On the spin orientation

1. Qualitative rules for predicting preferred spin orientations?

2. Spin orientations of Sr₃NiIrO₆, Sr₂IrO₄, Ba₂NaOsO₆: Implications on the magnetism of J_{eff}=1/2 ions

M.-H. Whangbo Department of Chemistry North Carolina State University NC 27695-8204, USA

E. E. Gordon: J. W. Kim, S.-W. Cheong: H. J. Xiang: Chemistry, NCSU Physics, Rutgers University Physics, Fudan University

Energy Mapping Analysis

1. Model Hamiltonian: Parameters

$$\begin{split} &\sum_{i < j} J_{ij} \vec{S}_i \cdot \vec{S}_j \\ &\sum_{i < j} \vec{D}_{ij} \cdot (\vec{S}_i \times \vec{S}_j) \\ &"\sum_i A_i S_{iz}^2 " & \leftarrow \text{ Qualitative prediction?} \end{split}$$

2. DFT calculations

3. Broken-Symmetry Spin States

4. $\Delta E_{spin-H} \leftrightarrow \Delta E_{DFT}$

Spin orientation ← spin-orbit coupling (SOC)

Large SOC

Topological insulators Rashba-Dresselhaus effects Valleytronics Spin-textured bands J_{eff}=1/2 states

Coupling between spin and orbital moments

Magnetic insulator of 5d oxides

← Strong SOC + weak correlation PRB 75, 052407 (2007)

 $Ba_2NaOsO_6: Os^{7+} (5d^1, S = 1/2)$

θ_{CW} ≈ -10 K FM below T_C ≈ 7 K PRB 84, 144416 (2011)

Os⁷⁺ (5d¹, S = 1/2) in Ba₂NaOsO₆ No preferred spin orientation Sr₂IrO₄: low-spin Ir⁴⁺ (5d⁵, S = 1/2) \rightarrow (t_{2g})⁵ Corner-sharing IrO₆ \rightarrow IrO₄ layer, Axially-elongated IrO₆

Magnetic insulator Strong SOC + weak correlation \rightarrow split of J_{eff}=1/2

PRL 101, 076402 (2008) Science 323, 1329 (2009)

Excitation different orbital states

Low-spin Ir⁴⁺ (5d⁵, S = 1/2) ion in Sr₂IrO₄ Weakly anisotropic, preferred spin orientation: \perp Ir-O_{ax}

ESR study of Sr₂IrO₄

Isotropic Heisenberg interactions between Ir⁴⁺ **spins**

PRB 89, 180401(R) (2014)

Sr₃NilrO₆: low-spin Ir⁴⁺ (5d⁵, S = 1/2), high-spin Ni²⁺ (3d⁸, S = 1)

Strongly anisotropic M-H hysteresis \rightarrow FM?

Ferrimagnetic?

PRB 89, 180401(R) (2014) PRL, under review

PRB 90, 014408 (2014) arXiv:1501.05735 [cond-mat.str-el]

Low-spin Ir^{4+} (5d⁵, S = 1/2) in Sr₃NiIrO₆ Strongly anisotropic

Weak single-ion isotropy: SOC from a trace orbital moment δL

SUC from a trace orbital moment OL

(x, y, z) for orbital, (x', y', z') for spin

$$\hat{H}_{SO} = \lambda \hat{S} \cdot \hat{L} \approx H_{SO}^{0}$$
$$= \lambda \hat{S}_{z'} (\hat{L}_{z} \cos \theta + \frac{1}{2} \hat{L}_{+} e^{-i\phi} \sin \theta + \frac{1}{2} \hat{L}_{-} e^{i\phi} \sin \theta)$$

 $\theta = 0^{\circ}$: easy-axis anisotropy $\theta = 90^{\circ}$: easy-plane anisotropy

J. Comput. Chem. 29, 2187 (2008)

$$\Delta E_{\rm SOC} = -\frac{\left|\left\langle \psi_{\rm o} \left| \hat{H}_{\rm SO}^{0} \left| \psi_{\rm u} \right\rangle \right|^{2} \right|}{\left| e_{\rm o} - e_{\rm u} \right|}$$

Most important, between the HO and the LU states

Dalton Trans. 42, 823 (2013)

Spin-polarized d-states

Selection rules for SOC

$$\lambda \hat{S}_{z'}(\hat{L}_z \cos\theta + \frac{1}{2}\hat{L}_+ e^{-i\phi}\sin\theta + \frac{1}{2}\hat{L}_- e^{i\phi}\sin\theta)$$

$$\begin{array}{l} \left\langle \mathrm{L}_{z} \left| \hat{\mathrm{L}}_{z} \cos \theta \right| \mathrm{L}_{z'} \right\rangle \rightarrow \left| \Delta \mathrm{L}_{z} \right| = 0 \rightarrow \mathrm{easy-axis} \\ \\ \left\langle \mathrm{L}_{z} \left| \hat{\mathrm{L}}_{+} \sin \theta \right| \mathrm{L}_{z'} \right\rangle \rightarrow \left| \Delta \mathrm{L}_{z} \right| = 1 \rightarrow \mathrm{easy-plane} \\ \\ \left\langle \mathrm{L}_{z} \left| \hat{\mathrm{L}}_{-} \sin \theta \right| \mathrm{L}_{z'} \right\rangle \rightarrow \left| \Delta \mathrm{L}_{z} \right| = 1 \rightarrow \mathrm{easy-plane} \end{array}$$

High-spin Mn³⁺ in TbMnO₃ & Ag₂MnO₂ Axially-elongated MnO₆ octahedron

 $(xy^{\uparrow})^{1} < (z^{2}^{\uparrow})^{1} < (x^{2}-y^{2}^{\uparrow})^{0}$

||z, easy-axis anisotropy

PRL **101**, 037209 (2008) PRB **81**, 094421 (2010)

Concluding remarks

The preferred spin orientations of magnetic ions, predicted by uniaxial magnetism, or weak single-ion anisotropy.