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Introduction



Quantum spin liquid (QSL)

new state of matter in magnets: magnetic state which does not “solidify” 
down to T=0 due to strong quantum fluctuations
๏ magnetic analog of liquid helium (P. W. Anderson, 1973)
๏ no long-range order down to T=0, same symmetry as paramagnet

QSLs have attracted much interest from not only condensed matter physics 
but also fundamental statistical physics and quantum information.
e.g. topological computation by non-Abelian anyons (A. Kitaev, 2003)
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Anderson’s RVB: figure is taken from L. Balents 2010



Problems in the study of QSLs

on the experimental side, there are several candidates, but...
- how to prove the existence of QSLs? necessary to prove “an alibi”?
- how to distinguish QSLs from paramagnet? any “positive” fingerprint?

The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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Y. Shimizu et al., 2003

✴ organic conductor κ-(ET)2Cu2(CN)3: S=1/2 spins on a triangular layers



Problems in the study of QSLs

on the theoretical side...
๏ less examples of well-identified QSLs

- need to prove the absence of “all” conventional long-range orders
๏ less choice of effective theoretical tools

- Results often depend on the methods, even on the computational 
conditions (e.g., boundary conditions in finite-size clusters).

✴ S=1/2 J1-J2 Heisenberg model on a square lattice
and plaquette order.3,14,15) By using DMRG, Gong et al.8)

have reported that a plaquette VBC phase appears for 0:5 <
J2=J1 < 0:61.

Although both the VMC and DMRG methods can be used
to predict the quantum spin liquid state in the intermediate
region of the J1–J2 Heisenberg model, the nature of this state
such as the spin gap remains controversial. Among all, very
recent state-of-the-art studies, one by VMC6) and the other
two by the DMRG method7,8) have led to contradictory
conclusions, in terms of the phase diagram and spin liquid
properties. The nature and existence of the quantum spin
liquid phase are, therefore, still under hot debate.

One possible reason for the discrepancy is the inevitable
bias existing in the VMC methods. As in the case of the
calculation by Hu et al., the variational wave functions are
often assumed to have a certain symmetry through the mean-
field Hamiltonian.6) Another possible origin of the discrep-
ancy could be the insufficient number of states kept in the
DMRG studies. The limitation of the tractable number of
states also constrains the lattice shape to a cylindrical
geometry and the maximum size of the circumference at
most 12 or 14 sites.

To elucidate the origin of the discrepancy, particularly
between the VMC and DMRG results, we perform VMC
simulations using improved variational wave functions that
can reproduce both spin-gapped and spin-gapless states in a
unified form. We employ the many-variable variational Monte
Carlo (mVMC) method16) for the model of square size (L! L)
with a periodic boundary condition, which is more symmetric
than the cylindrical boundary condition studied by the DMRG
method and makes the extrapolation to the thermodynamic
limit easier. To reduce biases of the variational wave functions,
we introduce a generalized one-body part of the variational
wave functions so that they can compare both spin-gapped
and spin-gapless states on equal footing. To obtain singlet
and triplet excited states, we apply several quantum-number
projections to specify the quantum numbers of the wave
function such as the total spin and momentum, which must be
preserved because they commute with the Hamiltonian. This
procedure not only enables higher accuracy but also allows us
to calculate the energy gaps and excitation spectra directly.

Our calculations up to 16! 16 sites yield the ground-state
phase diagram after the size extrapolation to the thermody-
namic limit, as shown in Fig. 2. The staggered (stripe) AF
phase exists for J2=J1 " 0:4 (J2 > 0:6), and the ground
state for 0:4 < J2=J1 " 0:6 has no magnetic order. In this
nonmagnetic region, we found that the triplet gap closes
and becomes gapless in the region 0:4 < J2=J1 " 0:5, while
the VBC phase is obtained for 0:5 < J2=J1 " 0:6 with gapful
spin-triplet excitations. We also report the power-law decay
of the spin–spin correlation function in the gapless region
indicating the existence of an algebraic spin-liquid phase in
an extended region.

This paper is organized as follows. In Sect. 2, we first
introduce the J1–J2 Heisenberg model and the mVMC
method with quantum-number projections. In Sect. 3, we
determine the quantum numbers of the ground and excited
states and report results of the order parameters and triplet
gap. The nature of the nonmagnetic region and the properties
of phase transition points are discussed in Sect. 4. Section 5
is devoted to the conclusions.

2. Model and Method

We consider the spin 1/2 antiferromagnetic J1–J2
Heisenberg model on the square lattice. The Hamiltonian is
given by

H ¼ J1
X

hi;ji
Si $ Sj þ J2

X

hhi;jii
Si $ Sj; ð1Þ

where hi; ji and hhi; jii denote nearest-neighbor and next-
nearest-neighbor sites, respectively; Si is the spin 1/2
operator on site i. In the following, we set J1 ¼ 1 as a unit
of energy. We calculate the ground state and low-energy
excited states of the model under the periodic boundary
conditions.

To obtain the physical properties of the states, we use
the mVMC method with quantum-number projections.16) We
employ a fermionic representation of the trial wave functions
of the form

j i ¼ PGLj!pairi; ð2Þ

where j!pairi and L denote the one-body part and quantum
number projection, respectively, as we will detail later. We
introduce the creation (annihilation) operator ci" (cyi") of the
electron on the site i with spin ·. The ¡-component of the
spin 1/2 operator (# ¼ x; y; z) is represented by

S#i ¼ 1

2
cyi "#ci; ð3Þ

where "# denotes the Pauli matrix and cyi ¼ ðcyi"; c
y
i#Þ. The

Gutzwiller projection

PG ¼
Y

i

ð1( ni"ni#Þ ð4Þ

prohibits the double occupation of electrons.
The one-body part is given by a generalized pair wave

function defined as

j!pairi ¼
X

i;j

fijc
y
i"c

y
j#

 !Ns=2

j0i; ð5Þ

where Ns ¼ L2 is the number of sites. The pairing amplitudes
fij are taken as a variational parameter depending on i and j,
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Fig. 2. (Color online) Ground-state phase diagram of J1–J2 Heisenberg
model on square lattice obtained in the present study. Staggered (stripe)
magnetizations are denoted by mðqÞ with q ¼ ð$;$Þ (q ¼ ð$; 0Þ). The dimer
order parameter md is multiplied by 5.0 and ¦ denotes the triplet spin gap.
The curves are guides for the eyes. For the definitions of mðqÞ and md, see
Sect. 3.
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Most of the literature on the intermediate phase of the J1-J2
model has focused on the possibility of symmetry breaking
VBS order. Many of these prior studied have suggested that
the intermediate state has VBS order. We note, however,
that all numerical results for the J1-J2 model are based
either on biased techniques (such as series expansion or
coupled cluster methods, or fixed node or related versions
of Monte Carlo adapted to avoid the sign problem, which
is present for unbiased Monte Carlo in this system), or on
exact diagonalization of very small systems. Some theoretical
motivation for the possibility of VBS order comes from the
theory of deconfined quantum criticality,28 which predicts
that a continuous quantum phase transition—a deconfined
quantum critical point (DQCP)—should occur between an
ordered Neél state and a plaquette or columnar VBS state,
in some models. However, the existence of such a transition
does not in any way imply that it occurs for the J1-J2 model in
question, or that this particular model even harbors a VBS
phase. Other theoretical motivation for VBS order comes
from its presence in some large-N generalizations of the
nearest-neighbor Heisenberg antiferromagnet. However, these
large N studies are not controllably close to the SU(2) case
and, moreover, do not consider second-neighbor interactions.
In short, we believe there is very little compelling evidence
for the existence of VBS order in the isotropic S = 1/2 J1-J2
model to be found in the prior literature. We will return to
discuss VBS states in Sec. VI A.

The only unbiased technique capable of treating generic
frustrated two-dimensional spin systems of moderately large
size is the density matrix renormalization group (DMRG)
method.7,29–31 While the sizes that can be studied using the
DMRG are not as large as those accessibly by quantum
Monte Carlo (QMC) for unfrustrated models, they are still
very large and they are not limited by the sign problem,
which prevents application of QMC to most realistic physical
models. Moreover, the DMRG has some advantages over
QMC: it is intrinsically a zero-temperature technique, and
obtains a convenient representation of the ground-state wave
function. Most importantly for our purposes, the DMRG is
very efficient and convenient for calculating the entanglement
entropy, which we return to in some detail below. In this
paper, we report the results of extensive simulations (with
truncation error ∼10−7) on numerous cylinders of circumfer-
ence Ly = 3–14 and lengths Lx ! 2Ly . In our simulations, we
measure spin-spin correlation functions, correlation functions
and expectation values of VBS order parameters, bulk singlet
and triplet energy gaps, and entanglement entropy. All results
confirm the existence of magnetic order for small and large J2,
and that (see Fig. 1) the ground state for 0.41 " J2/J1 " 0.62
is nonmagnetic, in very good agreement with the most accurate
prior results from series expansion and coupled cluster24

methods. Furthermore, we find that the intermediate phase
has a gap to both singlet and triplet excitations and, within our
uncertainty, no VBS order in the 2D limit as extrapolated from
the VBS correlation functions. We carry out further checks for
possible finite-size effects due to the boundaries, to see if this
might artificially suppress VBS order, and see no indication
that this is the case.

The latter results suggests a QSL state, based on negative
evidence: the apparent absence of VBS order. We find two
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FIG. 1. (Color online) The ground-state phase diagram for the
spin- 1

2 AFM Heisenberg J1-J2 model on the square lattice, as
determined by accurate DMRG calculations on long cylinders with
Ly up to 14. Changing the coupling parameter J2/J1, three different
phases are found: Néel antiferromagnet (AFM), topological quantum
spin liquid (QSL), and stripe AFM phase. ms(k0 = (π,π )) [ms(kx =
(π,0))] denotes the staggered magnetization in the Néel AFM phase
[stripe AFM phase], whose saturation value is 1/2. "S and "T denote
the spin singlet and spin triplet gaps, respectively.

positive evidences that this suggestion is correct, and that the
state is a Z2 QSL. First, we find a nonzero TEE, γ , which
is a constant and universal reduction of the von Neumann
entanglement entropy, known to vanish in any gapped state
with short-range entanglement. Notably, we point out in
Sec. IV that discrete spontaneous symmetry breaking phases
such as valence bond solids have absolute ground states, which
are Schrödinger cat states with a constant enhancement of
the entanglement entropy, i.e., an effect of opposite sign to
the TEE. Phases with nonzero γ and a gap to all excitations
are topological phases. Like conformal field theories in two
dimensions, only discrete types of topological phases exist,
with discrete allowed values of γ (which plays a role somewhat
similar to the central charge in a conformal field theory). For
all points we have studied within the nonmagnetic phase, the
value of γ is equal, within numerical uncertainty of 2%,
to ln(2), which is the minimal value possible for γ in a
topological phase with time-reversal symmetry. A topological
entanglement entropy of γ = ln(2) implies either a Z2 QSL
or a “doubled semion” phase. As there is, to our knowledge,
no theory suggesting the appearance of the semion phase in
an SU(2) invariant spin-1/2 model, we take this as strong
evidence for a Z2 QSL state. The second positive evidence for
a Z2 QSL is a remarkable odd/even effect in which static VBS
order is entirely absent for even Ly but is observed directly
in the VBS expectation values for odd Ly . This is expected
on general theoretical grounds for a Z2 QSL, as we show
in Appendix 1. We compare the behavior of the numerically
observed static VBS order for odd circumference cylinders
with theory, and find quite consistent results.

