

Singular quasi-particles at a magnetic quantum critical point

Jörg Schmalian

Institute for Theory of Condensed Matter Institute for Solid State Physics Karlsruhe Institute of Technology

Collaborators

Elihu Abrahams (UCLA)

Peter Wölfle (KIT)

Strong coupling theory of heavy fermion criticality Elihu Abrahams, Jörg Schmalian, Peter Wölfle Phys. Rev. B **90**, 045105 (2014)

Quasi-particles near AF-critical points

correlation length of a soft, bosonic degree of freedom diverges

$$\xi \propto r^{-\nu}, T^{-1/z}$$

→ motivation for purely bosonic theories (Hertz, Moriya, Lonzarich, Moriya...)

$$\chi(\mathbf{Q} + \mathbf{q}) \propto \frac{1}{\xi^{-2} + q^2 - i\gamma\omega}$$

Q: What happens to fermions?

Q: Feedback of fermion criticality to the bosonic dynamics?

What happens to fermions? (previous results)

1. Hot and cold regions of the Fermi surface, with singular behavior in hot parts

Ar. Abanov, AV Chubukov, J Schmalian, Adv. in Phys 52 (2003);

Ar. Abanov and A. V. Chubukov, PRL 93 (2004);

M. A. Metlitski and S. Sachdev, PRB 82 (2010).

- 2. Cold regions: corrections due to composite energy-density fluctuations
 - S. A. Hartnoll, D. M. Hofman, M. A. Metlitski, and S. Sachdev, PRB B 84 (2011)

Theory does not account for experiment in systems like CeCu_{6-x}Au_x or YbRh₂Si₂

H. v. Löhneysen J. Phys. CM 8 (1998); H. v. Löhneysen et al. JMMM 177-181 (1998)

A. Schröder et al. PRL 80 (1998)

$$\chi(\mathbf{Q} + \mathbf{q}) \propto \frac{1}{T^{\alpha} + q^{2} + (i\gamma \operatorname{sign}(\omega)|\omega|)^{\alpha}}$$

$$\alpha \approx 0.74 \implies z \approx 2.7$$

Critical quasi-particles

quasi-particle concept beyond Fermi liquid theory

C.M. Varma et al, Phys. Rev. Lett. 63 (1989);

T. Senthil, PRB 78 (2008);

P. Wölfle and E. Abrahams, PRB 84 (2011).

$$G(\mathbf{k},\omega) = \frac{Z_{\mathbf{k}}}{\omega + i\Gamma_{\mathbf{k}}(\omega) - \varepsilon_{\mathbf{k}}^*} + G_{inc}(\mathbf{k},\omega)$$

$$G(\mathbf{k},\omega) = \frac{Z_{\mathbf{k}}(\omega)}{\omega + i\Gamma_{\mathbf{k}}(\omega) - \varepsilon_{\mathbf{k}}^{*}}, \quad Z_{\mathbf{k}}(\omega) \propto |\omega|^{\eta}, \quad 0 \leq \eta < 1$$

well defined Fermi surface:
$$n_{\mathbf{k}} - n_{\mathbf{k}}^{\mathbf{0}} \propto (\mathbf{v}_{\mathbf{k}} \cdot (\mathbf{k} - \mathbf{k}_{F}))^{\frac{1-\eta}{\eta}}$$

• dynamic scaling exponent:
$$Z_F = \frac{1}{1-\eta}$$
 $C/T \propto T^{-\eta}$

• marginal Fermi liquid:
$$\eta \to 0$$
 $C/T \propto \log T$

Critical quasi-particles

the self energy

$$Z(\omega) \propto |\omega|^{\eta} \iff \Sigma(\omega + i0^+) = -A|\omega|^{1-\eta} \left(\operatorname{sign}(\omega) \cot(\frac{\pi\eta}{2}) + i \right)$$

If $\eta < \frac{1}{2}$: the width of the peak is smaller than its position

the spectral function

$$S = -\int (\psi^{+}(i\omega - \varepsilon)\psi + g\psi^{+}\sigma\psi \cdot \varphi) + \int r_{0}\varphi \cdot \varphi + S_{\text{other channels}}$$

$$\Lambda_{\omega}$$
where W is a constant of the energy

elimination of high energy degrees of freedoms

$$S_{low} = -\sum_{i=h,c} \int (\psi_i^+ (i\omega - vk - \Sigma_i^*) \psi_i + \Gamma_{g,i}^* \psi_i^+ \sigma \psi_i \cdot \varphi) + \int (r_0 - \Pi^*) \varphi \cdot \varphi$$

$$+ \int \Gamma_{\lambda}^* \psi_c^+ \psi_c \varphi \cdot \varphi + S_{low}^{other channels}$$

