Exotic electronic states produced by strong spin-orbit coupling in complex Ir oxides

Collaborators

Synthesis, characterization, physical properties

K. Ohashi, A. Matsumoto, A. Kato (U-Tokyo) J. Nuss, R. Dinnebier, H. Takagi (MPI Stuttgart)

NMR

K. Kitagawa (U-Tokyo) and Y. Kishimoto (Kochi Univeristy)

Resonant inelastic x-ray scattering (RIXS)

K. Ishii (JAEA) J. Mizuki (Kwansei Gakuin University)

Theory

A. Yaresko, G. Jackeli (MPI Stuttgart)

Outline

1. Spin-orbital Mott insulators

Spin-orbit coupling leads to $J_{eff} = 1/2$ state Weak Mott insulator produced by modest Coulomb U

2. Metallic iridates close to MIT

Spin-orbit coupling induced semi-metals

- 1. Semi-metal protected by Dirac node
- 2. Competition between molecular orbital formation and SOC

3. New "honeycomb" spin liquid near MIT

Honeycomb iridates... Possible playground for Kitaev spin liquid Spin liquid behavior likely originating from weak Mottness

Spin-orbital Mott insulator $Sr_2IrO_4 \dots J_{eff} = 1/2$ state

B. J. Kim et al., PRL(08), Science (09)

2D Heisenberg antiferromagnetism in Sr₂IrO₄

Unique magnetic coupling between $J_{eff} = 1/2$ moments

180° Ir-O-Ir bond (corner-sharing IrO₆)

 $H_{ij} = J_1 S_i \cdot S_j + J_2 (S_i \cdot r_{ij}) (r_{ij} \cdot S_j)$ Heisenberg (+ weak anisotropy term)

G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009)

Magnetic correlation length by RXS

S. Fujiyama et al., PRL 108 (2012)

S = 1/2 Heisenberg AF, $J \sim 0.1$ eV Similar with La₂CuO₄?

Hyperkagome Na₄Ir₃O₈... 3D quantum spin liquid $P4_132, a = 8.985 \text{ Å}$ Na 2000 (a) Na, Ir, O, Spin-liquid organics (triangular) 200 κ -(ET)₂Cu₂(CN)₃ Crossover 100 IrO max (dR/dT T (K) Mott insulator 10 Metal (Spin liquid) (Fermi liquid) Ir⁴⁺ Superconductor 2 3 6 Pressure (10⁻¹GPa) Y. Kurosaki et al., PRL 95, 177001 (2005) Y. Okamoto et al., PRL 99, 137207 (2007) Hyperkagome lattice No magnetic order down to 2 K **3D** network of corner-sharing triangle despite $\theta_{\rm W} = -650$ K **Geometrically frustrated lattice** Candidate of 3D spin liquid... unconventional SC upon doping?

Outline

1. Spin-orbital Mott insulators

Spin-orbit coupling leads to $J_{eff} = 1/2$ state Weak Mott insulator produced by modest Coulomb U

2. Metallic iridates close to MIT

- Spin-orbit coupling induced semi-metals
- 1. Semi-metal protected by Dirac node
- 2. Competition between molecular orbital formation and SOC

3. New "honeycomb" spin liquid near MIT

Honeycomb iridates... Possible playground for Kitaev spin liquid Spin liquid behavior likely originating from weak Mottness

1. Metal produced from Sr₂IrO₄

I. Doping onto weak Mott insulator Sr₂IrO₄

 $Sr_{2-x}La_xIrO_4 \dots$ no metallic stateY. Klein et al., J. Phys. 20 (2008) $Sr_2Ir_{1-x}Rh_xO_4\dots$ metal? x > 0.2 required...T. F. Qi et al., PRB 86, (2012)

II. Bandwidth control in Ruddlesden Popper Series $Sr_{m+1}Ir_mO_{3m+1}$

SrIrO₃: not half-filled metal, but semi-metal

Perovskite SrIrO₃ (synthesized under high pressure)

GdFeO₃-type Orthorhombic, Pbnm IrO₆ rotation & tilt

 $\sqrt{2a_c} \times \sqrt{2a_c} \times 2a_c$ (*a*_c: cubic unit cell)

Sr₂IrO₄

T-dependent $R_{\rm H}$ non-linear ρ_{xv} two carrier $R_{\rm H}, S < 0$ larger mobility for electrons

Large Nernst ambipolar effect

Semi-metal, $n \sim 5 \times 10^{19} \text{ cm}^{-3}$

Semi-metal by band crossing and spin-orbit coupling

Band crossing around $E_{\rm F}$ due to BZ folding

Band splitting at the crossing points by SOC $\rightarrow J_{eff} = 1/2$ semi-metal

Semi-metal protected by the Dirac node "Topological crystalline metal" ...Y. Chen et al, Nature Com. 6, 6593 (2015)

2. Carrier doping to hyperkagome iridate

New phase, Na₃Ir₃O₈(338), not 438!

