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Questions

1. Strongly correlated 2D systems:

Copper oxides
Nature of the insulating ground state?

Quantum phase transition from an insulator to
a superconductor with doping?

2. Cuprates:

Emergence of high-T_ superconductivity from a
doped Mott insulator?

[from C. Varma, Nature 468, 184 (2010)]
* Quantum criticality
* Role of disorder
 Competing orders
* Vortex matter physics



Outline

Our experiments on La-based cuprates probe charge order:

Nature of the insulating ground state at low doping:
charge cluster glass

Doping-driven transition from insulator to superconductor:
coexistence and competition between different orders

Magnetic-field-driven superconductor-insulator transition (SIT):
the interplay of quantum criticality and vortex matter physics

Dynamics near thermally-driven superconducting transition:

dynamical heterogeneities
La, Sr CuO,



Y. Ando, May 2005 talk in Dresden:

0 T - solid lines;
60 T - symbols

Y.A.: Electron self-organization?

Top right: Ando et al., PRL 87, 017001 (2001);
Bottom right: Boebinger et al., PRL 77, 5417 (1996).



Nature of the ground states and evolution with doping?

Strange metal

[C. Panagopoulos and
V. Dobrosavljevi¢, PRB
72, 014536 (2005) and
references therein|

/ \Iomogeneous metal

Charge glass insulator Quantum
(1n.sulat1ng cluster or Inhomogeneous, glass transition?
stripe glass) conducting glassy
Superconductor-insulator state — bad metal?
transition

Spin




Lightly doped La, Sr CuQO,: Experimental protocols | La, Sr.CuO,
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A. Resistance noise spectroscopy: Fluctuations ‘0 ‘0
* PDFs, power spectrum, second spectrum c ... ¢
[RaiCevic et al., Proc. SPIE 6600, 660020 (2007); Phys. Rev. Lett. °0 o °0

101, 177004 (2008); Phys. Rev. B 83, 195133 (2011)] ezt é\j o
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B. History-dependent transport

1) Zero-field cooled vs. field-cooled resistance

2) Hysteretic magnetoresistance o @

2.
[Raicevi¢ et al., Phys. Rev. B 81, 235104 (2010); J. Supercond. Nov. - © ..‘ ® o
Magn. 25, 1239 (2012); Shi et al., Physica B 86, 155135 (2012); S T O &
Nature Mater. 12, 47 (2013)] tet
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C. Dielectric measurements

[Park et al., Phys. Rev. Lett. 94, 017002 (2005); Jelbert et al.,
Phys. Rev. B 78, 1325113 (2008)]

—

CuO, planes

Short-range AF order: in-plane AF domains; '\
holes in domain walls




In-plane resistance fluctuations (noise)

* Single crystal La, Sr CuO,, x=0.03; T(,=7-8 K
* Variable-range hopping transport at low T

 noise: Gaussian at “high” T

e at low T (<0.2 K), non-Gaussian noise

metastable states (out-of-equilibrium)



Noise statistics

Very low T: magnetic background frozen

Power spectrum: S, ~ 1/f*

Slowing down of the dynamics
as T—0

Increasing non-Gaussianity of the
noise as 7 — 0
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Second spectrum ($,) — “noise of the noise”

(Voss&Clarke, Restle& Weissman, Seidler&Solin)

S, (f,,f): power spectrum of the fluctuations of Si(f) with time

(Fourier transform of the autocorrelation function of the
time series of Si(f); fourth-order noise statistic)

S, « 1/f, 18

1- $=0 === Gaussian (uncorrelated)
1- > (0 ===) non-Gaussian (correlated)
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Increase of correlations as T — 0

Noise statistics independent of both B and

magnetic history (unlike conventional spin

glasses, but like a spin-polarized 2DES)
=====D> charge, not spin!
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Scaling of the second spectra La,_Sr.CuO,, x=0.03

Measure of correlations - T=0118K,B=6T, IA|| ab
" Y
- can distinguish between % 3 _ - A‘A;: s
different models (Weissman): o , o goo05Hz T =iaa ¥ oM
- interacting droplet model @ W 0001H |
- hierarchical, tree-like model = 7 s : gggi ::::
L
S, decreases with f 0.001 0.01
for a fixed f,/1, £

consistent with droplet picture

. . hmali 1 , PRL 85, :
(short-range interactions) (Schmalian and Wolynes 85, 836 (2000)

“stripe” glass in a model with competing
interactions on different length scales,
Competing interactions NO disorder)

on different length scales

Different from metallic spin glasses
and a 2D Coulomb glass — systems with
Charge cluster glass long-range interactions: hierarchical!




History dependence in transport in non-SC samples: T
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Hysteretic behavior of the low-T positive MR
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Memory in R erased for T > 1K, T, = 7K:
holes do not merely “follow” the spins

(R,, R,,; Bl|c and Bj|ab)

Difference between field-cooled and
zero-field cooled resistance R(B=0)

Use these effects as “easy tools” for
detecting charge glassiness as a
function of doping.




