Origin and Microscopic Mechanisms of Magnetoelectric Coupling in Multiferroic Manganites

Igor Solovyev

Computational Materials Science Unit, National Institute for Materials Science, Tsukuba, Japan

e-mail: SOLOVYEV.Igor@nims.go.jp

spontaneous electric polarization $\mathbf{P} = \langle \Psi | \hat{\mathbf{r}} | \Psi \rangle$

inversion symmetry needs to be broken

spontaneous electric polarization $\mathbf{P} = \langle \Psi | \hat{\mathbf{r}} | \Psi \rangle$

inversion symmetry needs to be broken

ferroelectric lattice distortion $(d^{0} \text{ compound: BaTiO}_{3}, \text{ etc.})$

spontaneous electric polarization $\mathbf{P}=\langle\Psi|\hat{\mathbf{r}}|\Psi
angle$

inversion symmetry needs to be broken

ferroelectric lattice distortion $(d^{0} \text{ compound: BaTiO}_{3}, \text{ etc.})$

spontaneous electric polarization $\mathbf{P} = \langle \Psi | \hat{\mathbf{r}} | \Psi \rangle$

inversion symmetry needs to be broken

ferroelectric lattice distortion $(d^0 \text{ compound: BaTiO}_3, \text{ etc.})$

spontaneous electric polarization $\mathbf{P}=\langle\Psi|\hat{\mathbf{r}}|\Psi
angle$

inversion symmetry needs to be broken

ferroelectric lattice distortion $(d^{0} \text{ compound: BaTiO}_{3}, \text{ etc.})$

spontaneous electric polarization $\mathbf{P}=\langle\Psi|\hat{\mathbf{r}}|\Psi
angle$

inversion symmetry needs to be broken

Improper Multiferroics

Magnetic structure

Electric polarization

P is driven by **M**

Contents

- 1. complex spin structures: the origin
- 2. spin spirality and spontaneous polarization
- 3. Hund's rule physics and inversion symmetry breaking
- 4. microscopic model
- 5. ferroelectricity and ferromagnetism

Collaboration

Sergey Nikolaev (poster...) Vladimir Mazurenko Mariya Valentyuk

RSF Project No. 14-12-00306

"Realistic Modeling"

• effective Hamiltonian for magnetic 3d bands:

$$\hat{\mathcal{H}}_{e} = \sum_{ij} \sum_{\alpha\beta} t_{ij}^{\alpha\beta} \hat{c}_{i\alpha}^{\dagger} \hat{c}_{j\beta} + \frac{1}{2} \sum_{i} \sum_{\alpha\beta\gamma\delta} U_{\alpha\beta\gamma\delta} \hat{c}_{i\alpha}^{\dagger} \hat{c}_{i\gamma}^{\dagger} \hat{c}_{i\beta} \hat{c}_{i\delta}$$
Downfolding and /or
Wannier functions technique RPA (GW) and /or constrained DFT

- solution: unrestricted Hartree-Fock
- details: J. Phys.: Condens. Matter **20**, 293201 (2008)

Berry-phase theory of Polarization

in periodic systems, P is related to the current flowing through the sample

$$\Delta \mathbf{P} = \mathbf{P}(\Delta t) - \mathbf{P}(0) = \int_0^{\Delta t} \mathrm{d}t \, \mathbf{j}(t)$$

- depends on the phase of the wavefunction (Berry phase)
- only difference is measurable

$$\mathbf{P} = -\frac{ie}{(2\pi)^3} \sum_{n=1}^M \int_{\text{BZ}} \langle n\mathbf{k} | \nabla_{\mathbf{k}} | n\mathbf{k} \rangle d\mathbf{k} \quad \begin{array}{l} \text{in } \mathbf{k}\text{-space} \\ \text{(via Berry connection)} \end{array}$$
$$\mathbf{P} = -\frac{e}{V} \sum_{n=1}^M \int \mathbf{r} \, w_n^2(\mathbf{r}) \, d\mathbf{r} \quad \begin{array}{l} \text{in } \mathbf{r}\text{-space} \\ \text{(via Wannier functions)} \end{array}$$

D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993);
R. Resta, Rev. Mod. Phys. 66, 899 (1994); J. Phys.: Condens. Matter 22, 123201 (2010).

