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The	  MoA	  transi<on	  as	  a	  liquid-‐gas	  transi<on
(Castellani	  et	  al.	  PRL	  (1979);	  Rozenberg	  et	  al.	  PRL	  (1999);	  Kotliar	  et	  al.	  PRL	  (2000))

•	  First-‐order	  line	  ending	  at	  a	  criPcal	  point
•	  Can	  go	  conPnuously	  from	  one	  state	  to	  the	  other

P.	  LimeleAe	  et	  al.,	  Science	  302,	  89	  (2003)

,	  et	  al.,	  Science	   302 ,	  89	  (2003).,	  et	  al.,	  Science	   32 ,	  89	  (2003).
,	  et	  al.,	  Science	  

,	  89	  (2003).
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•	  Can	  be	  characterized	  by	  the	  conducPvity	  behavior
•	  Ising	  universality	  class:	  mean	  field	  behavior	  (but	  
3D	  Ising	  very	  close	  to	  the	  transiPon	  point)	  (Abdel-‐
Jawad	  et	  al.	  PRL	  2015)
•	  Scalar	  order	  parameter	  (like	  the	  density	  in	  the	  
liquid-‐gas	  transiPon):	  consistent	  with	  the	  
conducPvity	  behavior	  (Papanikolau	  et	  al.	  PRL	  2008;	  M.	  
Abdel-‐Jawad	  et	  al,	  PRL	  2015)	  
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The	  MoA	  transi<on	  as	  a	  liquid-‐gas	  transi<on
(Castellani	  et	  al.	  PRL	  (1979);	  Rozenberg	  et	  al.	  PRL	  (1999);	  Kotliar	  et	  al.	  PRL	  (2000))

P.	  LimeleAe	  et	  al.,	  Science	  302,	  89	  (2003)

(V0.989Cr0.011)2O3

ature with an accuracy of order 0.1 K as a
function of pressure using a standard four-
probe method. All of our measurements
were performed on crystals of (V0.989

Cr0.011)2O3 grown using the skull-melter
technique followed by appropriate anneal-
ing (9). The choice of a Cr concentration
x ! 0.011 ensures that the sample is on the
insulating side of the transition at ambient
pressure but that a moderate pressure of a
few kilobars (or, alternatively, a decrease in
temperature) drives the system into the me-
tallic state. This is visible on the data set
(Fig. 1A), which displays the conductivity
" as a function of pressure P, for several
temperatures in the range 290 K # T # 485
K. These data were obtained by decreasing
pressure from P ! 6 kbar down to ambient
pressure, going from a high-conductivity
metallic regime to a low-conductivity insu-
lating regime. For temperatures smaller
than the critical temperature Tc this transi-
tion is discontinuous, with a sudden jump
of conductivity. To locate precisely this
critical point and to demonstrate the first-
order nature of the transition, we performed
hysteresis experiments in which the con-
ductivity was measured during increasing
and decreasing pressure sweeps at a slow
rate of order 25 bar/min (Fig. 1A). From the
difference between the measured conduc-
tivities in these two sweeps (fig. S2), two
characteristic pressures can be identified,

PM(T ) and PI(T ) (PM # PI), corresponding
to the lowest pressure at which a metallic
state can be sustained while decreasing
pressure (PM) and to the highest pressure at
which an insulating state can be sustained
while increasing pressure (PI), respective-
ly. These two spinodal lines, plotted as a
function of temperature on Fig. 1B, merge
at the critical endpoint (Pc,Tc). We can then
estimate that Pc ! 3738 bar and Tc ! 457.5
K. Varying pressure rather than tempera-
ture is essential for a precise determination
of Tc, which is compatible with the early
estimate of 450 K (8). At the critical tem-
perature, the pressure dependence of
"(P,Tc) becomes singular, with a vertical
tangent at the critical pressure P ! Pc (Fig.
2A). For T $ Tc, this singular behavior is
replaced by a continuous variation of the
conductivity with pressure, which never-
theless defines a sharp crossover line in the
(P,T ) phase diagram (as also depicted in
Fig. 1B). This crossover line extrapolates to
a temperature of order %500 K for the
pressure (%5 kbar) corresponding to the
pure V2O3 compound. Interestingly, the lo-
cation of this crossover coincides with the
one detected in early nuclear magnetic res-
onance (NMR) experiments (10).

We show that the critical singularities
found in the vicinity of the critical endpoint
(Pc,Tc) can be analyzed in the framework of
the scaling theory of the liquid-gas transi-

tion of classical systems (11). The analogy
between the latter and the finite-tempera-
ture Mott transition has been emphasized
earlier (5, 12). The insulating phase (in
which the vanadium is mainly in the V3&

state, corresponding to the d2 configura-
tion) can be pictured as a “gas” phase with
a low density of double occupancies or
holes (corresponding to V2& and V4&, or d3

and d1, respectively). The metallic phase
corresponds to a “liquid” with a sizeable
density of holes and double occupancies.
Recently, this analogy has been given firm
theoretical foundations within the frame-
work of a Landau theory (13, 14 ) derived
from dynamical mean-field theory (DMFT)
(15). In this framework, a scalar order pa-
rameter ' is associated with the low-energy
electronic degrees of freedom that build up
the quasiparticle resonance in the strongly
correlated metallic phase close to the tran-
sition. This order parameter couples to the
singular part of the double occupancy
(hence providing a connection to the pic-
ture described above), as well as to other
observables such as the Drude weight or
conductivity. Because of the scalar nature
of the order parameter, the transition falls
in the Ising universality class. Coupling to
lattice degrees of freedom can also be in-
cluded in the theory (16 ) without changing
this conclusion. Here, we denote the scal-
ing variable corresponding to the tempera-
ture scaling axis in the Ising model analysis
(i.e., to the term r'2 in the Landau func-
tional) by r and the scaling axis corre-
sponding to magnetic field (i.e., to the sym-
metry-breaking term (h' ) by h. These
scaling variables are a priori linear combi-
nations of (T ( Tc)/Tc and (P ( Pc)/Pc.
However, our data are compatible with no
or little mixing, so we choose in all the
following: r ! (T ( Tc)/Tc&. . . , h ! (P (
Pc)/Pc &. . . (the dots indicate higher order
terms). Denoting the measured conductivi-
ty at the critical point by "c ! "(Pc,Tc) (!
449.5 )(1cm(1), it is expected that
"(P,T ) ( "c depends linearly on the order
parameter *'+ close to the critical point.
(This can be explicitly proven in the con-
text of DMFT.) At T ! Tc, this implies a
critical singularity of the form "(P,Tc) (
"c % h1/,, with , the critical exponent
associated with the singular dependence of
the magnetization at the critical point in the
Ising model. The data in Fig. 2A are very
well fitted by this form, as demonstrated in
the inset. Over more than two decades of
variation in h, we find the best fit value of the
exponent to be , ! 3, i.e., the mean-field
value. In a narrow pressure interval (-P ! 10
bar) close to the critical pressure, indication
for a crossover toward a value , ! 5 is found,
close to the three-dimensional (3D) Ising val-
ue , ! 4.814.

