Quantum Monte Carlo Study of Thermodynamics in Kitaev Spin Liquids

Yukitoshi Motome

Department of Applied Physics, Graduate School of Engineering/Faculty of Engineering, The University of Tokyo
collaborators
Joji Nasu (Tokyo Institute of Technology)
Masafumi Udagawa (Gakusyuin University)

Message of this talk

I Methodology: New quantum Monte Carlo (QMC) algorithm for Kitaev-type models based on the Majorana fermion representation

quantum spins

Majorana fermions
itinerant \& localized
unbiased QMC w/o negative sign problem!

- Physics: Quantum spin liquids in the Kitaev-type models are a good playground for hunting of Majorana fermions!
- Majorana representation is not just a mathematical tool, but has observable consequences.

Outline

© Introduction

- What is the quantum spin liquid (QSL)?
o problems on the experimental and theoretical sides
- our motivation and strategy

Model: fundamentals of the Kitaev model and its extensions
I Method: QMC technique in Majorana fermion representation
\& Results
o thermal fractionalization of a quantum spin into Majorana fermions:
a guide of Majorana hunting for experimentalists
© "liquid-gas" phase transition in 3D:
unconventional transition caused by proliferation of emergent loops
Summary and perspectives

Introduction

Quantum spin liquid (QSL)

\square new state of matter in magnets: magnetic state which does not "solidify" down to $T=0$ due to strong quantum fluctuations

- magnetic analog of liquid helium (P. W. Anderson, 1973)
- no long-range order down to $T=0$, same symmetry as paramagnet

Anderson's RVB: figure is taken from L. Balents 2010
\square QSLs have attracted much interest from not only condensed matter physics but also fundamental statistical physics and quantum information.
e.g. topological computation by non-Abelian anyons (A. Kitaev, 2003)

Problems in the study of QSLs

\% on the experimental side, there are several candidates, but...

- how to prove the existence of QSLs? necessary to prove "an alibi"?
- how to distinguish QSLs from paramagnet? any "positive" fingerprint?
* organic conductor $\mathrm{k}-(\mathrm{ET})_{2} \mathrm{Cu}_{2}(\mathrm{CN})_{3}: S=1 / 2$ spins on a triangular layers

Y. Shimizu et al., 2003

Problems in the study of QSLs

\% on the theoretical side...

- less examples of well-identified QSLs
- need to prove the absence of "all" conventional long-range orders
- less choice of effective theoretical tools
- Results often depend on the methods, even on the computational conditions (e.g., boundary conditions in finite-size clusters).
* $S=1 / 2 J_{1}-J_{2}$ Heisenberg model on a square lattice

H.-C. Jiang, H. Yao, and L. Balents, 2012

S.-S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher et al., 2014

S. Morita, R. Kaneko, and M. Imada, 2015

Motivation and strategy

Motivation and strategy

by lowering temperature
by changing parameters

Motivation and strategy

well-identified QSLs

e.g., in exactly solvable models

Motivation and strategy

Motivation and strategy

conventional ordered states
by changing parameters

exact QSL ground states in the Kitaev model and its extensions

- 2D honeycomb
- 3D hyperhoneycomb
- etc.

Motivation and strategy

conventional
ordered states

unbiased quantum Monte Carlo simulation without negative-sign problem
new method on the basis of
Majorana fermion representation

exact QSL ground states in the Kitaev model and its extensions

- 2D honeycomb
- 3D hyperhoneycomb
- etc.

Model

Fundamentals of the Kitaev models

Kitaev model: exactly solvable model for QSL

$\square S=1 / 2$ quantum spin model on a 2D honeycomb lattice (A. Kitaev, 2006)

$$
\mathcal{H}=-J_{x} \sum_{<i j>_{x}} S_{i}^{x} S_{j}^{x}-J_{y} \sum_{<i j>_{y}} S_{i}^{y} S_{j}^{y}-J_{z} \sum_{<i j>_{z}} S_{i}^{z} S_{j}^{z}
$$

bond dependent interactions $\boldsymbol{\rightarrow}$ frustration

Kitaev model: local conserved quantity

$$
W_{p}=\sigma_{1}^{z} \sigma_{2}^{x} \sigma_{3}^{y} \sigma_{4}^{z} \sigma_{5}^{x} \sigma_{6}^{y}
$$