The remainder of the paper is organized as follows. In
Sec. II, we report results of magnetic and dimer correlation
functions and their extrapolation to the infinite system limit.
Section III discusses the singlet and triplet energy gaps.
Section IV describes the theory and measurements of the
topological entanglement entropy, and Sec. V presents results
on the even-odd effect. We conclude in Sec. VI with a summary
of the conclusions, and a detailed discussion of the reasons to
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gappedZ2 SL [40]—by observing that the PVBdecay length
grows stronglywith increasing systemwidth.We identify the
PVB order as the s-wave plaquette [33] by studying dimer-
dimer correlations. For 0.44 < J2 < 0.5, we find that the
magnetic order, valence-bond crystal (VBC) orders, and spin
excitation gap are small on finite-size systems, suggesting
a near-critical behavior. The magnetic and dimer critical
exponents at J2 ¼ 0.5 are roughly similar to thevalues found
for the deconfined criticality in the J-Qmodels on the square
and honeycomb lattices [56–63], which is consistent with
the deconfined criticality scenario conjectured also for the
J1-J2 model in Ref. [64].
We establish the phases based on high accuracy DMRG

results on cylinders [65]. The first cylinder is the rectan-
gular cylinder (RC) with closed boundary in the y direction
and open boundaries in the x direction. We denote it as
RCLy-Lx, where Ly and Lx are the number of sites in the
y and x directions; the width of the cylinder is Wy ¼ Ly
(see the inset of Fig. 1). To study the dimers oriented in the
y direction, we can induce such an order near the open
boundaries by modifying every other NN vertical bond
on the boundary to be Jpin ≠ J1 as illustrated in Fig. 1. The
second geometry is the tilted cylinder (TC), as shown in
Fig. 4(a), when discussing VBC order.
Néel order.—The Néel order parameter m2

s is defined as
m2

s ¼ 1
N2

P
i;jhSi · Sjiei~q·ð~ri−~rjÞ (N is the total site number),

with ~q ¼ ðπ; πÞ. We calculatem2
s from the spin correlations

of the L × L sites in the middle of the RCL-2L cylinder,
which efficiently reduces boundary effects [40,66]. In
Fig. 2(a), we show m2

s for different systems with L¼4–14
[67]. We show the obtained two-dimensional limit m2

s;∞ in

the inset of Fig. 2(a). Such an analysis suggests that the
Néel order vanishes for J2 > 0.44.
The estimated J2 of spin order vanishing is different from

the point J2 ¼ 0.5 where the PVB order develops as found
below. One possibility is an intermediate SL phase [44,45].
Another possibility is that the system is near critical for
0.44 < J2 < 0.5. In this case, to get some idea about the
criticality, Fig. 2(b) shows the log-log plot of m2

sðLÞ. m2
s

approaches finite value in the Néel phase as seen for J2 ¼
0.35 and 0.4. On the other hand, we expectm2

sðLÞ ∼ L−ð1þηÞ

at a critical point andm2
sðLÞ ∼ L−2 in thenonmagnetic phase.

The accelerated decay of m2
sðLÞ at J2 ¼ 0.55 is consistent

with vanishingNéel order: from the two largest sizes we esti-
mate m2

sðLÞ ∼ L−1.82, which is quite close to m2
sðLÞ ∼ L−2.

In the near-critical region, we fit the J2 ¼ 0.44 data to
L−ð1þ0.15Þ and the J2 ¼ 0.5 data (L > 8) to L−ð1þ0.44Þ. This
range of η is compatible with the findings in the J-Qmodels
on the square (η≃ 0.26–0.35) [56–62] and honeycomb
(η≃ 0.3) [63] lattices, which show continuous Néel-to-
VBC transition argued to be in the deconfined criticality
class, so our model is compatible with this scenario as well.
VBC orders.—We introduce the “pinning” bonds Jpin ≠

J1 on boundaries to induce a vertical dimer pattern and

FIG. 1 (color online). Phase diagram of spin-1=2 J1-J2 SHM
obtained by our SUð2Þ DMRG studies. With growing J2, the
model has a Néel phase for J2 < 0.44 and a PVB phase for
0.5 < J2 < 0.61. Between these two phases, the finite-size mag-
netization and spin gap appear small in our calculations, consistent
with a near-critical behavior. The main panel shows Néel order
parameter ms and spin gap ΔT in the thermodynamic limit. The
inset is a sketch of a RC4-6 cylinder; Jpin shows the modified odd
vertical bonds providing the boundary pinning for dimer orders.

0 0.05 0.1 0.15 0.2 0.25
1/L

m
s2

J2=0.35
J2=0.40
J2=0.44
J2=0.46
J2=0.50
J2=0.55

0 0.1 0.2 0.3 0.4 0.5
J2

0
0.02
0.04
0.06
0.08
0.1

m
2
s,∞

(a)

10
L

0.1

m
s2

(b)

0

0.05

0.1

0.15

0.2

FIG. 2 (color online). (a) m2
s plotted versus 1=L for RCL-2L

cylinder with L ¼ 4; 6; 8; 10; 12; 14; lines are polynomial fits up
to fourth order. The inset is J2 dependence of the obtained
magnetic order in the 2D limit m2

s;∞. (b) Same data as (a) shown
as log-log plot of m2

s versus width L.
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and plaquette order.3,14,15) By using DMRG, Gong et al.8)

have reported that a plaquette VBC phase appears for 0:5 <
J2=J1 < 0:61.

Although both the VMC and DMRG methods can be used
to predict the quantum spin liquid state in the intermediate
region of the J1–J2 Heisenberg model, the nature of this state
such as the spin gap remains controversial. Among all, very
recent state-of-the-art studies, one by VMC6) and the other
two by the DMRG method7,8) have led to contradictory
conclusions, in terms of the phase diagram and spin liquid
properties. The nature and existence of the quantum spin
liquid phase are, therefore, still under hot debate.

One possible reason for the discrepancy is the inevitable
bias existing in the VMC methods. As in the case of the
calculation by Hu et al., the variational wave functions are
often assumed to have a certain symmetry through the mean-
field Hamiltonian.6) Another possible origin of the discrep-
ancy could be the insufficient number of states kept in the
DMRG studies. The limitation of the tractable number of
states also constrains the lattice shape to a cylindrical
geometry and the maximum size of the circumference at
most 12 or 14 sites.

To elucidate the origin of the discrepancy, particularly
between the VMC and DMRG results, we perform VMC
simulations using improved variational wave functions that
can reproduce both spin-gapped and spin-gapless states in a
unified form. We employ the many-variable variational Monte
Carlo (mVMC) method16) for the model of square size (L! L)
with a periodic boundary condition, which is more symmetric
than the cylindrical boundary condition studied by the DMRG
method and makes the extrapolation to the thermodynamic
limit easier. To reduce biases of the variational wave functions,
we introduce a generalized one-body part of the variational
wave functions so that they can compare both spin-gapped
and spin-gapless states on equal footing. To obtain singlet
and triplet excited states, we apply several quantum-number
projections to specify the quantum numbers of the wave
function such as the total spin and momentum, which must be
preserved because they commute with the Hamiltonian. This
procedure not only enables higher accuracy but also allows us
to calculate the energy gaps and excitation spectra directly.

Our calculations up to 16! 16 sites yield the ground-state
phase diagram after the size extrapolation to the thermody-
namic limit, as shown in Fig. 2. The staggered (stripe) AF
phase exists for J2=J1 " 0:4 (J2 > 0:6), and the ground
state for 0:4 < J2=J1 " 0:6 has no magnetic order. In this
nonmagnetic region, we found that the triplet gap closes
and becomes gapless in the region 0:4 < J2=J1 " 0:5, while
the VBC phase is obtained for 0:5 < J2=J1 " 0:6 with gapful
spin-triplet excitations. We also report the power-law decay
of the spin–spin correlation function in the gapless region
indicating the existence of an algebraic spin-liquid phase in
an extended region.

This paper is organized as follows. In Sect. 2, we first
introduce the J1–J2 Heisenberg model and the mVMC
method with quantum-number projections. In Sect. 3, we
determine the quantum numbers of the ground and excited
states and report results of the order parameters and triplet
gap. The nature of the nonmagnetic region and the properties
of phase transition points are discussed in Sect. 4. Section 5
is devoted to the conclusions.

2. Model and Method

We consider the spin 1/2 antiferromagnetic J1–J2
Heisenberg model on the square lattice. The Hamiltonian is
given by

H ¼ J1
X

hi;ji
Si $ Sj þ J2

X

hhi;jii
Si $ Sj; ð1Þ

where hi; ji and hhi; jii denote nearest-neighbor and next-
nearest-neighbor sites, respectively; Si is the spin 1/2
operator on site i. In the following, we set J1 ¼ 1 as a unit
of energy. We calculate the ground state and low-energy
excited states of the model under the periodic boundary
conditions.

To obtain the physical properties of the states, we use
the mVMC method with quantum-number projections.16) We
employ a fermionic representation of the trial wave functions
of the form

j i ¼ PGLj!pairi; ð2Þ

where j!pairi and L denote the one-body part and quantum
number projection, respectively, as we will detail later. We
introduce the creation (annihilation) operator ci" (cyi") of the
electron on the site i with spin ·. The ¡-component of the
spin 1/2 operator (# ¼ x; y; z) is represented by

S#i ¼ 1

2
cyi "#ci; ð3Þ

where "# denotes the Pauli matrix and cyi ¼ ðcyi"; c
y
i#Þ. The

Gutzwiller projection

PG ¼
Y

i

ð1( ni"ni#Þ ð4Þ

prohibits the double occupation of electrons.
The one-body part is given by a generalized pair wave

function defined as

j!pairi ¼
X

i;j

fijc
y
i"c

y
j#

 !Ns=2

j0i; ð5Þ

where Ns ¼ L2 is the number of sites. The pairing amplitudes
fij are taken as a variational parameter depending on i and j,
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Fig. 2. (Color online) Ground-state phase diagram of J1–J2 Heisenberg
model on square lattice obtained in the present study. Staggered (stripe)
magnetizations are denoted by mðqÞ with q ¼ ð$;$Þ (q ¼ ð$; 0Þ). The dimer
order parameter md is multiplied by 5.0 and ¦ denotes the triplet spin gap.
The curves are guides for the eyes. For the definitions of mðqÞ and md, see
Sect. 3.
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and plaquette order.3,14,15) By using DMRG, Gong et al.8)

have reported that a plaquette VBC phase appears for 0:5 <
J2=J1 < 0:61.

Although both the VMC and DMRG methods can be used
to predict the quantum spin liquid state in the intermediate
region of the J1–J2 Heisenberg model, the nature of this state
such as the spin gap remains controversial. Among all, very
recent state-of-the-art studies, one by VMC6) and the other
two by the DMRG method7,8) have led to contradictory
conclusions, in terms of the phase diagram and spin liquid
properties. The nature and existence of the quantum spin
liquid phase are, therefore, still under hot debate.

One possible reason for the discrepancy is the inevitable
bias existing in the VMC methods. As in the case of the
calculation by Hu et al., the variational wave functions are
often assumed to have a certain symmetry through the mean-
field Hamiltonian.6) Another possible origin of the discrep-
ancy could be the insufficient number of states kept in the
DMRG studies. The limitation of the tractable number of
states also constrains the lattice shape to a cylindrical
geometry and the maximum size of the circumference at
most 12 or 14 sites.