Fig. 2. (A) At the crit-
ical temperature T !
Tc, the conductivity "
is plotted as a func-
tion of pressure. The
bold line is a fit to
"("c % (P(Pc)

1/,,
with , ! 3. The use of
a logarithmic scale
(inset) confirms this
value and also reveals
a non–mean-field re-
gime for P close to Pc.
(B) Order parameter
"*(T ) ! "(PI(T ),T )("c
versus T/Tc, for T # Tc.
The line is a fit to
(Tc(T )

. with . ! 0.5.
The inset (logarithmic
scale) reveals a non–
mean-field regime close
to Tc. (C) Derivative of
the conductivity (analo-
gous to a susceptibility
/, as described in text),
for T # Tc and T $ Tc.
The plain lines are fits to
/01T(Tc1

(2, with 2 ! 1
and /&//( ! 2.
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Effects	  of	  inhomogenei<es	  and	  finite	  temperature
Scanning	  Infrared	  Microscopy	  (M.	  M.	  Qazilbash	  et	  al.,	  Science	  38,	  1750	  (2007))

VO2

dynamics (transport, infrared/optical, and many
other spectroscopies) lack the required spatial re-
solution. Scanning near-field infrared microscopy
can circumvent this limitation (9–11). Specifically,
we probed coexisting phases in the vicinity of the
insulator-to-metal transition in vanadium dioxide
(VO2) at length scales down to 20 nm. This en-
abled us to identify an electronic characteristic of
theMott transition, namely divergent quasi-particle
mass in the metallic puddles, which would other-
wise have remained obscured in macroscopic
studies that average over the coexisting phases in
the insulator-to-metal transition regime.

One particular advantage of VO2 for the study
of electronic correlations is that the transition to
the conducting state is initiated by increasing the
temperature without the need to modify the
stoichiometry. The salient features of the first-
order phase transition that occurs at Tc ≈ 340 K
are the orders-of-magnitude increase in conduc-
tivity accompanied by a change in the lattice
structure (1). Compared to the high-temperature
rutile metallic (R) phase, the two main features
that distinguish the lattice in the low-temperature
monoclinic (M1) insulating phase are dimeriza-
tion (charge-ordering) of the vanadium ions into
pairs and the tilting of these pairs with respect to
the c axis of the rutile metal. The experiments on
VO2 films (12, 13) reported here reveal a strongly
correlated conducting state that exists within the
insulator-to-metal transition region in the form of
nanoscale metallic puddles. Electromagnetic re-
sponse of these puddles separated by the in-
sulating host displays the signatures of collective
effects in the electronic system, including diver-
gent optical effective mass and optical pseudo-
gap. These findings, which were not anticipated
by theoretical models, may also help to settle the
decades-long debate (1, 14–20) on the respective
roles played by the lattice and by the electron-
electron correlations in the insulator-to-metal
transition.

The gross features of the insulator-to-metal
transition in VO2 can be readily identified
through the evolution of the far-field optical
constants (13) obtained with use of spectroscopic
ellipsometry and reflectance (Fig. 1). The in-
sulating monoclinic phase (T ≤ 341Κ) displays a
sizable energy gap of about 4000 cm−1 (≈0.5 eV)
in the dissipative part of the optical conductivity,
s1(w). The T ≥ 360 K rutile metallic phase is
characterized by a broad Drude-like feature in the
optical conductivity, linear temperature depen-
dence of resistivity, and an extremely short elec-
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Fig. 1. The real part of the optical conductivity s1(w) =
we2ðwÞ
4p of VO2 is plotted as a function of

frequency for various representative temperatures. The open circle denotes the isosbestic (equal
conductivity) point for all spectra. (Inset) The temperature dependence of the real part of the
dielectric function e1 in the low-frequency limit (w = 50 cm−1).

Fig. 2. Images of the near-
field scattering amplitude over
the same 4-mm-by-4-mm area
obtained by s-SNIM operating
at the infrared frequency w =
930 cm−1. These images are
displayed for representative
temperatures in the insulator-
to-metal transition regime of
VO2 to show percolation in
progress. The metallic regions
(light blue, green, and red
colors) give higher scattering
near-field amplitude compared
with the insulating phase (dark
blue color). See (13) for details.

1Physics Department, University of California–San Diego,
La Jolla, CA 92093, USA. 2Abt. Molekulare Strukturbiolo-
gie, Max-Planck-Institut für Biochemie and Center for
NanoScience, 82152 Martinsried, München, Germany. 3IT
Convergence and Components Laboratory, Electronics and
Telecommunications Research Institute, Daejeon 305-350,
Korea. 4Theoretical Division and Center for Integrated
Nanotechnologies, MS B262, Los Alamos National Labora-
tory, Los Alamos, NM 87545, USA.
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Inhomogeneous	  
state:	  domains	  of	  
MoZ	  insulator	  +	  
domains	  of	  correlated	  
metal

Ivan	  Schuller’s	  talk

VO2

tronic mean free path of the order of the lattice
constant, reminiscent of “bad metal” behavior in
other transition metal oxides, including the cup-
rates (21–23). The insulator-to-metal transition is
evident from the increase of the conductivity with
spectral weight “filling up” the energy gap that
has to be contrasted with a gradual decrease of
the energy gap magnitude. This feature of the
transition, along with an isosbestic point at a
frequency of 11,500 ± 125 cm−1, is one of several
spectroscopic fingerprints of doped Mott insu-
lators (1) identified in this work. The isosbestic
point is defined here as the location of equal
conductivity for all spectra obtained at different
temperatures. Lastly, the divergence of the real
part of the dielectric function e1 (Fig. 1 inset)
signals the percolative nature of the insulator-
to-metal transition. This divergence of e1 is
similar to that observed near the percolative
insulator-to-metal transition in ultrathin Au and
Pb films (24).

Mid-infrared near-field images directly show
that in fact the insulating and metallic phases co-
exist in VO2 over a finite temperature range in the
transition region (Fig. 2). This determination was
made by using a scattering scanning near-field
infrared microscope (s-SNIM) operating at the
infrared frequencies w = 930 cm−1 and w = 1725
cm−1. S-SNIM is capable of registering contrast

between electronic phases according to their
optical constants with spatial resolution ≈ 20
nm. Specifically, the scattering amplitude signal
demodulated at the second harmonic of the tap-
ping frequency of the tip of our s-SNIM appa-
ratus (maps in Fig. 2) is related to the local value
of the complex dielectric function e~ ¼ e1 þ ie2
of the sample. The amplitude of the scattering
signal is expected to increase in metallic regions
compared with that in the insulating regions: a be-
havior grasped well by the so-called dipole model
of the near-field infrared contrast (9, 10, 13).

The amplitude-contrast near-field images in
Fig. 2 show the electronic insulator-to-metal tran-
sition in progress. At temperatures between 295
and 341 K in the insulating phase, we observed
uniform maps of low scattering (dark blue color
in Fig. 2). A small increase of temperature
radically changes the near-field images. For
example, in the T = 342.4 K image we then
observed nanoscale clusters in which the ampli-
tude of the scattering signal was enhanced by a
factor of 2 to 5 compared with that of the
insulating host, indicating a metallic phase.
Representative scans showed that the metallic
regions nucleate, then grow with increasing
temperature, and eventually connect. We did not
observe any obvious correlations between the
size and/or shape of the metallic clusters and the

features in simultaneously collected topographic
images. Although the percolative nature of the
insulator-to-metal transition had been proposed
previously (25), it is directly revealed by our
scanning near-field infrared measurements re-
ported herein. The insulator-to-metal transition is
complete by T = 360 K, at which temperature
insulating islands are no longer seen.

