Macroscopic manipulation of Majorana fermions with superconducting circuits

Anton Akhmerov with Timo Hyart, Bernard van Heck, Cosma Fulga, Michele Burrello, and Carlo Beenakker

Phys. Rev. B **88**, 035121 thanks to Fabian Hassler

SPICE workshop, Geisenheim, 3 Aug 2015

Main question:

When Majoranas in superconducting devices are made, how to braid them, and how to use them for quantum computing?

Plan:

- Cooper pair box, a building block for coupling Majoranas.
- Minimal braiding setup.
- ► A possible QC register.

(Re)introduction to Majorana fermions

- 1. Majorana fermion is a particle equal to its antiparticle $\gamma = \gamma^{\dagger}$
- 2. Two Majoranas may store an electron

$$c^{\dagger}=rac{1}{\sqrt{2}}(\gamma_1+i\gamma_2), \ \ c=rac{1}{\sqrt{2}}(\gamma_1-i\gamma_2)$$

3. Energy cost of two Majoranas

$$H = \varepsilon c^{\dagger} c = 2\varepsilon i \gamma_1 \gamma_2$$

vanishes if they are separated. (Kitaev, 2000) The electron stays completely hidden.

4. Majoranas can be created by cleverly combining a mesoscopic system, superconductor, and time-reveral symmetry breaking.

What's the big deal with Majoranas

- 1. Take 4 Majoranas
- 2. Prepare in state $|\psi
 angle=c_{12}^{\dagger}c_{34}^{\dagger}|{
 m vac}
 angle$

What's the big deal with Majoranas

- 1. Take 4 Majoranas
- 2. Prepare in state $|\psi
 angle=c_{12}^{\dagger}c_{34}^{\dagger}|{
 m vac}
 angle$
- 3. Pair Majoranas differently...

What's the big deal with Majoranas

- 1. Take 4 Majoranas
- 2. Prepare in state $|\psi
 angle=c_{12}^{\dagger}c_{34}^{\dagger}|{\sf vac}
 angle$
- 3. Pair Majoranas differently...

Braiding is nice, but:

- 1. It only allows to implement a finite set of unitaries.
- 2. Even if you couple two Majoranas, they are still non-interacting fermions (and so not a universal QC)

Majorana-based quantum computer (Bravyi, Kitaev):

- 1. Braiding
- 2. Measure if two Majoranas store a fermion: $(1-2c^{\dagger}c)=2i\gamma_{1}\gamma_{2}$
- 3. Phase gate (coupling two Majoranas): $exp(i\alpha c^{\dagger}c)$
- 4. Measure four Majoranas (= fermion parity): $(1 - 2c_1^{\dagger}c_1)(1 - 2c_2^{\dagger}c_2) = 4\gamma_1\gamma_2\gamma_3\gamma_4$

Majorana-based quantum computer (Bravyi, Kitaev):

- 1. Braiding
- 2. Measure if two Majoranas store a fermion: $(1 - 2c^{\dagger}c) = 2i\gamma_{1}\gamma_{2}$
- 3. Phase gate (coupling two Majoranas): $exp(i\alpha c^{\dagger}c)$
- 4. Measure four Majoranas (= fermion parity): $(1 - 2c_1^{\dagger}c_1)(1 - 2c_2^{\dagger}c_2) = 4\gamma_1\gamma_2\gamma_3\gamma_4$

Only one error-prone operation (phase gate) with 11% error tolerance.

Two ways:

- 1. Bring Majorana close, make wave functions overlap
- 2. Put Majorana on a small capacitor, use Coulomb energy

Two ways:

- 1. Bring Majorana close, make wave functions overlap Used in "piano keyboard" braiding and many readout schemes.
- 2. Put Majorana on a small capacitor, use Coulomb energy
 - Required to measure four Majoranas (single particle Hamiltonian not enough)
 - Can be used as the only ingredient for universal Majorana manipulation.
 - Was used to implement topological phases with Majoranas (Fu&Xu, Terhal&Hassler&DiVincenzo)

$$H = -E_{J1}\cos(\phi + \pi\Phi/\Phi_0) - E_{J2}\cos(\phi - \pi\Phi/\Phi_0))$$

$$H = -E_J(\Phi)\cos\phi$$

$$H = -E_J(\Phi)\cos\phi + E_C(n - CV/e)^2$$

$$H = -E_J(\Phi)\cos\phi + E_C(n - CV/e)^2$$

 $n = \frac{\partial}{\partial\phi}, \quad (-1)^n = \prod_n \sqrt{2}i\gamma_n \equiv \mathcal{P}$

Majorana Josephson junction

For $\ensuremath{\mathcal{P}}$ to not be constant, Majoranas from different islands must couple.

