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Introduction into glass 

Slow	  dynamics	  

So.	  excita2on	  gap	  

Short-‐range	  correla2ons	  

Wild	  energy	  landscape	  



Supercooling a liquid 

Temperature

En
tr

op
y

Liquid

Latent heat}
Solid

Tm

Supercooled liquid

TK
Temperature

En
tr

op
y

Liquid

Latent heat}
Solid

TmTg

Glass

Supercooled liquid

TK
Temperature

En
tr

op
y

Liquid

Latent heat}
Solid

TmTg

Glass

Supercooled liquid

TK
Temperature

En
tr

op
y

Liquid

Latent heat}
Solid

Tm

Residual!
Entropy



Electronic Glasses 

Free	  Fermi	  gas,	  Landau	  Fermi	  liquid	  

Solid:	  Wigner	  crystal,	  charge-‐density-‐wave	  

Electron	  glass:	  Intrinsic	  Disorder!	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐	  Anderson	  Localiza>on	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐	  Many	  Body	  Localiza>on	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐	  Coulomb	  glass	  



Supercool electron glass? 

•  Kagawa	  et	  al.,	  Nat.	  Phys.	  9,	  413	  (2013)	  
(and	  Sato	  et	  al,	  JPSJ	  2014;	  Sato	  et	  al,	  PRB	  2014;	  ….)	  

•  Material:	  Clean	  θ-‐(BEDT-‐TTF)2RbZn(SCN)4	  
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See	  talk	  by	  Simone	  Fra>ni,	  yesterday	  



Bad metal 
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Slow cooling !
(1 K/min)

Fast cooling !
(5 K/min)

Electron	  solid:	  
Stripe	  order	  

Supercool	  	  
electron	  liquid!	  



Slow dynamics 

Equilibra>on	  experiments	  

Noise	  spectroscopy	  
Arrhenius	  Law!	  

� = 2600K

1903	  



Complex energy landscape 

But: Electrons can tunnel! 
Need frustration 

insight review articles
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energy minima, and vibration within a minimum. It is possible to
separate formally the corresponding configurational and vibrational
contributions to a liquid’s properties75,76. In two important computa-
tional studies, the configurational entropy was calculated by probing
systematically the statistics governing the sampling of potential 
energy minima77,78 (Box 2). Using this technique, a remarkable 
connection between configurational entropy and diffusion was 
identified in liquid water79. One of water’s distinguishing anomalies
is the fact that, at sufficiently low temperature, its diffusivity increases
upon compression80. As shown in Fig. 7, diffusivity maxima are 
correlated strongly with configurational entropy maxima, the
respective loci coinciding within numerical error.

The results shown in Fig. 7 and the success of the Adam–Gibbs
equation in describing experimental data on relaxation in a wide
variety of systems52 indicate that there exists a scaling relationship
between the depth distribution of basins and the height of the saddle
points along paths connecting neighbouring basins. Such scaling is
not a mathematical necessity, but arises from the nature of real 
molecular interactions. The topographic nature of this statistical
scaling relationship between minima and saddle points is poorly
understood (but see the recent computational investigation of saddle
points74). Its elucidation will explain the origin of the connection
between the dynamics and thermodynamics of glass-forming liq-
uids, and constitutes the principal theoretical challenge in this field.

Strong versus fragile behaviour
The extent to which the shear viscosity ! deviates from Arrhenius
behaviour, !"!oexp(E/kBT), constitutes the basis of the classifica-
tion of liquids as either strong or fragile (Fig. 2). Molten SiO2, often
considered as the prototypical strong glass-former, displays an
almost constant activation energy of 180 kcal mol#1 (ref. 81). This
constancy indicates that the underlying mechanism, presumably
breaking and reformation of Si–O bonds, applies throughout the
entire landscape4. In contrast, the viscosity of OTP — the canonical
fragile glass-former — deviates markedly from Arrhenius
behaviour82, showing an effective activation energy (dln!/d1/T) that
increases 20-fold, from one-quarter of the heat of vaporization for
the liquid above its melting point to roughly five times the heat of
vaporization near Tg. This means that OTP’s landscape is very hetero-
geneous. The basins sampled at high temperature allow relaxation by
surmounting low barriers involving the rearrangement of a small
number of molecules. The very large activation energy at T ≈ Tg, on
the other hand, corresponds to the cooperative rearrangement of
many molecules. These differences between strong and fragile behav-
iour imply a corresponding topographic distinction between the two

archetypal landscapes. Aside from multiplicity due to permutational
symmetry, strong landscapes may consist of a single ‘megabasin’,
whereas fragile ones display a proliferation of well-separated
‘megabasins’ (Fig. 8).

Cooperative rearrangements such as those that must occur in
OTP are unlikely to consist of elementary transitions between adja-
cent basins. Rather, the likely scenario involves a complicated
sequence of elementary transitions. At low temperatures, these
rearrangements should be rare and long-lived on the molecular
timescale. Furthermore, the diversity of deep landscape traps and of
the pathways of configuration space that connect them should result
in a broad spectrum of relaxation times, as required for the stretched
exponential function in equation (2). This in turn suggests that
supercooled fragile liquids are dynamically heterogeneous, probably
consisting at any instant of mostly non-diffusing molecules with a
few ‘hot spots’ of mobile molecules. This dynamic heterogeneity39

has both experimental29,30,36 and computational31–35 support.
The inverse relation between the self-diffusion coefficient and 

viscosity embodied in the Stokes–Einstein equation is based on 
macroscopic hydrodynamics that treats the liquid as a continuum.
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Figure 6 Mean inherent structure energy per particle of a binary mixture of unequal-
sized Lennard–Jones atoms, as a function of the temperature of the equilibrated liquid
from which the inherent structures were generated by energy minimization. Molecular
dynamics simulations at constant energy and density were performed over a range of
temperatures for 256 Lennard–Jones atoms, of which 20% are of type A and 80%
are of type B. The Lennard–Jones size and energy parameters are $AA"1,
$BB"0.88, $AB"0.8, and %AA"1, %BB"0.5, %AB"1.5, respectively. Length,
temperature, energy and time are expressed in units of $AA, %AA/kB, %AA and
$AA(m/%AA)

