Macroscopic manipulation of Majorana fermions with superconducting circuits

Anton Akhmerov
with Timo Hyart, Bernard van Heck, Cosma Fulga,
Michele Burrello, and Carlo Beenakker
Phys. Rev. B 88, 035121
thanks to Fabian Hassler

SPICE workshop, Geisenheim, 3 Aug 2015

Plan

Main question:
When Majoranas in superconducting devices are made, how to braid them, and how to use them for quantum computing?

Plan:

- Cooper pair box, a building block for coupling Majoranas.
- Minimal braiding setup.
- A possible QC register.

(Re)introduction to Majorana fermions

1. Majorana fermion is a particle equal to its antiparticle

$$
\gamma=\gamma^{\dagger}
$$

2. Two Majoranas may store an electron

$$
c^{\dagger}=\frac{1}{\sqrt{2}}\left(\gamma_{1}+i \gamma_{2}\right), \quad c=\frac{1}{\sqrt{2}}\left(\gamma_{1}-i \gamma_{2}\right)
$$

3. Energy cost of two Majoranas

$$
H=\varepsilon c^{\dagger} c=2 \varepsilon i \gamma_{1} \gamma_{2}
$$

vanishes if they are separated. (Kitaev, 2000)
The electron stays completely hidden.
4. Majoranas can be created by cleverly combining a mesoscopic system, superconductor, and time-reveral symmetry breaking.

What's the big deal with Majoranas

1. Take 4 Majoranas
2. Prepare in state $|\psi\rangle=c_{12}^{\dagger} c_{34}^{\dagger}|\mathrm{vac}\rangle$

What's the big deal with Majoranas

1. Take 4 Majoranas
2. Prepare in state $|\psi\rangle=c_{12}^{\dagger} c_{34}^{\dagger}|\mathrm{vac}\rangle$
3. Pair Majoranas differently...

What's the big deal with Majoranas

1. Take 4 Majoranas
2. Prepare in state $|\psi\rangle=c_{12}^{\dagger} c_{34}^{\dagger}|\mathrm{vac}\rangle$
3. Pair Majoranas differently...
4. $|\psi\rangle=\frac{1}{\sqrt{2}}\left(1+c_{13}^{\dagger} c_{34}^{\dagger}\right)|v a c\rangle$

Discrete version of braiding

Clarke, Sau, Tewari

Are Majoranas useful?

Braiding is nice, but:

1. It only allows to implement a finite set of unitaries.
2. Even if you couple two Majoranas, they are still non-interacting fermions (and so not a universal QC)

Yes, they are: 'Magic state' distillation

Majorana-based quantum computer (Bravyi, Kitaev):

1. Braiding
2. Measure if two Majoranas store a fermion:

$$
\left(1-2 c^{\dagger} c\right)=2 i \gamma_{1} \gamma_{2}
$$

3. Phase gate (coupling two Majoranas):

$$
\exp \left(i \alpha c^{\dagger} c\right)
$$

4. Measure four Majoranas ($=$ fermion parity):

$$
\left(1-2 c_{1}^{\dagger} c_{1}\right)\left(1-2 c_{2}^{\dagger} c_{2}\right)=4 \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}
$$

Yes, they are: 'Magic state' distillation

Majorana-based quantum computer (Bravyi, Kitaev):

1. Braiding
2. Measure if two Majoranas store a fermion:

$$
\left(1-2 c^{\dagger} c\right)=2 i \gamma_{1} \gamma_{2}
$$

3. Phase gate (coupling two Majoranas):

$$
\exp \left(i \alpha c^{\dagger} c\right)
$$

4. Measure four Majoranas ($=$ fermion parity):

$$
\left(1-2 c_{1}^{\dagger} c_{1}\right)\left(1-2 c_{2}^{\dagger} c_{2}\right)=4 \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}
$$

Only one error-prone operation (phase gate) with 11% error tolerance.

