Local Characterization of

Superconductivity in Iron Pnictides

Auslaender Lab @ Technion:

- Alon Yagil
- Avior Almoalem
- Yuval Lamhot
- Nadav Shapira

Samples & discussion:

- Shigeru Kasahara (Kyoto)
- Tatsuya Watashige (Kyoto)
- Takasada Shibauchi (Tokyo)
- Yuji Matsuda (Kyoto)

See: Lamhot et al., PRB 91, 060504 (2015)

also discussions w/ Erez Berg, Jenny Hoffman, Beena Kalisky, Amit Kanigel, Amit Keren, Max Khodas, Alex Levchenko & Kam Moler

ISRAEL SCIENCE FOUNDATION

Penetration Depth Maximal Near Optimal Doping

Peak in λ_{ab} in sample-wide measurements on $BaFe_2(As_{1-x}P_x)_2$

- e.g. tunnel diode osc., cavity perturbation

Very Different from Other Pnictides

Peak in λ_{ab} in sample-wide measurements on BaFe₂(As_{1-x}P_x)₂

- e.g. tunnel diode osc., cavity perturbation

outline

- the pnictides
 - in particular P-Ba122 [\equiv BaFe₂(As_{1-x}P_x)₂]
 - our samples
- MFM a local probe for superconductivity
- the penetration depth
- vortex decoration & manipulation

Several Families of Fe-Based Supercond.

No SC

Wen & Li, Annu. Rev. Condens. Matter Phys. 2, 121 (2011).

nematicity, antiferromag. & supercond.

Cooling from the high T tetragonal phase:

- 1. $T < T_s nematic$
- 2. $T < T_N SDW$
- 3. $T < T_{C}$ superconductivity
 - o can be induced by doping
 - by electrons (e.g. $Ba(Fe_{1-x}Co_x)_2As_2$)
 - or by holes (e.g. $(Ba_{1-x}K_x)Fe_2As_2$)
 - o or by pressure
 - o or by chemical pressure
 - isovalent doping (e.g. BaFe2(As1-xPx)2)

 $BaFe_2(As_{1-x}P_x)_2 - |sovalent Doping|$

isovalent doping: $As^{-3} \leftrightarrow P^{-3}$

- doping affects the lattice not the net charge
- less disorder than elec / hole doped

typical phase diagram for 122 pnictides

evidence for co-existence of

superconductivity & magnetic order at low

doping [e.g. Nakai et al., PRL '10].

Shibauchi T, Carrington A, Matsuda Y., Annu. Rev. Condens. Matter Phys. 5, 113 (2014).

$BaFe_2(As_{1-x}P_x)_2$ - Anomalous Properties Near x_{opt}

- anomalous transport
 - $\square "wrong" power in \rho \propto T^{\alpha}$

Kasahara et al., PRB '10

Analytis et al., Nat. Phys. '14

enhanced mass

Walmsley et al., PRL '13

strong magneto-elastic coupling

Kuo et al., PRB '12

• peak in λ

Hashimoto et al., Science '12

Lamhot et al., PRB '15

from Shibauchi et al., Annu. Rev. Condens. Matter Phys. **5**, 113 (2014)

all of this hints at something weird beneath the dome

Origin of the Peak in $\lambda(x)$ - an Open Question

A quantum critical point in the dome may be playing a role

o transition: (conventional supercond.) ↔ (mixed supercond.-SDW state)

Shibauchi et al. Annu. Rev. Condens. Matter Phys. 5, 113 (2014)

The relationship between quantum criticality and a peaked $\lambda_{ab}(x)$ is not simple.

Local, Spatially Resolved Measurements

Our goals:

- Measure $\lambda_{ab}(x)$
 - tricky (worth repeating)
 - o our method is very different from prev. (sample wide) measurements
 - \succ more stringent test for a very unique result
 - o our measurement is spatially resolved
 - > we average over microns (at most) and not over the whole sample
 - can give limits on scale of inhomogeneities
- Image magnetically for hints of competing phases

High Quality P-Ba122 Single Crystals Spanning the Supercond. Dome

- from the Matsuda group, Kyoto Japan.
- grown by the self-flux method and annealed in vacuum. ٠
- cleaved before each cooldown

x = 0.550

0.33

0.29

- scale bars: 0.5mm
- x from EDS

outline

- the pnictides
 - in particular P-Ba122 $[\equiv BaFe_2(As_{1-x}P_x)_2]$
 - our samples
- MFM a local probe for superconductivity
- the penetration depth
- vortex decoration & manipulation

'Bulk' Properties from a Mag. Scanned Probe

Length scale for magnetic response - hundreds of nanometers

- Can give information about bulk
 - in a superconductor direct (and local) information about the Meissner effect.
- Less need for sample fabrication (can be easy to deploy)
- Less susceptible to edges, cracks etc. (we can move away)
- Information about homogeneity

Vortex imaging and manipulation

Vortices extend from the surface deep into the sample

- We can get information about the bulk:
 - Imaging: vortices are affected by defects
 - Manipulation: when we drag a vortex we are pulling it through the material

