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|ldeas on strange metal

Strange metal plausibly linked to quantum criticality

Increasing evidence for a quantum critical point
around xc = 0.19 in " 'normal” state:

|. Termination of pseudogap crossover atT =0
(Tallon, Loram 2000)

2. Onset of charge order at T = 0 (Keimer et al, 14).
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Quasiparticle mass enhancement approaching optimal doping in a
high-T¢ superconductor

B.J. Ramshaw,l* S.E. Sebastian,2 R.D. McDonald,! James Day,3 B.S. Tan,2 Z.Zhu,l 7.
B. Betts,1 Ruixing Liang,3 AD.A. Bonn,3 4 W.N. H;eurdy,3 4 N. Harrison1

In the quest for superconductors with higher transition temperatures (Tc), one
emerging motif is that electronic interactions favorable for superconductivity can be
enhanced by fluctuations of a broken-symmetry phase. Recent experiments have
suggested the existence of the requisite broken-symmetry phase in the high-Tc
cuprates, but the impact of such a phase on the ground-state electronic interactions
has remained unclear. We used magnetic fields exceeding 90 tesla to access the
underlying metallic state of the cuprate YBa2Cu306+d over a wide range of doping,
and observed magnetic quantum oscillations that reveal a strong enhancement of
the quasiparticle effective mass toward optimal doping. This mass enhancement
results from increasing electronic interactions approaching optimal doping,

and suggests a quantum critical point at a hole doping of pcrit = 0.18.

Science, 2015.
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How do pseudogap and charge order
onset as doping is decreased!?

Some comments:

|. Onset of pseudogap at T = 0 involves a sharp change of
electronic structure => a bonafide quantum phase transition.

2. AtT =0, a pseudogap state without broken translation
symmetry is necessarily an exotic non-fermi liquid ground
state
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Onset of pseudogap and charge order
at T = 0: four general possibilities.
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Onset of pseudogap and charge order
at T = 0: four general possibilities.

Conventional
but unlikely!
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Onset of pseudogap and charge order
at T = 0: four general possibilities.

Conventional
but unlikely!
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Onset of pseudogap and charge order
at T = 0: four general possibilities.
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Simultaneous onset of PG and CO: some support from
experiments.

Requires a * jump” of Fermi surface from overdoped to
underdoped through a continuous quantum phase
transition.

Similar phenomena suspected in heavy electron
quantum critical metals for many years.

Very little theoretical understanding.
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Comments

Possibly a harder version of a hard classic problem: the
electronic Mott transition.

Across a Mott transition, the Fermi surface jumps
discontinuously.

Can the transition still be continuous!?
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The electronic Mott transition

Difficult old problem in quantum many body physics
How does a metal evolve into a Mott insulator?

Prototype: One band Hubbard model at half-filling on non-bipartite lattice

- t/U
AF insulator; Fermi liquid;
No Fermi surface Full fermi surface
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Why hard!?

|. No order parameter for the metal-insulator transition
2. Need to deal with gapless Fermi surface on metallic side

3. Complicated interplay between metal-insulator transition and
magnetic phase transition

Typically in most materials the Mott transition is first order.

But (at least on frustrated lattices) transition is sometimes only weakly first order
- fluctuation effects visible in approach to Mott insulator from metal.
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Quantum spin liquid Mott insulators:

Opportunity for progress on the Mott transition -
study metal-insulator transition without complications of magnetism.
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Some candidate spin liquid materials

k= (ET)2Cu2(CN)3 Quasi-2d, approximately isotropic triangular lattice; best

studied candidate spin liquids
EtM@ng[Pd(dmit)Q]Q

NaysIrsOg Three dimensional "hyperkagome’ lattice

ZnCU3(OH)6CZQ
Volborthtite, ..........

2d Kagome lattice ("strong’ Mott insulator)
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Some candidate materials

k= (ET)2Cu2(CN)3 Quasi-2d, approximately isotropic triangular lattice; best

studied candidate spin liquids
EtM@ng[Pd(dmit)Q]Q

NayIrsOg Three dimensional “hyperkagome’ lattice

Close to pressure driven Mott
transition: "'weak’ Mott insulators

ZTLCU,g (OH)ﬁClQ
Volborthtite, ..........

2d Kagome lattice ("strong’ Mott insulator)
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Some phenomena in experiments

ALL candidate quantum spin liquid materials:

Gapless excitations down to T << J.

Most extensively studied in organic spin liquids with J = 250 K.
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Possible experimental realization of a second

order(?) Mott transition ~ Xansa o 732(
03 -

k- (1) Co, (),
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Quantum spin liquids and the Mott transition

Some questions:

1. Can the Mott transition be continuous?

2. Fate of the electronic Fermi surface?

- t/U
Spin liquid insulator; Fermi liquid;
No Fermi surface Full fermi surface

20
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Killing the Fermi surface

- t/U
Spin liquid insulator; Fermi liquid;
No Fermi surface Full fermi surface

At half-filling, through out metallic phase,
Luttinger theorem => size of Fermi surface is fixed.

Approach to Mott insulator: entire Fermi surface must
die while maintaining size (cannot shrink to zero).

If Mott transition is second order, critical point necessarily very unusual.
"Fermi surface on brink of disappearing” - expect non-Fermi liquid physics.

Similar "killing of Fermi surface” also at Kondo breakdown transition
in heavy fermion metals, and may be also around optimal doping in cuprates.
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How can a Fermi surface die continuously?

(k) 5
h Metal

n(k) o o E
| \ Mott insulator

(a)

Continuous disappearance of Fermi
surface if quasiparticle weight Z ®
vanishes continuously everywhere on

the Fermi surface (Brinkman, Rice,

1970).

