagonal" transport): diverges with vanishing disorder

Pt/Co/Al Pt/Co/AlO_x

expt

Spin-Orbit Torque

Switching magnetization with the current

- ➔ full electrical control of magnetization
- clear route towards miniaturization
- enhanced efficiency
- high-frequency dynamics
- switching in antiferromagnets!
- magnetic recording possible

New vistas for *antiferromagnetic* spintronics!

Miron *et al.*, Nature **476**, 189 (2011) Nijmegen + Porto + Braga + Jülich, arXiv (2015) Nottingham + Jülich + Prague, arXiv (2015) Gambardella's group + Jülich, Nat. Nano. **8**, 587 '13 Freimuth, Geranton, Blügel, Mokrousov, '14 – '15

Mn_{1-x}Fe_xGe alloys: scale the size by two orders

Mn_{1-x}Fe_xGe alloys: THE

Ondimaly Uta Halffeffe(t879)

Anomalous Hall Effect (AHE) was discovered by Edwin Hall in 1880

Magnetic field exerts a *spin-insensitive* Lorentz force on conduction electrons Anomalous Hall

AHE arises due to non-zero macroscopic **magnetization** and **spin-orbit interaction** in a magnetic sample

Scattering-independent Hall effects

All scattering-independent contributions can be identified

Dominant for moderately dirty metals

Nature Nanotech. 8, 256 '13

True not only for static, but also high-frequency electric fields

Weischenberg, Czaja, Freimuth, Sinova, Kampfrath's group, Münzenberg's group, Blügel, Zimmermann, Long, Mavropoulos, Mokrousov,

PRLs, PRBs, Nature Nano.: 2009 and on...

Real-space Berry curvature

Dirac monopole

Flux of Ω_R = winding number \approx flux of Dirac monopole field

$$Q = \frac{1}{4\pi} \int_{\mathbb{R}^2} \mathbf{m} \cdot \left(\frac{\partial \mathbf{m}}{\partial x} \times \frac{\partial \mathbf{m}}{\partial y} \right) dx dy$$

- ➔ quantized topological charge
- → topological protection
- \rightarrow key for spintronics applications

To name just a few...

Gilbert damping (Ω_{MM})

Ω_{kk}: Anomalous Hall effect
Orbital Magnetization
Spin Hall effect
Quantized Hall effects
Topological Insulators

Magnon Hall effect Exchange interactions (Ω_{qq})