Length Scale for Imaging Magnetic Field: λ

MFM: Measure Force Gradients

$$m\ddot{z} + \gamma\dot{z} + k(z - z_0) = F_z[z]$$

$$F_{z}[z] \approx F_{z}[z_{0}] + (z - z_{0})(\partial F_{z} / \partial z)_{z = z_{0}}$$

Expansion around z_0

$$m\ddot{z} + \gamma \dot{z} + k_{eff} \left(z - z_0 \right) \approx F_z \left[z_0 \right]$$

$$\vec{F} \approx \left\langle \vec{\nabla} \left(\vec{M} \cdot \vec{H} \right) \right\rangle$$

Average over whole tip

(AFM tip with magnetic coating)

$$k_{eff} = k - \left(\partial F_z / \partial z\right)_{z=z_0}$$

Albrecht et al. '91

Shift in f_0 gives $\partial F_z / \partial z$

 $(\partial F_z/\partial z)$

2k

$$f_{0} + \Delta f = 2\pi \sqrt{\frac{k}{m}} \sqrt{1 - \frac{\left(\frac{\partial F_{z}}{\partial z}\right)_{z=z_{0}}}{k}} \qquad f_{0} >> \Delta f$$

MFM Magnetic Tip is Repelled from a Superconductor

Meissner response: a repulsive force

(attractive force would have opposite curvature)

outline

- the pnictides
 - in particular P-Ba122 $[\equiv BaFe_2(As_{1-x}P_x)_2]$
 - our samples
- MFM a local probe for superconductivity
- the penetration depth
- vortex decoration & manipulation

Magnetic Interaction - Meissner

Persistent screening currents in the sample cancel the magnetic field from the tip

The screening currents form an image of the magnetic tip.

Xu et. al., Phys. Rev. B 51, 424 (1995).

Magnetic Interaction - Meissner

The location and strength of the magnetic image depends on λ_{ab}

For $z_{tip} \gg \lambda_{ab}$ the MFM signal is given by:

$$\left|\frac{\partial F_z}{\partial z} \cong -\frac{\mu_0}{2\pi} \int dk \, k^4 \, e^{-2k\left(z_{tip} + \lambda_{ab}\right)} \int_{tip} d^3 r \, M_{tip}\left(\vec{r}_{tip}\right) \int_{tip'} d^3 r' \, M_{tip'}\left(\vec{r}_{tip}\right) e^{-k\left(z' + z''\right)} J_0\left(k\left|\vec{\rho}'(z') - \vec{\rho}''(z'')\right|\right)\right|$$

Xu et. al., Phys. Rev. B 51, 424 (1995).

Meissner Response to the Local Field from the Magnetic Tip Gives λ_{ab}

Using a model we fit to obtain a value for λ_{ab}

• our fit is a refinement of Luan et al. PRB `10

Tip model: truncated cone:

Results - peak in λ_{ab} @ optimal doping

not showing results for very underdoped samples.

conclusion:

even though we only average over a micron scale region – the peak is there

Same $T_C(\lambda_{ab})$ on Both Sides of the Peak

on both sides of x_{OPT}:

- same asymptotic T_C^{max}
- same dependence of T_C on λ_{ab}

possibly our results are different because we do not average over the whole sample

We Measure $T_C & \lambda_{ab}$ in the Same Area

The magnetic field inducing the Meissner response is local on a length scale set by tip geometry and distance from sample.

Our results are not sample averaged.

Sharp Rise of λ_{ab} at Very Low Doping

x=0.22 samples were less homogenous in composition than other samples.

outline

- the pnictides
 - in particular P-Ba122 [\equiv BaFe₂(As_{1-x}P_x)₂]
 - our samples
- MFM a local probe for superconductivity
- the penetration depth
- vortex decoration & manipulation

a Vortex Looks Like a Magnetic Monopole

For $R^2 + z^2 \gg \lambda_{ab}^2$ – a vortex looks like a monopole: $\vec{B}(\vec{R}, z) \sim \frac{\Phi_0}{2\pi} \frac{\vec{R} + (z + \lambda_{ab})\hat{z}}{\left[R^2 + (z + \lambda_{ab})^2\right]^{3/2}}$

Scale for resolution is $z + \lambda_{ab}$

i.e. scale for imaging is down to 100 nm

Magnetic Imaging

Field cooling through T_C creates magnetic vortices

- each carrying one quantum of flux $\Phi_0 = h/2e \approx 20.7 \ G\mu m^2$
- each giving a looking roughly like a magnetic monopole at $z = -\lambda_{ab}$

Vortices interact with defects

allow us to detect them by imaging

x > 0.28: "ordered" vortex array

scans at $T \cong 4.5$ K:

optimal doping: x=0.3

scans at $T \cong 4.5$ K:

at x=0.22 λ_{ab} is large (450-800nm)

- 1. large vortices
- 2. weak tip-vortex interaction

BUT

vortices move very readily \rightarrow weak pinning

optimal doping: x=0.3

Pinning in Very Underdoped Samples is Weak

possibly:

- 1. a lot of disorder
 - material defects
 - intrinsic underdoped samples are in the mixed phase
 - we cannot resolve inhomogeneities directly but the vortices may be probing them
 - scale is nm's in most pnictides.
 - perhaps more in P-Ba122

Carretta et al., Phys. Scr. 88, 068504 (2013).

