Universal dielectric breakdown and synaptic behaviour in Mott insulators

Marcelo Rozenberg LPS, CNRS - Université Paris-Sud, Orsay

IMN (Nantes, France)

- L. Cario
- E. Janod
- B. Corraze
- P. Stoliar (Nanogune)
- V. Guiot
- V. Ta Phuoc

UBA (Buenos Aires, A C. Acha A. Camjayi

CNEA (Buenos Aires, R. Weht

Refs:

V. Guiot et al, Nat Comm (2013)
P. Stoliar et al., Adv. Mat. (2013)
A. Camjayi et al., Phys Rev Lett (2014)
L. Cario et al Adv Func Mat (in press) Review

What is a Mott transition?

The classic example: Mott transition in V_2O_3

pressure or chemical substitution

McWhan et al PRB '71 '73

The Hubbard model is a minimal model for the metal – insulator transition

DMFT of the Mott - Hubbard transition

A. Georges et al. RMP '96

The classic example: Mott transition in V_2O_3

McWhan et al PRB '71 '73

Do Mott - Hubbard systems exist in Nature? AM_4X_8 family: tailor-made 3D Mott systems

Gap ~ 0.20 eV Pocha, R. et al., J. Am. Chem. Soc. 127, 8732 (2005)

Metal - Insulator transition in GTS

Non Volatile Resistive Switching, t <100 ns

E-field driven Mott transition

Abd-Elmeguid et al., PRL '04

Pressure driven Mott transition

C. Vaju et al., Adv. Mater. '08

Is GaTa₄Se₈ (GTS) really a Mott-Hubbard system?

- « Ideal system »
- 1 electron per Ta₄ cluster
- 3D fcc lattice
- Paramagnetic
- LDA predicts a metal

But does not match some DMFT key predictions

- No hysteresis
- $\rho(T)$ does not have non-monotonic behavior

Conduction bands are isolated and have pure Ta character Nice system for an LDA+DMFT study

Wannier maximally localized molecular orbitals for Ta₄ tetrahedra

Cubic FCC structure, t_{2g} symmetry

A. Camjayi et al., Phys Rev Lett (2014)

Resistivity is **nonmonotonic** in the metal and has **hysteresis** at the IMT

Mott physics + electronics « Mottronics »

Applying strong E-fields to Mott systems

Do not mix up with the Mott transition in VO₂

1st order transition driven by T

Joule heating effect

E-field effect

Zimmers et al PRL '13

Driscoll PRB '12

Three different regimes

E-field driven Mott transition in GTS

Is the Mott electric-breakdown universal?

Three different Mott-insulators:

GaTa₄Se₈

Universal behavior: three different Mott Insulators

P. Stoliar et al Adv. Mater. (2013)

What is the origin of the Mott electric-breakdown?

Model of the Mott resistive transition

P. Stoliar et al Adv. Mater. (2013)

PMI+CM

CN

ECM

EB

а

Model results: Threshold Mott resistive transition

Experiment

How the transition evolves in time?

Each pixel is a cell of the resistor network model

Color intensity indicates the local ΔV drops (ie local E)

How the transition evolves in time? (snapshots)

time ----->

Threshold effect

Below threshold

Above threshold

Threshold effect

Model prediction: Neuromorphic behaviour!

Transition rates imply the existence of a relaxation time scale t_{relax}

Summary

- GaTa₄Se₈ is a new Mott-Hubbard system
- E-field driven Mott insulators show a universal resistive transition with threshold behavior
- A phenomenological model based on DMFT Mott-Hubbard physics captures the qualitative behavior of the Mott resistive transition
- New electronic emergent behavior: neuromorphic

Refs: V. Guiot et al, Nat Comm (2013) P. Stoliar et al., Adv. Mat. (2013) A. Camjayi et al., Phys Rev Lett (2014) L. Cario et al Adv Func Mat (in press) Review