With the observation of nanostructured phases
in Fig. 2, the far-field infrared spectra in Fig.
1 should be analyzed with use of an effective
medium theory (EMT) for such phase-separated
systems (13, 26). The effective optical constants
of a two-phase heterogeneous system are an aver-
age of the optical constants of the insulating and
metallic regions weighted by the respective vol-
ume fractions. Our near-field images enabled us
to determine these fractions. However, a simple
weighting of optical constants of the insulating
phase and of the rutilemetallic phase at T= 360K
within the EMT model does not produce a satis-
factory description of the far-field infrared data
near the onset of the insulator-to-metal transition
in VO2. This discrepancy indicates that the in-
frared properties of the metallic puddles, once
they first appear at T ≈ 342 K, may be different
from that of the high-temperature rutile metal.We
confirmed this hypothesis by extracting the re-
sponse of the metallic puddles from a combi-
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Fig. 3. (A) The phase diagram of VO2 and the resistance-temperature curve
showing the insulator-to-metal transition. The shaded area highlights the
region of the phase diagram in which the strongly correlated metal (SCM)
with divergent quasi-particle mass and an optical pseudogap exists. (B to D)
The evolution of the optical conductivity s1a(w), the scattering rate 1/t(w),
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the metallic regions of VO2 with increasing temperature. The inset in (D) shows
the w→0 limit of the mass enhancement factor as a function of temperature.
The data points between T = 400 K and 550 K are taken from (22).
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MoA	  transi<on:	  Landau	  func<onal	  descrip<on
(Rozenberg	  et	  al.	  PRL	  (1999);	  Kotliar	  et	  al.	  PRL	  (2000)

FINITE-TEMPERATURE CROSSOVER AND THE QUANTUM . . . PHYSICAL REVIEW B 88, 075143 (2013)
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FIG. 8. (Color online) Free-energy landscape (IPT results): (a)
Along the “zero field” line (δU = 0). At T > Tc, the curvature of
the free energy increases with temperature, and it is zero at T = Tc.
Below Tc, at the first-order transition line, metallic and insulating
solutions have the same free energy. (b) Along the “finite field” line
(δU = −0.05). At T > Tc, the curvature of the free energy is greater
than in the “zero field” case. In the coexistence region one of the
minima is energetically favored. Note that the spacing between "F
curves for different temperatures is arbitrary.

but it is logically continued to the line of the first-order phase
transition, where two possible solutions are of the same energy.
On Fig. 8(b), we move along a parallel trajectory, defined
by δU "= 0. It is immediately obvious that λ never reaches
zero and that in the coexistence region one of the solutions
is energetically favored. This physical picture is common to
various models. For example, it is seen in the Ising model in
an external field, where the analogy is between the strength of
the magnetic field and δU in our case.

C. Quantum critical scaling

While the instability line is determined from the free-energy
analysis, a novel physical perspective is obtained by looking at
the transport properties in its vicinity. We have demonstrated17

that around this line, all resistivity curves can be collapsed onto
two branches: We first divide each resistivity curve by the
resistivity along the instability line (the “separatrix”) ρc(T ) =
ρ(T ,δU = 0), and then rescale the temperature for each curve
with an appropriately chosen parameter T0(δU ) to collapse the
data onto two branches [Fig. 6(b)]. The family of resistivity
curves displays characteristic quantum critical scaling of the
form

ρ(T ,δU ) = ρc(T )f (T/To(δU )), (8)

with To(δU ) ∼ |δU |zν . The scaling parameter To displays
power-law scaling with the same exponents for both scaling
branches and falls sharply as U → U∗, which is consistent
with the quantum critical scenario. The resistivity scaling holds
in the temperature range roughly between 2Tc and 4Tc, as
depicted in Fig. 1. We estimate the exponent zν to be around
0.6 when IPT is used to solve the DMFT equations. The scaling
procedure with the data obtained with the CTQMC impurity
solver gives a slightly larger critical exponent with an error

Coexistence
Uc1

Uc2

(Uc,T )c

Quantum 
Critical Point

Quantum 
Critical RegionT

U

X=?
Xc

FIG. 9. (Color online) Possible phase diagram of a generalized
Hubbard model. The observed scaling (valid in the green region)
may be due to a quantum critical point that is unreachable by the
simple two-parameter half-filled Hubbard model. An additional, third
parameter (here marked with X) could drive Tc to zero at some critical
value, and extend the region of validity of the scaling formula in the
U -T plane.

bar due to numerical noise of the data and due to the analytical
continuation.

We emphasize the difference in the proposed quantum
critical scaling and classical scaling in the immediate vicinity
of the critical end point (classical critical region in Fig. 1). It
has been already carefully studied theoretically,19,50 and even
observed in experiments,20 revealing the classical Ising scaling
in this regime. In contrast, the scaling parameter in our formula
is T rather than |T − Tc| and the value of the exponent does not
fit any of the known universality classes. The scaling region
in our analysis is significantly broader and the collapse of the
resistivity curves is observed in a large temperature region
above the critical end point.

A stringent test of the proposed quantum critical transport
scenario would be on systems with reduced critical tempera-
ture Tc. Figure 9 presents a schematic phase diagram with an
additional parameter driving Tc to zero at some critical value
Xc and merging Uc1, Uc2, and Uc into a single, quantum critical
point. If this were the case, the quantum critical region would
extend down to zero temperature. For a simple half-filled
Hubbard model, the critical temperature can be reduced, e.g.,
by the disorder51 or particle-hole asymmetry, but still remains
finite. Therefore, other models should be considered, also
away from half filling,52,53 which have a significantly reduced
coexistence region and where the proposed scaling may give
a more direct evidence of the quantum criticality. In some of
these models the coexistence region was not even detected, and
then the eigenvalue analysis can also be used as an ultimate test
for its existence. It would be also very interesting to explore a
possible quantum critical scaling in the external electric field
within the nonlinear I -V regime,5 similar as in the experiments
on Si MOSFETs.54 This seems especially important in light

075143-7

Insulator Metal

•	  The	  domain	  wall	  interpolates	  between	  metal	  and	  insulator
•	  At	  the	  center	  of	  the	  domain	  wall	  is	  the	  unstable	  soluPon
•	  The	  unstable	  soluPon	  is	  crucial!

Insulator

Metal
Order	  parameter
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•	  Sta<s<cal	  Dynamical	  Mean	  Field	  Theory	  
(Kotliar	  and	  Dobrosavljević,	  PRL	  78,	  3943	  (1997)):	  
(i)	  assume	  local,	  though	  spaPally	  fluctuaPng,	  self-‐
energies;
(ii)	  self-‐consistency:	  each	  site	  “sees”	  the	  spaPally	  
fluctuaPng	  density	  of	  states	  of	  its	  neighbors.
(iii)	  Note	  that	  this	  is	  exact	  at	  U=0	  (including	  
localizaPon	  effects)

Taking	  into	  account	  inhomogenei<es	  (disorder):	  statDMFT
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Effects	  of	  inhomogenei<es	  and	  finite	  temperature
Scanning	  Infrared	  Microscopy	  (M.	  M.	  Qazilbash	  et	  al.,	  Science	  38,	  1750	  (2007))VO2

dynamics (transport, infrared/optical, and many
other spectroscopies) lack the required spatial re-
solution. Scanning near-field infrared microscopy
can circumvent this limitation (9–11). Specifically,
we probed coexisting phases in the vicinity of the
insulator-to-metal transition in vanadium dioxide
(VO2) at length scales down to 20 nm. This en-
abled us to identify an electronic characteristic of
theMott transition, namely divergent quasi-particle
mass in the metallic puddles, which would other-
wise have remained obscured in macroscopic
studies that average over the coexisting phases in
the insulator-to-metal transition regime.