self-energy and vertex corrections

$$\Sigma_{h,c}^{>}\left(k,\omega\right)=\left(1-Z_{h,c,\omega}\right)i\omega+v\left(Z_{h,c,k}-1\right)k$$

$$\Gamma_{h,g}^{>}(k,q,\omega,\Omega) = gZ_{h,g}$$

$$\Gamma_{c,g}^{>}(k,q,\omega,\Omega) = gZ_{c,g}$$

$$\Gamma_{\lambda}^{>}(k,q,\omega,\Omega) = \lambda Z_{c,g}^{2}Z_{\lambda}$$

- weak momentum dependence within the hot and cold regions $Z_{h,k} = Z_{c,k} = 1$
- small-q scattering with energy density fluctuations $Z_{\lambda} = Z_{\omega}$

$$Z(\omega) = Z_{\omega}^{-1} \propto \omega^{\eta}$$
 (q.p. weight)

$$Z_g(\omega) \propto \omega^{-\phi}$$
 (interaction vertex)

quasi-particle theory

perturbation theory of renormalized quasiparticles at low energies

$$\Sigma_{
m hot}^{
m q.p.} = \Sigma_{
m cold}^{
m q.p.} = \Sigma_{
m cold}^{
m q.p.} = \Sigma_{
m cold}^{
m q.p.}$$

Matching at intermediate scales:

intermediate scale is arbitrary: same self energy as we approach Λ_ω from above and below

$$\omega = \Lambda_{\omega} \qquad \Sigma^{q.p.}(\omega; Z) = Z(\omega)\Sigma^{>}(\omega)$$

- Singular low energy behavior (even formally sub-leading) is boosted by high energy behavior
- There is always a weak coupling solutions: $Z = const. \sim \mathcal{O}(1)$

$$\Sigma^{q.p.}(\omega; Z) = Z(\omega)\Sigma^{>}(\omega) \quad \text{with} \quad Z(\omega)^{-1} = 1 - \frac{\partial \Sigma^{>}(\omega)}{\partial \omega}$$

$$\Rightarrow \eta_c = \frac{2d-3}{6} \left(1 - 2\phi \right) \qquad \eta_h = \frac{3-d}{2} + 2\phi \left(d - 1 \right)$$

Identical resuls follow from a field theoretic RG

$$\Sigma(\omega) = \alpha(\mu)i\omega \qquad \alpha_c(\mu) \propto \mu^{\frac{2d-3}{2}} \frac{Z_{cg}^4 Z_{\lambda}}{Z_{c,\omega} Z_{ck}} \left(\frac{Z_{h,g}}{Z_{h,k}}\right)^{2d-5}$$

$$\beta = -\frac{\partial \alpha}{\partial \log \mu} \qquad \eta = \beta \frac{\partial \log Z_{\omega}}{\partial \alpha}$$

$$\Sigma^{q.p.}(\omega; Z) = Z(\omega)\Sigma^{>}(\omega) \quad \text{with} \quad Z(\omega)^{-1} = 1 - \frac{\partial \Sigma^{>}(\omega)}{\partial \omega}$$

$$\Rightarrow \eta_c = \frac{2d-3}{6} \left(1 - 2\phi \right) \qquad \eta_h = \frac{3-d}{2} + 2\phi \left(d - 1 \right)$$

bosonic syn. scaling exponent

$$\Pi(Q,\omega) - \Pi(Q,0) \propto iZ_g^2 \omega \propto (isign(\omega)|\omega|)^{1-2\phi}$$

$$Z = \frac{2}{1 - 2\phi}$$

vertex corrections are responsible for z > 2

$$\Sigma^{q.p.}(\omega; Z) = Z(\omega)\Sigma^{>}(\omega) \quad \text{with} \quad Z(\omega)^{-1} = 1 - \frac{\partial \Sigma^{>}(\omega)}{\partial \omega}$$

$$\Rightarrow \eta_c = \frac{2d-3}{6} \left(1 - 2\phi \right) \qquad \eta_h = \frac{3-d}{2} + 2\phi \left(d - 1 \right)$$

condition for vertices: bosonic syn. scaling exponent $Z = \frac{2}{1-2\phi}$

$$\phi = 0$$

$$z = 2$$

$$\eta_h = \frac{3-d}{2}$$

 $\eta_c = \frac{2d-3}{6}$

Renormalization group flow

hot-regions of the FS

$$\beta_h = -\frac{\partial \alpha_h}{\partial \log \mu}$$

cold-regions of the FS

$$\beta_c = -\frac{\partial \alpha_c}{\partial \log \mu}$$

$$\Sigma^{q.p.}(\omega; Z) = Z(\omega)\Sigma^{>}(\omega) \quad \text{with} \quad Z(\omega)^{-1} = 1 - \frac{\partial \Sigma^{>}(\omega)}{\partial \omega}$$

$$\Rightarrow \eta_c = \frac{2d-3}{6} \left(1 - 2\phi \right) \qquad \eta_h = \frac{3-d}{2} + 2\phi \left(d - 1 \right)$$

condition for vertices: bosonic syn. scaling exponent $z=rac{2}{1-2\phi}$

· effects of other channels

conjecture: $\phi = \eta_c$ (large-Q Ward-Identity)

$$\Rightarrow \eta_c = \frac{2d-3}{4d}, \quad \eta_h = \frac{3+d}{4d} \quad \Rightarrow \quad Z = \frac{4d}{3}$$

