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Penetration Depth Maximal Near Optimal Doping
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Peak in λab in sample-wide measurements on BaFe2(As1-xPx)2

- e.g. tunnel diode osc., cavity perturbation 

Hashimoto et al., Science 336, 1554 (2012)
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Meissner weak where 𝑇𝐶 maximal!



contrast with Ba(Fe1-xCox)2As2

Gordon et al., PRB ’10

Luan et al., PRL ’11

• no peak

• sharp rise at low doping

• competing magnetic phase 

takes up carriers

Luan et al., PRL 106, 067001 (2011)

Very Different from Other Pnictides
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Peak in λab in sample-wide measurements on BaFe2(As1-xPx)2

- e.g. tunnel diode osc., cavity perturbation 

Hashimoto et al., Science 336, 1554 (2012)
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• the pnictides 

• in particular P-Ba122 [≡BaFe2(As1-xPx)2]

• our samples

• MFM – a local probe for superconductivity

• the penetration depth

• vortex decoration & manipulation



Several Families of Fe-Based Supercond.

Wen & Li, Annu. Rev. Condens. Matter Phys. 2, 121 (2011). 

BaFe2(As,P)2

TC=30K



TS

Chu et al., PRB 79 014506 (2009) 

TN

TC

Cooling from the high T tetragonal phase:

1. T < TS – nematic

o tetragonal (a-axis ≡ b-axis)   → orthorhombic (a-axis > b-axis)

2. T < TN – SDW

o Ferromag. along b-axis

o AFM along a-axis

3. T < TC - superconductivity

tetragonal

SDW

& 

ortho

orthorhombic

cool

T [K]

Ba(Fe1-xCox)2As2

nematicity, antiferromag. & supercond.



nematicity, antiferromag. & supercond.

Cooling from the high T tetragonal phase:

1. T < TS – nematic

2. T < TN – SDW

3. T < TC superconductivity

o can be induced by doping

• by electrons (e.g. Ba(Fe1-xCox)2As2)

• or by holes (e.g. (Ba1-xKx)Fe2As2)

o or by pressure

o or by chemical pressure

• isovalent doping (e.g. BaFe2(As1-xPx)2)

TS

Chu et al., PRB 79 014506 (2009) 

Ba(Fe1-xCox)2As2

TN

TC

tetragonal

SDW

& 

ortho

orthorhombic

cool

T [K]



Shibauchi T, Carrington A, Matsuda Y., Annu. Rev. Condens. Matter Phys. 5, 113 (2014). 

isovalent doping: 𝐀𝐬−𝟑 ↔ 𝐏−𝟑

• doping affects the lattice not the net charge

• less disorder than elec / hole doped

typical phase diagram for 122 pnictides

• evidence for co-existence of 

superconductivity & magnetic order at low 

doping [e.g. Nakai et al., PRL ‘10].

BaFe2(As1-xPx)2 – Isovalent Doping



BaFe2(As1-xPx)2 - Anomalous Properties Near xopt

• anomalous transport

 “wrong” power in 𝜌 ∝ 𝑇𝛼

Kasahara et al., PRB ’10

Analytis et al., Nat. Phys. ‘14

• enhanced mass

Walmsley et al., PRL ‘13

• strong magneto-elastic coupling

Kuo et al., PRB ‘12

• peak in 𝜆

Hashimoto et al., Science ’12

Lamhot et al., PRB ‘15

from Shibauchi et al.,

Annu. Rev. Condens. Matter Phys. 5, 113 (2014)

αT 

x →

𝑚∗/𝑚𝑏

↑ 𝑇 [𝐾]

all of this hints at something weird beneath the dome



Origin of the Peak in 𝝀(𝒙) - an Open Question

A quantum critical point in the dome may be playing a role

o transition: (conventional  supercond.) ↔ (mixed supercond.-SDW state)

Shibauchi et al. Annu. Rev. Condens. Matter Phys. 5, 113 (2014)

The relationship between quantum criticality and a peaked 𝜆𝑎𝑏(𝑥) is not simple.

recent idea:

quenched disorder gives rise to emulsion which 

suppresses the superfluid density 𝑛𝑠.

