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Task

● Warm correlated metals
● What precise things can be said about 

correlated metal at room T & above?
● What are ingredients of “incoherent soup”?



  

Outline

● Motivatation: bad metallic transport in 
ruthenates

● Results
● Single band: Resillient qps 
● Multi band: Ruthenates as Hund's metals
● Entropy and thermopower; revealing DOF by 

transport : ab-plane Seebeck in Sr
2
RuO

4

● Conclusions

 



  

Cold ruthenates do interesting 
things... 

T
FL Hussey et al. PRB'98

FLs at low T



  

...but here we prefer them warm.
bad metals at high T

Hussey et al. PRB'98
Tyler et al, PRB'98 Cao et al. Solid State Comm (2004)

Sr
2
RuO

4



  

Warm ruthenates are  “bad metals” 
as k

F
l<1 at high T

Gunnarsson, Calandra & Han, RMP (2003)
Hussey, Takenaka & Takagi, Phil. Mag. (2004) 

WHAT IS A BAD METAL?

DOES MIR HAVE MEANING FOR SCES? 

WHEN DO QP VANISH?

SHOULD ONE BE THINKING IN TERMS OF QPs 
AT ALL? 



  

Dynamical mean-field theory

Georges et al. RMP'96
Continous time Monte Carlo solvers: Gull et al. RMP'11; 
Parcollet et al.: TRIQS project 
NRG solver : Zitko: NRGLJUBLJANA



  

DMFT model results : doped (single 
band) Mott insulator

X.Deng, JM et al. PRL'13
See also J. Vucicevic et al., PRL'15, 
POSTER!

k
F
l =1

U=4D, doping 0.2



  

… and calculated A(k,ω)
resillient quasiparticles



  

Comparison to thermodynamic qs.

● Quasiparticles survive to regimes where 
entropy is large; two-fluid picture with coexisting 
quasiparticles & local moments 



  

About resistivity saturation & 
generalized Drude

● Scattering rate saturates, 

resistivity not



  

Carrier number 

● Within Drude description, at high temperature τ saturates, 
plasma frequency (effective carrier number) keeps 
dropping

● Bad metal is like doped semiconductor, controlled by T-
dependence of carrier # not their scattering



  

Correlations in multiorbital systems: 
Sr

2
RuO

4

● Ruthenates are not Mott insulators
● bands broad W=3eV, U small U<W
●  why correlated?

● 4 els in 3 t
2g

 orbitals

JM et al. PRL'11



Sr
2
RuO

4  
within LDA+DMFT

● Wannier function 
constructed out of t2g 

● Interaction on t
2g 

atom



Hund's rule coupling

●LDA + DMFT reproduces exp. masses ; U=2.3 <W

● J causes correlations, orbital differentiation and low 
coherence scale

JM et al. PRL'11



Hund's metals

2 effects of Hund's coupling: 
Except at half filling it increases Uc
It suppresses Z when there is more than 
one el. de'Medici, JM, Georges, PRL'11.

Hund's metals: work by groups of 
Kotliar and Haule, and Millis and Werner, 

Georges, de'Medici, JM, Annu Rev. CM'13

Effective Kondo problem 
has a suppressed spin-spin Kondo
coupling (or even ferro) due
to J.  Suppressed spin-coherence scale.
Yin, Haule, Kotliar PRB'12
Okada PTP'73; Aron Kotliar PRB'15



Sr
2
RuO

4
: Crossover to  

incoherent regime
●Scattering rate:
 Fermi liquid                                  < kT 

crosses over above T*  from ~T2 to ~ T 

At T*: Gamma/kT =1



NMR



ARPES

Shen et al.,PRL'07 Wang et al.,PRL'04 Ingle et al.,PRB'05

Disappearence of (resillient!) q.ps. at high T



  

Characterizing the incoherent 
regime better: thermopower



  

Seebeck in ruthenates

● Low T: linear in T (Mott)
● Higher T: saturation
● Why ~universal behavior ? Entropic origin? 

(plot from S. Hebert)
CRISMAT
Klein,Hebert  et al PRB'06

VALUE  
     ?

LDA 
slope



  

Entropic considerations? 
Heikes' formula                

● As chem. pot ~ T at large T

● Two possibilities:

● 1. “Heikes” :evaluate μ/T in atomic limit
● 2. Take μ/T from calculation and evaluate Seebeck

● Shastry: Kelvin formula;
(wrong) static limit of Kubo  

T
Silk, Terasaki, Schofield, PRB'09
Peterson, Shastry, PRB'10

Chaikin, Beni, 
PRB'76



  

● Heikes formula succesful in localized systems, 
e.g. La

1-x
Sr

x
VO

3
 next to the MIT 

● Here we have a metal (admitedly a bad one). 
Are we expecting entropic/atomic estimates to 
work here?