To elucidate the origin of the discrepancy, particularly
between the VMC and DMRG results, we perform VMC
simulations using improved variational wave functions that
can reproduce both spin-gapped and spin-gapless states in a
unified form. We employ the many-variable variational Monte
Carlo (mVMC) method16) for the model of square size (L! L)
with a periodic boundary condition, which is more symmetric
than the cylindrical boundary condition studied by the DMRG
method and makes the extrapolation to the thermodynamic
limit easier. To reduce biases of the variational wave functions,
we introduce a generalized one-body part of the variational
wave functions so that they can compare both spin-gapped
and spin-gapless states on equal footing. To obtain singlet
and triplet excited states, we apply several quantum-number
projections to specify the quantum numbers of the wave
function such as the total spin and momentum, which must be
preserved because they commute with the Hamiltonian. This
procedure not only enables higher accuracy but also allows us
to calculate the energy gaps and excitation spectra directly.

Our calculations up to 16! 16 sites yield the ground-state
phase diagram after the size extrapolation to the thermody-
namic limit, as shown in Fig. 2. The staggered (stripe) AF
phase exists for J2=J1 " 0:4 (J2 > 0:6), and the ground
state for 0:4 < J2=J1 " 0:6 has no magnetic order. In this
nonmagnetic region, we found that the triplet gap closes
and becomes gapless in the region 0:4 < J2=J1 " 0:5, while
the VBC phase is obtained for 0:5 < J2=J1 " 0:6 with gapful
spin-triplet excitations. We also report the power-law decay
of the spin–spin correlation function in the gapless region
indicating the existence of an algebraic spin-liquid phase in
an extended region.

This paper is organized as follows. In Sect. 2, we first
introduce the J1–J2 Heisenberg model and the mVMC
method with quantum-number projections. In Sect. 3, we
determine the quantum numbers of the ground and excited
states and report results of the order parameters and triplet
gap. The nature of the nonmagnetic region and the properties
of phase transition points are discussed in Sect. 4. Section 5
is devoted to the conclusions.

2. Model and Method

We consider the spin 1/2 antiferromagnetic J1–J2
Heisenberg model on the square lattice. The Hamiltonian is
given by

H ¼ J1
X

hi;ji
Si $ Sj þ J2

X

hhi;jii
Si $ Sj; ð1Þ

where hi; ji and hhi; jii denote nearest-neighbor and next-
nearest-neighbor sites, respectively; Si is the spin 1/2
operator on site i. In the following, we set J1 ¼ 1 as a unit
of energy. We calculate the ground state and low-energy
excited states of the model under the periodic boundary
conditions.

To obtain the physical properties of the states, we use
the mVMC method with quantum-number projections.16) We
employ a fermionic representation of the trial wave functions
of the form

j i ¼ PGLj!pairi; ð2Þ

where j!pairi and L denote the one-body part and quantum
number projection, respectively, as we will detail later. We
introduce the creation (annihilation) operator ci" (cyi") of the
electron on the site i with spin ·. The ¡-component of the
spin 1/2 operator (# ¼ x; y; z) is represented by

S#i ¼ 1

2
cyi "#ci; ð3Þ

where "# denotes the Pauli matrix and cyi ¼ ðcyi"; c
y
i#Þ. The

Gutzwiller projection

PG ¼
Y

i

ð1( ni"ni#Þ ð4Þ

prohibits the double occupation of electrons.
The one-body part is given by a generalized pair wave

function defined as

j!pairi ¼
X

i;j
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y
i"c

y
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 !Ns=2

j0i; ð5Þ

where Ns ¼ L2 is the number of sites. The pairing amplitudes
fij are taken as a variational parameter depending on i and j,
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Fig. 2. (Color online) Ground-state phase diagram of J1–J2 Heisenberg
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magnetizations are denoted by mðqÞ with q ¼ ð$;$Þ (q ¼ ð$; 0Þ). The dimer
order parameter md is multiplied by 5.0 and ¦ denotes the triplet spin gap.
The curves are guides for the eyes. For the definitions of mðqÞ and md, see
Sect. 3.

J. Phys. Soc. Jpn. 84, 024720 (2015) S. Morita et al.

024720-2 ©2015 The Physical Society of Japan

gappedZ2 SL [40]—by observing that the PVBdecay length
grows stronglywith increasing systemwidth.We identify the
PVB order as the s-wave plaquette [33] by studying dimer-
dimer correlations. For 0.44 < J2 < 0.5, we find that the
magnetic order, valence-bond crystal (VBC) orders, and spin
excitation gap are small on finite-size systems, suggesting
a near-critical behavior. The magnetic and dimer critical
exponents at J2 ¼ 0.5 are roughly similar to thevalues found
for the deconfined criticality in the J-Qmodels on the square
and honeycomb lattices [56–63], which is consistent with
the deconfined criticality scenario conjectured also for the
J1-J2 model in Ref. [64].
We establish the phases based on high accuracy DMRG

results on cylinders [65]. The first cylinder is the rectan-
gular cylinder (RC) with closed boundary in the y direction
and open boundaries in the x direction. We denote it as
RCLy-Lx, where Ly and Lx are the number of sites in the
y and x directions; the width of the cylinder is Wy ¼ Ly
(see the inset of Fig. 1). To study the dimers oriented in the
y direction, we can induce such an order near the open
boundaries by modifying every other NN vertical bond
on the boundary to be Jpin ≠ J1 as illustrated in Fig. 1. The
second geometry is the tilted cylinder (TC), as shown in
Fig. 4(a), when discussing VBC order.
Néel order.—The Néel order parameter m2

s is defined as
m2

s ¼ 1
N2

P
i;jhSi · Sjiei~q·ð~ri−~rjÞ (N is the total site number),

with ~q ¼ ðπ; πÞ. We calculatem2
s from the spin correlations

of the L × L sites in the middle of the RCL-2L cylinder,
which efficiently reduces boundary effects [40,66]. In
Fig. 2(a), we show m2

s for different systems with L¼4–14
[67]. We show the obtained two-dimensional limit m2

s;∞ in

the inset of Fig. 2(a). Such an analysis suggests that the
Néel order vanishes for J2 > 0.44.
The estimated J2 of spin order vanishing is different from

the point J2 ¼ 0.5 where the PVB order develops as found
below. One possibility is an intermediate SL phase [44,45].
Another possibility is that the system is near critical for
0.44 < J2 < 0.5. In this case, to get some idea about the
criticality, Fig. 2(b) shows the log-log plot of m2

sðLÞ. m2
s

approaches finite value in the Néel phase as seen for J2 ¼
0.35 and 0.4. On the other hand, we expectm2

sðLÞ ∼ L−ð1þηÞ

at a critical point andm2
sðLÞ ∼ L−2 in thenonmagnetic phase.

The accelerated decay of m2
sðLÞ at J2 ¼ 0.55 is consistent

with vanishingNéel order: from the two largest sizes we esti-
mate m2

sðLÞ ∼ L−1.82, which is quite close to m2
sðLÞ ∼ L−2.

In the near-critical region, we fit the J2 ¼ 0.44 data to
L−ð1þ0.15Þ and the J2 ¼ 0.5 data (L > 8) to L−ð1þ0.44Þ. This
range of η is compatible with the findings in the J-Qmodels
on the square (η≃ 0.26–0.35) [56–62] and honeycomb
(η≃ 0.3) [63] lattices, which show continuous Néel-to-
VBC transition argued to be in the deconfined criticality
class, so our model is compatible with this scenario as well.
VBC orders.—We introduce the “pinning” bonds Jpin ≠

J1 on boundaries to induce a vertical dimer pattern and

FIG. 1 (color online). Phase diagram of spin-1=2 J1-J2 SHM
obtained by our SUð2Þ DMRG studies. With growing J2, the
model has a Néel phase for J2 < 0.44 and a PVB phase for
0.5 < J2 < 0.61. Between these two phases, the finite-size mag-
netization and spin gap appear small in our calculations, consistent
with a near-critical behavior. The main panel shows Néel order
parameter ms and spin gap ΔT in the thermodynamic limit. The
inset is a sketch of a RC4-6 cylinder; Jpin shows the modified odd
vertical bonds providing the boundary pinning for dimer orders.
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to fourth order. The inset is J2 dependence of the obtained
magnetic order in the 2D limit m2

s;∞. (b) Same data as (a) shown
as log-log plot of m2

s versus width L.
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Model
Fundamentals of the Kitaev models



Kitaev model: exactly solvable model for QSL

S=1/2 quantum spin model on a 2D honeycomb lattice (A. Kitaev, 2006)

H = �Jz
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bond dependent interactions ➡ frustration



Kitaev model: local conserved quantity
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Eigenstates of the Kitaev model are labelled by {Wp = ±1}
➡ solvable by introducing Majorana fermions (A. Kitaev, 2006): 

ground state is given by all Wp=+1

➡ Z2 variable Wp = ±1

(termed “flux”)



Kitaev model: T=0 phase diagram

QSL ground states in the entire parameter region:
gapless and gapped QSLs depending on the anisotropy

is impossible, even if we introduce new terms in the Hamiltonian. On the other hand, the
eight copies of each phase (corresponding to different sign combinations of Jx,Jy,Jz) have
the same translational properties. It is unknown whether the eight copies of the gapless
phase are algebraically different.

We now consider the zeros of the spectrum that exist in the gapless phase. The momen-
tum q is defined modulo the reciprocal lattice, i.e., it belongs to a torus. We represent the
momentum space by the parallelogram spanned by (q1,q2)—the basis dual to (n1,n2). In
the symmetric case (Jx = Jy = Jz) the zeros of the spectrum are given by

ð34Þ

If |Jx| and |Jy| decrease while |Jz| remains constant, q* and #q* move toward each other
(within the parallelogram) until they fuse and disappear. This happens when
|Jx| + |Jy| = |Jz|. The points q* and #q* can also effectively fuse at opposite sides of the par-
allelogram. (Note that the equation q* = #q* has three nonzero solutions on the torus.)

At the points ±q* the spectrum has conic singularities (assuming that q* „ #q*)

ð35Þ

7. Properties of the gapped phases

In a gapped phase, spin correlations decay exponentially with distance, therefore spa-
tially separated quasiparticles cannot interact directly. That is, a small displacement or
another local action on one particle does not influence the other. However, the particles

Jx Jz= =0Jy Jz= =0

=1,Jx =1,Jy

=1,Jz Jx Jy= =0

gapless

gappedAz

Ax Ay

B

Fig. 5. Phase diagram of the model. The triangle is the section of the positive octant (Jx, Jy, Jz P 0) by the plane
Jx + Jy + Jz = 1. The diagrams for the other octants are similar.
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Kitaev model: experimental relevance

An effective interaction for partially-filled t2g levels under strong spin-orbit 
coupling may become Kitaev type (G. Jackeli and G. Khaliullin, 2009).

extension by including isotropic Heisenberg interaction
➡Kitaev-Heisenberg models:

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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tional statistics, topological degeneracy, and, in particular,
it is relevant for quantum computation [18]. This generated
an enormous interest in a possible realization of this model
in real systems, with current proposals based on optical
lattices [27]. Here, we outline how to ‘‘engineer’’ the
Kitaev model in Mott insulators.

