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The Mott transition as a liquid-gas transition

(Castellani et al. PRL (1979); Rozenberg et al. PRL (1999); Kotliar et al. PRL (2000))

P. Limelette et al., Science 302, 89 (2003)
Liquid-gas transition
T*
Mott
insulator

Fermi
liquid

Anti-ferromagnetic
insulator

(V; 020CFg 011),0
e First-order line ending at a critical point 0.989770.011727=3

e Can go continuously from one state to the other
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Effects of inhomogeneities and finite temperature

Scanning Infrared Microscopy (M. M. Qazilbash et al., Science 38, 1750 (2007))
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Ivan Schuller’s talk
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Mott transition: Landau functional description

(Rozenberg et al. PRL (1999); Kotliar et al. PRL (2000)
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e The domain wall interpolates between metal and insulator
e At the center of the domain wall is the unstable solution
e The unstable solution is crucial!
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Taking into account inhomogeneities (disorder): statDMFT

HDH = —1 Z ( Cio jJ+C;UCZJ) + 20’ ’LO'—I_UZ ZT ’LT ’L\L zi

(i,7),0 1,0
! \ { 1/W; e < W/2

Pei) = 0; otherwise

e Statistical Dynamical Mean Field Theory \4 \ \

(Kotliar and Dobrosavljevié, PRL 78, 3943 (1997)):
(i) assume local, though spatially fluctuating, self-

energies;

(ii) self-consistency: each site “sees” the spatially
fluctuating density of states of its neighbors.

(iii) Note that this is exact at U=0 (including

localization effects)
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Effects of inhomogeneities and finite temperature

VO Scanning Infrared Microscopy (M. M. Qazilbash et al., Science 38, 1750 (2007))
2

StatDMFT shows meso-scale space fluctuations:
e large domain walls between Mott insulator and
metallic droplets

Martha Suarez Villagran’s PhD Thesis (2014)
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Effects of inhomogeneities and finite temperature
VO Scanning Infrared Microscopy (M. M. Qazilbash et al., Science 38, 1750 (2007))
2
StatDMFT shows meso-scale space fluctuations:
e large domain walls between Mott insulator and
metallic droplets
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Let’s look at the behavior at the domain
wall center: the unstable solution
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The unstable solution along the 1st order line

(Tsung-Han Lee, J. Vucicevi¢, D. Tanaskovi¢,E. M., V. Dobrosavljevi¢, in preparation)

Local DOS: clear quasiparticle peak

0.75 T 0.1Tc
cramc cramc

N(w)r(1-Z Nw—dl Resilient quasiparticles (w. xu et al., PRL 111, 03642 (2013))
* Incoherent metal
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The unstable solution at constant U

(Tsung-Han Lee, J. Vucicevi¢, D. Tanaskovi¢,E. M., V. Dobrosavljevi¢, in preparation)

Local DOS: clear quasiparticle peak even at lowest T

0.6 T. 0.13 T,

e Resilient quasiparticles (Z<<1) (W. Xu et al., PRL 111, 03642 (2013))
% (w) =~ (1— Z_l) w— i *®Scattering rate >> Mott limit: very bad conductor
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Strongly correlated disordered superconductors

High T. superconductors are known to be fairly insensitive to disorder
(H. Alloul et al., RMP 81, 45 (2009))

REVIEW The ‘consensus’ document

doi:10.1038/naturel14165

From quantum matter to high-temperature
superconductivity in copper oxides

B. Keimer!, S. A. Kivelson?, M. R. Norman®, S. Uchida* & J. Zaanen®
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Strongly correlated disordered superconductors

High T. superconductors are known to be fairly insensitive to disorder
(H. Alloul et al., RMP 81, 45 (2009))

SC Density of States

K. McElroy et al., PRL 94, 197005 (2005)
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Strongly correlated disordered superconductors

HtJ_ th Cio jO'—|_JZS S —I_Zg% CioCio nzgl)

1,J,0 (%,7)

PFOJECtEd RVB/S|3V€ bosons (Anderson 1987; Kotliar & Liu, Zhang et al., Suzumura et al.,
Yokoyama & Shiba 1988; Paramekanti et al. 2001)

Cio = bific =71ific; (holons; spinons)
e; — €;+ A\;;(renormalized energies)
Xii = Yo <f,;fafja> ; (singlet bonds)
AVIIES <fz'Tfj¢ — fwfﬂ> (SC order parameter) =

Remarkable similarities with the experiments
(Garg et al., Nature Phys. 4, 762 (2008))

Note: no gauge flucuations, just saddle point! | ®
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Can we gain some analytical insight into this result?
(S. Tang, E.M., V. Dobrosavljevic, PRB 91, 020501(R) (2015)

r, = To+ or; ~ To + M{kgk
Work to linear order in disorder &; 0+ 0+ ka ¥
Xij = Xo+0Xxij = Xo+ M ek
ANij = Do+ 00~ Ao+ M e

* 0y fluctuations are negligible.
* Integrate out 0/, fluctuations and get:

__ . pc __ . pc
0A;; = Xij:k (—=2rkory) = Xij;kdnk
where we used: ny = 1 — i = —2r,6r, = dny,

e But the charge-pair susceptibility is featureless and of order 1: X" ~ O (1)
e Gap and charge fluctuations are suppressed by strong correlations for the same reason!
= ‘Mottness’-induced healing
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Mottness-induced healing
(S. Tang, E.M., V. Dobrosavljevic, PRB 91, 020501(R) (2015)

Gap fluctuations for 3 impurities Charge fluctuations for 3 impurities

x=0.2 x=0.2

When strong correlations are turned off:
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What about T. suppression by disorder?

(S. Tang, E.M., V. Dobrosavljevic, in preparation)

! e In the overdoped region, T, is determined by the onset
I overdoped y
i of pairing (A;;) # 0
0 . e At T, the other fields are well condensed: we take
N I . them at their T=0 value.

N L - * We can extend Abrikosov-Gorkov theory of T¢
T (i) #0 (xij) #0  suppression by non-magnetic impurities to this strongly
PR K\\\ \ correlated superconductor.

; »
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The pair-breaking scattering rate: the pairs do not scatter off the bare impurity but the
dressed disturbance created by the local (charge) rearrangements
Angular dependence of

1 nm* [*7 the gap function

-~ Trenorm (0)]2 (1 —cos 20)/d6

Tpb 2 Jo
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What about T. suppression by disorder?

(S. Tang, E.M., V. Dobrosavljevic, in preparation)
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Conclusions

* Inhomogeneous Mott state:
* Behavior at the domain wall is important.
* Domain wall center: incoherent/bad metal or insulator.
* Strongly correlated superconductor with non-magnetic impurities:
* Mottness-induced healing of gap fluctuations.
* Softening of the impurity potential, robustness of 7. .
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Thanks!

Wednesday, July 1, 2015



