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Message of this talk

Methodology: New quantum Monte Carlo (QMC) algorithm for
Kitaev-type models based on the Majorana fermion representation

quantum ' Majorana fermions
SPINS , " jtinerant & localized
Jordan-Wigner transformation

+ .
Majorana representation unb_laseq QMC w/0o
negative sign problem !

Physics: Quantum spin liquids in the Kitaev-type models are a good
playground for hunting of Majorana fermions!

® Majorana representation is not just a mathematical tool, but has
observable consequences.
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Quantum spin liquid (QSL)

new state of matter in magnets: magnetic state which does not “solidify”
down to 7=0 due to strong quantum fluctuations

® magnetic analog of liquid helium (P. W. Anderson, 1973)
® no long-range order down to 7=0, same symmetry as paramagnet

VNS, WIS,

Anderson’s RVB: figure is taken from L. Balents 2010

QSLs have attracted much interest from not only condensed matter physics
but also fundamental statistical physics and quantum information.

e.d. topological computation by non-Abelian anyons (A. Kitaev, 2003)




Problems in the study of QSLs

on the experimental side, there are several candidates, but...

- how to prove the existence of QSLs? necessary to prove “an alibi”?
- how to distinguish QSLs from paramagnet? any “positive” fingerprint?
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Problems in the study of QSLs

on the theoretical side...

® |less examples of well-identified QSLs
- need to prove the absence of “all” conventional long-range orders

® less choice of effective theoretical tools
- Results often depend on the methods, even on the computational
conditions (e.g., boundary conditions in finite-size clusters).

* S=1/2 J1-J2 Heisenberg model on a square lattice
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Motivation and strategy

by changing parameters

well-identified QSLs

e.g., in exactly solvable models

conventional
ordered states

high-T
paramagnet

by raising temperature

unbiased quantum Monte exact QSL ground states

In the Kitaev model and
its extensions

Carlo simulation without
negative-sign problem

new method on the basis of * 2D honeycomb

Majorana fermion representation . StD hyperhoneycomb
¢ clC.



Model

Fundamentals of the Kitaev models



Kitaev model: exactly solvable model for QSL

S=1/2 quantum spin model on a 2D honeycomb Iattice (A. Kitaev, 2006)

H=—J, Y SEs% —J, >SSt . N siss

<8J> iG>y <ij>.

—J, S¢S

—J.875:

—J, 8787

bond dependent interactions = frustration



Kitaev model: local conserved quantity

= 07050

Y :HaWp] =0

v [Wp, W] =0 forp#yp
2 __

¢ W2=1

= 7o variable W, = x1

(termed “flux”)

Eigenstates of the Kitaev model are labelled by {W, = £1}

= solvable by introducing Majorana fermions (A. Kitaev, 2006):
ground state is given by all Wp=+1




Kitaev model: 7=0 phase diagram

gapless |

; 27 Jo+Jy+J,=1
/
/

¢'\ B

Dirac-like A
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structure . \\\

J=1,=0

QSL ground states in the entire parameter region:

gapless and gapped QSLs depending on the anisotropy

topological order, extremely short-range spin correlation, non-abelian anyons, quantum computation, ...
A. Kitaev, 2006; G. Baskaran, S. Mandal, and R. Shanker, 2007; C. Castelnovo and C. Chamon, 2007; Z. Nussinov and G. Ortiz, 2008, ...



Kitaev model: experimental relevance

An effective interaction for partially-filled tog levels under strong spin-orbit

coupling may become Kitaev type (G. Jackeli and G. Khaliullin, 2009).

o .e — 1 2
t2g5 Jeff / —_ +
_— o
Ir4+ ._ isospin up spin up, 1,=0 spin down, |=1 » -
Jett=1/2 isospin
Jeff = 3/2
extension by including isotropic Heisenberg interaction xZ vz

= Kitaev-Heisenberg models:
H = —Jkitaev Y S5 + Jreis ¥ Si - S;
(23), (25)
candidates: quasi-2D honeycomb compounds, Naz2lrOs, Li2lrOs, ...
pyrochlore Ir2O4, hyperkagome NaulrsOs, ...
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3D extension

S=1/2 quantum spin model on a 3D hyperhoneycomb lattice (S. Mandal and
N. Surendran, 2009)

gapless
I “ ! “ _stfsx é
/ \ /\ /" / \/ / y 4, X gapped

QSL ground states in 3D

O new lIridates Li2lrOs: 3D honeycomb-type network of Ir*+ cations

® harmonic honeycomb (K. A. Modic et al., 2014)
® hyperhoneycomb (T. Takayama et al., 2015)



How to compute thermodynamics?

quantum Monte Carlo method in the
Majorana fermion representation



Method
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world-line technique do not work because of the negative-sign problem:

o Lattices are bipartite, but the interactions are frustrated.