Shown in Fig. 3(a) is a triangular unit formed by 90!

bonds together with ‘‘compass’’ interactions that follow
from Eq. (3). Such a structure is common for a number of
oxides, e.g., layered compounds ABO2 (where A and B are
alkali and TM ions, respectively). The triangular lattice of
magnetic ions in an ABO2 structure can be depleted down
to a honeycomb lattice (by periodic replacements of TM
ions with nonmagnetic ones). One then obtains an A2BO3

compound, which has a hexagonal unit shown in Fig. 3(b).
There are three nonequivalent bonds, each being perpen-
dicular to one of the cubic axes x, y, z. Then, according to
Eq. (3), the spin coupling, e.g., on a (x)-bond, is of Sxi S

x
j

type, precisely as in the Kitaev model. The honeycomb
lattice provides a particularly striking example of new
physics introduced by strong SO coupling: the
Heisenberg model is converted into the Kitaev model
with a spin-liquid ground state.

The compound Li2RuO3 [28] represents a physical ex-
ample of the A2BO3 structure. By replacement of spin-one
Ru4þ with spin-one-half Ir4þ ions, one may realize a
strongly spin-orbit-coupledMott insulator with low-energy
physics described by the Kitaev model.

‘‘Weak’’ ferromagnetism of Sr2IrO4.—As an example of
a spin-orbit-coupled Mott insulator, we discuss the layered
compound Sr2IrO4, a t2g analog of the undoped high-Tc

cuprate La2CuO4. In Sr2IrO4, a square lattice of Ir
4þ ions is

formed by corner-shared IrO6 octahedra, elongated along
the c-axis and rotated about it by ! ’ 11! [19] (see Fig. 4).
Sr2IrO4 undergoes a magnetic transition at #240 K dis-

playing a weak FM, which can be ascribed to a
Dzyaloshinsky-Moriya (DM) interaction. The puzzling
fact is that ‘‘weak’’ FM moment is unusually large,
’ 0:14"B [20] which is 2 orders of magnitude larger
than that in La2CuO4 [29]. A corresponding spin canting
angle # ’ 8! is close to !, i.e., the ordered spins seem to
rigidly follow the staggered rotations of octahedra. Here,
we show that the strong SO coupling scenario gives a
natural explanation of this observation.
We first show the dominant part of the Hamiltonian for

Sr2IrO4 neglecting the Hund’s coupling for a moment.
Accounting for the rotations of IrO6 octahedra, we find

H ¼ J ~Si % ~Sj þ JzS
z
iS

z
j þ ~D % ½ ~Si ' ~Sj(: (4)

Here, the isotropic coupling J ¼ $1ðt2s * t2aÞ, where ts ¼
sin2%þ 1

2 cos
2% cos2!, and ta ¼ 1

2 cos
2% sin2!. The second

and third terms describe the symmetric and DM anisotro-
pies, with Jz ¼ 2$1t

2
a, ~D ¼ ð0; 0;*DÞ, and D ¼ 2$1tsta.

[For ! ¼ 0, these terms vanish and we recover J1-term of
the 180! result (2).] As it follows from Eq. (4), the spin
canting angle is given by a ratio D=J ’ 2ta=ts # 2!which
is independent of &, and is solely determined by lattice
distortions. This explains the large spin canting angle ##
! in Sr2IrO4.
As in the case of weak SO coupling [30], the

Hamiltonian (4) can in fact be mapped to the Heisenberg

model ~~Si % ~~Sj where operators ~~S are obtained by a stag-

gered rotation of ~S around the z-axis by an angle,#, with
tanð2#Þ ¼ D=J. Thus, at JH ¼ 0, there is no true magnetic
anisotropy. Once JH-corrections are included, the
Hamiltonian receives also the anisotropic terms,

Syy
2 3S

Sx x
1 2S

SSz z
1 3 (b)

xx

zz

yy

(a)

y

z

x

1

3

2

FIG. 3 (color online). Examples of the structural units formed
by 90! TM-O-TM bonds and corresponding spin-coupling pat-
terns. Gray circles stand for magnetic ions, and small open
circles denote oxygen sites. (a) Triangular unit cell of
ABO2-type layered compounds, periodic sequence of this unit
forms a triangular lattice of magnetic ions. The model (3) on this
structure is a realization of a quantum compass model on a
triangular lattice: e.g., on a bond 1-2, laying perpendicular to
x-axis, the interaction is Sx1S

x
2. (b) Hexagonal unit cell of

A2BO3-type layered compound, in which magnetic ions
(B-sites) form a honeycomb lattice. (Black dot: nonmagnetic
A-site). On an xx-bond, the interaction is Sxi S

x
j , etc. For this

structure, the model (3) is identical to the Kitaev model.
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FIG. 4. The spin canting angle # (in units of !) as a function
of the tetragonal distortion parameter %. Inset shows a sketch of
an IrO2-plane. The oxygen octahedra are rotated by an angle,!
about z-axis forming a two sublattice structure. In the cubic case,
% ’ '=5, one has # ¼ ! exactly. The spin-flop transition from
the in-plane canted spin state to a collinear Néel ordering along
z-axis occurs at % ¼ '=4.
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for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).

pyxy xy

pzxz xz

180o

(a)

pz

pz

(b)

xz yz

yz xz

o90

FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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3D extension

S=1/2 quantum spin model on a 3D hyperhoneycomb lattice (S. Mandal and 
N. Surendran, 2009)

new Iridates Li2IrO3: 3D honeycomb-type network of Ir4+ cations
๏ harmonic honeycomb (K. A. Modic et al., 2014)
๏ hyperhoneycomb (T. Takayama et al., 2015)

(a)

(b) (c)

is impossible, even if we introduce new terms in the Hamiltonian. On the other hand, the
eight copies of each phase (corresponding to different sign combinations of Jx,Jy,Jz) have
the same translational properties. It is unknown whether the eight copies of the gapless
phase are algebraically different.

We now consider the zeros of the spectrum that exist in the gapless phase. The momen-
tum q is defined modulo the reciprocal lattice, i.e., it belongs to a torus. We represent the
momentum space by the parallelogram spanned by (q1,q2)—the basis dual to (n1,n2). In
the symmetric case (Jx = Jy = Jz) the zeros of the spectrum are given by

ð34Þ

If |Jx| and |Jy| decrease while |Jz| remains constant, q* and #q* move toward each other
(within the parallelogram) until they fuse and disappear. This happens when
|Jx| + |Jy| = |Jz|. The points q* and #q* can also effectively fuse at opposite sides of the par-
allelogram. (Note that the equation q* = #q* has three nonzero solutions on the torus.)

At the points ±q* the spectrum has conic singularities (assuming that q* „ #q*)

ð35Þ

7. Properties of the gapped phases

In a gapped phase, spin correlations decay exponentially with distance, therefore spa-
tially separated quasiparticles cannot interact directly. That is, a small displacement or
another local action on one particle does not influence the other. However, the particles

Jx Jz= =0Jy Jz= =0

=1,Jx =1,Jy

=1,Jz Jx Jy= =0

gapless

gappedAz

Ax Ay

B

Fig. 5. Phase diagram of the model. The triangle is the section of the positive octant (Jx, Jy, Jz P 0) by the plane
Jx + Jy + Jz = 1. The diagrams for the other octants are similar.
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exactly the same T=0 phase diagram

QSL ground states in 3D



How to compute thermodynamics? 
quantum Monte Carlo method in the 

Majorana fermion representation
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Method

The conventional quantum Monte Carlo (QMC) methods on the basis of the 
world-line technique do not work because of the negative-sign problem:
๏ Lattices are bipartite, but the interactions are frustrated.



Method

The conventional quantum Monte Carlo (QMC) methods on the basis of the 
world-line technique do not work because of the negative-sign problem:
๏ Lattices are bipartite, but the interactions are frustrated.

Our solution:

interacting S=1/2 spins

non-interacting Majorana fermions 
coupled to thermally-fluctuating Z2 fields

Jordan-Wigner transformation
Majorana fermion representation

QMC free from negative-sign problem
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step 2: Majorana fermion representation

step 1: Jordan-Wigner transformation 
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Method (details)

step 2: Majorana fermion representation

step 1: Jordan-Wigner transformation 

regard the system as an assembly of 1D chains 
(composed of x, y bonds) coupled by z bonds

H.-D. Chen and J. Hu, 2007
X.-Y. Feng, G.-M. Zhang, and T. Xiang, 2007
H.-D. Chen and Z. Nussinov, 2008

are written by spinless fermion operators (ai, a†i ) as

S+
m,n = (S−

m,n)
† =

1

2
(σx

m,n + iσy
m,n) =

n−1∏

n′=1

(1− 2nm,n′)a†m,n, (2)

σz
m,n = 2nm,n − 1, (3)

where ni is the number operator defined by ni = a†iai. Then, the interactions in Eq. (1) are

written as

σx
m,nσ

x
m,n+1 = −(am,n − a†m,n)(am,n+1 + a†m,n+1), (4)

σy
m,nσ

y
m,n+1 = (am,n + a†m,n)(am,n+1 − a†m,n+1), (5)

σz
m,nσ

z
m′,n′ = (2nm,n − 1)(2nm′,n′ − 1). (6)

As both the honeycomb and hyperhoneycomb lattices are bipartite, we term black (b) and white

(w) sites so that, on each x bond, the smaller- (larger-)n site corresponds to the white (black)

site, as shown in Figs. 2 and 3. The Hamiltonian is rewritten as

H = Jx
∑

x bonds

(aw − a†w)(ab + a†b)− Jy
∑

y bonds

(ab + a†b)(aw − a†w)

−Jz
∑

z bonds

(2nb − 1)(2nw − 1). (7)

[bond indexは要らない？]→ bond indexもしくは site indexをつけると見づらくなってしま

うので，bondを決めると b,wが一意に決まるという，Chen-Nussinov Ref.3に倣った書き

方がわかりやすいかと思いますがいかがでしょうか。Next, we introduce Majorana fermion

operators c and c̄ from the spinless fermion operators as

cw = (aw − a†w)/i, c̄w = aw + a†w, (8)

cb = ab + a†b, c̄b = (ab − a†b)/i. (9)

By using the Majorana fermion operators, the Hamiltonian is written in the form

H = iJx
∑

x bonds

cwcb − iJy
∑

y bonds

cbcw − iJz
∑

z bonds

ηrcbcw, (10)
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step 2: Majorana fermion representation
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regard the system as an assembly of 1D chains 
(composed of x, y bonds) coupled by z bonds
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where ηr = ic̄bc̄w = ±1 are Z2 variables defined on each z bond (r is the bond index), as the

eigenvalues are ±1. Here, we consider that 1D chains composed of x and y bonds are open

strings, by imposing open boundary conditions along the chain, in order to avoid subtle bound-

ary problem intrinsic to the Jordan-Wigner transformation. If we impose a periodic boundary

condition, a complicated term at the boundary resulting from the Jordan-Wigner transformation

in Eq. (2) will appear. The Hamiltonian in Eq. (10) is a free Majorana fermion system cou-

pled with the Z2 degree of freedom, {ηr}, on each z-bond. Formally, the model is similar to

the double-exchange model with Ising localized spins; in the usual double-exchange models,

localized spins couple with itinerant electron spins via the on-site exchange coupling, but in the

present case, the Ising spins couple with the hopping of fermions along the z bonds. The formal

equivalence allows us to apply the Monte Carlo (MC) simulation used for the double-exchange

models. Here, we adopt the conventional algorithm in which the MC weight for a given config-

uration of {ηr} is obtained by the exact diagonalization of the Majorana fermions, as described

below (4).

