

Quantum Phase Control on Ion-Gated Interfaces

Justin Ye

Device Physics of Complex Materials

Zernike Institute for Advanced Materials, University of Groningen

SPICE Mainz 2015

Outline

Background

Field effect transistor Field effect control of quantum phases Experimental attempts

Introduction to ion-gated transistors
 Basic Concept of Device
 Variations in making devices and early success

New ingredient in 2D superconductors
 Zeeman-protected superconductor
 Ising superconductivity
 Towards total control of superconductivity
 Superconducting transistors
 New chances in monolayers
 CVD growth, monolayer superconducting transistor

Carrier Density Controls Electronic Properties

Field Effect Transistor and Superconductivity

John Bardeen Noble Prize in Physics Transistor (1956) BCS theory of Superconductivity (1972)

Field effect control of T_c in superconductor ?

Carrier density dependence of materials properties

Solid State Gating on SrTiO₃

Proper material: SrTiO₃ with optimized gate by Inoue, Nakamura et al.

Thin Film with Ferroelectric Gate: PbTiO₃

Films gated with PZT by Takahashi, Ahn, Triscone et al.

SrTiO₃ Gate on Interface Superconductivity: LaAlO₃/SrTiO₃

Metallic Thin Film

Optimized SrTiO3 Gate for Metal thin films Bhattacharya, Goldman et al.

A. Bhattacharya

Gate-Induced Superconductivity (GIS)

Alternative Idea: Electric Double Layer (EDL)

Electric Double Layer (EDL) at interfaces between electronic and ionic conductors

Electrochemical cell

Hermann von Helmholtz (1821-1894)

Helmholtz's electric double layer (1853)

Charge Accumulation Device

Double Layer Capacitors (Adsorbed layers of ions and solvated ions)

Module of EDL capacitor

Electric Double Layer Transistors

Electrical Double Layer Transistors

Inducing Superconductivity in SrTiO₃

Material showing superconductivity with lowest density of carriers

 $n_{\rm 3D} = 10^{18} \sim 10^{19} \, {\rm cm}^{-2}$

- Readily atomically flat surface
 Commercial wafer HF etching for atomically flat surface
- Quantum paraelectric material Larger dielectric constant ~ 1000

field-induced SC	Т _с (К)	Carrier Density (3D, x10 ¹⁹ cm ⁻³)	Atomically Flat Surface ?
SrTiO ₃	0,3	1	Commercial
Other materials	much higher	10~100	Difficult

Gating with ionic liquids for higher doping

4 × 10¹⁴ cm⁻² very large carrier density !

Monolayer fullerene ~ 1 x 10¹⁴ molecules/cm²

Monolayer perovskite ~ 1 x 10¹⁵ unit cells/cm²

Application to Graphene and Its Multilayers

JTY et al. PNAS (2011)

Bi- and trilayer graphenes:

New conduction channel at the high carrier density regime

Easy fabrication of atomically flat surface

A Typical Device Fabrication

First Target: ZrNCl

Field-induced Interface Superconductivity in ZrNCI Nanosheets

Changing the Role of MoS₂

Double-gate thin flake device

Transistor Operations

Zhang, Ye et al. Nano Lett. (2012)

Gate-Induced Superconductivity in MoS₂

Gate Control of Electronic Phases in MoS₂

Accessing new regions of carrier density

Optimum doping is at a much lower x
Highest T_c among MX₂ (NbSe₂ 7K)

Superconducting domes in doped band insulators

Various kinds of semiconducting MX₂

Anything interesting? Superconducting Series Using Ionic Gating?

Various kinds of semiconducting MoX₂

All MoX₂ – Ambipolar Transistor Operation

MoX₂ – by Electron Transport

MoX₂ – by Hole Transport

Field Induced Metal-Insulator Transition

(unpublished)

Expanding the Superconductors in TMDs

Phase diagram is similar with a quantum critical point

F T_c is slightly lower

Two-dimensional superconductors

Any new phenomena different from the other system?

🖉 Ultrathin metals

Bi, Pb, Al, Sn, Be, etc.

monolayer Pb, In (UHV, STM)

Ultrathin films of compounds MoGe, In₂O₃ and TiN etc. Ultrathin films and interfaces of oxides

LSCO, YBCO, etc.

LaAlO₃/SrTiO₃, SrTiO₃ δ-doping, *etc*.

CeColn₅ superlattice, etc.

Bulk versus Monolayer (2D): Transition Metal Dichalcogenides

EDLT gating: tuning the bulk into a monolayer

EDLT gating

physical adsorption gating

ARPES on bulk single crystal of MoS₂

chemical doping of alkali metal

as if in a monolayer

university of faculty of mathematics and natural sciences

groningen

zernike institute for advanced materials

Analysis of 2D superconductivity in EDLT of MoS₂

37

Sharp Cusp in Angle Dependance of B_{c2}

Cusp characteristic is a strong evidence of 2D superconductor

2D superconductivity in EDLT of MoS_2

39//

- ✓ High Anisotropy
- ✓ Cusp shape of angle dependence of B_{c2}
- ✓ KT transition
- > Ionic gated MoS2 flake is verified to be 2D superconductor

Why 2D is important?

Huge in-plane B_{c2}

D1 sample

High Magnetic Field Lab (HMFL) in Nijmengen

university of groningen

faculty of mathematics and natural sciences

zernike institute for advanced materials

Huge in-plane B_{c2}

Why this superconductivity is so robust?

Rashba SOC Protected

External B

If external $B \perp$ spin, orthogonal protection is effective!

Why *B*_{c2} exceeds Pauli limit?

Ising Superconductivity

Bulk Versus Field Induced Superconductivity

- Solution in the second set of the second set of the set of the second set of the se
- The former easily exceeds Pauli limit, but the latter falls below the limit.

How to prepare an Ising superconductor

- Zeeman SOC at K and K' point Superconductivity exist
- Extreme two dimensionality

Field effect doping Accumulating carrier for inducing different T_c Breaking inversion symmetry for Zeeman type SOC Inducing Rashba SOC

Summary

Introduction to ion-gated transistors

Ion-gating: a device physics with multidisciplinary taste on many materials Super efficient tool with rich variations

Field control of electronic phases
 Metal-insulator transition, superconductivity, valley, ferromagnetic transitions, etc.
 More phenomena and functionalities appeared!

Gate Control of Electronic Properties and Functionalities