One particular advantage of VO2 for the study
of electronic correlations is that the transition to
the conducting state is initiated by increasing the
temperature without the need to modify the
stoichiometry. The salient features of the first-
order phase transition that occurs at Tc ≈ 340 K
are the orders-of-magnitude increase in conduc-
tivity accompanied by a change in the lattice
structure (1). Compared to the high-temperature
rutile metallic (R) phase, the two main features
that distinguish the lattice in the low-temperature
monoclinic (M1) insulating phase are dimeriza-
tion (charge-ordering) of the vanadium ions into
pairs and the tilting of these pairs with respect to
the c axis of the rutile metal. The experiments on
VO2 films (12, 13) reported here reveal a strongly
correlated conducting state that exists within the
insulator-to-metal transition region in the form of
nanoscale metallic puddles. Electromagnetic re-
sponse of these puddles separated by the in-
sulating host displays the signatures of collective
effects in the electronic system, including diver-
gent optical effective mass and optical pseudo-
gap. These findings, which were not anticipated
by theoretical models, may also help to settle the
decades-long debate (1, 14–20) on the respective
roles played by the lattice and by the electron-
electron correlations in the insulator-to-metal
transition.

The gross features of the insulator-to-metal
transition in VO2 can be readily identified
through the evolution of the far-field optical
constants (13) obtained with use of spectroscopic
ellipsometry and reflectance (Fig. 1). The in-
sulating monoclinic phase (T ≤ 341Κ) displays a
sizable energy gap of about 4000 cm−1 (≈0.5 eV)
in the dissipative part of the optical conductivity,
s1(w). The T ≥ 360 K rutile metallic phase is
characterized by a broad Drude-like feature in the
optical conductivity, linear temperature depen-
dence of resistivity, and an extremely short elec-
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Fig. 1. The real part of the optical conductivity s1(w) =
we2ðwÞ
4p of VO2 is plotted as a function of

frequency for various representative temperatures. The open circle denotes the isosbestic (equal
conductivity) point for all spectra. (Inset) The temperature dependence of the real part of the
dielectric function e1 in the low-frequency limit (w = 50 cm−1).

Fig. 2. Images of the near-
field scattering amplitude over
the same 4-mm-by-4-mm area
obtained by s-SNIM operating
at the infrared frequency w =
930 cm−1. These images are
displayed for representative
temperatures in the insulator-
to-metal transition regime of
VO2 to show percolation in
progress. The metallic regions
(light blue, green, and red
colors) give higher scattering
near-field amplitude compared
with the insulating phase (dark
blue color). See (13) for details.
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we probed coexisting phases in the vicinity of the
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mass in the metallic puddles, which would other-
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order phase transition that occurs at Tc ≈ 340 K
are the orders-of-magnitude increase in conduc-
tivity accompanied by a change in the lattice
structure (1). Compared to the high-temperature
rutile metallic (R) phase, the two main features
that distinguish the lattice in the low-temperature
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VO2 films (12, 13) reported here reveal a strongly
correlated conducting state that exists within the
insulator-to-metal transition region in the form of
nanoscale metallic puddles. Electromagnetic re-
sponse of these puddles separated by the in-
sulating host displays the signatures of collective
effects in the electronic system, including diver-
gent optical effective mass and optical pseudo-
gap. These findings, which were not anticipated
by theoretical models, may also help to settle the
decades-long debate (1, 14–20) on the respective
roles played by the lattice and by the electron-
electron correlations in the insulator-to-metal
transition.

The gross features of the insulator-to-metal
transition in VO2 can be readily identified
through the evolution of the far-field optical
constants (13) obtained with use of spectroscopic
ellipsometry and reflectance (Fig. 1). The in-
sulating monoclinic phase (T ≤ 341Κ) displays a
sizable energy gap of about 4000 cm−1 (≈0.5 eV)
in the dissipative part of the optical conductivity,
s1(w). The T ≥ 360 K rutile metallic phase is
characterized by a broad Drude-like feature in the
optical conductivity, linear temperature depen-
dence of resistivity, and an extremely short elec-
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frequency for various representative temperatures. The open circle denotes the isosbestic (equal
conductivity) point for all spectra. (Inset) The temperature dependence of the real part of the
dielectric function e1 in the low-frequency limit (w = 50 cm−1).

Fig. 2. Images of the near-
field scattering amplitude over
the same 4-mm-by-4-mm area
obtained by s-SNIM operating
at the infrared frequency w =
930 cm−1. These images are
displayed for representative
temperatures in the insulator-
to-metal transition regime of
VO2 to show percolation in
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StatDMFT	  shows	  meso-‐scale	  space	  fluctuaPons:
•	  large	  domain	  walls	  between	  MoZ	  insulator	  and	  
metallic	  droplets

66 CAPÍTULO 7. PAREDES DE DOMÍNIOS

primeira freqüência de Matsubara para cada sítio, só que agora deslocamos os dados

ao longo das abscissas e das ordenadas para que o centro da parede ficasse posicionado

na origem do sistema de coordenadas.

Figura 7.5: Parede de domínio: função de Green local na primeira freqüência de Mat-

subara para cada sítio da amostra para diferentes valores de temperatura. Os dados

são os mesmos da Fig. 7.4(a) mas foram aqui deslocados horizontal e verticalmente

para que o centro da parede caia na origem do sistema de coordenadas.

É também interessante analisar o comportamento das quantidades locais acima

em função da freqüência de Matsubara, à medida que se atravessa a parede de do-

mínio. Na Figura 7.6, mostramos a parte imaginária da (a) função de Green local e

da (b) auto-energia local, como funções da freqüência de Matsubara para alguns sí-

tios na região do centro da parede de domínio entre o metal e o isolante para uma

temperatura fixa (T = 0.035D). A evolução do comportamento metálico à esquerda ao

comportamento isolante à direita do centro da cadeia (que se encontra no sítio rotu-

lado de 0 na Figura 7.4) é gradual e se concentra predominantemente nas freqüências

mais baixas. Deve-se notar que a separatriz entre os dois tipos de comportamentos

parece tender a um valor constante intermediário entre o valor metálico e o isolante

quando a freqüência vai a zero.

Let’s	  look	  at	  the	  behavior	  at	  the	  domain	  
wall	  center:	  the	  unstable	  solu<on
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The	  unstable	  solu<on	  along	  the	  1st	  order	  line
(Tsung-‐Han	  Lee,	  J.	  Vučičević,	  D.	  Tanasković,E.	  M.,	  V.	  Dobrosavljević,	  in	  prepara<on)

•	  Resilient	  quasiparPcles	  (W.	  Xu	  et	  al.,	  PRL	  111,	  03642	  (2013))
•	  Incoherent	  metal
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The	  unstable	  solu<on	  at	  constant	  U
(Tsung-‐Han	  Lee,	  J.	  Vučičević,	  D.	  Tanasković,E.	  M.,	  V.	  Dobrosavljević,	  in	  prepara<on)

•	  Resilient	  quasiparPcles	  (Z<<1)	  (W.	  Xu	  et	  al.,	  PRL	  111,	  03642	  (2013))
•	  ScaZering	  rate	  >>	  MoZ	  limit:	  very	  bad	  conductor

0.6	  Tc 0.13	  Tc

Local	  DOS:	  clear	  quasiparPcle	  peak	  even	  at	  lowest	  T

Gloc (ω) ≈
Z

ω + iΓ

Gloc (ω) =
1

ω −∆ (ω)− Σ (ω)

∆ (ω) ≈ −i∆0

Σ (ω) ≈
�
1− Z−1

�
ω − iImΣ (0)

⇒ Gloc (ω) =
Z

ω + iZ [∆0 + ImΣ (0)]
≡ Z

ω + iΓ

⇒ Z−1 = 1− ∂ReΣ (ω)

∂ω

����
ω=0

⇒ Γ = Z [∆0 + ImΣ (0)]

�bi� �= 0 �χij� �= 0

�∆ij� �= 0

ln
Tc0

Tc
= ψ

�
1

2
+

α

2

�
− ψ

�
1

2

�

α =
1

2πTcτpb

Tc = Tc0 −
π

8τpb

1

τpb
≡ nm∗

2π

� 2π

0
|Trenorm (θ)|2 (1− cos 2θ) dθ

Trenorm (θ)