The partition function of the system described by the Hamiltonian in Eq. (10) is given by

Z = Tr{ηr}Tr{ci}e
−βH = Tr{ηr}e

−βFf ({ηr}), (11)

where β is the inverse temperature β = 1/T (we set the Boltzmann constant kB = 1). Ff ({ηr})

is the free energy of the Majorana fermion system for a given configuration of {ηr};

Ff ({ηr}) = −T ln Tr{ci}e
−βH({ηr}). (12)

For a given {ηr}, the quadratic Hamiltonian H({ηr}) is easily diagonalized to give

H({ηr}) =
N/2∑

λ

ελ({ηr})
(

f †
λfλ −

1

2

)
, (13)

where fλ (f †
λ) is the annihilation (creation) operator of a spinless fermion. It is worthy noting

that there are N/2 one-body states in the Majorana fermion for the N -site system. Then, the

3

: local conserved quantity 
(Z2 variable) on each z bond



Simulation

are written by spinless fermion operators (ai, a†
i ) as

S+
m,n = (S−

m,n)† =
1

2
(σx

m,n + iσy
m,n) =

n−1∏

n′=1

(1 − 2nm,n′)a†
m,n, (2)

σz
m,n = 2nm,n − 1, (3)

where ni is the number operator defined by ni = a†
iai. Then, the interactions in Eq. (1) are

written as

σx
m,nσ

x
m,n+1 = −(am,n − a†

m,n)(am,n+1 + a†
m,n+1), (4)

σy
m,nσ

y
m,n+1 = (am,n + a†

m,n)(am,n+1 − a†
m,n+1), (5)

σz
m,nσ

z
m′,n′ = (2nm,n − 1)(2nm′,n′ − 1). (6)

As both the honeycomb and hyperhoneycomb lattices are bipartite, we term black (b) and white

(w) sites so that, on each x bond, the smaller- (larger-)n site corresponds to the white (black)

site, as shown in Figs. 2 and 3. The Hamiltonian is rewritten as

H = Jx

∑

x bonds

(aw − a†
w)(ab + a†

b) − Jy

∑

y bonds

(ab + a†
b)(aw − a†

w)

−Jz

∑

z bonds

(2nb − 1)(2nw − 1). (7)

[bond indexは要らない？]→ bond indexもしくは site indexをつけると見づらくなってしま

うので，bondを決めると b,wが一意に決まるという，Chen-Nussinov Ref.3に倣った書き

方がわかりやすいかと思いますがいかがでしょうか。Next, we introduce Majorana fermion

operators c and c̄ from the spinless fermion operators as

cw = (aw − a†
w)/i, c̄w = aw + a†

w, (8)

cb = ab + a†
b, c̄b = (ab − a†

b)/i. (9)

By using the Majorana fermion operators, the Hamiltonian is written in the form

H = iJx

∑

x bonds

cwcb − iJy

∑

y bonds

cbcw − iJz

∑

z bonds

ηrcbcw, (10)

2

where ηr = ic̄bc̄w = ±1 are Z2 variables defined on each z bond (r is the bond index), as the

eigenvalues are ±1. Here, we consider that 1D chains composed of x and y bonds are open

strings, by imposing open boundary conditions along the chain, in order to avoid subtle bound-

ary problem intrinsic to the Jordan-Wigner transformation. If we impose a periodic boundary

condition, a complicated term at the boundary resulting from the Jordan-Wigner transformation

in Eq. (2) will appear. The Hamiltonian in Eq. (10) is a free Majorana fermion system cou-

pled with the Z2 degree of freedom, {ηr}, on each z-bond. Formally, the model is similar to

the double-exchange model with Ising localized spins; in the usual double-exchange models,

localized spins couple with itinerant electron spins via the on-site exchange coupling, but in the

present case, the Ising spins couple with the hopping of fermions along the z bonds. The formal

equivalence allows us to apply the Monte Carlo (MC) simulation used for the double-exchange

models. Here, we adopt the conventional algorithm in which the MC weight for a given config-
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are written by spinless fermion operators (ai, a†
i ) as

S+
m,n = (S−

m,n)† =
1

2
(σx

m,n + iσy
m,n) =

n−1∏

n′=1

(1 − 2nm,n′)a†
m,n, (2)

σz
m,n = 2nm,n − 1, (3)

where ni is the number operator defined by ni = a†
iai. Then, the interactions in Eq. (1) are

written as

σx
m,nσ

x
m,n+1 = −(am,n − a†

m,n)(am,n+1 + a†
m,n+1), (4)

σy
m,nσ

y
m,n+1 = (am,n + a†

m,n)(am,n+1 − a†
m,n+1), (5)

σz
m,nσ

z
m′,n′ = (2nm,n − 1)(2nm′,n′ − 1). (6)

As both the honeycomb and hyperhoneycomb lattices are bipartite, we term black (b) and white

(w) sites so that, on each x bond, the smaller- (larger-)n site corresponds to the white (black)

site, as shown in Figs. 2 and 3. The Hamiltonian is rewritten as

H = Jx

∑

x bonds

(aw − a†
w)(ab + a†

b) − Jy

∑

y bonds

(ab + a†
b)(aw − a†

w)

−Jz

∑

z bonds

(2nb − 1)(2nw − 1). (7)

[bond indexは要らない？]→ bond indexもしくは site indexをつけると見づらくなってしま

うので，bondを決めると b,wが一意に決まるという，Chen-Nussinov Ref.3に倣った書き

方がわかりやすいかと思いますがいかがでしょうか。Next, we introduce Majorana fermion

operators c and c̄ from the spinless fermion operators as

cw = (aw − a†
w)/i, c̄w = aw + a†

w, (8)

cb = ab + a†
b, c̄b = (ab − a†

b)/i. (9)

By using the Majorana fermion operators, the Hamiltonian is written in the form

H = iJx

∑

x bonds

cwcb − iJy

∑

y bonds

cbcw − iJz

∑

z bonds

ηrcbcw, (10)

2

where ηr = ic̄bc̄w = ±1 are Z2 variables defined on each z bond (r is the bond index), as the

eigenvalues are ±1. Here, we consider that 1D chains composed of x and y bonds are open

strings, by imposing open boundary conditions along the chain, in order to avoid subtle bound-

ary problem intrinsic to the Jordan-Wigner transformation. If we impose a periodic boundary

condition, a complicated term at the boundary resulting from the Jordan-Wigner transformation

in Eq. (2) will appear. The Hamiltonian in Eq. (10) is a free Majorana fermion system cou-

pled with the Z2 degree of freedom, {ηr}, on each z-bond. Formally, the model is similar to

the double-exchange model with Ising localized spins; in the usual double-exchange models,

localized spins couple with itinerant electron spins via the on-site exchange coupling, but in the

present case, the Ising spins couple with the hopping of fermions along the z bonds. The formal

equivalence allows us to apply the Monte Carlo (MC) simulation used for the double-exchange

models. Here, we adopt the conventional algorithm in which the MC weight for a given config-

uration of {ηr} is obtained by the exact diagonalization of the Majorana fermions, as described

below (4).

The partition function of the system described by the Hamiltonian in Eq. (10) is given by

Z = Tr{ηr}Tr{ci}e
−βH = Tr{ηr}e

−βFf ({ηr}), (11)

where β is the inverse temperature β = 1/T (we set the Boltzmann constant kB = 1). Ff ({ηr})

is the free energy of the Majorana fermion system for a given configuration of {ηr};

Ff ({ηr}) = −T ln Tr{ci}e
−βH({ηr}). (12)

For a given {ηr}, the quadratic Hamiltonian H({ηr}) is easily diagonalized to give

H({ηr}) =
N/2∑

λ

ελ({ηr})
(

f †
λfλ −

1

2

)
, (13)

where fλ (f †
λ) is the annihilation (creation) operator of a spinless fermion. It is worthy noting

that there are N/2 one-body states in the Majorana fermion for the N -site system. Then, the
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Simulation

Formally, the model is similar to the double-exchange model with Ising spins.
➡ MC simulation without fermion sign problem applicable

- faithful representation of the original Hamiltonian: no approximation

benchmark for 2D honeycomb Kitaev model
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FIG. S1: Benchmark of the quantum Monte Carlo method. The MC result for the Majorana-fermion Hamiltonian in Eq. (10)
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the original Hamiltonian can be obtained by the exact diagonalization. (MC simulation for the original Hamiltonian
is suffered from the negative sign problem, as mentioned above.) Figure S1 shows the comparison of the specific heat
obtained by the two methods for the L = 2 cluster (2 × 22 = 8 sites) in the 2D Kitaev model. The MC results
well reproduce the exact diagonalization results within the statistical errors in the entire T range. This indicates
that the present MC simulation for the Majorana fermion system with the Ising degree of freedom in Eq. (10) gives
numerically-exact results for the thermodynamics of the Kitaev model given in Eq. (1).

Details of Monte Carlo simulation
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a single-flip MC simulation to which the Metropolis algorithm is applied. In addition, we swap two replicas at fixed
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(w) sites so that, on each x bond, the smaller- (larger-)n site corresponds to the white (black)

site, as shown in Figs. 2 and 3. The Hamiltonian is rewritten as
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∑
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うので，bondを決めると b,wが一意に決まるという，Chen-Nussinov Ref.3に倣った書き
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ηrcbcw, (10)
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where ηr = ic̄bc̄w = ±1 are Z2 variables defined on each z bond (r is the bond index), as the

eigenvalues are ±1. Here, we consider that 1D chains composed of x and y bonds are open

strings, by imposing open boundary conditions along the chain, in order to avoid subtle bound-

ary problem intrinsic to the Jordan-Wigner transformation. If we impose a periodic boundary

condition, a complicated term at the boundary resulting from the Jordan-Wigner transformation

in Eq. (2) will appear. The Hamiltonian in Eq. (10) is a free Majorana fermion system cou-

pled with the Z2 degree of freedom, {ηr}, on each z-bond. Formally, the model is similar to

the double-exchange model with Ising localized spins; in the usual double-exchange models,

localized spins couple with itinerant electron spins via the on-site exchange coupling, but in the

present case, the Ising spins couple with the hopping of fermions along the z bonds. The formal

equivalence allows us to apply the Monte Carlo (MC) simulation used for the double-exchange

models. Here, we adopt the conventional algorithm in which the MC weight for a given config-

uration of {ηr} is obtained by the exact diagonalization of the Majorana fermions, as described

below (4).