Method

The conventional quantum Monte Carlo (QMC) methods on the basis of the

world-line technique do not work because of the negative-sign problem:
o Lattices are bipartite, but the interactions are frustrated.

Our solution:

interacting S=1/2 spins

Jordan-Wigner transformation
Majorana fermion representation

QMC free from negative-sign problem



Chen and J. Hu, 2007

H.-D.
- X.-Y. Feng, G.-M. Zhang, and T. Xiang, 2007
M eth Od (d etal IS) H.-D. Chen and Z. Nussinov, 2008

step 1: Jordan-Wigner transformation

step 2: Majorana fermion representation




Chen and J. Hu, 2007

H.-D.
- X.-Y. Feng, G.-M. Zhang, and T. Xiang, 2007
M eth Od (d etal IS) H.-D. Chen and Z. Nussinov, 2008

step 1: Jordan-Wigner transformation

O regard the system as an assembly of 1D chains
(composed of x, y bonds) coupled by z bonds

S:%,n — (S’;L,n)T — 5(0%,71 + io—%%,n) - H (]‘ o 2nm,n’)aj’n,n7 O-zq,,n — 2nm,n —1

= H=J > (aw—al)(a+a)—J, > (a+a})(a, —al,) —J. > (20, — 1)(2ny — 1)

x bonds y bonds z bonds

w
(black) x bond (white)

step 2: Majorana fermion representation



Chen and J. Hu, 2007

H.-D.
- X.-Y. Feng, G.-M. Zhang, and T. Xiang, 2007
M eth Od (d etal IS) H.-D. Chen and Z. Nussinov, 2008

step 1: Jordan-Wigner transformation

O regard the system as an assembly of 1D chains
(composed of x, y bonds) coupled by z bonds

n—1

(O-'Zrcn,n + io—%%,n) — H (]‘ N 2nm,n’)ajn,n7 Uzl,n — 2nm,n —1

n’'=1

S = (St =

1
2

= H=J > (aw—al)(a+a)—J, > (a+a})(a, —al,) —J. > (20, — 1)(2ny — 1)

x bonds y bonds z bonds

w
(black) x bond (white)

step 2: Majorana fermion representation

co = (aw —al)/i, Cp=oa,+al, c,=ay+ a;g, G, = (ap — az)/i.

m H=1iJ, Z CuwCph — 1Jy, Z CpCop — 1., Z Ny ChCy Ny = 1CpCyy = E1

x bonds y bonds z bonds : local conserved quantity
(Z-> variable) on each z bond




Simulation

H=1J, Z CuCy — 1y, Z CoCo — 1J, Z NrCoCap N, = iCpC,, = £1

x bonds 1y bonds z bonds



Simulation

H=1J, Z CuCy — 1y, Z CoCo — 1J, Z NrCoCap N, = iCpC,, = £1

x bonds 1y bonds z bonds

Formally, the model is similar to the double-exchange model with Ising spins.
= MC simulation without fermion sign problem applicable
- faithful representation of the original Hamiltonian: no approximation



Simulation

H=1J, Z CuCy — 1y, Z CoCo — 1J, Z NrCoCap N, = iCpC,, = £1

x bonds 1y bonds z bonds

Formally, the model is similar to the double-exchange model with Ising spins.

= MC simulation without fermion sign problem applicable
- faithful representation of the original Hamiltonian: no approximation

0.40

benchmark for 2D honeycomb Kitaev model S
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- perfect agreement within the errorbars




Thermal fractionalization of
quantum spins into Majorana fermions

guide of Majorana hunting



2D honeycomb Kitaev model

H=—J, Y S's% —J, >SSt . N siss

<ij>a <ij>, <ij>.

