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Improper Multiferroics

Magnetic structure Electric polarization

strong coupling

P is driven by M
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“Realistic Modeling”

• effective Hamiltonian for magnetic 3d bands:

Downfolding and /or 
Wannier functions technique

RPA (GW) and /or
constrained DFT

• solution: unrestricted Hartree-Fock
• details: J. Phys.: Condens. Matter 20, 293201 (2008)



Berry-phase theory of Polarization

D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993);
R. Resta, Rev. Mod. Phys. 66, 899 (1994); J. Phys.: Condens. Matter 22, 123201 (2010).

in r-space 
(via Wannier functions)

in k-space
(via Berry connection)

• depends on the phase of the wavefunction
(Berry phase)

• only difference is measurable

in periodic systems, P is related to the
current flowing through the sample 



Orbital Ordering 
and 

Competing Exchange Interactions



Example: TbMnO3 (Pbnm symmetry)

(in meV)J
k
1 = ¡3:7 J3 =¡2:3
Ja2 =¡0:2 Jb2 = ¡1:2

Key players: J1
║, J2

b, and J3

J. Phys. Soc. Jpn. 78, 054710 (2009).

3x2-r2 3x2-r2

x2-z23y2-r2

(top view)

origin of long-range interactions:

t t

“super-super-exchange” ~ 1/U3
 U should not be large

3x2-r2

3y2-r2



Magnetic ground state without spin-orbit coupling

homogeneous spin-spiral

Theoretical minimum: qy ≈ 0.675 
(units of reciprocal translations)
nearly fourfold periodic 
magnetic structure
(experimental situation in TbMnO3)

Phys. Rev. B 83, 054404 (2011)

TbMnO3



spin-spirality
and 

spontaneous 
electric polarization
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formally, the inversion symmetry is broken, but….



the inversion can be always combined with the 180o-rotation of spins
around the axis n||(e+Îe), which is the same for all magnetic sites;

 spontaneous electric polarization = 0

Îe ȒÎee



Very generally:
The spin-orbit interaction is needed
in order to remove the spin rotation Ȓ

But:
The concrete scenario depend on the 
material (crystallographic symmetry)



Example I: HoMnO3 (Pbnm symmetry)

twofold

fourfold

Key mechanism: single-ion anisotropy deforms the spin spiral
and breaks the inversion symmetry



sublattice I sublattice II

Spin spiral with the same chirality in both magnetic sublattices

Phys. Rev. B 87, 144403 (2013)

Example II: MnWO4 (P2/c symmetry): 
Effect of isotropic exchange interactions



Example II: MnWO4 (P2/c symmetry): 
Isotropic versus Dzyaloshinskii-Moriya Interactions

sublattice I sublattice II

dI dII

the effects of isotropic and 
DM interactions are added

the effects of isotropic and 
DM interactions are subtracted

Sublattices become inequivalent The unversion symmetry is broken
Phys. Rev. B 87, 144403 (2013)



What is the origin of ferroelectricity 
in the spin-spiral compounds?

Is it because of the spin-spiral structure itself
or

a deformation of this structure?



Why manganites?

Importance of the Hund’s rule physics
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What will happen with
the central spin?
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Origin of the Magnetic Inversion Breaking in
Orthorhombic Manganites

inversion
center (I)

Long-range antiferromagnetic interactions

The only possibility to preserve
the spatial inversion is to combine
it with the time reversal (T): IT

M = 0
gigantic loss in Hund’s energy:
JHM 2/4  ~ 4eV per Mn-site…



Origin of the Magnetic Inversion Breaking in
Orthorhombic Manganites

inversion
center (I)

Long-range antiferromagnetic interactions

It is more favorably energetically
to have local spin at the central site 
but to break the inversion symmetry



Microscopic 
Model



Step I: from mean-field Hartree-Fock
to Double Exchange model

where

ξij=1 for FM bonds, ξij=0 for AFM bondsHF potential



Basic Mechanism of the 
Inversion Symmetry Breaking

tRtL
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• tR = tL
• bonds are equivalent
• inversion symmetry is preserved
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Basic Mechanism of the 
Inversion Symmetry Breaking

ξRtRξLtL

inversion center

• ξR ≠ ξL
• bonds are inequivalent
• inversion symmetry is broken



Simplest Example: E-phase

YMnO3
HoMnO3

in the double exchange model:

P. Barone, K. Yamauchi, and S. Picozzi, 
Phys. Rev. Lett. 106, 077201 (2011)see also



Contribution of eg bands to the polarization in the E-phase

Universal dependence on △, obtained for different crystal structures 
(HoMnO3 and YMnO3, both experimental and theoretically optimized)

The value of P is controlled by
1. eg-level splitting △;
2. lattice parameters a, b, and c

t and △ from “downfolding” 
of the HF Hamiltonian;
^

Then,

Physically relevant limit: “Large △”

• does not depend on buckling of
Mn-O-Mn bonds

PRB 87, 144424 (2013)



Useful consequence:

Atomic limit: P = 0

(analogy with superexchange interactions)

Phys. Rev. B 87, 144424 (2013)



Useful consequence:

Atomic limit: P = 0
Perturbation theory for Wannier functions: wij ~ 𝑡𝑖𝑗

△
Asymmetric Wannier-weight transfer  finite P

(analogy with superexchange interactions)

Phys. Rev. B 87, 144424 (2013)



DE model: general expression

lattice model
perturbation theory

~ ej·ej

Phys. Rev. B 90, 184425 (2014)

Ewhere

polarization of (zigzag)
E-type AFM phase



Phys. Rev. B 
87, 144424 (2013);
90, 184425 (2014)

i = q·Ri + αi

TbMnO3 HoMnO3 YMnO3

HF 0.138 0.110 0.101
DE 0.115 0.081 0.077

P/PE

fourfoldtwofold



Ferroelectricity
and

Ferromagnetism



Example: BiMnO3 (C2/c symmetry)

orbital ordering and
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structure
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change of electronic 
structure

Dzyaloshinskii-Moriya
interactions;

Weak ferromagnetism?



Phys. Rev. B 90, 024417 (2014).

energy of spin system

force

The same for electron system, using perturbation theory:

i j

i j

δvSOC

SOC
self-consistent linear response
for the spin-orbit coupling

Local mapping onto spin model
A.I. Liechtenstein et al, J. Magn. Magn. Matter. 67, 65 (1987); PRL 76, 4825 (1996)



Isotropic and Dzyaloshinskii-Moriya
interactions in the AFM structure (in meV)

Example: BiMnO3 (C2/c symmetry)

Mn-site MX MY MZ

1 -0.08 1.45 -3.69
2 0.08 1.45 3.69
3 0.97 2.02 3.27
4 -0.97 2.02 -3.27

Magnetic ground state with the spin-orbit interaction

Phys. Rev. B 82, 094425 (2010); 90, 179909(E) (2014); 90, 024417 (2014).



Conclusions

• spin spirality and spontaneous polarization: 
key mechanism is the deformation of the spin spiral

• microscopic model:
DE physics + large “JT-distortion”;
one mechanism for different magnetic structures;
P ~ PE

• ferroelectricity and ferromagnetism: 
yes, it is possible (BiMnO3)

Thank you!


