

Design and Optimization of TMO-ReRAM Based Synaptic Devices

J.F. Kang^{1#}, B. Gao¹, P. Huang¹, Z. Chen¹, L.F. Liu¹, X.Y. Liu¹, S.M. Yu², H.-S. P. Wong³

#E-mail: kangjf@pku.edu.cn

¹Institute of Microelectronics, Peking University

²School of CIDSE, Arizona State University

³Department of Electrical Engineering, Stanford University

Outline

Introduction Physical Mechanism Defect Engineering Approach Optimization of Synapse Summary

Outline

Introduction Physical Mechanism Defect Engineering Approach Optimization of Synapse Summary

Resistive Switching (RS)

 Many materials have been used to demonstrate the reversible bi-stable resistance states (LRS and HRS), which can be switched by voltage, named as *resistive switching (RS)*

 These RS materials can be used to construct a device, with a typical sandwiched structure, termed as RRAM (Resistive-switching Random Access Memory).

Two Switching Modes [#]

voltage but not on polarity

depend on the polarity of the applied voltage

[#] H.-S. P. Wong et al., Proc. IEEE, 100, p.1951, 2012.

□ Excellent performances have been demonstrated in transition metal oxide (TMO)-ReRAM [1-6].

- Scalability: <10nm devices demonstrated [1-2]</p>
- Compatibility with CMOS using fab-friendly materials [1-4]
 - HfO_2 , TaO_x , WO_x , Ti, Ta, TiN, NiSi
- Switching speed: <1ns [6]</p>
- Switching voltage: <1.5V</p>
- Endurance: >10¹⁰ cycles [5]
- Retention: >10 yrs [6]
- Read disturb: >10¹⁰ times [3]

K-S Li et al, VLSI-T2014,
 C-W. Hsu et al, IEDM2013
 W. Chien et al, IEDM2010.
 X.A. Tran et al, IEDM2011
 H.Y. Lee et al, IEDM2010.
 Y.S.Chen et al, IEDM2009

□ Capability to High Density Integration [1,2]

✓ 32/16 Gb Test Chips have been demonstrated [3,4]

[1] H.-Y. Chen, et al., IEDM2012, p.497 (Stanford & PKU);
[2] ITRS 2013, http://www.itrs.net, PIDS Chapter
[3] T-Y Liu et al, ISSCC2013, p493 (Sandisk & Toshiba)
[4] R. Fackenthail, et al, ISSCC2014, p338 (Micron & Sony)

2015 SPICE Workshop

New Function Application Concept of RRAM based memristor [1] Memristive switches: both store logic values and perform logic operations [2]

[1] D. B. Strukov et al, Nature 2008, 453, p.80 [2] J. Borghetti, Nature 2010, 464, p.873-876

2015 SPICE Workshop

□ Introduction

RRAM based synapses for neuromorphic computing systems [#]

[#] S.M. Yu et al, IEDM2012, p.239 (Stanford and PKU)

Most demonstrated in the bipolar switching mode

For applications

- Understand the physical mechnisms of RS
- Seek technical solutions to construct RRAM devices to achieve targeted performances [1]

□ In this talk, we will also address

- Low energy and robust synapse performances of TMO-RRAM [2, 3]
- Potential for application in a neuromorphic visual system [2]
 [1] B. Gao, et al. IEEE T-ED, 60(4), pp 1379, 2013;

....

- [1] B. Gao, et al. IEEE T-ED, 60(4), pp 1379, 2013;[2] S. Yu, et al. IEDM 2012, p.239;
- [3] B. Gao, et al, ACS Nano, 8, p. 6998, 2014

2015 SPICE Workshop June 29-July 3

Outline

Introduction Physical Mechanism Defect Engineering Approach Optimization of Synapse Summary

Physical Mechanism

For the resistive switching (RS) behavior of TMO-RRAM

- Filament effect has been widely accepted
 - RS is due to the formation and rupture of conducting filaments

However, the physical natures of filaments and the crucial effects to dominate the formation and rupture of filaments are still argued

- Conducting filament (CF) type: Vo or metallic ions?
- Dominant effect for SET/RESET: G-R or S/D? Thermal or E-field?
- Mechanisms of unipolar and bipolar: Same or not?