Temperature dependence of the in-plane resistivity

X T, (K)
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x=0.03 and x=0.05: 2D variable-range hopping
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High-field magnetoresistance and superconducting fluctuations

Non-SC sample

Normal-state resistivity (dashed lines) at
low fields:

pu(H) = p,(H=0) + o H"
Max ot~ 0.01 at~10T)

H ’(T) — field above which SCFs are
suppressed and normal state is restored

Contribution to conductivity from
SCFs:

Aoscp(LH)= p(TLH) - p, (TH)

LSCO: Harris et al., PRL 75, 1391 (1995), Rourke et al., Nature Phys. 7, 455 (2011);
Shi et al., Nature Mater. 12, 47 (2013); Shi et al., Nature Phys. 10, 437 (2014)
YBCO: Rullier-Albenque et al., PRL 99, 027003 (2007); PRB 84, 014522 (2011)



Doping-driven superconductor-insulator transition in La, Sr CuQj,

H||l c

[X. Shi ez al., Nature Mater. 12, 47 (2013)]

- Charge glass in the
insulating regime at
low doping

- Suppression of charge
glassiness with doping

- Coexistence and
competition of charge
glass with superconducting
fluctuations (SCFs) on the
insulating side of the
superconductor-

insulator transition (SIT)

Onset of SIT influenced
by charge glass order




H-field-driven superconductor-insulator transition in cuprates

*  Questions:
o Zero-temperature H-field-driven superconductor-insulator transition
(SIT) in 2D? Quantum criticality? (scaling)

(See “Conductor-Insulator Quantum Phase Transitions”, ed. by Dobrosavljevic,
Trivedi, Valles; Oxford University Press, 2012, for review and open questions)

o Nature of the field-induced resistive state?

o Interplay of quantum criticality and vortex matter physics?

 Experiments:

o Magnetoresistance over a wide range of H and 7 (down to 0.09 K)

o Low-T. (~4 K) La, Sr CuO, samples grown using different methods

* Conclusions:
o Three distinct phases as 7— 0; two quantum critical points



Sketch of the (7, H) phase diagram in underdoped La, Sr CuO, :
Interplay of vortex physics and quantum critical behavior

Tl*

T,* ~ |8~ zv ~0.7
2D SIT in the clean limit
(RD/layer ~ 18 kﬂ)

[X. Shi ez al., Nature
Phys. 10, 437 (2014)]

Tz*

\ose glass

T,* ~|8|* , zv ~ 1.15
2D SIT in the dirty limit
(RD/layer ~ 97 kﬂ)



Sketch of the (7, H) phase diagram in underdoped La, Sr CuO, :
Interplay of vortex physics and quantum critical behavior

[X. Shi ez al., Nature

. Phys. 10, 437 (2014)]
1

T,

\ose glass



H=0 thermally-driven superconducting transition in a
highly underdoped La, Sr CuO,

Extent of SCFs from MR:

x=0.07
T, ,=4K

Fermi liquid
behavior
above ~15 K

[Pn(H) _ pn(O)]/pn(O) = atranst

[X. Shi et al. (unpublished)]



H=0 thermally-driven superconducting transition in a
highly underdoped La, Sr CuO,

— 2D Gaussian SC fluctuations
La, Sr,CuO, |
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Phase fluctuations (BKT regime)

* Signatures of the 2D, Berezinskii-Kosterlitz-Thouless (BKT)
transition (thermal unbinding of vortex-antivortex pairs) in bulk
samples: paraconductivity, current-voltage characteristics

* Good agreement with theory by Benfatto, Castellani, Giamarchi
(PRLs, PRBs since 2007) [P. Baity ef al. (unpublished)]



Time-domain spectroscopy of the BKT transition
in a highly underdoped La, Sr CuO,
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Power spectrum vs. temperature Sk

a
x1/f
2
R
Magnitude of the resistance noise
T T 1-8 T T T T T T T T T T
10°} |f
{1000 6l { 11000
0
=S —~
= {500 G {500 &
3 « &
&
(%)
r ‘.l 0 10
f=10 mHz
10-12 * : * L * 1 * L * . * 08 L 1 L 1 L 1 L 1 L 1 L
&8 10 12 14 16 18 20 "8 10 12 14 16 18 20
T (K) T(K)

* Normalized power spectral density increases by several orders of
magnitude as 7" >7 .,

 Below ~14 K, a increases from ~ 1.0 and reaches ~ 1.4 at ~12 K:
slowing down of the dynamics



Time-domain spectroscopy of the BKT transition
in a highly underdoped La, Sr CuO,

it f the resistance noi
Magnitude of the resistance noise Scaling of the second spectra
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In the BKT regime (T <7< T.): Cluster/stripe glass:

competing interactions

* Exponential increase of noise as 7—> Ty on different length scales?

* Slow, correlated dynamics for 7< T,

* Interacting domains/clusters Dynamic stripes?

* Non-Gaussian noise suppressed in x=0.07
sample —> not due to disorder (Z. Shi et al. (unpublished)]




Time-domain spectroscopy of the BKT transition
in a highly underdoped La, Sr CuO,

it f the resistance noi
Magnitude of the resistance noise Scaling of the second spectra
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In the BKT regime (Typ < T< T.): Cluster/stripe glass:
- tial i f noi T T competing interactions
* Exponential increase of noise as 7—> .
p . BKT on different length scales?
* Slow, correlated dynamics for 7< T,
e Interacting domains/clusters Intermediate, bad
 Non-Gaussian noise suppressed in x=0.07 metal phase?

sample —> not due to disorder [Z. Shi et al. (unpublished)]



Conclusions

1) Nature of the insulating ground state in La, Sr CuO, at low doping
* Doped holes form charge cluster glass (dynamic charge heterogeneities)
in CuQO, planes

2) Doping-driven SIT (H=0) in LSCO
* Formation of localized Cooper pairs within the insulating, charge glass state
* Onset of SIT influenced by a competing charge order

3) Thermally-driven (H=0) SC transition

* BKT transition
* Fluctuating, interacting clusters/domains; dynamical heterogeneities

4) H-field-driven SIT

* Three distinct phases at 7=0 in underdoped La,_ Sr CuO,:
o superconductor with 7.(H) # 0 (pinned vortex solid/Bragg glass)
o superconductor with 7, =0 (vortex glass)
o high-field insulator (Mott hopping)