Coupling Majoranas

Two ways:

1. Bring Majorana close, make wave functions overlap
2. Put Majorana on a small capacitor, use Coulomb energy

Coupling Majoranas

Two ways:

1. Bring Majorana close, make wave functions overlap Used in "piano keyboard" braiding and many readout schemes.
2. Put Majorana on a small capacitor, use Coulomb energy

- Required to measure four Majoranas (single particle Hamiltonian not enough)
- Can be used as the only ingredient for universal Majorana manipulation.
- Was used to implement topological phases with Majoranas (Fu\&Xu, Terhal\&Hassler\&DiVincenzo)

Cooper pair box (CPB)

A small superconducting island, coupled to a bulk superconductor

$$
\left.H=-E_{J 1} \cos \left(\phi+\pi \Phi / \Phi_{0}\right)-E_{J 2} \cos \left(\phi-\pi \Phi / \Phi_{0}\right)\right)
$$

Cooper pair box (CPB)

A small superconducting island, coupled to a bulk superconductor

$$
H=-E_{J}(\Phi) \cos \phi
$$

Cooper pair box (CPB)

A small superconducting island, coupled to a bulk superconductor

$$
H=-E_{J}(\Phi) \cos \phi+E_{C}(n-C V / e)^{2}
$$

Cooper pair box (CPB)

A small superconducting island, coupled to a bulk superconductor

Majorana Josephson junction

For \mathcal{P} to not be constant, Majoranas from different islands must couple.

Majorana Josephson junction

For \mathcal{P} to not be constant, Majoranas from different islands must couple.

$$
H=i E_{M} \gamma_{12} \gamma_{21} \cos \left(\phi_{1} / 2-\phi_{2} / 2\right)
$$

Flips \mathcal{P} and changes n by ± 1 simultaneously.

Effective Hamiltonian of a CPB network

1. For each CPB perform a gauge transformation

$$
H \rightarrow U^{\dagger} H U, U=\exp (\mathcal{P} \phi / 2)^{\circ}
$$

Effective Hamiltonian of a CPB network

1. For each CPB perform a gauge transformation $H \rightarrow U^{\dagger} H U, U=\exp (\mathcal{P} \phi / 2)$

- Makes Majoranas appear explicitly in the Hamiltonian.
- Makes Majorana coupling $\sim i \gamma_{1} \gamma_{2} \cos \left[\left(\phi_{1}-\phi_{2}\right) / 2\right]$ 2π-periodic.

Effective Hamiltonian of a CPB network

1. For each CPB perform a gauge transformation $H \rightarrow U^{\dagger} H U, U=\exp (\mathcal{P} \phi / 2)$

- Makes Majoranas appear explicitly in the Hamiltonian.
- Makes Majorana coupling $\sim i \gamma_{1} \gamma_{2} \cos \left[\left(\phi_{1}-\phi_{2}\right) / 2\right]$ 2π-periodic.

2. Set $E_{J} \gg E_{C}$, then $\phi \approx 0$.

Effective Hamiltonian of a CPB network

1. For each CPB perform a gauge transformation $H \rightarrow U^{\dagger} H U, U=\exp (\mathcal{P} \phi / 2)$

- Makes Majoranas appear explicitly in the Hamiltonian.
- Makes Majorana coupling $\sim i \gamma_{1} \gamma_{2} \cos \left[\left(\phi_{1}-\phi_{2}\right) / 2\right]$ 2π-periodic.

2. Set $E_{J} \gg E_{C}$, then $\phi \approx 0$.

- $E_{n}=\bar{E}_{n}-U_{n} \mathcal{P}, \quad U_{0}=16\left(\frac{E_{C} E_{J}^{3}}{2 \pi^{2}}\right)^{1 / 4} e^{-\sqrt{8 E_{J} / E_{c}}} \cos (C V / e)$
- $E_{1}-E_{0} \sim \mathcal{P}$

Readout of Majorana parity in a CPB

- Splitting $E_{1}-E_{0}$ was measured using a transmission line Cavity resonance frequency $\omega=\omega_{0}+g^{2} \mathcal{P}\left(U_{1}-U_{0}\right) / \hbar$

(See PRA 76, 042319 for review)

Readout of Majorana parity in a CPB

- Splitting $E_{1}-E_{0}$ was measured using a transmission line Cavity resonance frequency $\omega=\omega_{0}+g^{2} \mathcal{P}\left(U_{1}-U_{0}\right) / \hbar$
- Exponential suppression of U by flux was demonstrated.