$\checkmark\left[\mathcal{H}, W_{p}\right]=0$
$\checkmark\left[W_{p}, W_{p}^{\prime}\right]=0$ for $p \neq p^{\prime}$
$\checkmark W_{p}^{2}=1$
$\Rightarrow Z_{2}$ variable $W_{p}= \pm 1$ (termed "flux")

Eigenstates of the Kitaev model are labelled by $\left\{W_{p}= \pm 1\right\}$
\Rightarrow solvable by introducing Majorana fermions (A. Kitaev, 2006): ground state is given by all $W_{p}=+1$

Kitaev model: $T=0$ phase diagram

QSL ground states in the entire parameter region: gapless and gapped QSLs depending on the anisotropy
topological order, extremely short-range spin correlation, non-abelian anyons, quantum computation, ...
A. Kitaev, 2006; G. Baskaran, S. Mandal, and R. Shanker, 2007; C. Castelnovo and C. Chamon, 2007; Z. Nussinov and G. Ortiz, 2008,

Kitaev model: experimental relevance

\square An effective interaction for partially-filled $t_{2 g}$ levels under strong spin-orbit coupling may become Kitaev type (G. Jackeli and G. Khaliullin, 2009).

\square extension by including isotropic Heisenberg interaction \Rightarrow Kitaev-Heisenberg models:

$$
\mathcal{H}=-J_{\text {Kitaev }} \sum_{\langle i j\rangle_{l}} S_{i}^{l} S_{j}^{l}+J_{\text {Heis }} \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

candidates: quasi-2D honeycomb compounds, $\mathrm{Na}_{2} \mathrm{IrO}_{3}, \mathrm{Li}_{2} \mathrm{IrO}_{3}, \ldots$ pyrochlore $\mathrm{Ir}_{2} \mathrm{O}_{4}$, hyperkagome $\mathrm{Na}_{4} \mathrm{Ir}_{3} \mathrm{O}_{8}, \ldots$

3D extension

$\square S=1 / 2$ quantum spin model on a 3D hyperhoneycomb lattice (S. Mandal and N. Surendran, 2009)

exactly the same $T=0$ phase diagram

QSL ground states in 3D

O new Iridates $\mathrm{Li}_{2} \mathrm{IrO}_{3}$: 3D honeycomb-type network of Ir^{4+} cations

- harmonic honeycomb (K. A. Modic et al., 2014)
- hyperhoneycomb (T. Takayama et al., 2015)

How to compute thermodynamics?

 quantum Monte Carlo method in the Majorana fermion representation
Method

Method

\square The conventional quantum Monte Carlo (QMC) methods on the basis of the world-line technique do not work because of the negative-sign problem:

- Lattices are bipartite, but the interactions are frustrated.

Method

\square The conventional quantum Monte Carlo (QMC) methods on the basis of the world-line technique do not work because of the negative-sign problem:

- Lattices are bipartite, but the interactions are frustrated.
\square Our solution:
interacting $S=1 / 2$ spins
Jordan-Wigner transformation Majorana fermion representation
non-interacting Majorana fermions coupled to thermally-fluctuating Z_{2} fields

QMC free from negative-sign problem

Method (details)

H.-D. Chen and J. Hu, 2007
X.-Y. Feng, G.-M. Zhang, and T. Xiang, 2007
H.-D. Chen and Z. Nussinov, 2008
step 1: Jordan-Wigner transformation
step 2: Majorana fermion representation

Method (details)

step 1: Jordan-Wigner transformation

regard the system as an assembly of 1D chains (composed of x, y bonds) coupled by z bonds$$
S_{m, n}^{+}=\left(S_{m, n}^{-}\right)^{\dagger}=\frac{1}{2}\left(\sigma_{m, n}^{x}+i \sigma_{m, n}^{y}\right)=\prod_{n^{\prime}=1}^{n-1}\left(1-2 n_{m, n^{\prime}}\right) a_{m, n}^{\dagger}, \quad \sigma_{m, n}^{z}=2 n_{m, n}-1
$$