1/2, respectively, with m representing the mass of the particles. Simulations
were performed at a density of 1.2. The fast and slow cooling rates are 1.08&10#3

and 3.33&10#6. When T > 1, the system has sufficient kinetic energy to sample the
entire energy landscape, and the overwhelming number of sampled energy minima
are shallow. Under these conditions, the system exhibits a temperature-independent
activation energy for structural relaxation (calculations not shown). Between T"1 
and T ≈ 0.45, the activation energy increases upon cooling, the dynamics become
‘landscape-influenced’, and the mechanically stable configurations sampled are
strongly temperature-dependent. Below T ≈ 0.45, the height of the barriers
separating sampled adjacent energy minima seems to increase abruptly 
(calculations not shown). This is the ‘landscape-dominated’ regime. In it, particles
execute rare jumps over distances roughly equal to interparticle separations. The
crossover between landscape-influenced and landscape-dominated behaviour
corresponds closely with the mode-coupling transition temperature70,92. (Adapted
from refs 70 and 72.)

Ideal glass Crystal

Transition
statesBasin

P
ot

en
tia

l e
ne

rg
y

Coordinates

Figure 5 Schematic illustration of an energy landscape. The x-axis represents all
configurational coordinates. (Adapted from ref. 44.)
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Geometric Frustration 

Triangular Ising Model 
Exponentially many Ground States 

… but not metastable! 

Zigzag	  Stripes	   Straight	  Stripes	   Three	  subla\ce	  structure	  
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Long-range interactions 

Including Long-Range Coulomb 
interactions lifts degeneracy 

Macroscopically many states metastable! 
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Glassiness	  due	  to	  long-‐range	  interac>ons:	  Schmalian&Wolynes,	  PRL	  85	  (2000)	  



E/N =  -0.20761336019964549      E/N =  -0.20682136290626996      

Counting of Metastable States 

Stability criterion (move particle from i to j) 

Exponentially many metastable states 

�E = ✏j � ✏i �
V

|rij |
> 0



‘Inherent’ states 

Only a small set of MS is relevant 

Higher energy than the ground state 
Metastable states are indistinguishable in thermodynamic limit 
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Finite Temperature Monte Carlo 

•  Metropolis:	  accept	  local	  move	  with	  
probability	  

•  Infinite	  range	  interac>ons	  on	  finite	  la\ce?
Ewald	  summa2on:	  
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Relaxation Time 

Autocorrela>on	  func>on	  

If	  system	  equilibrates	  

Exponen>al	  tail	  of	  C(t)	  gives	  relaxa>on	  >me	  

C(t+ tw, tw) =
2

N

X

i

h�ni(t+ tw)�ni(tw)i

C(t+ tw, tw) ! C(t)



Relaxation Time 

Arrhenius	  law,	  Δ	  =	  0.2V	  



Aging & Memory 

•  Below	  Ts	  aging	  scaling	   C(t+ tw, tw) ⇠ F (t/tµw)



Conductivity 

Extended Dynamical Mean Field Theory: 
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Density Correlations 
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Efros-‐Shklovskii	  gap	  (1)	  

Energy	  to	  remove	  or	  add	  a	  par>cle:	  

What	  is	  the	  distribu2on	  	  	  	  	  	  	  	  	  of	  energies	  	  	  	  	  ?	  

(in	  the	  ground	  state	  of	  disordered	  system)	  

Stability	  when	  electron	  moves	  from	  i	  to	  j:	  	  
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Efros-‐Shklovskii	  gap	  (2)	  

Distance	  between	  states	  close	  to	  Fermi	  level	  

Stability	  sets	  upper	  bound	  for	  density	  of	  states	  
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Efros	  Shklovskii	  1975	  



Coulomb gap without disorder 
L=24, W=0
L=36, W=0
L=48, W=0
L=24, W=1
L=36, W=1
L=48, W=1
L=24, W=2
L=36, W=2
L=48, W=2

Linear	  ES	  gap	  	  
with	  disorder	  

✏ !

g(
✏)

!

Stronger	  Coulomb	  gap	  	  
in	  absence	  of	  disorder!	  
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Gap & Correlations (1) 

Density correlations: 

Chance to find electron at r: 

Relate local density of states: 

Assumptions: 
Density correlation decay like 

At long distances, LDOS becomes DOS: 
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Gap & Correlations (2) 

Hence	  DOS	  related	  to	  density	  correla>ons	  
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Conclusions & Outlook 

Slow	  dynamics	  

So.	  excita2on	  gap	  

Short-‐range	  correla2ons	  

Wild	  energy	  landscape	  

Just discussed 

Reference:	  Mahmoudian,	  LR,	  Ralko,	  Fra>ni,	  Dobrosavljevic,	  arXiv1412.4441,	  PRL	  (2015)	  