Uchida et al. PRB'11



Seebeck in LDA+DMFT



  

Inplane thermopower

● Kelvin formula
describes data
well

● Seebeck coefficient in 214 follows ent. consid.
● What does this teach us?

Xu, Xu et al PRL'08
Keawprak et al. Mat. Trans'08



  

DOF

● Spins fluctuate whereas orbitals are quenched!

Impurity problem of Hund's metals
has ferro spin and antiferromagn. orbital 
Kondo coupling. (Yin, Haule, Kotliar, PRB'13)



  

2 stage decoherence

● Entropy

(i) Liberated spins

(ii) Liberated orbital moments



  

Consequences of this for Seebeck

● Knowing DOF one can attempt Heikes analysis

JM and A. Georges, arXiv'15
See also Klein et al. PRB'06

d
N-1

=(2S+1)=4  ; N-1=3, S=3/2
d

N+1
=(2S+1)=2 ; N+1=5, S=1/2



  

Can Seebeck be universally associated to 
entropy and hence be used as a probe to 
characterize degrees of freedom?



  

No! C-axis Seebeck (prediction)



  

Limitations of entropic 
interpretations ; noninteracting 

example

Silk, Terasaki, Schofield, PRB'09



  

Transport functions

Strong peak at w<0
Present already in LDA 



  

“Hole filtering mechanism”

h



  

Conclusions

● Resillient quasiparticles vanishing at MIR
● Hund's coupling causes correlations 
● Two stage crossover to incoherent state
● Seebeck at room T points to  quenched orbitals 

and free spins



  



  

Resistivity



  

THANK YOU!



  

Quantum oscillations and non-
Drude behavior in CaRuO

3

Schneider et 
al., PRL'14



  

Non-Drude/power law optics in 
CaRuO

3 
is a band structure effect

● Series of minigaps opened by orthorombic 
distortions in the meV range!

Dang, JM, Georges, Millis, arXiv'15



  

Consequences

● Existence of RQPs enables rewriting transport 
a la Boltzmann

● Shifts thinking from “what is going on with  
scattering” to “what is going on with 
dispersions”

● Success of such thinking: 
explaining fine structure of 
Drude peak in optical 
spectroscopy of Sr

2
RuO

4

Deng, JM et al, PRL'13
Wu, Kotliar, Haule,”Hidden FL” 
PRL'13

Stricker, JM et al. PRL'14



  

Transport in DMFT (i)

● Vertex correction vanish, from Kubo formula one has

● For semicircular DOS:

● Velocity distribution function (units [x]2-d  [ω])



  

Transport in DMFT (ii)

● At low T, only ω~0, k~kF 
 states contribute.

a natural unit for conductivity, 
used henceforth

● If evaluated for a 2d electron gas, one gets 

kFl times the conductivity quantum, thus this choice 
corresponds to ρMIR for criterion kFl=1

● Velocity distribution function (units [x]2-d  [ω])



  

Real world (i.e.bandstructure) 
effects

●  c-axis Seebeck

 



  

Ruthenates via Heikes (slide from S. 
Hebert)

(slide from S. Hebert)

2 remarks
What happens to x?

Where are orbital 
degrees of freedom?



  

Ruthenates via Heikes (slide from S. 
Hebert)

(slide from S. Hebert)

2 remarks
What happens to x?

Where are orbital 
degrees of freedom?



  

t
2g

 atom

Negative result if orbital moments are 
kept!



Sr 2 RuO 4 :  e l .  s t ruc tu re   

Oguchi, PRB'95
Singh, PRB'95

Mackenzie et al, 
PRL'96

In ionic picture, 4 
electrons on Ru; 
crystal field splitting → 
t
2g

 orbitals: xy and 

degenerate xz, yz

Wide xy band (2d like 
ϒ sheet); narrower 
xz, yz quasi 1d.

Fermi surfaces of DFT, 
quantum oscillations, 
ARPES agree quite 
well

Damascelli, Shen et al., 
PRL'00



  

 “Phase” diagram 

● QPs  persit until close to MIR (~ Brinkman-Rice 
scale δD)



  

Quantum oscillations and non-
Drude behavior in CaRuO

3

Schneider et 
al., PRL'14



  

Non-Drude/power law optics in 
CaRuO

3 
is a band structure effect

● Series of minigaps opened by orthorombic 
distortions in the meV range!

Dang, JM, Georges, Millis, arXiv'15
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