$\Rightarrow \mathcal{H}=J_{x} \sum_{x \text { bonds }}\left(a_{w}-a_{w}^{\dagger}\right)\left(a_{b}+a_{b}^{\dagger}\right)-J_{y} \sum_{y \text { bonds }}\left(a_{b}+a_{b}^{\dagger}\right)\left(a_{w}-a_{w}^{\dagger}\right)-J_{z} \sum_{z \text { bonds }}\left(2 n_{b}-1\right)\left(2 n_{w}-1\right)$

step 2: Majorana fermion representation

Method (details)

step 1: Jordan-Wigner transformation

regard the system as an assembly of 1D chains (composed of x, y bonds) coupled by z bonds$$
S_{m, n}^{+}=\left(S_{m, n}^{-}\right)^{\dagger}=\frac{1}{2}\left(\sigma_{m, n}^{x}+i \sigma_{m, n}^{y}\right)=\prod_{n^{\prime}=1}^{n-1}\left(1-2 n_{m, n^{\prime}}\right) a_{m, n}^{\dagger}, \quad \sigma_{m, n}^{z}=2 n_{m, n}-1
$$

$\Rightarrow \mathcal{H}=J_{x} \sum_{x \text { bonds }}\left(a_{w}-a_{w}^{\dagger}\right)\left(a_{b}+a_{b}^{\dagger}\right)-J_{y} \sum_{y \text { bonds }}\left(a_{b}+a_{b}^{\dagger}\right)\left(a_{w}-a_{w}^{\dagger}\right)-J_{z} \sum_{z \text { bonds }}\left(2 n_{b}-1\right)\left(2 n_{w}-1\right)$

step 2: Majorana fermion representation

$$
c_{w}=\left(a_{w}-a_{w}^{\dagger}\right) / \mathrm{i}, \quad \bar{c}_{w}=a_{w}+a_{w}^{\dagger}, \quad c_{b}=a_{b}+a_{b}^{\dagger}, \quad \bar{c}_{b}=\left(a_{b}-a_{b}^{\dagger}\right) / \mathrm{i}
$$

$\Rightarrow \mathcal{H}=\mathrm{i} J_{x} \sum_{x \text { bonds }} c_{w} c_{b}-\mathrm{i} J_{y} \sum_{y \text { bonds }} c_{b} c_{w}-\mathrm{i} J_{z} \sum_{z \text { bonds }} \eta_{r} c_{b} c_{w}$

$$
\eta_{r}=\mathrm{i} \bar{c}_{b} \bar{c}_{w}= \pm 1
$$

: local conserved quantity (Z_{2} variable) on each z bond

Simulation

$$
\mathcal{H}=\mathrm{i} J_{x} \sum_{x \text { bonds }} c_{w} c_{b}-\mathrm{i} J_{y} \sum_{y \text { bonds }} c_{b} c_{w}-\mathrm{i} J_{z} \sum_{z \text { bonds }} \eta_{r} c_{b} c_{w} \quad \eta_{r}=\mathrm{i} \bar{c}_{b} \bar{c}_{w}= \pm 1
$$

Simulation

$$
\mathcal{H}=\mathrm{i} J_{x} \sum_{x \text { bonds }} c_{w} c_{b}-\mathrm{i} J_{y} \sum_{y \text { bonds }} c_{b} c_{w}-\mathrm{i} J_{z} \sum_{z \text { bonds }} \eta_{r} c_{b} c_{w} \quad \eta_{r}=\mathrm{i} \bar{c}_{b} \bar{c}_{w}= \pm 1
$$

\square Formally, the model is similar to the double-exchange model with Ising spins.

- MC simulation without fermion sign problem applicable
- faithful representation of the original Hamiltonian: no approximation

Simulation

$$
\mathcal{H}=\mathrm{i} J_{x} \sum_{x \text { bonds }} c_{w} c_{b}-\mathrm{i} J_{y} \sum_{y \text { bonds }} c_{b} c_{w}-\mathrm{i} J_{z} \sum_{z \text { bonds }} \eta_{r} c_{b} c_{w} \quad \eta_{r}=\mathrm{i} \bar{c}_{b} \bar{c}_{w}= \pm 1
$$

\square Formally, the model is similar to the double-exchange model with Ising spins.
= MC simulation without fermion sign problem applicable

- faithful representation of the original Hamiltonian: no approximation
\square benchmark for 2D honeycomb Kitaev model
- 8 sites, isotropic case ($J_{x}=J_{y}=J_{z}=1 / 3$)
- ED: exact diagonalization of the original Kitaev model with $S=1 / 2$ quantum spins
- perfect agreement within the errorbars

Thermal fractionalization of

 quantum spins into Majorana fermions guide of Majorana hunting
2D honeycomb Kitaev model

Specific heat and entropy

two crossovers: successive release of $1 / 2(\log 2)$ entropy

Successive two crossovers

Successive two crossovers

clear signatures of thermal fractionalization of quantum spins

Phase diagram in 2D

DOS for itinerant Majorana fermions

\square Thermal fluctuations of the fluxes disturb the Majorana DOS.