Majorana Josephson junction

For $\ensuremath{\mathcal{P}}$ to not be constant, Majoranas from different islands must couple.

$$H = iE_M\gamma_{12}\gamma_{21}\cos(\phi_1/2 - \phi_2/2)$$

Flips \mathcal{P} and changes *n* by ± 1 simultaneously.

1. For each CPB perform a gauge transformation $H \rightarrow U^{\dagger}HU$, $U = \exp(\mathcal{P}\phi/2)$

- 1. For each CPB perform a gauge transformation $H \rightarrow U^{\dagger}HU$, $U = \exp(\mathcal{P}\phi/2)$
 - Makes Majoranas appear explicitly in the Hamiltonian.
 - Makes Majorana coupling $\sim i\gamma_1\gamma_2 \cos[(\phi_1 \phi_2)/2] 2\pi$ -periodic.

- 1. For each CPB perform a gauge transformation $H \rightarrow U^{\dagger}HU$, $U = \exp(\mathcal{P}\phi/2)$
 - Makes Majoranas appear explicitly in the Hamiltonian.
 - Makes Majorana coupling ~ iγ₁γ₂ cos[(φ₁ − φ₂)/2] 2π-periodic.
- 2. Set $E_J \gg E_C$, then $\phi \approx 0$.

- 1. For each CPB perform a gauge transformation $H \rightarrow U^{\dagger}HU$, $U = \exp(\mathcal{P}\phi/2)$
 - ► Makes Majoranas appear explicitly in the Hamiltonian.
 - Makes Majorana coupling ~ iγ₁γ₂ cos[(φ₁ − φ₂)/2] 2π-periodic.
- 2. Set $E_J \gg E_C$, then $\phi \approx 0$.

•
$$E_n = \bar{E}_n - U_n \mathcal{P}, \quad U_0 = 16 \left(\frac{E_C E_J^3}{2\pi^2}\right)^{1/4} e^{-\sqrt{8E_J/E_c}} \cos(CV/e)$$

•
$$E_1 - E_0 \sim \mathcal{P}$$

Readout of Majorana parity in a CPB

 Splitting E₁ − E₀ was measured using a transmission line Cavity resonance frequency ω = ω₀ + g²P(U₁ − U₀)/ħ

(See PRA 76, 042319 for review)

Readout of Majorana parity in a CPB

- Splitting E₁ − E₀ was measured using a transmission line Cavity resonance frequency ω = ω₀ + g²P(U₁ − U₀)/ħ
- ► Exponential suppression of *U* by flux was demonstrated.

(See PRA 76, 042319 for review)

Tri-junction Majorana

When $E_C \ll E_M$, the Majoranas at the tri-junction hybridize, forming

$$\gamma_E = \frac{\cos\alpha_{23}\gamma_1 + \cos\alpha_{13}\gamma_2 + \cos\alpha_{12}\gamma_3}{\sqrt{\cos^2\alpha_{23} + \cos^2\alpha_{13} + \cos^2\alpha_{12}}}$$

- ▶ 6 Majoranas (2 control + 2 braid
 - + 2 ancillas for braiding)

- ▶ 6 Majoranas (2 control + 2 braid
 - + 2 ancillas for braiding)
- 4 adjustable couplings (3 to braid, 1 for readout)

- ▶ 6 Majoranas (2 control + 2 braid + 2 ancillas for braiding)
- ► 4 adjustable couplings (3 to braid, 1 for readout)
- 1 tri-junction + 1 controlled Majorana coupling or 2 tri-junctions

Braiding in a π -circuit

 $\pi\text{-circuit}$ is not a universal qubit, only implements one Clifford gate.

 $\pi\text{-circuit}$ is not a universal qubit, only implements one Clifford gate. A minimal qubit needs at least one more tri-junction...

 $\pi\text{-circuit}$ is not a universal qubit, only implements one Clifford gate. A minimal qubit needs at least one more tri-junction...

RAMM — Random Access Majorana Memory

 Fermion parity measurement can be applied to any number of qubits.

RAMM — Random Access Majorana Memory

- Fermion parity measurement can be applied to any number of qubits.
- This allows to implement a Majorana bus, where any Pauli operator can be measured in one go.

RAMM — Random Access Majorana Memory

- Fermion parity measurement can be applied to any number of qubits.
- This allows to implement a Majorana bus, where any Pauli operator can be measured in one go.

- 1. Coulomb coupling is a necessary component of a Majorana quantum computer.
- 2. It can be controlled with exponential range by using transmon qubits.
- Transmon circuits allow to implement braiding and quantum computing registers using minimal number of control parameters.

Summary

Thank you all. The end.