Scaling theory

$$\chi(\mathbf{Q} + \mathbf{q}) \propto \frac{1}{\xi^{-2} + q^2 + i\gamma\omega/Z^2} \qquad Z(\omega, T, x - x_c) = b^{-\eta z} Z(b^z \omega, b^z T, b^{1/\nu} (x - x_c))$$

transition

$$[\xi^{-2}] = [H - H_c] - [Z]$$

field tuned
$$[\xi^{-2}] = [H - H_c] - [Z]$$
 $\frac{\partial \Pi}{\partial H}\Big|_{H = H_c} \propto (H - H_c)/Z$

P. Wölfle, E. Abrahams (2011)

$$\Rightarrow V = \frac{1}{2+z\eta} = \frac{3}{3+2d} \xrightarrow{d=3} \frac{1}{3}$$

$$\gamma = 1 + \nu \eta z = \frac{4d}{3+2d} \xrightarrow{d=3} \frac{4}{3}$$
 $\beta = \nu d / 2 \xrightarrow{d=3} \frac{1}{2}$ $\delta = \frac{11}{3}$

$$\beta = \nu d / 2 \xrightarrow{d=3} \frac{1}{2}$$

$$\delta = \frac{11}{3}$$

Note, there are two critical length scales: $\xi \propto T^{-1/z}$ $\xi_F \propto T^{-1/z_F} >> \xi$

hyperscaling for critical fermions:
$$f(T) = b^{-(1+z_f)} f(b^{z_f} T)$$

 $\Rightarrow C/T \propto T^{-\eta}$

comparison with $CeCu_{6-x}Au_x$ (d=2)

$$\chi(\mathbf{Q} + \mathbf{q}) \propto \frac{1}{q^2 + (i\gamma \operatorname{sign}(\omega)|\omega|)^{\alpha}}$$

$$\alpha(d=2) = 0.75$$
 $\alpha_{\text{exp}} \approx 0.74$

comparison with YbRh₂Si₂ (d=3)

Inside the critical cone:

$$C \propto T^{3/4}$$

E. Abrahams, PW, PNAS (2012)

N. Oeschler et al., Physica B 403, 1254 (2008)

Outside the critical cone:

$$C \propto |H - H_c|^{-1/3} T$$

Custers et al., Nature (2003)

Conclusion

 Critical quasi-particles might be a powerful concept to combine Fermi liquid theory and quantum criticality.

$$G(\mathbf{k},\omega) = \frac{Z_{\mathbf{k}}(\omega)}{\omega + i\Gamma_{\mathbf{k}}(\omega) - \varepsilon_{\mathbf{k}}^*}, \qquad Z_{\mathbf{k}}(\omega) \propto |\omega|^{\eta}$$

- Phenomenological approach: key assumption scale matching (high energy dynamics boosts singularities at low temperatures)
- Coupling to energy density fluctuations (higher loop spin fluctuations) yields explicit example for non-trivial critical quasiparticles
- Conjecture of a Ward-Identity: Results in good agreement with experiments on YbRh₂Si₂ (3-d fluctuations) and CeCu_{6-x}Au_x (quasi-2-d fluctuations).

comparison with YbRh₂Si₂ (d=3)

Magnetic Grüneisen Ratio YbRh₂Si₂

Zhu, Garst, Rosch, Si (2003)

$$\Gamma_{M} = -\frac{(\partial M/\partial T)_{H}}{C_{H}} = -\frac{(\partial S/\partial H)_{T}}{C_{H}}$$

Inside the critical cone:

$$\Gamma_{M}(r=0,T) \propto T^{-3/4}$$

Outside the critical cone:

$$\Gamma_M(r, T = 0) = \frac{v(z - d)}{H - H_c} = \frac{1/3}{H - H_c}$$

measured value of this universal coefficient: ≈ 0.3

comparison with YbRh₂Si₂ (d=3)

Inside the critical cone:

$$C \propto T^{3/4}$$

E. Abrahams, PW, PNAS (2012)

N. Oeschler et al., Physica B 403, 1254 (2008)

Outside the critical cone:

$$C \propto |H - H_c|^{-1/3} T$$

Custers et al., Nature (2003)