The partition function of the system described by the Hamiltonian in Eq. (10) is given by

Z = Tr{ηr}Tr{ci}e
−βH = Tr{ηr}e

−βFf ({ηr}), (11)

where β is the inverse temperature β = 1/T (we set the Boltzmann constant kB = 1). Ff ({ηr})

is the free energy of the Majorana fermion system for a given configuration of {ηr};

Ff ({ηr}) = −T ln Tr{ci}e
−βH({ηr}). (12)

For a given {ηr}, the quadratic Hamiltonian H({ηr}) is easily diagonalized to give

H({ηr}) =
N/2∑

λ

ελ({ηr})
(

f †
λfλ −

1
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)
, (13)

where fλ (f †
λ) is the annihilation (creation) operator of a spinless fermion. It is worthy noting

that there are N/2 one-body states in the Majorana fermion for the N -site system. Then, the
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where ni is the number operator defined by ni = a†
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As both the honeycomb and hyperhoneycomb lattices are bipartite, we term black (b) and white

(w) sites so that, on each x bond, the smaller- (larger-)n site corresponds to the white (black)

site, as shown in Figs. 2 and 3. The Hamiltonian is rewritten as

H = Jx

∑

x bonds

(aw − a†
w)(ab + a†

b) − Jy

∑

y bonds

(ab + a†
b)(aw − a†

w)

−Jz

∑

z bonds

(2nb − 1)(2nw − 1). (7)

[bond indexは要らない？]→ bond indexもしくは site indexをつけると見づらくなってしま

うので，bondを決めると b,wが一意に決まるという，Chen-Nussinov Ref.3に倣った書き

方がわかりやすいかと思いますがいかがでしょうか。Next, we introduce Majorana fermion

operators c and c̄ from the spinless fermion operators as

cw = (aw − a†
w)/i, c̄w = aw + a†

w, (8)

cb = ab + a†
b, c̄b = (ab − a†

b)/i. (9)

By using the Majorana fermion operators, the Hamiltonian is written in the form

H = iJx

∑

x bonds

cwcb − iJy

∑

y bonds

cbcw − iJz

∑

z bonds

ηrcbcw, (10)

2

where ηr = ic̄bc̄w = ±1 are Z2 variables defined on each z bond (r is the bond index), as the

eigenvalues are ±1. Here, we consider that 1D chains composed of x and y bonds are open

strings, by imposing open boundary conditions along the chain, in order to avoid subtle bound-

ary problem intrinsic to the Jordan-Wigner transformation. If we impose a periodic boundary

condition, a complicated term at the boundary resulting from the Jordan-Wigner transformation

in Eq. (2) will appear. The Hamiltonian in Eq. (10) is a free Majorana fermion system cou-

pled with the Z2 degree of freedom, {ηr}, on each z-bond. Formally, the model is similar to

the double-exchange model with Ising localized spins; in the usual double-exchange models,

localized spins couple with itinerant electron spins via the on-site exchange coupling, but in the

present case, the Ising spins couple with the hopping of fermions along the z bonds. The formal

equivalence allows us to apply the Monte Carlo (MC) simulation used for the double-exchange

models. Here, we adopt the conventional algorithm in which the MC weight for a given config-

uration of {ηr} is obtained by the exact diagonalization of the Majorana fermions, as described

below (4).

The partition function of the system described by the Hamiltonian in Eq. (10) is given by

Z = Tr{ηr}Tr{ci}e
−βH = Tr{ηr}e

−βFf ({ηr}), (11)

where β is the inverse temperature β = 1/T (we set the Boltzmann constant kB = 1). Ff ({ηr})

is the free energy of the Majorana fermion system for a given configuration of {ηr};

Ff ({ηr}) = −T ln Tr{ci}e
−βH({ηr}). (12)

For a given {ηr}, the quadratic Hamiltonian H({ηr}) is easily diagonalized to give

H({ηr}) =
N/2∑

λ

ελ({ηr})
(

f †
λfλ −

1

2

)
, (13)

where fλ (f †
λ) is the annihilation (creation) operator of a spinless fermion. It is worthy noting

that there are N/2 one-body states in the Majorana fermion for the N -site system. Then, the
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two crossovers: successive release of 1/2(log2) entropy
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Figure 3: Finite-temperature phase diagram of the 3D Kitaev model. (A) Cut of the phase
diagram along the line from a vertex (α = 0) through the center of the triangle (α = 1), and
the line along the phase boundary between the gapped and gapless phases in the ground state,
as shown in the insets. Log-scale plot for (A) is shown in (B). The solid (dashed) line is the
α dependence of Tc obtained by the perturbation expansion in terms of J/Jz (Jz/J), where
J = Jx = Jy. (C) 3D plot of the phase diagram in the whole parameter space. Bottom triangle
represents the ground state phase diagram shown in Fig. 1C.
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Figure 3: Finite-temperature phase diagram of the 3D Kitaev model. (A) Cut of the phase
diagram along the line from a vertex (α = 0) through the center of the triangle (α = 1), and
the line along the phase boundary between the gapped and gapless phases in the ground state,
as shown in the insets. Log-scale plot for (A) is shown in (B). The solid (dashed) line is the
α dependence of Tc obtained by the perturbation expansion in terms of J/Jz (Jz/J), where
J = Jx = Jy. (C) 3D plot of the phase diagram in the whole parameter space. Bottom triangle
represents the ground state phase diagram shown in Fig. 1C.
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DOS for itinerant Majorana fermions

Thermal fluctuations of the fluxes disturb the Majorana DOS.

Dirac semimetal → “metal” above the low-T crossover
by thermal fluctuations in fluxes (localized Majorana)
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FIG. 1: (color online). (a)-(d) T dependences of the specific heat at (a) α = 1.0, (b) α = 0.8, (c) α = 0.75, and (d) α = 0.5 in the
several clusters with 2 × L2 spins. Here, we define the anisotropy parameter α by taking Jx = Jy = α/3 and Jz = 1 − 2α/3. (e)-(h) T
dependences of the entropy per site, S, and the thermal average of the density of the fluxWp,W . (i)-(l) T dependences of the equal-time spin
correlations, Sll; Sp = (Sxx + Syy)/2. The horizontal dashed lines represent the values at T = 0 which are calculated analytically [16],
and the dashed-dotted curves represent the high-T Curie behaviors Sll ∼ Jl/T . (m)-(o) The DOS of Majorana fermions at (m) α = 1.0, (n)
α = 0.8, and (o) α = 0.75. Except the results at T = 0 and T = ∞, the DOS are calculated by QMC for the 10 × 10 superlattice of the
L = 12 cluster. (p) The excitation gap for the Majorana fermions at T = 0 (blue solid line) and T = ∞ (red symbols) as a function of α. The
inset indicates the gapped-gapless boundaries on the plane of Jx + Jy + Jz = 1. The blue solid lines represent the phase boundaries in the
ground state, while the red dashed lines represent the boundaries obtained from the DOS at T = ∞. See the text for details.

the Kitaev model is reduced to the effective model Heff =
−Jeff

∑
p Wp, where Jeff = J2

xJ
2
y/(16J

3
z ) [5]. Since this ef-

fective model describes free Ising spins in the magnetic field
Jeff , the specific heat is of Schottky-type, which takes a max-
imum at T̃L/Jeff ∼ 0.833. This asymptotic behavior well
explains TL in the small α region (see also Fig. 2).

The crossover behavior is summarized in Fig. 2. As men-
tioned above, the high-T crossover temperature TH is almost
constant ∼ 0.511 (the dashed-dotted line) independent of
α. On the other hand, the low-T crossover temperature TL

strongly depends on α. The behavior in the small α region
well agrees with the asymptotic form obtained in the toric
code limit (the dashed curve). Thus, the phase diagram is
divided into three regions: the high-T paramagnetic region
for T ! TH, the intermediate-T region for TL " T " TH

where quantum spins develop short-range correlations while
the fluxes remain disordered, and the low-T region for T "
TL where fluxes are aligned uniformly.

Since the Z2 variables ηr couple with the itinerant Majo-
rana fermions, we expect that the enhanced fluctuations of
fluxes near TL affect the nature of itinerant Majorana fermions
considerably. In order to elucidate such behavior, we calcu-
late the DOS of itinerant Majorana fermions. The DOS with
a given configuration of ηr is calculated by D(ω, {ηr}) =

∑
n δ(ω−En({ηr})), whereEn is the one-particle energy of

the fermion fn which is introduced so as to diagonalize the
Hamiltonian as H({ηr}) =

∑
n En({ηr})

(
f †
nfn − 1

2

)
. The

thermal averages of the DOS, ⟨D(ω)⟩, are calculated for {ηr}
generated in the QMC simulation. Note that ⟨D(ω)⟩ do not
contain the T dependence of the Fermi distribution function;
we only take into account the effect of thermal fluctuations
of ηr. The calculations were done for the 10 × 10 supercell,
where the L = 12 cluster obtained by the MC simulation is
regarded as a unit cell. The calculations at T = 0 (T = ∞)
are performed for a L = 6, 000 (L = 60) cluster. In the cal-
culation at T = ∞, we take a simple average over 10,000
random configurations of {ηr}.

Figure 1(m) shows the DOS of the itinerant Majorana
fermion cj for the isotropic case Jx = Jy = Jz . The QMC
data are shown near TL, together with the results at T = 0 and
T = ∞. In this gapless QSL region, at T = 0, the DOS shows
semimetallic behavior D(ω) ∝ ω for small ω, reflecting the
Dirac dispersion. While increasing T above TL, however, the
semimetallic dip of DOS is filled rapidly, leading to “metallic”
behavior, ⟨D(ω = 0)⟩ ̸= 0. The result clearly indicates that
the thermal fluctuations of fluxes near TL significantly affect
the low-energy spectrum of itinerant Majorana fermions.

This significant change in the DOS results in a peculiar T

↵ = 1.0

 � all ⌘r = +1

 � random ⌘r

 � ⇠ low-T crossover
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FIG. 1: (color online). (a)-(d) T dependences of the specific heat at (a) α = 1.0, (b) α = 0.8, (c) α = 0.75, and (d) α = 0.5 in the
several clusters with 2 × L2 spins. Here, we define the anisotropy parameter α by taking Jx = Jy = α/3 and Jz = 1 − 2α/3. (e)-(h) T
dependences of the entropy per site, S, and the thermal average of the density of the flux Wp, W . (i)-(l) T dependences of the equal-time spin
correlations, Sll; Sp = (Sxx + Syy)/2. The horizontal dashed lines represent the values at T = 0 which are calculated analytically [16],
and the dashed-dotted curves represent the high-T Curie behaviors Sll ∼ Jl/T . (m)-(o) The DOS of Majorana fermions at (m) α = 1.0, (n)
α = 0.8, and (o) α = 0.75. Except the results at T = 0 and T = ∞, the DOS are calculated by QMC for the 10 × 10 superlattice of the
L = 12 cluster. (p) The excitation gap for the Majorana fermions at T = 0 (blue solid line) and T = ∞ (red symbols) as a function of α. The
inset indicates the gapped-gapless boundaries on the plane of Jx + Jy + Jz = 1. The blue solid lines represent the phase boundaries in the
ground state, while the red dashed lines represent the boundaries obtained from the DOS at T = ∞. See the text for details.

cluster obtained by the MC simulation is regarded as a unit
cell. The calculations at T = 0 (T = ∞) are performed for
a L = 6, 000 (L = 60) cluster. In the calculation at T = ∞,
we take a simple average over 10,000 random configurations
of {ηr}.

Figure 1(m) shows the DOS of the itinerant Majorana
fermion cj for the isotropic case α = 1.0 (Jx = Jy = Jz).
The QMC data are shown near TL, together with the results at
T = 0 and T = ∞. In this gapless QSL region, at T = 0,
the DOS shows semimetallic behavior D(ω) ∝ ω for small ω,
reflecting the Dirac dispersion. While increasing T above TL,
however, the semimetallic dip of DOS is filled rapidly, leading
to “metallic” behavior, ⟨D(ω = 0)⟩ ̸= 0. The result clearly
indicates that the thermal fluctuations of fluxes near TL signif-
icantly affect the low-energy spectrum of itinerant Majorana
fermions.