Tbare

x = 0.15

x = 0.3

1

τpb
≡ x2nm

∗

2π

� 2π

0
|u (θ)|2 (1− cos 2θ) dθ

1

τtr
= x

nm∗

2π

� 2π

0
|u (θ)|2 (1− cos θ) dθ

2

Gloc (ω) ≈
Z

ω + iΓ

Gloc (ω) =
1

ω −∆ (ω)− Σ (ω)

∆ (ω) ≈ −i∆0

Σ (ω) ≈
�
1− Z−1

�
ω − iImΣ (0)

Σ (ω) ≈
�
1− Z−1

�
ω − iΓ

⇒ Gloc (ω) =
Z

ω + iZ [∆0 + ImΣ (0)]
≡ Z

ω + iΓ

⇒ Z−1 = 1− ∂ReΣ (ω)

∂ω

����
ω=0

⇒ Γ = Z [∆0 + ImΣ (0)]

�bi� �= 0 �χij� �= 0

�∆ij� �= 0

ln
Tc0

Tc
= ψ

�
1

2
+

α

2

�
− ψ

�
1

2

�

α =
1

2πTcτpb

Tc = Tc0 −
π

8τpb

1

τpb
≡ nm∗

2π

� 2π

0
|Trenorm (θ)|2 (1− cos 2θ) dθ

Trenorm (θ)

Tbare

x = 0.15

x = 0.3

1

τpb
≡ x2nm

∗

2π

� 2π

0
|u (θ)|2 (1− cos 2θ) dθ

1

τtr
= x

nm∗

2π

� 2π

0
|u (θ)|2 (1− cos θ) dθ

2

Wednesday, July 1, 2015



High	  Tc	  superconductors	  are	  known	  to	  be	  fairly	  insensi<ve	  to	  disorder	  
(H.	  Alloul	  et	  al.,	  RMP	  81,	  45	  (2009))

Strongly	  correlated	  disordered	  superconductors

The	  ‘consensus’	  documentREVIEW
doi:10.1038/nature14165

Fromquantummatter tohigh-temperature
superconductivity in copper oxides
B. Keimer1, S. A. Kivelson2, M. R. Norman3, S. Uchida4 & J. Zaanen5

The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of
innovative scientific inquiry. In the almost three decades since, much has been learned about the novel forms of
quantum matter that are exhibited in these strongly correlated electron systems. A qualitative understanding of the
nature of the superconducting state itself has been achieved. However, unresolved issues include the astonishing
complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the
simplicity and insensitivity to material details of the ‘normal’ state at elevated temperatures.

T he discovery of high-temperature superconductivity in the
copper oxide perovskite La22 xBaxCuO4 (ref. 1) ranks among the
major scientific eventsof the twentiethcentury.The superconducting

transition temperatures in the copper oxides greatly exceed those of any
previously known superconductor by almost an order of magnitude; in
1986 the highest possible temperature at which superconductivity could
survive was widely believed to be 30K (Fig. 1). Moreover, according to
the theory of ‘conventional’ superconductors, the copper oxides would
have seemed the least likelymaterials in which to look for superconduct-
ivity: at room temperature they are such poor conductors that they can
hardly be classified as metals and, indeed, if their chemical composition
is very slightly altered they become highly insulating antiferromagnets.
Magnetism arises from strong repulsive interactions between electrons,
whereas conventional superconductivity arises from induced attractive
interactions, making magnetism and superconductivity seemingly anti-
thetical forms of order.
The Bardeen–Cooper–Schrieffer (BCS) theory2 of the late 1950s pro-

videdanextremely successful frameworkwithinwhich to understandcon-
ventional superconductors, and gave rise to conceptual breakthroughs.
The basic insight is that the electrons collectively bind into ‘Cooper’ pairs
and simultaneously condense inmuch the sameway as bosons condense
into a superfluid state. Fundamental to theBCSmechanism is the fact that,
despite the strong direct Coulomb repulsions, the relatively weak attrac-
tions between electrons induced by the coupling to the vibrations of the
lattice (phonons) can bind the electrons into pairs at energies smaller than
the typical phonon energy. This was widely believed to imply that the su-
perconducting transition temperature Tc of conventional superconduc-
tors could never exceed 30K (ref. 3), although this limit has been revised
upwards by the discovery in 2001 of superconductivity withTc5 39K in
the simple metal MgB2 (ref. 4), where circumstances conspire to optim-
ize the electron–phonon mechanism. However, this is still far below the
maximum Tc of the copper oxides.
As the properties of the copper oxides were studied with ever-increas-

ingprecisionandsensitivity, itbecameclear thatmuchof thewell-understood
quantum theory of the electronic properties of solids, which has been
spectacularly successful in accounting for the properties of conventional
metals and superconductors, fails entirely to addressmany features of the
copper oxides and, more generally, of a broad array of ‘highly correlated
electron systems’ ofwhich the copperoxides are themost studied. (A sche-
matic phase diagram of the copper oxides is shown in Fig. 2.)

Most prominently, at temperatures well above Tc the conductivity in
the copper oxides is almost two orders ofmagnitude smaller than in sim-
plemetals and exhibits frequency and temperature dependences that are
incompatible with the conventional theory ofmetals; this has led tomate-
rials in the regime above Tc being referred to as ‘strange metals’ or ‘bad
metals’. The behaviour exhibited by these ‘strangemetals’,muchofwhich
is simple to describe in terms of the so-called ‘‘marginal-Fermi-liquid
phenomenology’’5, has resisted anygenerally acceptedunderstanding.On
the other hand, similar behaviour has now been documented in a large
number of electronically interesting materials6, indicating that this is a
general property of strongly correlated electron systems, and is not di-
rectly linked to high-temperature superconductivity.We consider this to

1MaxPlanck Institute for Solid StateResearch,Heisenbergstrasse1,D-70569Stuttgart, Germany. 2Departmentof Physics, StanfordUniversity, Stanford, California94305,USA. 3Materials ScienceDivision,
ArgonneNational Laboratory, Argonne, Illinois 60439, USA. 4Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. 5Lorentz Institute for Theoretical Physics, Universiteit Leiden,
PO Box 9506, 2300 RA Leiden, The Netherlands.
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Figure 1 | Tc versus time. Superconducting transition temperatures versus
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found in a ‘mercury’ copper oxide under pressure (dashed red line).

1 2 F E B R U A R Y 2 0 1 5 | V O L 5 1 8 | N A T U R E | 1 7 9

Macmillan Publishers Limited. All rights reserved©2015

Wednesday, July 1, 2015



High	  Tc	  superconductors	  are	  known	  to	  be	  fairly	  insensi<ve	  to	  disorder	  
(H.	  Alloul	  et	  al.,	  RMP	  81,	  45	  (2009))

In Fig. 1 we show 50 nm square gap maps measured on
samples with four different dopings. Identical color scales
representing 20 meV<!!~r"< 70 meV are used. The
local hole concentration is impossible to determine di-
rectly. We estimate the bulk dopings in Table I. Above
optimal doping [Fig. 1(a)] the vast majority of tunneling
spectra are consistent with those of a dx2#y2 superconduc-
tor [see Fig. 2(a) spectra 1 and 2]. However, at the lowest
dopings and for gap values exceeding $65 meV, there are
many spectra where ! is ill defined because no peaks exist
at the gap edge (e.g., Fig. 2(a), spectrum 6). We represent
these spectra by black in gap maps. The spatially averaged
value of !!~r", "!, and its full width at half maximum, !, are
also in Table I. As doping is reduced, "! grows steadily
consistent with other spectroscopic techniques, such as
ARPES [21], break-junction tunneling [22], and thermal
conductivity [9] which average over many nanoscale re-
gions. There have been numerous proposals for the cause
of the electronic inhomogeneity [15,23–25] but experi-
mentally the issue is still under study.