(c)

H_\ilott critical point

f K

Concrete examples: DMFT in infinite d (Vollhardt, Metzner, Kotliar, Georges
1990s), slave particle theories in d = 2,d = 3 (TS,Vojta, Sachdev 2003, TS

2008)

Thursday, July 2, 15




Basic question for theory

Crucial question: Nature of electronic excitations right at
quantum critical point when Z = 0.

Claim: At critical point, Fermi surface remains sharply
defined even though there is no Landau quasiparticle.

TS, 2008

“"Critical Fermi surface”’.
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Why a critical Fermi surface?
Evolution of momentum distribution
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Quantum spin liquids and the Mott transition

Some questions:

1. Can the Mott transition be continuous at T = 0?

2. Fate of the electronic Fermi surface?

- . . ij

Spin liquid insulator; Fermi liquid;
No Fermi surface Full fermi surface

Only currently available theoretical framework to answer these questions is slave particle gauge theory.

(Mean field: Florens, Georges 2005;
Spin liquid phase: Motrunich, 05, S.S. Lee, P.A. Lee, 05)
25
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Slave particle framework

Split electron operator
Cro — brfroz

Fermi liquid: (b) # 0

Mott insulator: b, gapped

Mott transition: b, critical

In all three cases f,., form a Fermi surface.

Low energy effective theory: Couple b, f to fluctuating U(1) gauge field.
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Picture of Mott transition

Metal

Mott spin liquid
near metal

Electrons swimming in
sea of +vely charged
ions

Electron charge gets
pinned to ionic lattice
while spins continue to
swim freely.

27
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Quantum spin liquids and the Mott transition

Analyse fluctuations: Concrete tractable theory of a continuous Mott transition (TS 2008);
demonstrate critical Fermi surface at Mott transition;

Definite predictions for many quantities (TS, 2008, Witczak-Krempa, Ghaemi, Kim, TS, 2012).

Universal jump of residual resistivity on approaching from metal
Log divergent effective mass

Two diverging time/length scales near transition

Emergence of marginal fermi liquids

28
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Finite-T crossovers: emergence of a Marginal Fermi Liquid

TS, 2008
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Structure of critical theory

Field theory for critical point
S = Slb,a]l + S|fa,al

Gauge fluctuations are Landau damped by spinon Fermi surface:

Sefflal = /q,w (KF% + ) a(q,w)|?

=> at low energies gauge field decouples from critical b fluctuations.
Charge sector is described by S[b] = critical D = 2+1 XY model
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Structure of critical theory (cont'd)

Though boson criticality is not affected by the gauge fields, the gauge fields
are affected by the bosonic criticality.
Effective gauge dynamics

w
Serrlal =/ (KF% + o9/ w2 +q2) la(q,w)|?
q,w

Second term: response of critical boson to the gauge field.
Anticipate that for fermions |w| < |q|, replace by

]

Seprla] = / ) (KFH ; 00|C1|) a(q,w)P

Spinon Fermi surface coupled to Landau damped gauge field with z, = 2 (a well
understood theory).
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Critical theory

Effective critical action
Seff — S[b] +S[f7a]

S[b]: critical D = 241 XY model
S[f]: spinon Fermi surface + Landau damped gauge field with 2z, = 2
Both individually understood.

Thursday, July 2, 15



Non-zero temperature transport/dynamics

Seprla] = / LY (Rekl ) s

Wn

Static gauge fluctuations (w, = 0) escape Landau damping, and do not
decouple from critical bosons.

Universal transport in a large- N approximation (Witzcak-Krempa, Ghaemi,
TS, Y.B. Kim, 2012):

Gauge scattering reduces universal conductivity by factor of ~ 8 from 3D
XY result (Damle, Sachdev ’97).

Electronic Mott transition: Net resistivity p = p, + ps
Universal resistivity jump = p;, enhanced by factor of ~ 8.
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Non-zero temperature transport
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Some new results: The continuous
Mott transition in a layered system

Real materials: Layered 3d with
weak interlayer tunneling of t!
electrons.

Fermi liquid regime: Interlayer
tunneling coherent => 3d metal. tL

Spin liquid Mott insulator: Spinons
cannot tunnel coherently =>
different layers dynamically
decouple (in-plane spinon metal

but interlayer spinon insulator).
TS, unpublished
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TS, unpublished
Interlayer coherence: Metal vs spin

liquid Mott insulator
2
2 e

Spin liquid: interlayer hopping
of spinons is blocked;
interlayer thermal insulator at
T = 0 (but in-plane thermal
conductor).

Metal: coherent 3d metal at T = 0.

What happens to Mott quantum crtical point?
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Interlayer coupling at Mott critical
point TS, unpublished

In layered system, Fermi liquid- spin liquid Mott transition is a
dimensionality changing transition.

Interlayer transport occurs thru tunneling of electrons
=> determined by electron spectral function.

oL ~ (t1)2f dw dK (- dfidw) (A(K, w))?

Use known form of spectral function:
oL ~T(+2) ~T

At criticality: interlayer electrical insulator but in-plane electrical
conductor!
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Summary

Quantum spin liquids provide an opportunity for progress on classic old problems:
Mott and other metal-insulator transitions.

Half-filling (organics):
Continuous Moitt transition possible; several predictions for experiment (eg:
universal resistivity jump in d = 2 plus incoherent interlayer insulator)

Other (not discussed in this talk):

(i) 3d (hyperkagome iridates): resistivity peak neat continuous Mott transition.
(ii) Disordered limit (doped semiconductors Si:P, Si:B).

Do electrical and thermal metal-insulator transitions occur simultaneously?

Lessons for cuprates, heavy fermions??7??

38
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