The significant change leads to peculiar behavior in the
intermediate-T range between the two crossovers. One
is found in the transport property. We here show it by
computing the optical conductivity of itinerant Majorana
fermions as follows. First, we introduce the Fourier rep-
resentation of the Hamiltonian as H =

∑
k c

†
kHkck =∑

n:Enk>0

∑
k Enk(f

†
nkfnk − 1/2), where ck is a set of the

Fourier transforms of cj and the L × L cluster is regraded

as a unit cell. The Bloch Hamiltonian Hk is diagonalized
by introducing a set of fermions fnk belonging to n-th band
with the energy Enk. Then, the conductivity tensor is calcu-
lated by σµν(ω) = 1

L

∫∞
0 dtei(ω+iδ)t

∫ β
0 dλ⟨Jν(−iλ)Jµ(t)⟩,

where δ is an infinitesimal positive number, O(t) =
eiHtOe−iHt, and the current operator is defined as Jµ =∑

kn c
†
knckn′⟨ukn|∂Hk/∂kµ|ukn′⟩ with the Bloch state

|ukn⟩. We use the 1 × 1 supercell for the k mesh. The in-
set of Fig. 3 shows the results at several T for α = 1.0. The
incoherent component at finite ω increases with decreasing T
below TH. To clarify the contribution to coherent transport,
we calculate the Drude weight by using the sum rule given
as Dx = 1

2L

∑
⟨ij⟩′x

⟨Jxσx
i σ

x
j ⟩ − 1

π

∫∞
0 σxx(ω)dω, where the

summation
∑

⟨ij⟩′x
is taken only for the NN x bonds on the

boundary. Figure 3 shows the T dependence of Dx. While de-
creasing T , the Drude weight gradually increases below TH,
and sharply decreases to zero below TL cyanafter showing a
peak near TL. The result suggests that the transport quantities,
such as the thermal conductivity, have sizable values between
the two crossovers.

The significant change in the DOS also results in a peculiar
T dependence of the specific heat Cv . In the gapless QSL re-
gion, the low-T specific heat is expected to be proportional to
T 2 because of the Dirac semimetallic dispersion for aligned



Apparent T-linear specific heat

Above the low-T crossover, the DOS becomes metallic, leading to apparent 
T-linear behavior in the specific heat, although T2 behavior is expected for 
the Dirac semimetallic spectrum at T=0.
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FIG. 3: (color online). T dependence of the specific heat Cv at α =
1.2 in the L = 12 cluster. For comparison, the results calculated by
fixing all ηr to +1 and by assuming random {ηr} are shown as the
solid and dashed curves, respectively. The semilog plot of Cv/T is
also shown in the inset.

dependence of the specific heat Cv. In the gapless QSL re-
gion, the low-T specific heat is expected to be proportional to
T 2 because of the Dirac semimetallic dispersion for aligned
fluxes (ηr = +1 for all r). However, Cv calculated by as-
suming all ηr = +1 largely deviates from our QMC data, as
shown for α = 1.2 in Fig. 3. This indicates that the asymp-
totic T 2 behavior will be limited only in the low T region
much lower than TL. Instead, we find that the QMC data are
well explained by the result for random {ηr} in a wide range
of T ! TL. Consequently, Cv exhibits apparent T -linear be-
havior between TL and TH, originating from the “metallic”
DOS caused by thermally fluctuating fluxes above TL. Thus,

we find that the specific heat of the Kitaev model in Eq. (1) be-
haves like T -linear, not T 2 as expected, as a consequence of
the thermal fractionalization of quantum spins. Interestingly,
the apparent T -linear behavior is observed in the region where
the short-range spin correlations are well developed.
Whereas the T -linear behavior is observed widely in the

region where the ground state is gapless, it is disturbed in
the vicinity of the gapped-gapless boundary at α = 0.75.
Figures 1(n) and 1(o) show the DOS of the itinerant Majo-
rana fermions at α = 0.8 and α = 0.75, respectively. At
these parameters, the system develops an energy gap with in-
creasing T in the vicinity of TL, in sharp contrast to the gap
filling in Fig. 1(m). The results indicate that there is an in-
termediate region where the thermal fluctuation of ηr gaps
out the low-energy excitation of itinerant Majorana fermions.
The intermediate region is identified by calculating the mag-
nitudes of the gaps at T = 0 and T = ∞, as presented in
Fig. 1(p). The schematic phase diagram determined by the
DOS at T = ∞ is presented in the inset. Remarkably, the
gapped-gapless boundary is similar to that in the dynamical
phase diagram [18], suggesting a relation between thermal
and quantum fluctuations. We also note that the boundary is
similar to the result for the full flux state [19]. The modifica-
tion of the boundary at finite T implies that effective exchange
couplings are renormalized in an anisotropic way by the ther-
mal fluctuation of localized Majorana fermions. Indeed, the
anisotropy of spin correlations is slightly enhanced near TL

while increasing T , as shown in Figs. 1(j) and 1(k).
In summary, we have investigated the thermal fractionaliza-

tion of quantum spins into Majorana fermions in the Kitaev
model by using the QMC simulation. We clarified that the
fractionalization appears as two crossovers, both of which are
physically observable in the thermodynamics. The higher-T
crossover is identified by the development of short-range spin
correlations, which will be observed in, e.g., neutron scatter-
ing experiments. Meanwhile, the low-T one induces a pecu-
liar T linear behavior in the specific heat above the crossover
temperature. We also showed that the thermal fractionaliza-
tion affects the gapped-gapless phase boundary by renormal-
izing the spin anisotropy. The present results complete how
the fractionalization of quantum spins into Majorana fermions
occurs while changing temperature in the ideal case. This pro-
vides a useful reference to the experimental exploration of
QSLs in, e.g., iridium oxides [20–24] and ruthenium com-
pounds [25–28], where Kitaev-type interaction is expected.
This work is supported by Grant-in-Aid for Scientific

Research, the Strategic Programs for Innovative Research
(SPIRE), MEXT, and the Computational Materials Science
Initiative (CMSI), Japan. Parts of the numerical calculations
are performed in the supercomputing systems in ISSP, the
University of Tokyo.
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T-linear behavior for the “spin liquid” with well-developed spin correlations
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FIG. 3: (added)(color online). T dependence of the Drude weight of
itinerant Majorana fermions at α = 1.0. The inset shows the optical
conductivity at α = 1.0 on the L = 12 cluster at several T .

fluxes. However, Cv calculated by assuming all ηr = +1
largely deviates from our QMC data, as shown for α = 1.2 in
Fig. 4. This indicates that the asymptotic T 2 behavior will be
limited only in the low T region much lower than TL. Instead,
we find that the QMC data are well explained by the result for
random {ηr} in a wide range of T ! TL. Consequently, Cv

exhibits apparent T -linear behavior between TL and TH, orig-
inating from the “metallic” DOS caused by thermally fluctu-
ating fluxes above TL. Thus, we find the apparent T -linear
behavior, not T 2, as a consequence of the thermal fractional-
ization of quantum spins in the region where the short-range
spin correlations are well developed.

Whereas the coherent transport and the T -linear behavior
are observed widely in the region where the ground state is
gapless, it is disturbed in the vicinity of the gapped-gapless
boundary at α = 0.75. Figures 1(n) and 1(o) show the DOS
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FIG. 4: (color online). T dependence of the specific heat Cv at α =
1.2 in the L = 12 cluster. For comparison, the results calculated by
fixing all ηr to +1 and by assuming random {ηr} are shown as the
solid and dashed curves, respectively. The semilog plot of Cv/T is
also shown in the inset.

of the itinerant Majorana fermions at α = 0.8 and α = 0.75,
respectively. At these parameters, the system develops an en-
ergy gap with increasing T in the vicinity of TL, in sharp con-
trast to the gap filling in Fig. 1(m). The schematic phase dia-
gram, determined by the gaps at T = 0 and T = ∞, is pre-
sented in Fig. 1(p). Remarkably, the gapped-gapless boundary
is similar to that in the dynamical phase diagram [18] and for
the full flux state [19]. The modification of the boundary at
finite T implies that effective exchange couplings are renor-
malized in an anisotropic way by the thermal fluctuation of
localized Majorana fermions. Indeed, the anisotropy of spin
correlations is slightly enhanced near TL while increasing T ,
as shown in Figs. 1(j) and 1(k).

In summary, we have clarified that the thermal fractional-
ization of quantum spins into Majorana fermions in the Kitaev
model manifests itself in experimentally measurable quan-
tities, such as spin correlations, specific heat, and transport
properties. The present results will stimulate the experimen-
tal hunting for Majorana fermions in quantum magnets, e.g.,
iridium oxides [20–24] and ruthenium compounds [25–28],
where Kitaev-type interaction is expected.

This work is supported by Grant-in-Aid for Scientific
Research, the Strategic Programs for Innovative Research
(SPIRE), MEXT, and the Computational Materials Science
Initiative (CMSI), Japan. Parts of the numerical calculations
are performed in the supercomputing systems in ISSP, the
University of Tokyo.
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Finite-T “liquid-gas” transition in 3D
proliferation of flux loops



3D hyperhoneycomb Kitaev model

H = �Jz
X

<ij>z

Sz
i S

z
j�J

x

X

<ij>

x

Sx

i

Sx

j

�Jy
X

<ij>y

Sy
i S

y
j

are written by spinless fermion operators (ai, a†
i ) as

S+
m,n = (S−

m,n)† =
1

2
(σx

m,n + iσy
m,n) =

n−1∏

n′=1

(1 − 2nm,n′)a†
m,n, (2)

σz
m,n = 2nm,n − 1, (3)

where ni is the number operator defined by ni = a†
iai. Then, the interactions in Eq. (1) are

written as

σx
m,nσ

x
m,n+1 = −(am,n − a†

m,n)(am,n+1 + a†
m,n+1), (4)

σy
m,nσ

y
m,n+1 = (am,n + a†

m,n)(am,n+1 − a†
m,n+1), (5)

σz
m,nσ

z
m′,n′ = (2nm,n − 1)(2nm′,n′ − 1). (6)

As both the honeycomb and hyperhoneycomb lattices are bipartite, we term black (b) and white

(w) sites so that, on each x bond, the smaller- (larger-)n site corresponds to the white (black)

site, as shown in Figs. 2 and 3. The Hamiltonian is rewritten as

H = Jx

∑

x bonds

(aw − a†
w)(ab + a†

b) − Jy

∑

y bonds

(ab + a†
b)(aw − a†

w)

−Jz

∑

z bonds

(2nb − 1)(2nw − 1). (7)

[bond indexは要らない？]→ bond indexもしくは site indexをつけると見づらくなってしま

うので，bondを決めると b,wが一意に決まるという，Chen-Nussinov Ref.3に倣った書き

方がわかりやすいかと思いますがいかがでしょうか。Next, we introduce Majorana fermion

operators c and c̄ from the spinless fermion operators as

cw = (aw − a†
w)/i, c̄w = aw + a†

w, (8)

cb = ab + a†
b, c̄b = (ab − a†

b)/i. (9)

By using the Majorana fermion operators, the Hamiltonian is written in the form

H = iJx

∑

x bonds

cwcb − iJy

∑

y bonds

cbcw − iJz

∑

z bonds

ηrcbcw, (10)

2

where ηr = ic̄bc̄w = ±1 are Z2 variables defined on each z bond (r is the bond index), as the

eigenvalues are ±1. Here, we consider that 1D chains composed of x and y bonds are open

strings, by imposing open boundary conditions along the chain, in order to avoid subtle bound-

ary problem intrinsic to the Jordan-Wigner transformation. If we impose a periodic boundary

condition, a complicated term at the boundary resulting from the Jordan-Wigner transformation

in Eq. (2) will appear. The Hamiltonian in Eq. (10) is a free Majorana fermion system cou-

pled with the Z2 degree of freedom, {ηr}, on each z-bond. Formally, the model is similar to

the double-exchange model with Ising localized spins; in the usual double-exchange models,

localized spins couple with itinerant electron spins via the on-site exchange coupling, but in the

present case, the Ising spins couple with the hopping of fermions along the z bonds. The formal

equivalence allows us to apply the Monte Carlo (MC) simulation used for the double-exchange

models. Here, we adopt the conventional algorithm in which the MC weight for a given config-

uration of {ηr} is obtained by the exact diagonalization of the Majorana fermions, as described

below (4).