In Fig. 2(a) we show the average spectrum of all regions
exhibiting a given local gap value. They are color coded so
that each gap-averaged spectrum can be associated with
regions of the same color in all gap maps [Figs. 1(a)–1(d)].
This set of gap-averaged spectra is almost identical for all
dopings. The changes with doping seen in !!~r" occur
because the probability of observing a given type of spec-
trum (1–6) in Fig. 2(a) evolves rapidly with doping

(Table I), with P1 and P6 being the probability of finding
spectrum 1 and 6, respectively.

Despite the intense changes with doping in the gap
maps, the LDOS at energies below about 0:5 "! remains
relatively homogenous for all dopings studied (black ar-
rows in Fig. 2(a)]. These low energy LDOS do, however,
exhibit numerous weak, incommensurate, energy-
dispersive, LDOS modulations with long correlation
lengths [16–18,20]. To explore the doping dependence of
these low energy g!~r; V" we use the FT-STS technique and
the ‘‘octet’’ model [17]. Figure 3(b) [using the ~q-vector
designations in Fig. 3(a)] shows the measured length of ~q1,
~q5, and ~q7 as a function of energy for the three data sets.
Figure 3(c) shows the locus of scattering ~ks!E" [17] calcu-
lated for these three g!~r; V" using

~q 1%!2kx;0"; ~q5%!0;2ky"; ~q7%!kx#ky;ky#kx"
(1)

~k s% !&kx!E";&ky!E""; ~ks% !&ky!E";&kx!E"" (2)

where kx=ky is the x=y component of ~ks!E". These ~ks!E"
differ only slightly between dopings and are the same for
filled and empty states.

The doping dependence of states with ~k ' !&"=a0; 0",
!0;&"=a0" in the ‘‘flat band’’ region near the zone face
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FIG. 2 (color). (a) The average spectrum, g!E", associated
with each gap value in a given FOV (field of view) from 1.
These were extracted from 1(b) but the equivalent analysis for
g!~r; V" at all dopings yields results which are indistinguishable.
The coherence peaks are seen spectra 1– 4. (b) Characteristic
spectra from the two regions !< 65 (red) and ! 6<65 (black). It
is not the absolute scale of spectra, but changes in their shape,
which is our focus.
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FIG. 3 (color). (a) A schematic representation of the 1st
Brillouin zone and Fermi-arc location of Bi-2212. The flat-
band regions near the zone face are shaded in green. The eight
locations which determine the scattering within the octet model
[17] (for one sub gap energy) are shown as red circles and the
scattering vectors which connect these locations are show as
arrows labeled by the designation of each scattering vector.
(b) Measured dispersions of the LDOS modulations ~q1, ~q5,
and ~q7 for the three dopings whose gap maps are shown in
Figs. 1(a), 1(c), and 1(d). (c) Calculated loci of scattering, ~ks for
all three dopings. For the lowest doping the internal consistency
of Eqs. (1) and (2) is worse than for optimal doping.

TABLE I. The average properties of the samples reported.

Figure 1 Tc p (%) "! !meV" ! meV P1 P6

(a) 89K OD 19& 1 33& 1 7 30% 0%
(b) 79K UD 15& 1 43& 1 9 5% 1%
(c) 75K UD 13& 1 48& 1 10 1% 8%
(d) 65K UD 11& 1 >62 unclear 0% >55%
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Strongly	  correlated	  disordered	  superconductors
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Remarkable	  similari<es	  with	  the	  experiments
(Garg	  et	  al.,	  Nature	  Phys.	  4,	  762	  (2008))
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Figure 1 Spatially averaged DOS. a,b, Results with (a) and without (b) correlation

effects for the DOS N(ω ) for various nimp (listed in b). Note that in the correlated
system (a), the low-energy DOS is highly insensitive to nimp, whereas that in b,
where correlations are ignored, has strong disorder dependence even at very low

energies. c, The very low-energy DOS integrated over a small window |ω| ≤ 0.02t,
denoted by N(0), as a function of nimp. Results with correlations shown with open
symbols (red) and plain BdG with filled symbols (blue) The average electronic density

is n= 0.8, impurity potential is V0 = 1.0t and superexchange J is chosen as
described in the Methods section.

behaviour of the low-energy DOS N (ω) ≈ |ω|, characteristic of

a clean d-wave superconductor, survives with increasing impurity

concentration nimp from 1% to 25% in the correlated case (Fig. 1a),

but not in the uncorrelated case (Fig. 1b). In other words, the

low-energy excitations in the strongly correlated superconductor

are insensitive to disorder effects. This is also seen in Fig. 1c, where

we plot N (ω) integrated over a very small window |ω| ≤ 0.02t
as a function of nimp. We see here that very little low-energy

spectral weight is generated in the correlated system because the

pair-breaking effect of impurities is greatly reduced in the presence

of correlations, as compared with the simple BdG calculation.

In contrast to the low-energy DOS, we find that the DOS

near the gap edge is strongly affected by disorder in both

the correlated (Fig. 1a) and uncorrelated (Fig. 1b) systems. The

sharp log singularities (‘coherence peaks’) of the clean d-wave

superconductor are suppressed with increasing nimp in Fig. 1a,b,

although there are some differences. The energy scale of the peaks

in the DOS is shifted up slightly with increasing nimp in the

correlated case, whereas it seems more or less constant in the simple

BdG results.

We next explore the origin of the nodal–antinodal dichotomy

seen in the angle-resolved photoemisison spectroscopy (ARPES)
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Figure 2 Spectral function A(k,ω ). a,b, Low-energy A(k,ω ), with maximum

normalized to unity, for |ω| ≤ 0.02t for 200×200 system with nimp = 0.2. The

results with correlations (a) show only a slight extension around the nodes, whereas

the plain BdG results (b) show significant extension into ‘Fermi arcs’. c, A(k,ω ) as a

function of ω for nimp = 0.2 in the correlated system for two momenta: the node (in

red, labelled N) and the antinode (in blue, labelled AN). The input parameters are the

same as in Fig. 1.

spectral function. In a clean d-wave superconductor, the

low-energy excitations come from the vicinity of four point

nodes, on the Brillouin zone diagonal, whereas those at the gap

edge are dominated by the antinodes at the Brillouin zone edge.

We would like to understand whether we can still make such a

momentum space-based identification in the disordered systems of

Fig. 1. To address this question, we compute the spectral function

A(k, ω), where we Fourier transform the relative coordinate

variation and spatially average the centre-of-mass variation of the

Green’s function in a disordered system (see the Methods section

for details).

Figure 2a,b shows the low-energy A(k, ω); this shows the

k-states that contribute to the DOS in Fig. 1c. We see that the

four point nodes of a clean d-wave superconductor are extended

into small ‘arcs’ owing to disorder in the correlated system

(Fig. 2a), whereas the uncorrelated system shows much more

significant extension (Figure 2b). We should note that, within

our numerical resolution, the ‘arcs’ seen here are consistent with

highly anisotropic two-dimensional regions in k-space, with a small

width perpendicular to the underlying Fermi surface. A similar

effect has previously been found in a T-matrix calculation
27

that

ignores correlations. The new feature of our results is the role of

correlations in suppressing the extension of the ‘arcs’.