Orbital Ordering and Competing Exchange Interactions

Example: TbMnO₃ (*Pbnm* symmetry)

$$J_1^{\parallel} = -3.7$$
 $J_3 = -2.3$ (in meV)
 $J_2^{\mathbf{a}} = -0.2$ $J_2^{\mathbf{b}} = -1.2$

Key players: $J_1 \parallel$, $J_2^{\mathbf{b}}$, and J_3

J. Phys. Soc. Jpn. 78, 054710 (2009).

origin of long-range interactions:

"super-super-exchange" ~ $1/U^3 \rightarrow U$ should not be large

Magnetic ground state without spin-orbit coupling

homogeneous spin-spiral

Theoretical minimum: $q_y \approx 0.675$ (units of reciprocal translations) nearly fourfold periodic magnetic structure (experimental situation in TbMnO₃)

Phys. Rev. B 83, 054404 (2011)

spin-spirality and

spontaneous electric polarization

formally, the inversion symmetry is broken, but....

the inversion can be always combined with the 180°-rotation of spins around the axis $\mathbf{n} || (\mathbf{e} + \hat{I} \mathbf{e})$, which is the same for all magnetic sites;

 \rightarrow spontaneous electric polarization = 0

Very generally: The spin-orbit interaction is needed in order to remove the spin rotation \hat{R}

But:

The concrete scenario depend on the material (crystallographic symmetry)

Example I: HoMnO₃ (*Pbnm* symmetry)

Key mechanism: single-ion anisotropy deforms the spin spiral and breaks the inversion symmetry

Spin spiral with the same chirality in both magnetic sublattices Phys. Rev. B **87**, 144403 (2013)

Example II: MnWO₄ (<u>P2/c symmetry</u>): Isotropic versus Dzyaloshinskii-Moriya Interactions

sublattice I

sublattice II

the effects of isotropic and DM interactions are added

the effects of isotropic and DM interactions are subtracted

Sublattices become inequivalent \rightarrow The unversion symmetry is broken Phys. Rev. B 87, 144403 (2013) What is the origin of ferroelectricity in the spin-spiral compounds?

Is it because of the spin-spiral structure itself or a deformation of this structure?

Why manganites?

Importance of the Hund's rule physics

Microscopic Model

Step I: from mean-field Hartree-Fock to Double Exchange model

$$\hat{H}_{ij}^{\rm MF} = \hat{t}_{ij} + \hat{\mathcal{V}}_i \delta_{ij} \quad \Longrightarrow \quad \hat{H}_{ij}^{\rm DE} = \xi_{ij} \hat{t}_{ij} + \hat{\mathcal{V}}_i^{\uparrow} \delta_{ij}$$

where

$$\hat{\mathcal{V}}_i = \begin{pmatrix} \hat{\mathcal{V}}_i^{\uparrow} & 0\\ 0 & \hat{\mathcal{V}}_i^{\downarrow} \end{pmatrix} \qquad \xi_{ij} = \cos\frac{\theta_i}{2}\cos\frac{\theta_j}{2} + \sin\frac{\theta_i}{2}\sin\frac{\theta_j}{2}e^{-(\phi_i - \phi_j)}$$

HF potential

 $\xi_{ij}=1$ for FM bonds, $\xi_{ij}=0$ for AFM bonds

- $t_{\rm R} = t_{\rm L}$
- bonds are equivalent
- inversion symmetry is preserved

- $\xi_{\rm R} \neq \xi_{\rm L}$
- bonds are inequivalent
- inversion symmetry is broken

Simplest Example: E-phase

YMnO₃ HoMnO₃

Contribution of e_g bands to the polarization in the E-phase

 \hat{t} and \triangle from "downfolding" of the HF Hamiltonian;

Then.

$$\mathbf{P}^{-} = -\frac{ie}{(2\pi)^3} \sum_{n=1}^{M} \int_{\mathrm{BZ}} \langle n\mathbf{k} | \nabla_{\mathbf{k}} | n\mathbf{k} \rangle d\mathbf{k}$$

The value of *P* is controlled by 1. e_g -level splitting \triangle ; 2. lattice parameters *a*, *b*, and *c*

does not depend on buckling of Mn-O-Mn bonds

ts of t_0 Physically relevant limit: "Large \triangle "

Universal dependence on \triangle , obtained for different crystal structures (HoMnO₃ and YMnO₃, both experimental and theoretically optimized)

Useful consequence: (analogy with superexchange interactions)

Atomic limit: $\mathbf{P} = 0$

Phys. Rev. B 87, 144424 (2013)

Useful consequence: (analogy with superexchange interactions)

Atomic limit: $\mathbf{P} = 0$

Perturbation theory for Wannier functions: $W_{ij} \sim \frac{L_{ij}}{\Delta}$ Asymmetric Wannier-weight transfer \rightarrow finite **P** Phys. Rev. B **87**, 144424 (2013)