Dirac semimetal \rightarrow "metal" above the low-T crossover by thermal fluctuations in fluxes (localized Majorana)

Apparent T-linear specific heat

\square Above the low- T crossover, the DOS becomes metallic, leading to apparent T-linear behavior in the specific heat, although T^{2} behavior is expected for the Dirac semimetallic spectrum at $T=0$.

T-linear behavior for the "spin liquid" with well-developed spin correlations

Experimental implication

Experimental implication

novel phase transition in the case of 3D

Finite-T "liquid-gas" transition in 3D

 proliferation of flux loops
3D hyperhoneycomb Kitaev model

$$
\mathcal{H}=-J_{x} \sum_{<i j>_{x}} S_{i}^{x} S_{j}^{x}-J_{y} \sum_{<i j>_{y}} S_{i}^{y} S_{j}^{y}-J_{z} \sum_{<i j>_{z}} S_{i}^{z} S_{j}^{z}
$$

$$
\mathcal{H}=\mathrm{i} J_{x} \sum_{x \text { bonds }} c_{w} c_{b}-\mathrm{i} J_{y} \sum_{y \text { bonds }} c_{b} c_{w}-\mathrm{i} J_{z} \sum_{z \text { bonds }} \eta_{r} c_{b} c_{w} \quad \eta_{r}=\mathrm{i} \bar{c}_{b} \bar{c}_{w}= \pm 1
$$

Comparison between 3D and 2D

sharp peak growing and becoming narrower as the system size increases
\Rightarrow sign of a phase transition

Phase diagram in 3D

Phase diagram in 3D

Phase diagram in 3D

All low-T QSLs are separated from high-T para by the phase transition.
\Rightarrow no adiabatic connection, qualitatively different from conventional fluids

Phase diagram in 3D

All low-T QSLs are separated from high-T para by the phase transition.
\Rightarrow no adiabatic connection, qualitatively different from conventional fluids

What is this phase transition?

\square difference from 2D: W_{p} plaquettes form closed objects
\Rightarrow local constraint for W_{p} : hard constraint by $S=1 / 2$ algebra
$=$ excited states include only closed loops of flipped W_{p} (at all T)

$$
W_{p} W_{p} W_{p} W_{p}=1
$$

"2-in 2-out", "all-in", "all-out"
cf.) spin ice: soft constraint, only "2-in 2-out", no intersection

Proliferation of excited loops

\square observation from QMC snapshot: the phase transition might be related with the topological change of emergent loops

Zero temperature

Spin liquid

High temperature

Paramagnet

Finite-T phase transition

Characterization by Wilson loop

Loop operator (Wilson loop): $\mathcal{W}_{C}=\prod_{i \in C} \sigma_{i}^{l_{i}}$

Extended loops: $\mathcal{W}_{C}=+1$ or -1

$$
\Rightarrow \tilde{\mathcal{W}}_{C}=\left\langle\mathcal{W}_{C}^{\prime}\right\rangle=0
$$

Short loops: $\mathcal{W}_{C}=+1 \Rightarrow \tilde{\mathcal{W}}_{C}=1$
Wilson loop acts as an order parameter for this nonlocal transition.

Summary and perspective

Main results:

- thermal fractionalization of a quantum spin into Majorana fermions
o exotic "liquid-gas" phase transition by loop proliferation in 3D

QSLs may offer a good hunting place for Majorana fermions!

our results provides a guidebook for Majorana hunting
Open issues

- How universal is the Majorana physics in the zoo of QSLs?
- Any other direct smoking gun for the "Majorana-ness"?
- more inputs for/from experiments!

O etc.

```
References:
J. Nasu, T. Kaji, K. Matsuura, M. Udagawa, and YM, PRB 89, 115125 (2014)
J. Nasu, M. Udagawa, and YM, PRL 113, 197205 (2014)
J. Nasu, M. Udagawa, and YM, J. Phys.: Conf. Ser. 592, 012115 (2015)
J. Nasu, M. Udagawa, and YM, preprint (arXiv:1504.01259)
```