The partition function of the system described by the Hamiltonian in Eq. (10) is given by

Z = Tr{ηr}Tr{ci}e
−βH = Tr{ηr}e

−βFf ({ηr}), (11)

where β is the inverse temperature β = 1/T (we set the Boltzmann constant kB = 1). Ff ({ηr})

is the free energy of the Majorana fermion system for a given configuration of {ηr};

Ff ({ηr}) = −T ln Tr{ci}e
−βH({ηr}). (12)

For a given {ηr}, the quadratic Hamiltonian H({ηr}) is easily diagonalized to give

H({ηr}) =
N/2∑

λ

ελ({ηr})
(

f †
λfλ −

1

2

)
, (13)

where fλ (f †
λ) is the annihilation (creation) operator of a spinless fermion. It is worthy noting

that there are N/2 one-body states in the Majorana fermion for the N -site system. Then, the

3

(a)

(b) (c)
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sharp peak growing and becoming 
narrower as the system size increases

broad peak almost independent 
of the system sizes

➡ just a crossover➡ sign of a phase transition
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present MC results in the small α region, which strongly
supports that Tc estimated from the anomaly inCv is indeed
the critical temperature between the low-T QSL and high-T
paramagnet. Meanwhile, in the limit of α → 3=2, by using
the perturbation expansion in terms of Jz=J, we find that Tc
is scaled by J4z=J3 [18]. The dashed lines in Figs. 3(a) and
3(b) represent the fitting of MC data by this asymptotic
scaling. It also well explains the MC data, supporting the
phase transition at Tc.
Figure 3(c) summarizes the MC estimates of Tc in the 3D

plot. In the entire parameter space, the low-T QSL is
separated from the high-T paramagnet by the thermody-
namic singularity at Tc. There is no adiabatic connection
between the two states, and the transition always appears
to be continuous within the present calculations. These are
in sharp contrast to the situation in conventional fluids
where liquid and gas are adiabatically connected with each
other beyond the critical end point in the phase boundary
of the discontinuous transition. Thus, the thermodynamics
of the QSLs is not understood by the conventional theory
for liquids.
Interestingly, thevalue ofTc becomesmaximumatα≃ 1:

the QSL phase is most stable against thermal fluctuations

in the isotropic case. The bond-dependent interactions
in the Kitaev model compete with each other; it is not
possible to optimize the exchange energy on the x, y,
and z bonds simultaneously. The frustration becomes
strongest at α ¼ 1. Hence, interestingly, our MC results
in Fig. 3(c) show that the frustration tends to stabilize the
QSL against thermal fluctuations. This frustration effect
is opposite to that on conventional magnetically ordered
states where frustration suppresses the critical temperatures.
In the vicinity of α ¼ 1, the ground state is the gapless

QSL. By decreasing α, the ground state changes into the
gapped QSL at the quantum critical point at α ¼ 3=4, as
shown in Fig. 1(c). However, Tc changes smoothly around
α ¼ 3=4, as shown in Fig. 3. Also, we find no singularity in
the T dependence of Cv around α ¼ 3=4 within the present
precision, except for Tc [e.g., see Fig. 4(a)]. In the low-T
limit, however, there should be some anomaly in Cv,
reflecting the change of low-energy excitations. The results
suggest that such anomaly will happen to be seen at much
lower T than 10−4.
Now let us discuss the reason why the specific heat Cv

exhibits two peaks. We show the T dependence of the
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FIG. 2 (color online). (a) Temperature dependence of the
specific heat in the isotropic case with Jx ¼ Jy ¼ Jz ¼ 1=3
(α ¼ 1). (b) The enlarged view in the vicinity of the low-
temperature peak. The calculations were performed for the
systems on the hyperhoneycomb lattice with N ¼ 4L3 spins
up to L ¼ 6. The inset in (b) shows the peak temperature T 0

c of the
specific heat as a function of the inverse of the system sizeN. The
dotted line represents the linear fit for the three largest N.
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FIG. 3 (color online). Finite-temperature phase diagram of
the 3D Kitaev model. (a) Cut of the phase diagram along the
α and α0 axes shown in the insets. Log-scale plot for (a) is shown
in (b). The solid (dashed) line is the α dependence of Tc obtained
by the perturbation expansion in terms of J=Jz (Jz=J), where
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parameter space. The base triangle represents the ground state
phase diagram shown in Fig. 1(c).
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All low-T QSLs are separated from high-T para by the phase transition.
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present MC results in the small α region, which strongly
supports that Tc estimated from the anomaly inCv is indeed
the critical temperature between the low-T QSL and high-T
paramagnet. Meanwhile, in the limit of α → 3=2, by using
the perturbation expansion in terms of Jz=J, we find that Tc
is scaled by J4z=J3 [18]. The dashed lines in Figs. 3(a) and
3(b) represent the fitting of MC data by this asymptotic
scaling. It also well explains the MC data, supporting the
phase transition at Tc.
Figure 3(c) summarizes the MC estimates of Tc in the 3D

plot. In the entire parameter space, the low-T QSL is
separated from the high-T paramagnet by the thermody-
namic singularity at Tc. There is no adiabatic connection
between the two states, and the transition always appears
to be continuous within the present calculations. These are
in sharp contrast to the situation in conventional fluids
where liquid and gas are adiabatically connected with each
other beyond the critical end point in the phase boundary
of the discontinuous transition. Thus, the thermodynamics
of the QSLs is not understood by the conventional theory
for liquids.
Interestingly, thevalue ofTc becomesmaximumatα≃ 1:

the QSL phase is most stable against thermal fluctuations

in the isotropic case. The bond-dependent interactions
in the Kitaev model compete with each other; it is not
possible to optimize the exchange energy on the x, y,
and z bonds simultaneously. The frustration becomes
strongest at α ¼ 1. Hence, interestingly, our MC results
in Fig. 3(c) show that the frustration tends to stabilize the
QSL against thermal fluctuations. This frustration effect
is opposite to that on conventional magnetically ordered
states where frustration suppresses the critical temperatures.
In the vicinity of α ¼ 1, the ground state is the gapless

QSL. By decreasing α, the ground state changes into the
gapped QSL at the quantum critical point at α ¼ 3=4, as
shown in Fig. 1(c). However, Tc changes smoothly around
α ¼ 3=4, as shown in Fig. 3. Also, we find no singularity in
the T dependence of Cv around α ¼ 3=4 within the present
precision, except for Tc [e.g., see Fig. 4(a)]. In the low-T
limit, however, there should be some anomaly in Cv,
reflecting the change of low-energy excitations. The results
suggest that such anomaly will happen to be seen at much
lower T than 10−4.
Now let us discuss the reason why the specific heat Cv

exhibits two peaks. We show the T dependence of the
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Phase diagram in 3D

Tc is max for the isotropic case.

➡Frustration stabilizes QSLs, in 
contrast to conventional orders.

➡ no adiabatic connection, qualitatively different from conventional fluids
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present MC results in the small α region, which strongly
supports that Tc estimated from the anomaly inCv is indeed
the critical temperature between the low-T QSL and high-T
paramagnet. Meanwhile, in the limit of α → 3=2, by using
the perturbation expansion in terms of Jz=J, we find that Tc
is scaled by J4z=J3 [18]. The dashed lines in Figs. 3(a) and
3(b) represent the fitting of MC data by this asymptotic
scaling. It also well explains the MC data, supporting the
phase transition at Tc.
Figure 3(c) summarizes the MC estimates of Tc in the 3D

plot. In the entire parameter space, the low-T QSL is
separated from the high-T paramagnet by the thermody-
namic singularity at Tc. There is no adiabatic connection
between the two states, and the transition always appears
to be continuous within the present calculations. These are
in sharp contrast to the situation in conventional fluids
where liquid and gas are adiabatically connected with each
other beyond the critical end point in the phase boundary
of the discontinuous transition. Thus, the thermodynamics
of the QSLs is not understood by the conventional theory
for liquids.
Interestingly, thevalue ofTc becomesmaximumatα≃ 1:

the QSL phase is most stable against thermal fluctuations

in the isotropic case. The bond-dependent interactions
in the Kitaev model compete with each other; it is not
possible to optimize the exchange energy on the x, y,
and z bonds simultaneously. The frustration becomes
strongest at α ¼ 1. Hence, interestingly, our MC results
in Fig. 3(c) show that the frustration tends to stabilize the
QSL against thermal fluctuations. This frustration effect
is opposite to that on conventional magnetically ordered
states where frustration suppresses the critical temperatures.
In the vicinity of α ¼ 1, the ground state is the gapless

QSL. By decreasing α, the ground state changes into the
gapped QSL at the quantum critical point at α ¼ 3=4, as
shown in Fig. 1(c). However, Tc changes smoothly around
α ¼ 3=4, as shown in Fig. 3. Also, we find no singularity in
the T dependence of Cv around α ¼ 3=4 within the present
precision, except for Tc [e.g., see Fig. 4(a)]. In the low-T
limit, however, there should be some anomaly in Cv,
reflecting the change of low-energy excitations. The results
suggest that such anomaly will happen to be seen at much
lower T than 10−4.
Now let us discuss the reason why the specific heat Cv

exhibits two peaks. We show the T dependence of the
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What is this phase transition?

difference from 2D: Wp plaquettes form closed objects
➡ local constraint for Wp: hard constraint by S=1/2 algebra
➡ excited states include only closed loops of flipped Wp (at all T)Local Constraint in Flux

Original Kitaev model

Wp

Wp

Wp

Wp

= 1WpWpWpWp

Local constraint for Wp in the original Kitaev model

Flipped Wp form a loop.
Topological characterization by Wp-loops.

Wp form a pyrochlore lattice

Wp=-1

Wp=+1

originating from algebra of Pauli matrices
“Quantum-effect-induced rigid constraints”

cf. spin ice (soft constraint)

Number of 
             
    is even.
Wp = �1

Local Constraint in Flux
Original Kitaev model

Wp

Wp

Wp

Wp

= 1WpWpWpWp

Local constraint for Wp in the original Kitaev model

Flipped Wp form a loop.
Topological characterization by Wp-loops.

Wp form a pyrochlore lattice

Wp=-1

Wp=+1

originating from algebra of Pauli matrices
“Quantum-effect-induced rigid constraints”

cf. spin ice (soft constraint)

Number of 
             
    is even.
Wp = �1

Wp Wp Wp Wp =1
“2-in 2-out”, “all-in”, “all-out”

cf.) spin ice: soft constraint, only “2-in 2-out”, no intersection



Proliferation of excited loops

observation from QMC snapshot: the phase transition might be related with 
the topological change of emergent loops

Low temperatureZero temperature

Paramagnet
Finite-T phase transition

Spin liquid

High temperature

No loop
Short 
loops

Extended 
loopsShort loops

all

Bp = �1

Wp = +1

“confinement-deconfinement” type phase transition?



Characterization by Wilson loop
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Wilson loop acts as an order parameter for this nonlocal transition.



Summary and perspective

Main results:
๏ thermal fractionalization of a quantum spin into Majorana fermions
๏ exotic “liquid-gas” phase transition by loop proliferation in 3D

Open issues
๏ How universal is the Majorana physics in the zoo of QSLs?
๏ Any other direct smoking gun for the “Majorana-ness”?
๏ more inputs for/from experiments!
๏ etc.

QSLs may offer a good hunting place for Majorana fermions!
our results provides a guidebook for Majorana hunting
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