]SV 8"

—J,87 57

—J, 8787

H=1J, Z CuwCh — 1Jy Z CpCop — 1J, Z NrCoCowy My = 1CpCypy = E1

x bonds y bonds z bonds



Specific heat and entropy

two crossovers: successive release of 1/2(log2) entropy

T*(low) g O(10—2J)

Cv

T*high)  O(J)

S/In2

%logQ



Successive two crossovers

W S/In2

spin correlation
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spin correlation
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Successive two crossovers

W S/In2

spin correlation

0.8
0.6
0.4
0.2
0.0

entropy release in
itinerant Majorana fermions

entropy release in
localized Majorana fermions

coherent growth of
local conserved

quantity Wy

growth of
nearest-neighbor
spin-spin correlations

clear signatures of thermal fractionalization of quantum spins




Phase diagram in 2D
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itinerant
Majorana
fermions

growth of short-range
spin correlations

measurable by
neutron scattering

growth of fluxes

What is the physical
consequence?



DOS for itinerant Majorana fermions

Thermal fluctuations of the fluxes disturb the Majorana DOS.

1.6¢ T=0 «—all n, = +14
7=0.010
7=0.018 - <— ~ low-T crossover
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w

Dirac semimetal — “metal” above the low-T crossover

by thermal fluctuations in fluxes (localized Majorana)



Apparent 7-linear specific heat

Above the low-T crossover, the DOS becomes metallic, leading to apparent

T-linear behavior in the specific heat, although T? behavior is expected for

the Dirac semimetallic spectrum at 7=0.

0.4

0.3

0.1

T-linear behavior for the “spin liquid” with well-developed spin correlations
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Experimental implication

0 T (low) 5 J/lOO T (high) _ J
| | } > T

apparent T-linear
behavior

- p
: release of release of
entropy 1/2(l0g2) 1/2(l0g2)
spin-spin spin liquic saturation to Curie like
correlations well-developed ¢ T=0 values

specific heat ~T? peak eak



Experimental implication

0 T (low) 5 J/lOO T (high) _ J
| | } > T

apparent T-linear
behavior

- p
: release of release of
entropy 1/2(l0g2) 1/2(l0g2)
spin-spin spin liquic saturation to Curie like
correlations well-developed ¢ T=0 values

k.

v

novel phase transition in the case of 3D

specific heat ~T? peak eak



Finite-T “ligquid-gas” transition in 3D

proliferation of flux loops



3D hyperhoneycomb Kitaev model

H=—J, Y S's% —J, >SSt . N siss

<ij>a iG>, <ij>.

I ! —JQ;S;EUS?

H=1J, Z CowCp — 1y, Z CpCoy — 1J. Z N-CoCop My = 1CpCypy = 1

x bonds y bonds z bonds



Comparison between 3D and 2D

3D hyperhoneycomb 2D honeycomb
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= sign of a phase transition = just a crossover



Phase diagram in 3D
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Phase diagram in 3D
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Phase diagram in 3D
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All low-T QSLs are separated from high-T para by the phase transition.

= no adiabatic connection, qualitatively different from conventional fluids



Phase diagram in 3D

T : . :
Tc is max for the isotropic case.
= Frustration stabilizes QSLs, in
J=0, J=0, J =1 contrast to conventional orders.
4
J=0,J=1, J=0
y iz
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All low-T QSLs are separated from high-T para by the phase transition.

= no adiabatic connection, qualitatively different from conventional fluids



What is this phase transition?

difference from 2D: W), plaguettes form closed objects

= |ocal constraint for Wy: hard constraint by S=1/2 algebra
= excited states include only closed loops of flipped W, (at all T)

Wp:‘1

Wp:+1

“2-in 2-out”, “all-in”, “all-out”

cf.) spin ice: soft constraint, only “2-in 2-out”, no intersection



Proliferation of excited loops

observation from QMC snapshot: the phase transition might be related with
the topological change of emergent loops

Zero temperature Low temperature : High temperature

)

Short loops

Extended
loops

Short

Spin liquid E Paramagnet

Finite-T phase transition

“confinement-deconfinement” type phase transition?



Characterization by Wilson loop

0.7
Loop operator (Wilson loop): We = H aﬁi
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Extended loops: Wy = +1 or — 1

We = (W) = 0
Short loops : W¢o = +1 We =1
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B emeo a=0.75 |
S a=1.0

Thermal average

We = (We)

Wilson loop acts as an order parameter for this nonlocal transition.



Summary and perspective

Main results:
® thermal fractionalization of a quantum spin into Majorana fermions

® exotic “liquid-gas” phase transition by loop proliferation in 3D

QSLs may offer a good hunting place for Majorana fermions!
our results provides a guidebook for Majorana hunting

Open issues

® How universal is the Majorana physics in the zoo of QSLs?
® Any other direct smoking gun for the “Majorana-ness”?

® more inputs for/from experiments!

® eftc.
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