Grown by flux method

Single crystal x-ray analysis $P4_132, a = 8.9857 \text{ Å} (293 \text{ K}), Z = 4$

	site	x	У	Z	g
Ir	12 <i>d</i>	0.61264	0.86264	0.62500	1
Na1	4 <i>b</i>	0.87500	0.87500	0.87500	1
Na2	8 <i>c</i>	0.25704	0.25704	0.25704	1
01	8 <i>c</i>	0.1144	0.1144	0.1144	1
02	24 <i>e</i>	0.1364	0.9071	0.9186	1

Stoichiometric compounds!

Na(1): Octahedral site in the pyrochlore Na(2): Tetrahedral site like in a spinel

Hyperkagome network is identical with 438 Ir^{4.33+}, 1/3 hole doping onto Na₄Ir₃O₈

Semi-metallic state in 338 hyper-kagome

Metallic as expected from 1/3 hole doping poor metal $\rho \sim 1 \text{ m}\Omega \text{cm}$ at 5 K

Temperature dependent $R_{\rm H}$ $R_{\rm H} < 0$, electron dominant Small carrier number $n \sim 10^{19} \,{\rm cm}^3$

...Semi-metal

Seemingly incompatible with 1/3 doped Mott insulator

T. Takayama et al., Scientific Reports 4, 6818 (2014)

If no SOC, band insulator even with Ir^{4.33+}

LDA without SOC

Calculation by A. Yaresko

Band insulator despite with non-integer valence state $Ir^{4.33+}(5d^{4.67})$

One of t_{2g} orbitals is fully filled, but others are not. Orbital ordering?

With SOC, a semi-metal is produced

Band insulator with molecular orbital formation

Bond length... Ir-O1 >> Ir-O2 Hopping via O2 dominant $Ir^{4.33+} 5$ $14 \text{ electron per } Ir_3$ 2/3 d_{yz}, d_{zx} = anti-bonding $44 44 d_{yz}, d_{zx}$ bonding

Ir d - O2 p - Ir d hopping creates molecular orbital on each triangle "Ir₃ molecule"...14 electrons fulfill the orbitals right below the gap \rightarrow Band insulator

SOC destroy Molecular orbital to form $J_{eff} = 1/2$

With SOC, Ir t_{2g} orbitals form $J_{eff} = 1/2$ state

By SOC, d_{xy} , d_{yz} , d_{zx} entangled to form $J_{eff} = 1/2$ -like state t_{2g} electrons delocalize out of "Ir₃ molecules" Turn on SOC, molecular orbital destroyed and semi-metal appears

Outline

1. Spin-orbital Mott insulators

Spin-orbit coupling leads to $J_{eff} = 1/2$ state Weak Mott insulator produced by modest Coulomb U

2. Metallic iridates close to MIT

- Spin-orbit coupling induced semi-metals
- 1. Semi-metal protected by Dirac node
- 2. Competition between molecular orbital formation and SOC

3. New "honeycomb" spin liquid near MIT

Honeycomb iridates... Possible playground for Kitaev spin liquid Spin liquid behavior likely originating from weak Mottness

Honeycomb iridate α -A₂IrO₃ : Candidate for Kitaev spin liquid

G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009) Magnetic coupling in Ir-O-Ir bond with $J_{eff} = 1/2$ state

$$J_{eff1/2} = \frac{1}{\sqrt{3}} \left(|d_{xy}, \pm 1/2 \rangle \pm |d_{yz}, \mp 1/2 \rangle + \frac{i}{4} |d_{zx}, \mp 1/2 \rangle \right)$$

90° bond (edge-sharing IrO₆)

 α -A₂IrO₃ (A = Li, Na)

Kitaev spin liquid??

Destructive interference between two paths $H_{ij}^{(\gamma)} = -JS_i^{\gamma}S_j^{\gamma}$ (in $\alpha\beta$ plane) **- bond-dependent FM** In real materials,

Other interactions (J_{AF}, J₂,)
Distortion in IrO₆ octahedra

Also by Y. Singh, P. Gegenwart et al, PRL (12)

Large difference of θ_W between α-Li₂IrO₃ and α-Na₂IrO₃
 Kitaev-type (ferro) interaction seems secondary...

Enhance Kitaev... Hyperhoneycomb β-Li₂IrO₃ T. Takayama et al., PRL (2015) Go opposite way... New spin-liquid H-Li₂IrO₃

Summary

Spin-orbital Mott insulators in iridates

... Produced by weak U, assisted by strong spin-orbit coupling

1. Metallic iridates close to MIT

Semi-metals produced by spin-orbit couplingThe nature of metallic state is critically influenced by SOC.

2. Weak Mott iridium magnets

Sizable charge fluctuation, long-range hopping May stabilize spin-liquid ground state.

Novel metal-insulator transition under the influence of SOC

e a statu de la factor de la facto Prese acourte de la factor de la f