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correlation length of a soft, bosonic
degree of freedom diverges
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—> motivation for purely bosonic theories
(Hertz, Moriya, Lonzarich, Moriya...)
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H. v. Léhneysen, A. Rosch, M. Vojta, ( ) o
and P. Wolfle, RMP (2007) x\Q+q

Q: What happens to fermions?

Q: Feedback of fermion criticality to the bosonic dynamics?



What happens to fermions? QAT

(previous results)

1. Hot and cold regions of the Fermi surface, with singular behavior in hot parts

Ar. Abanov, AV Chubukov, J Schmalian, Adv. in Phys 52 (2003);
Ar. Abanov and A. V. Chubukov, PRL 93 (2004);
M. A. Metlitski and S. Sachdev, PRB 82 (2010).
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2. Cold regions: corrections due to composite energy-density fluctuations
S. A. Hartnoll, D. M. Hofman, M. A. Metlitski, and S. Sachdev, PRB B 84 (2011)
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Theory does not account for experiment A\‘(IT
in systems like CeCug_ Au, or YbRh,Si,

A. Schrdder et al. PRL 80 (1998)
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H. v. Lohneysen J. Phys. CM 8 (1998); +q° +ipign(w)o]
H. v. Lohneysen et al. JMMM 177-181 (1998)
a=074 =z=2.



Critical quasi-particles

quasi-particle concept beyond Fermi liquid theory

C.M. Varma et al, Phys. Rev. Lett. 63 (1989);
T. Senthil, PRB 78 (2008);
P. Wolfle and E. Abrahams, PRB 84 (2011).

VA
Glk,w)= K G. Kk
( 90)) C()-I-irk(a))—g:; + mc( ,CU)
y
G(k,a))= .Zk(a)) —. Zk(a))oc‘a)", O0<sn<l

1-n

well defined Fermi surface: "l — nl? x (Vk °(k -k, )) !

dynamic scaling exponent: Zp = ﬁ C/T ocT™

marginal Fermi liquid: n — 0 C/T o logT
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the self energy

Z(w)x o] < Z(w +i0° )= —Ale] ™" (sign(a))cot(%")+ i)

If 77 <3 :the width of the peak is smaller than its position

the spectral function
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elimination of high energy degrees of freedoms
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self-energy and vertex corrections

- weak momentum dependence within the hot and cold regions Z,, =Z., =1
« small-q scattering with energy density fluctuations Z, =7

* power-law ansatz Z(a)) =7 ' @ (q.p. weight)

w

Z, (a)) < @ ? (interaction vertex)
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quasi-particle theory
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quasi-particle regime

perturbation theory of renormalized quasiparticles at low energies

>db g% Zgolid — m A II =

hot




Self-consistency approach A\‘(IT

stitute of Technology

Matching at intermediate scales:
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quasi-particle regime

intermediate scale is arbitrary:
same self energy as we approach A,
from above and below

w=A, 3"(0;Z)=Z(w}E (o)

w

« Singular low energy behavior (even formally sub-leading) is boosted
by high energy behavior

* There is always a weak coupling solutions: Z = const. ~ O(1)
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(@, 2)= Z(0)E (@) witr  Z(w)! =1- 2

=1, =242(1-29) 7, =355 +24(d 1)

Identical resuls follow from a field theoretic RG

] 243 747 (Z )201-5
— 2 cg=A h.g
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_ _ dlogZ,
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(@, 2)= Z(0)E (@) witr  Z(w)! =1- 2

=1, =26 (1-2¢) =5+ 29(d -1)

bosonic syn. scaling exponent I1= @

(0, w)-T11(0,0) iZ W o (l’Sign(a))‘a)‘)l_2¢
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2 =125

vertex corrections are responsible for z > 2
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(@, 2)= Z(0)E (@) witr  Z(w)! =1- 2

Jw

=1, =26 (1-2¢) =5+ 29(d -1)

‘- . . . 2
condition for vertices: bosonic syn. scaling exponent 2z = 29

+ spin fermion model: ¢ = 0
- No anomalous behavior of the spin-dynamics =17
- Known behavior for hot parts of the FS n, = %

[\

- Critical FS elsewhere (strong coupling fixed point) 7], = %



Renormalization group flow A\‘(IT
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hot-regions of the FS cold-regions of the FS
aah /)) —_— aac
/))h - dlog u ¢ dlog u
d <3 03]
-0.8 - 1.0 d > %
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(@, 2)= Z(0)E (@) witr  Z(w)! =1- 2

Jw

=1, = 2=2(1-2¢) 7, =352+ 2¢(d - 1)

condition for vertices: bosonic syn. scaling exponent =z = -

» effects of other channels

/

conjecture: ¢ =1). (large-Q Ward-ldentity)

_ 2d-3 _ 3+d _ 4d
=N =77 Th =% == 2573
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+ oC _ _ H z z 1/v _
x(Q+q) i HoTx-x)=b Z(brw,b°T, 6" (x - x.))
field tuned [E7°]=[H-H,]-[Z] o, <(H-H)IZ

transition ‘
P. Wolfle, E. Abrahams (2011)
__1 __3 d=3 _1
— V= 24z~ 3+2d >3
=l+vpz=2L =54 Boyd/2—=>1 o==4
V= Nz =324 E - 3

Note, there are two critical length scales: £ oc T7% £ o« T7V% 55 E

hyperscaling for critical fermions: f(T) = b_(1+zf)f(beT)

= C/T T



comparison with CeCug_ Au, (d=2) &‘(IT
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comparison with YbRh,Si, (d=3)
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Inside the critical cone:

C e T3/4
E. Abrahams, PW, PNAS (2012)
N. Oeschler et al., Physica B 403, 1254 (2008)

Outside the critical cone:

o B-B [

Cx|H-H [T

Custers et al., Nature (2003) " ooz 0.1
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 Critical quasi-particles might be a powerful concept to combine
Fermi liquid theory and quantum criticality.

Gk, w)= AQ Z () '

w+iFk(a))— &
« Phenomenological approach: key assumption scale matching (high
energy dynamics boosts singularities at low temperatures)

» Coupling to energy density fluctuations (higher loop spin
fluctuations) yields explicit example for non-trivial critical quasi-
particles

« Conjecture of a Ward-ldentity: Results in good agreement with
experiments on YbRh,Si, (3-d fluctuations) and CeCug, Au,
(quasi-2-d fluctuations).
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3d FM fluctuations

Non-Fermi liquid

z=4/3, v=1/3

3d AFM
fiuctuation

F. Steglich group (2000-present)
C. Broholm group (n-scatt.) (2012)

Trovarelli et al., PRL 85, 626 (2000)
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Magnetic Gruneisen Ratio YbRh,Si,
Zhu, Garst, Rosch, Si (2003)
81\’1/8T)][ (8S/€9H)T

_ N
Pa = CH B CH

Inside the critical cone:

r,(r=0T)xT""

Outside the critical cone: Tokiwa et al, PRL 2009
v(z-d) _ 1/3
H-H, H-H,

r, (T=0)=

measured value of this universal coefficient: = 0.3
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