→ 𝜆 increases because 𝑛𝑠 decreases not because 

𝑚∗ increases.

Chowdhury et al., arXiv:1502.04122

SC

SC + SDW

see e.g.

Levchenko et al., PRL ’13

Nomoto & Ikeda, PRL ’13

Fernandes et al. PRL ’13

Chowdhury et al., PRL  ’13, arXiv ‘15



Local, Spatially Resolved Measurements

Our goals:

• Measure 𝜆𝑎𝑏(𝑥)

o tricky (worth repeating) 

o our method is very different from prev. (sample wide) measurements

 more stringent test for a very unique result

o our measurement is spatially resolved

 we average over microns (at most) and not over the whole sample

 can give limits on scale of inhomogeneities 

• Image magnetically for hints of competing phases



High Quality P-Ba122 Single Crystals 

Spanning the Supercond. Dome

x=0.550 0.300.48 0.29

0.285

0.33

0.260.26 0.22 0.22

• scale bars: 0.5mm      

• x from EDS

• from the Matsuda group, Kyoto Japan.

• grown by the self-flux method and annealed in vacuum.

• cleaved before each cooldown
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‘Bulk’ Properties from a Mag. Scanned Probe

Vortices extend from the surface deep into the sample

• We can get information about the bulk:

o Imaging: vortices are affected by defects

o Manipulation: when we drag a vortex we are pulling it through the material

superconductor

defect

From: Reichhardt, Nat. 
Phys. news&views ‘09

Vortex imaging and manipulation

Length scale for magnetic response - hundreds of nanometers

• Can give information about bulk

• in a superconductor – direct (and local) information 

about the Meissner effect.

• Less need for sample fabrication (can be easy to deploy)

• Less susceptible to edges, cracks etc. (we can move away)

• Information about homogeneity

vortex



Length Scale for Imaging Magnetic Field: 𝝀

Current

x
Length scales

λ penetration depth 
(hundreds of nm)

ξ vortex core size (few nm)

Order parameter

x     <<     l x

core (suppressed 
superconductivity)

x     <<     l

Magnetic field

x
x     <<     l

cartoon of the magnetic 
field from a vortex 

λ

2ξ

“Flux Tube” cartoon:
cylindrical hole 

punched through the 
condensate



MFM: Measure Force Gradients
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MFM Magnetic Tip is Repelled from a Superconductor

Meissner response:

a repulsive force

(attractive force would have 

opposite curvature)
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Magnetic Interaction - Meissner

Xu et. al., Phys. Rev. B 51, 424 (1995).

Persistent screening currents in the sample cancel the magnetic

field from the tip

The screening currents form

an image of the magnetic tip.



Magnetic Interaction - Meissner

            
2 ' ''4 3 3 '0

' 0
'

' ' ' '' ''
2

tip abk z k z zz
tip tip tip tip

tip tip

F
dk k e d r M r d r M r e J k z z

z

lm
 



   
  

   

ztip

ztip+lab

lab

SC

2(ztip+lab)

The location and strength of the magnetic image

depends on 𝜆𝑎𝑏

For 𝑧𝑡𝑖𝑝 ≫ 𝜆𝑎𝑏 the MFM signal is given by:

Xu et. al., Phys. Rev. B 51, 424 (1995).