DE model: general expression

 P/P_E

 $-1)^{i} \mathbf{e}_{i} \cdot \mathbf{e}_{i+1} P_{E}$ fourfold $\underbrace{\mathbf{fourfold}}_{\mathbf{b}}$ $\underbrace{\mathbf{fourfold}}_{\mathbf{b}}$ $\underbrace{\mathbf{fourfold}}_{\mathbf{b}}$ $\underbrace{\mathbf{fourfold}}_{\mathbf{b}}$ $\underbrace{\mathbf{fourfold}}_{\mathbf{b}}$ $\underbrace{\mathbf{fourfold}}_{\mathbf{b}}$

 $\varphi_i = \boldsymbol{q} \cdot \boldsymbol{R}_i + \alpha_i$

Parameters	TbMnO ₃	HoMnO ₃	YMnO ₃
$\Delta \alpha_0 = \Delta \alpha_4$	18	15	13
$\Delta \alpha_1 = \Delta \alpha_5$	7	5	5
$\Delta \alpha_2 = \Delta \alpha_6$	-32	-25	-23
$\Delta \alpha_3 = \Delta \alpha_7$	7	5	5

 $P^{a} = \frac{1}{2L} \sum_{i=0}^{2L-1} (-1)^{i} \cos\left(\frac{\pi n}{L} + \alpha_{i+1} - \alpha_{i}\right) P_{E}$

Phys. Rev. B 87, 144424 (2013); 90, 184425 (2014)

	TbMnO ₃	HoMnO ₃	YMnO ₃
HF	0.138	0.110	0.101
DE	0.115	0.081	0.077

Ferroelectricity and

Ferromagnetism

orbital ordering and exchange interactions

orbital ordering and exchange interactions

change of electronic structure

orbital ordering and exchange interactions

change of electronic structure

Local mapping onto spin model

A.I. Liechtenstein et al, J. Magn. Magn. Matter. 67, 65 (1987); PRL 76, 4825 (1996)

$$E = -\sum_{i>j} J_{ij} \boldsymbol{e}_i \cdot \boldsymbol{e}_j + \sum_{i>j} \boldsymbol{d}_{ij} \cdot [\boldsymbol{e}_i \times \boldsymbol{e}_j] \qquad \text{energy of spin system}$$

$$\frac{1}{2} \left(\boldsymbol{f}_i^j - \boldsymbol{f}_j^i \right) = \left[\boldsymbol{d}_{ij} \times \boldsymbol{e}^0 \right] + \frac{1}{2} J_{ij} \left(\delta \boldsymbol{e}_j - \delta \boldsymbol{e}_i \right) \qquad \text{force}$$

The same for electron system, using perturbation theory:

$$\frac{1}{2} (\boldsymbol{f}_{i}^{j} - \boldsymbol{f}_{j}^{i}) = \frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\varepsilon_{F}} d\varepsilon \operatorname{Tr} \{ \hat{\boldsymbol{\sigma}} (\hat{\mathcal{G}}_{ij}(\varepsilon) \delta \hat{v}_{j}^{p} \hat{\mathcal{G}}_{ji}(\varepsilon) \hat{b}_{i} - \hat{\mathcal{G}}_{ij}(\varepsilon) \hat{b}_{j} \hat{\mathcal{G}}_{ji}(\varepsilon) \delta \hat{v}_{i}^{p}) \}$$

$$J_{ij} = \frac{2}{\pi} \operatorname{Im} \int_{-\infty}^{\varepsilon_F} d\varepsilon \operatorname{Tr}_L \left\{ \hat{\mathcal{G}}_{ij}^+(\varepsilon) \hat{b}_j \hat{\mathcal{G}}_{ji}^-(\varepsilon) \hat{b}_i \right\}$$

$$\vec{\delta v}^p = [1 - \mathbb{UR}]^{-1} \, \vec{\delta v}^{\text{SOC}}$$

self-consistent linear response for the spin-orbit coupling Phys. Rev. B **90**, 024417 (2014).

Isotropic and Dzyaloshinskii-Moriya interactions in the AFM structure (in meV)

k	J	d
1 2	-1.28 -3.03	(-0.311, 0.040, 0.122) (-0.689, -0.007, 0.328)
		(,

Magnetic ground state with the spin-orbit interaction

Mn-site	M_X	M_{Y}	M_{Z}
1	-0.08	1.45	-3.69
2	0.08	1.45	3.69
3	0.97	2.02	3.27
4	-0.97	2.02	-3.27

Phys. Rev. B 82, 094425 (2010); 90, 179909(E) (2014); 90, 024417 (2014).

Conclusions

- spin spirality and spontaneous polarization: key mechanism is the *deformation* of the spin spiral
- microscopic model: DE physics + large "JT-distortion"; one mechanism for different magnetic structures; P ~ P_E
- ferroelectricity and ferromagnetism: yes, it is possible (BiMnO₃)