□ A Unified Physical Mechanism [1,2]

To clarify fundamental properties of resistive switching behaviors in TMO-ReRAM

[1] N. Xu et al, VLSI-T 2008, p.100[2] B. Gao et al, IEDM2011, p.417

■ The mechanism is based on filament effect on RS [3]

[3] R. Waser, Nature. Mat. 2007

The unified physical mechanism is proposed to clarify these argued issues:

- Microscopic physical properties correlated with resistive switching in TMO-based RRAM (including unipolar and bipolar)
 - To explain various resistive switching characteristics observed in TMO-RRAM
 - > To predict performances of TMO-RRAM

 $LO \xrightarrow{E-Field} V_{O}^{2+} + O^{2-}$

 $V_{O}^{2+} + 2e^{-} \longrightarrow V_{O}$

 $p = \exp[(eLE - \varepsilon_v^J) / kT]$

 $\overline{N}_{V} = \frac{t}{t_{0}} N_{LO} p$

 $\Delta N_{V} = \sqrt{N_{LO} \frac{t}{t} p(1 - \frac{t}{t} p)}$

Schematic microscopic properties of RS in TMO-RRAM (B. Gao et al, IEDM2011, p.417)

- 1. Filament: A percolation path consisting of V_o defects
- 2. Formation and rupture of filaments are correlated with generation and recombination of V_0
- 3. Forming/SET: Generation of new V_o defects and O²⁻ ions induced by Efield and thermal effects in rupture region
 - > V_o defects may be in different states:
 - \checkmark Filled state (V₀) with 2 electrons in V_o
 - \checkmark Unfilled state (V_o²⁺) w/o electron in V_o

2015 SPICE Workshop

Schematic microscopic properties of RS in TMO-RRAM

$$V_O \xrightarrow{E-Field} V_O^{2+} + 2e^-$$
$$V_O^{2+} + Q^{2-} \longrightarrow LQ$$

4. RESET: Recombination among charged V₀²⁺ and O²⁻

5. Two essential conditions for RESET

 Occurrence of V₀²⁺ states
 induced by a critical E-field

(b) Schematic views for oxygen vacancies with electrons depleted 2) Presence of moveable O²⁻

Formation of the state V₀²⁺ in the filament at a critical E-field

- ✓ significant capture section
- ✓ stable recombination state (LO)

2015 SPICE Workshop

6. Conduction Properties: due to electron transport along Vo filaments

- Semiconductor-like: V_o are separated from each other
- Metallic-like: V_o are closed each other in the clustered
- First principle calculations support this opinion

2015 SPICE Workshop

Outline

Introduction
Physical Mechanism
Defect Engineering Approach
Optimization of Synapse
Summary

- □ The resistive switching characteristics are correlated with geometry of Vo filament
 - generation, recombination, and distributions of Vo
- It is crucial to control Vo distributions and filament geometry to achieve targeted performances

Versity D Defect Engineering Approach

According to crystal defect theory, the generation and recombination probability of Vo is governed by

 $p = exp(\frac{\gamma E_{loc} - \varepsilon_a}{kT}) \qquad \qquad \textbf{E}_{loc}: \text{ Local electric field}$

□ A Defect Engineering Approach is proposed [*]

[*] B. Gao et al, IEEE Tran. ED, Vol 60, p.1379, 2013

2015 SPICE Workshop

June 29-July 3 2015 Mainz, Germany 20

A Defect Engineering Approach is proposed

2015 SPICE Workshop

June 29-July 3 2015 Mainz, Germany

A. Material-Oriented Cell Design

Calculated formation energy \mathcal{E}_{a} of V_e [1, 2]

	Undoped (eV)	Ti (eV)	Al (eV)	La (eV)	Ga (eV)
HfO ₂	6.53/6.40 ^a	6.48	4.09	3.42	-
ZrO ₂	6.37/6.09 ^b	6.11	3.66	3.74	3.77

a) A. S. Foster et al. PRB 65, 174117(2002) ; b) A. S. Foster et al. PRB 64, 224108(2001) ; c) T. R. Paudel et al. PRB 77, 205202(2008)

Trivalent La or Al doping could effectively reduce ε_a

[1] H.W. Zhang et al, APL 96, 2010 [2] B. Gao et al, VLSI2009

A. Material-Oriented Cell Design

- In the resistive switching (RS) layers of Al- or Ladoped HfO₂ or ZrO₂ [1-2]
 - V_o are preferentially generated near the trivalent Al or La sites
 - Filaments are preferentially formed along the dopant sites
 - Better controllability of resistive switching could be achieved by using proper doping approaches

[1] H.W. Zhang et al, APL 96, 2010 [2] B. Gao et al, VLSI2009

A. Material-Oriented Cell Design: Doping Effect

Vo distributions and CFs are full-randomly

Vo and CFs are formed near the dopant sites

2015 SPICE Workshop

Improved Uniformity by proper doping

Expected uniformity improvement is identified by experiments

2015 SPICE Workshop

June 29-July 3 2015 Mainz, Germany

Gradual transitions both in SET and RESET

- Better controllability on RS processes achieved in doped HfOx devices
- This is beneficial for RRAM as a synapse

B. Innovation Operation Scheme

- Vo density is dependent on local electric field and switching time
- Operation schemes

 (switching time and local electric field) can be used to control Vo distributions

Different operation schemes can be expected to achieve different response characteristics!!