- 2. at the edge of the dome S-C is weaker because of the competing phase
 - gap and pairing are suppressed $\rightarrow \xi$ is larger \rightarrow pinning is weaker.

Mild Underdoping: Lines of Vortices

Linear vortex arrays orientated 45^o to the crystal axes

- probably parallel to twin boundaries
- The existence of twin boundaries is a signature of nematic order
 - their presence implies an orthorhombic unit cell.
- this implies that supercond. coexists with other phases at low doping

from Fisher et al. Rep.

Prog. Phys. '11

Twin Boundaries - Usually Vortex Traps

usually - expect the order parameter to be suppressed on a twin boundary

e.g.

- MFM on YBCO near optimal doping
 - vortices are on a line
 - no modulation off the line

[Shapira et al., PRB 2015]

- STM on FeSe thin films [Song et al., PRL 2012]
 - gap is suppressed on the twin boundaries
 - vortices are on the twin boundaries

STM on FeSe thin films [Song et al., PRL 2012]

High Field - Lines of Vortices

T = 4.5KB > 130G z \approx 70nm

High Field - Lines of Vortices

T = 4.5KB \approx 60G z \approx 100nm

Low Field: Vortices Avoid Stripes

T = 4.5K $B \approx 3G$ $z \approx 170nm$

stripes are NOT periodic

stripes of enhanced Meissner repulsion - width – hundreds of nanometers (scale probably given by $\lambda_{ab} \approx 220 nm$)

Stripes Are Visible w/o Vortices

T = 4.5KB \approx 0.2G z \approx 130nm

Similar Behavior When We Flip the Field

same area at different field – vortices are repelled from the stripes

Stripes Disappear When T increased

 $z \approx 200 nm$

Vortex Manipulation: Stripes Are Barriers

Same Vortex, Different Scan Direction

Pulling in Different Directions @ Higher T, Same Story

Still Higher T, Still Can't Cross

T = 15 K

Similar to SQUID results in Co-Ba122

Field

Scanning SQUID on $Ba(Fe_{1-x}Co_x)_2As_2$ (electron doped) from the Moler group @ Stanford.

Kalisky, Kirtley et al., PRB **81**, 184513 (2010); PRB **81**, 184514 (2010); PRB **83**, 064511 (2011).

SQUID images are resolution limited to a few microns

17K

30 µm

span 6 Φ_0/A

phenomenological model (next slide) predicts MFM should have seen such lines

• as we do in P-Ba122

BUT – in MFM in Ba($Fe_{1-x}Co_x$)₂As₂ – no stripes were observed

Phenomenological Model ~ 2 Not Uniform

Slightly modified London eqn.

 $\boldsymbol{h} + \boldsymbol{\nabla} \times (\lambda^2 \boldsymbol{j}) = 0$

approximation results consistent with the SQUID data

- assume variation in λ^2 is weak
- on every twin boundary λ^2 is reduced
 - $\lambda^2(x) = \lambda_0^2 \beta^3 \delta(x)$

we have implemented for MFM

Kogan & Kirtley, PRB 83, 214521 (2011)

Origin of the Stripes Is Not Clear

Planes of enhanced superconductivity:

- Khlyustikov & Buzdin, Adv. Phys. '87: enhanced T_c in many (pre-HTSC) metals
 - o think of a twin boundary as an embedded 2D superconductor
- Mironov & Buzdin, PRB '12: mostly for type-I
- Bo Li et al., New J. Phys. '13: stripes consistent w/ simulations for pnictides

Stripes exist in Co-Ba122 (electron doped) & in P-Ba122 (isovalent doping):

- enhanced diamagnetism
- vortex repulsion
- vortex barrier

UNLIKE in many other superconductors.

the reason for the different behavior can be mundane (i.e. details).

BUT for FeSe (a FeSC, cousin to pnictides) :

vortices are trapped & gap is suppressed on twin boundaries

[Song et al., PRL '12]

• FeSe has no magnetic phase

so possibly in FeSe there are no stripes because there is no magnetic phase.

- Peak in λ_{ab} at optimal doping verified by local measurements.
 - we average over several microns this gives an upper bound to any texture.
- $T_C(\lambda_{ab})$ is the same on both sides of the peak in λ_{ab} .
- λ_{ab} is enhanced towards the underdoped edge of the superconducting dome.
 - indication of mixing between superconductivity and other phases.
- Vortex decoration
 - ordered vortex arrays for x>0.28

see PRB **91**, 060504 (2015)

- in very underdoped samples very weak pinning
 - suppressed pairing or disorder? if disorder is the source intrinsic?
- in mildly underdoped samples:
 - linear vortex arrays co-existence of superconductivity and magnetic order
 - stripes in the absence of magnetic field
 - stripes repel vortices & act as barriers

The End