We next compare the effect of disorder on the nodal and

antinodal quasiparticle peaks in A(k, ω). In a clean d-wave

superconductor, the nodal A(kN,ω) is a delta function at ω = 0,

whereas the antinodal A(kAN,ω) has two delta-function peaks of

equal weight situated at ω = ±∆0, the maximum of the d-wave

gap. Disorder leads to a broadening of these peaks, but as seen

from Fig. 2c the nodal peak is much sharper in energy as compared

with the antinodal one in the strongly correlated superconductor. A

simple golden rule estimate of the impurity scattering rate suggests

that the linewidths should scale like the DOS at the excitation

energy. As we have already seen that the impurity-induced DOS

in the correlated system is greatly suppressed relative to the

uncorrelated BdG result at low energies, it is self-consistent that

the gapless nodal states are much less affected by disorder than the

gapped antinodal ones.
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Can	  we	  gain	  some	  analy<cal	  insight	  into	  this	  result?
(S.	  Tang,	  E.M.,	  V.	  Dobrosavljevic,	  PRB	  91,	  020501(R)	  (2015)
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•	  δχij fluctuaPons	  are	  negligible.
•	  Integrate	  out	  δλi	  fluctuaPons	  and	  get:
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where	  we	  used:
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•	  But	  the	  charge-‐pair	  suscepPbility	  is	  featureless	  and	  of	  order	  1:
•	  Gap	  and	  charge	  fluctuaPons	  are	  suppressed	  by	  strong	  correlaPons	  for	  the	  same	  reason!

	  ⇒	  ‘Mo-ness’-‐induced	  healing
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RAPID COMMUNICATIONS

MOTTNESS-INDUCED HEALING IN STRONGLY . . . PHYSICAL REVIEW B 91, 020501(R) (2015)

FIG. 1. (Color online) Spatial variations of normalized local SC gap !i

!0
for three impurities (first column) and the corresponding power

spectra S(k), S(k)loc, and S(k)nonloc (second to fourth columns), in the presence (top) and in the absence (bottom) of correlations for x = 0.2.
The strong suppression of gap oscillations by correlations can be traced to the dominance of the local, spherically symmetric power spectrum
[Sloc(k)] over the nonlocal anisotropic part [Snonloc(k)].

In order to quantify the localized nature of the healing
effect, we are led to a natural definition of a “healing factor”
h in the d-wave SC state,

h =
∫

Snonloc(k)d2k∫
Sloc(k)d2k

, (8)

where the integration is over the first Brillouin zone. It
measures the relative weight of nonlocal and local parts of
the gap PS. The healing factor as a function of doping is
shown in the left panel of Fig. 2 for the noncorrelated (blue)
and correlated (red) cases. The contrast is striking. When
correlations are present, h is extremely small up to 30% doping
and the gap disturbance is restricted to a small area around
the impurities. In contrast, without correlations, significant
pair fluctuations occur over quite a large area for all dopings
shown. We conclude that the strong dominance of the local

FIG. 2. (Color online) Left: The healing factor h as a function
of doping in the uncorrelated case (blue curve with squares), in the
correlated case (red curve with circles), and in the correlated case
without δχi fluctuations (green curve with diamonds). Right: Doping
dependence of the SC (ξS , red curve with circles) and normal state
(ξN , blue curve with squares) healing lengths. The green curve with
diamonds gives ξS calculated within the minimal model (see text).

part over the highly anisotropic nonlocal contribution caused
by correlations is the key feature behind the healing process.

The shape of Sloc(k) shows that the gap disturbance created
by an impurity is healed over a well-defined distance, the
“healing length” ξS . This length scale can be obtained by
expanding the inverse of M!,loc(k) [or, equivalently, M!(k)]
up to second order in k2, thus defining a Lorentzian in k space,

M!,loc(k) ≈ 1
A + Bk2

. (9)

The SC healing length is then given by ξS =
√

B/A. The x
dependence of ξS is shown in red in the right panel of Fig. 2.
It is of the order of one lattice spacing in the relevant range
0.15 < x < 0.3. It should be noted that precisely the same
length scale also governs the healing of charge fluctuations in
the SC state, showing that this phenomenon is generic to the
strongly correlated state. A similar procedure can be carried
out for the charge fluctuations in the normal state, thus defining
a normal state healing length ξN [30]. The blue curve of the
right panel of Fig. 2 shows the x dependence of ξN , which is
also of the order of one lattice spacing.

Mottness-induced healing. The healing effect we have
described comes almost exclusively from the δri and δλi

fluctuations: h is hardly affected by the δχi field. If we suppress
the δχi fluctuations completely [30], there is only a tiny change
in the results, as shown by the green curve in the left panel
of Fig 2. The same is not true, however, if we turn off either
δri or δλi or both. We conclude that the healing effect in the
d-wave SC state originates from the strong correlation effects
alone, rather than the spinon correlations.

Within the linear approximation we are employing, all fluc-
tuation fields (δ!, δr , etc.) are proportional, in k space, to the
disorder potential ε(k). Therefore, they are also proportional
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FIG. 3. (Color online) Local (left) and nonlocal (right) parts of
the charge-fluctuation power spectra N (k)loc and N (k)nonloc in the
presence of strong correlations for x = 0.2.

to each other. In particular, given the centrality of the strong
correlation fields, it is instructive to write the gap fluctuations
in terms of the slave boson fluctuations,

δ"(k) = −2χpc(k)rδr(k) = χpc(k)δn(k). (10)

In the last equality, we used ni = 1 − r2
i , which enables

us to relate two physically transparent quantities: the gap
and the charge fluctuations. Indeed, this will provide crucial
physical insight into the healing process. By focusing on
the linear charge response to the disorder potential δn(k) =
n0Mn(k)ε(k), we can, in complete analogy with the gap fluc-
tuations, define a PS for the spatial charge fluctuations, N (k) =
M2

n(k). This PS can also be broken up into local [Nloc(k) =
M2

n,loc(k)] and nonlocal {Nnonloc(k) =
[
Mn(k) − Mn,loc(k)

]2}
parts, as was done for the gap-fluctuation PS. These two
contributions, obtained from the solution of the full linearized
equations, are shown in Fig. 3. The charge PS in the
correlated d-wave SC state is also characterized by a smooth,
almost spherically symmetric local part and a negligibly
small anisotropic nonlocal contribution. Note also the strong
similarity between the local PS for gap (top row of Fig. 1) and
charge fluctuations. This shows a strong connection between
the gap and charge responses. Evidently, this is also reflected
in real space, where the charge disturbance is healed in the
same strongly localized fashion as the gap disturbance [30]. In
fact, the local part of the charge response function Mn,loc(k)
can be shown to be well approximated by a Lorentzian [30]
and we can write for small k,

δ"loc(k) ≈ −χpc (k = 0)
8r2/λ

k2 + ξ−2
S

ε(k), (11)

where the SC healing length ξS can be expressed in terms of
the Green’s functions of the clean system [30]. The relations
implied by Eqs. (10) and (11), as well as the doping dependence
of the quantities in them, could be tested in scanning tunneling

microscopy (STM) studies and would constitute an important
test of this theory.

Equations (10) and (11) allow us to obtain a clear physical
picture of the healing mechanism. The spatial gap fluctua-
tions can be viewed as being ultimately determined by the
charge fluctuations. Furthermore, their ratio χpc(k), which
is essentially a pair-charge correlation function, is a rather
smooth function of order unity,only weakly renormalized by
interactions. Therefore, it is the strong suppression of charge
fluctuations by “Mottness,” as signaled by the r2 factor in
Eq. (11), which is behind the healing of gap fluctuations. This
elucidates the physics of healing previously found numerically
[15–17]. It also suggests that the healing phenomenon is
generic to Mott systems [18] and is not tied to the specifics of
the cuprates.