B. Innovation Operation Scheme

Non linear resistance change as a function of pulses is observed when short pulses are applied.

B. Innovation operation scheme

Nearly linear resistance change with pulses is realized when wider pulses are applied.

Outline

Introduction Physical Mechanism Defect Engineering Approach Optimization of Synapse Summary

Neuromorphic Visual Systems

- A great amounts of synapses are needed
- A typical CMOS-based binary synapse consisted of a 8T-SRAM cell [*]

2015 SPICE Workshop

(IBM, CICC 2011)

TMO-based Synaptic Devices

□ TMO-RRAM-based synapse is promising

Analogy between biological and artificial RRAM synapse.

Analogy between biological and RRAM based neural networks.

Optimization of Synapse

Artificial Visual System-based on RRAM and Winner-Take-All algorithm is constructed

between 1st layer and 2nd layer: 16348 RRAM synapses

2015 SPICE Workshop

Synaptic Device Behavior

Multi-level resistance states and ultra-low spike energy <1pJ are demonstrated [#]

2015 SPICE Workshop

A model is developed for the training process of TMO-RRAM synapse

- Resistance variation effect during training process
- Model parameters can extracted from measured data.

Resistance Evolution under 400 RESET pulses

- In low resistance regime, fluctuation is smaller but suffers from high spike energy
- In high resistance regime, low spike energy but larger fluctuation presented

36

Larger fluctuation or variation may cause degradation of recognition accuracy of the neuromorphic systems

Training Images and Initial Conductance Map

2D Gaussian bar: Random center and random orientation

Before the training randomized around 20kΩ

2015 SPICE Workshop

June 29-July 3 2015

Mainz, Germany

Resistance Diverges and Orientation Map Emerges

Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8 Neuron 9 Neuron 10 Neuron 11 Neuron 12 Neuron 13 Neuron 14 Neuron 15 Neuron 16

2015 SPICE Workshop

June 29-July 3 2015 Mainz, Germany

Can we realize synaptic performances with both low spike energy and high recognition accuracy ??

Geometric mean of more than 2 devices in parallel can significantly suppress the impact of intrinsic fluctuation effect

Optimized architecture of a neuromorphic system using robust synapse is proposed

A 1D1R synaptic cell is introduced
 1D is applied to perform logarithm function on the device resistance

Geometric mean calculation on resistance is replaced by the logarithm function.

Simulated System Accuracy

- Single RRAM device
- Geometric mean of two devices
- Two parallel 1D-1R cells

 Significant improvement on recognition accuracy is achieved by the architecture of 2 parallel 1D1R.
 Array integration approach is a great challenge

□ 3D vertical ReRAM array architecture as synapses Pre-neuron ② Synapses

- Easily to achieve high density of integration
- Significantly to immunize resistance variation during training process of synapses

A synapse: devices in the same pillar electrode

3D Vertical RRAM Arrays

- Measured training process of top and bottom ReRAM devices in the 3D vertical array
 - 2 layered devices are fabricated
 - Nearly constant device performance both in top and bottom layers is measured.
 - Significantly improved accuracy achieved.

Measured training process for the 3D vertical synaptic devices

- Different initial R
 states can be
 achieved by different
 current compliances
- Initial R is set to ~1MΩ, maximum energy consumption per spike <1 pJ.</p>

B. Gao et al, ACS Nano 8, 6998, 2014

Outline

Introduction Physical Mechanism Defect Engineering Approach Optimization of Synapse Summary

2015 SPICE Workshop

- A unified physical mechanism is proposed to elucidate the resistive switching of TMO-RRAM
- □ A defect engineering approach is developed to design and optimize RRAM performances
- Excellent controllability on RS behaviors is demonstrated in optimized RRAM devices based on the defect engineering approach.

- Multi-level resistance states are realized in the optimized RRAM
- Robust synaptic behaviors with sub-pJ energy per spike are realized in the optimized RRAM
- Optimized architectures of TMO-RRAM synapse are proposed to improve system performances.