(See PRA 76, 042319 for review)

Tri-junction Majorana

When $E_{C} \ll E_{M}$, the Majoranas at the tri-junction hybridize, forming
$\gamma_{E}=\frac{\cos \alpha_{23} \gamma_{1}+\cos \alpha_{13} \gamma_{2}+\cos \alpha_{12} \gamma_{3}}{\sqrt{\cos ^{2} \alpha_{23}+\cos ^{2} \alpha_{13}+\cos ^{2} \alpha_{12}}}$

A setup for demonstration of non-Abelian statistics

A CPB can be used to couple and readout Majoranas, how to demonstrate braiding in a minimal fashion?

A setup for demonstration of non-Abelian statistics

A CPB can be used to couple and readout Majoranas, how to demonstrate braiding in a minimal fashion?
Budget:

A setup for demonstration of non-Abelian statistics

A CPB can be used to couple and readout Majoranas, how to demonstrate braiding in a minimal fashion?

Budget:

- 6 Majoranas (2 control +2 braid +2 ancillas for braiding)

A setup for demonstration of non-Abelian statistics

A CPB can be used to couple and readout Majoranas, how to demonstrate braiding in a minimal fashion?

Budget:

- 6 Majoranas (2 control +2 braid +2 ancillas for braiding)
- 4 adjustable couplings (3 to braid, 1 for readout)

A setup for demonstration of non-Abelian statistics

A CPB can be used to couple and readout Majoranas, how to demonstrate braiding in a minimal fashion?

Budget:

- 6 Majoranas (2 control +2 braid +2 ancillas for braiding)
- 4 adjustable couplings (3 to braid, 1 for readout)
- 1 tri-junction +1 controlled Majorana coupling or 2 tri-junctions

Braiding in a π-circuit

a)

b)

time step	Φ_{0}	Φ_{1}	Φ_{2}	Φ_{3}
0	0	0	$-\Phi_{\max }$	0
1	$\Phi_{\max }$	0	0	0
2	0	0	$-\Phi_{\max }$	0
3	0	$\Phi_{\max }$	$-\Phi_{\max }$	0
4	0	$\Phi_{\max }$	0	0
5	0	$\Phi_{\max }$	0	$\Phi_{\max }$
6	0	0	0	$\Phi_{\max }$
7	0	0	$-\Phi_{\max }$	$\Phi_{\max }$
8	0	0	$-\Phi_{\max }$	0
9	$\Phi_{\max }$	0	0	0

9: measurement

n	1	2	3	4
$p_{\text {flip }}$	$\frac{1}{2}$	1	$\frac{1}{2}$	0

Majorana qubit

π-circuit is not a universal qubit, only implements one Clifford gate.

Majorana qubit

π-circuit is not a universal qubit, only implements one Clifford gate. A minimal qubit needs at least one more tri-junction...

Majorana qubit

π-circuit is not a universal qubit, only implements one Clifford gate. A minimal qubit needs at least one more tri-junction...

RAMM — Random Access Majorana Memory

- Fermion parity measurement can be applied to any number of qubits.

RAMM — Random Access Majorana Memory

- Fermion parity measurement can be applied to any number of qubits.
- This allows to implement a Majorana bus, where any Pauli operator can be measured in one go.

RAMM — Random Access Majorana Memory

- Fermion parity measurement can be applied to any number of qubits.
- This allows to implement a Majorana bus, where any Pauli operator can be measured in one go.

Summary

1. Coulomb coupling is a necessary component of a Majorana quantum computer.
2. It can be controlled with exponential range by using transmon qubits.
3. Transmon circuits allow to implement braiding and quantum computing registers using minimal number of control parameters.

Summary

Thank you all.
The end.