A minimal model. Interestingly, the crucial role played by
the strong correlation fields (ri and λi) suggests a “minimal
model” (MM) for an accurate description of the healing pro-
cess, which we define as follows: (i) The spatially fluctuating
strong correlation fields ri and λi are first calculated for the
self-consistently determined, fixed, uniform " and χ , and then
(ii) the effects of their spatial readjustments are fed back into
the gap equation (3) in order to find δ"i [30]. The accuracy
of this procedure can be ascertained by the behavior of the
healing factor: It is numerically indistinguishable from the
green curve in the left panel of Fig. 2. Furthermore, the value
of ξS calculated within the MM differs from the one obtained
from the solution of the full linearized equations by at most
20% (red and green curves in the right panel of Fig. 2). Besides
its accuracy, the advantage of this MM description lies in the
simplicity of the analytical expressions obtained. As shown in
the Supplemental Material [30], it provides simple expressions
for the important quantities χpc(k) and ξS .

Conclusions. In this Rapid Communication, we have
found an inextricable link between the healing of gap and
charge disturbances in strongly correlated superconductors,
suggesting that this phenomenon is generic to any system
close to Mott localization. An important experimental test of
this link would be provided by STM studies of the organic
superconductors [12] and maybe the pnictides [13]. Whether
it is also relevant for heavy fermion systems [32] is an open
question left for future study.
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What	  about	  Tc	  suppression	  by	  disorder?
(S.	  Tang,	  E.M.,	  V.	  Dobrosavljevic,	  in	  prepara<on)

state at high temperature, the order parameters are
zero. In the uniform RVB state !IV in Fig. 21", only ! is
finite. In the spin-gap state !II", " and ! are nonzero
while b=0. This corresponds to spin-singlet supercon-
ductivity with incoherent charge motion and can be
viewed as the precursor phase of superconductivity. This
state has been interpretted as the pseudogap phase
!Fukuyama, 1992". We note that at the mean-field level,
the SU!2" symmetry is broken by the nonzero #B in Eq.
!45" and the d-wave pairing state is chosen because it has
lower energy than the staggered flux state. We shall re-
turn to this point in Sec. X. In the Fermi-liquid state !I",
both ! and b are nonzero while "=0. This state is similar
to the slave-boson description of the heavy fermion
state. Last, when all the order parameters are nonzero,
we obtain the d-wave superconducting state !III". This
mean-field theory, in spite of its simplicity, captures
rather well the experimental features as described in
Secs. III and IV.

Before closing this section, we mention the slave-
fermion method and its mean-field theory !Arovas and
Auerbach, 1988; Yoshioka, 1989; Chakraborty et al.,
1990". One can exchange the statistics of fermions and
bosons in Eqs. !31" and !32". Then the boson has the spin
index, i.e., bi$, while the fermion becomes spinless, i.e.,
fi. This boson is called the Schwinger boson and is suit-
able for describing the antiferromagnetically long-range
ordered state. The large-N limit of Schwinger boson
theory gives the antiferromagnetically long-range or-
dered state for S=1/2 spins. The holes are represented
by the spinless fermion forming a small hole pocket
around k= !% /2 ,% /2". The size of the hole pocket is
twice as large as the usual doped spin-density wave state
due to the absence of the spin index. Therefore the
slave-fermion method violates the Luttinger theorem.
Finally, we mention that by introducing a phase string in
the slave-fermion approach one obtains a phase-string
formulation of high-Tc superconductivity !Weng et al.,
2000; Weng, 2003". In such an approach both spin-1 /2
neutral particles and spin-0 charged particles are bosons
with nontrivial mutual statistics between them.

IX. U!1" GAUGE THEORY OF THE UNIFORM RVB STATE

The mean-field theory only enforces the constraint of
no double occupancy on average. Furthermore, fermi-
ons and bosons introduce redundancy in representing
the original electron, which results in an extra gauge de-
gree of freedom. To include these effects we need to
consider fluctuations around the mean-field saddle
points, which immediately become gauge theories, as
first pointed out by Baskaran and Anderson !1988".
Here we review the early work on the U!1" gauge
theory, which treats gauge fluctuations on the Gaussian
level !Ioffe and Larkin, 1989; Ioffe and Kotliar, 1990;
Nagaosa and Lee, 1990; Lee and Nagaosa, 1992". The
theory can be worked out in some detail, leading to a
nontrivial method for obtaining physical response func-
tions in terms of the fermion and boson ones, called the
Ioffe-Larkin composition rule. It highlights the impor-
tance of calculating gauge-invariant quantities and the
fact that the fermion and bosons only enter as useful
intermediate steps. The Gaussian U!1" gauge theory was
mainly designed for the high-temperature region of the
optimally doped cuprate, i.e., the so-called strange-metal
phase !IV" in Fig. 21. We shall describe its failure in the
underdoped region, which leads to the SU!2" formula-
tion of the next two sections. The Gaussian theory also
misses the confinement physics, which is important for
the ground state.

A. Effective gauge action and non-Fermi-liquid behavior

As discussed in Sec. III, the phenomenology of the
optimally doped Mott insulator is required in order to
describe the two seemingly contradictory features, i.e.,
the doped insulator with small hole carrier concentra-
tion and electrons forming the large Fermi surface. The
former is supported by various transport and optical
properties, such as the Drude weight proportional to x,
while the latter is supported by the angle-resolved pho-
toemission spectroscopy spectra in the normal state of
optimally doped samples. In the conventional single-
particle picture, the reduction of the first Brillouin zone
due to the antiferromagnetically long-range ordered dis-
tinguishes these two. Namely, small hole pockets with
area x are formed in the reduced first Brillouin zone in
the antiferromagnetically long-range ordered state,
while the large metallic Fermi surface of area 1−x ap-
pears otherwise. The challenge for the theory of the op-
timally doped case is that aspects of the doped insulator
appear in some experiments even with the large Fermi
surface. Also it is noted that ARPES shows that there is
no sharp peak corresponding to the quasiparticle in the
normal state, especially at the antinodal region near k
= !% ,0". The Fermi surface is defined by a rather broad
peak dispersing near the Fermi energy. These strongly
suggest that the normal state of high-temperature super-
conductors is not described in terms of the usual
Landau–Fermi-liquid picture.

A promising theoretical framework for resolving this
dilemma is the slave-boson formalism introduced above.

FIG. 21. Schematic phase diagram of the U!1" mean-field
theory. The solid line denotes the onset of the uniform RVB
state !!#0". The dashed line denotes the onset of fermion
pairing !"#0" and the dotted line denotes mean-field Bose
condensation !b#0". The four regions are !I" Fermi liquid !
#0, b#0; !II" spin gap !#0, "#0; !III" d-wave supercon-
ductor !#0, "#0, b#0; and !IV" strange metal !#0. From
Lee and Nagaosa, 1992.
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•	  In	  the	  overdoped	  region,	  Tc	  is	  determined	  by	  the	  onset	  
of	  pairing
•	  At	  Tc,	  the	  other	  fields	  are	  well	  condensed:	  we	  take	  
them	  at	  their	  T=0	  value.
•	  We	  can	  extend	  Abrikosov-‐Gorkov	  theory	  of	  Tc	  
suppression	  by	  non-‐magnePc	  impuriPes	  to	  this	  strongly	  
correlated	  superconductor.
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Conclusions

★	  Inhomogeneous	  MoZ	  state:	  
★	  Behavior	  at	  the	  domain	  wall	  is	  important.
★	  Domain	  wall	  center:	  incoherent/bad	  metal	  or	  insulator.

★	  Strongly	  correlated	  superconductor	  with	  non-‐magnePc	  impuriPes:
★	  MoZness-‐induced	  healing	  of	  gap	  fluctuaPons.
★	  Sowening	  of	  the	  impurity	  potenPal,	  robustness	  of	  Tc	  .
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Thanks!
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