“TC” = Temp. Where Meissner Disappears

Δ𝑓 𝐻𝑧 ↑

→ 𝑧 [𝜇𝑚]

x=0.29

Curves are offset

for clarity

signature of Meissner 

repulsion of the 

magnetic tip from the 

sample



Meissner Response to the Local Field from the 

Magnetic Tip Gives λ𝑎𝑏

Using a model we fit to obtain a value for 𝜆𝑎𝑏

• our fit is a refinement of  Luan et al. PRB `10
hTip model: truncated cone:
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4

𝑧 [𝜇𝑚]

Δ𝑓 [𝐻𝑧]

data & fit giving 
𝜆𝑎𝑏 ≈ 170𝑛𝑚

T=4.4K, x=0.46 (overdoped)
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h
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Results – peak in 𝜆𝑎𝑏 @ optimal doping

Hashimoto et al., 

Science ‘12

not showing results for very underdoped samples.

𝜆𝑎𝑏

𝑇𝐶

conclusion:

even though we only average over a micron scale region – the peak is there

lines are guides 
to the eye



Same 𝑇𝐶 𝜆𝑎𝑏 on Both Sides of the Peak

on both sides of xOPT :    

• same asymptotic 𝑇𝐶
𝑚𝑎𝑥

• same dependence of 𝑇𝐶 on 𝜆𝑎𝑏

not showing 
x=0.22 data

local measurement

sample-wide from 

Hashimoto et al., Science ‘12

possibly our results are different because 

we do not average over the whole sample



We Measure TC & 𝝀𝒂𝒃 in the Same Area

The magnetic field inducing the Meissner response is local on a length 

scale set by tip geometry and distance from sample.

𝜆1 & 𝑇𝐶1

𝜆2 & 𝑇𝐶2
𝜆3 & 𝑇𝐶3

Our results are not sample averaged.
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Sharp Rise of 𝝀𝒂𝒃 at Very Low Doping

The sharp rise of 𝜆𝑎𝑏 means that 𝑛𝑠 is 

suppressed:

- nothing dramatic happens to 𝑚∗

𝑻𝑪 - increases

𝝀𝒂𝒃 - decreases

Luan et al., PRL ‘11Ba(Fe1-xCox)2As2

x=0.22 samples were less homogenous in composition than other samples.

2
1s

ab

n

m l
lab

doping

from 
Chowdhury 
et al. ‘15
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a Vortex Looks Like a Magnetic Monopole

 
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For  𝑅2 + 𝑧2 ≫ 𝜆𝑎𝑏
2 – a vortex looks like a 

monopole:

Scale for resolution is 𝑧 + 𝜆𝑎𝑏

i.e. scale for imaging is down to 100 nm

cartoon of the magnetic 

field from a vortex 

𝜆𝑎𝑏



Magnetic Imaging

Field cooling through TC creates magnetic vortices

- each carrying one quantum of flux Φ0 =  ℎ 2𝑒 ≈ 20.7 𝐺𝜇𝑚2

- each giving a looking roughly like a magnetic monopole at 𝑧 = −𝜆𝑎𝑏

Vortices interact with defects

allow us to detect them by imaging
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for scanning



x > 0.28: “ordered” vortex array
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scans at T ≅ 4.5 K:

z=900nm, B=4G z=600nm, B=9G

z=850nm, B=4G

optimal doping: x=0.3



x=0.22: weak pinning
z=0.85 mm
B=2G

z=1mm
B=2G

z=0.85 mm
B=5G

scans at T ≅ 4.5 K:

at x=0.22 𝜆𝑎𝑏 is large (450-800nm)

1. large vortices

2. weak tip-vortex interaction

BUT

vortices move very readily    → weak pinning

optimal doping: x=0.3



Pinning in Very Underdoped Samples is Weak

Carretta et al., Phys. Scr. 88, 068504 (2013).

possibly:

1. a lot of disorder

• material defects

• intrinsic – underdoped samples are in the 

mixed phase

• we cannot resolve inhomogeneities 

directly but the vortices may be probing 

them

• scale is nm’s in most pnictides.

• perhaps more in P-Ba122

2. at the edge of the dome S-C is weaker because of the competing phase

• gap and pairing are suppressed → 𝜉 is larger  → pinning is weaker.



Mild Underdoping: Lines of Vortices

EBDS @ RT

Kikuchi lines

Linear vortex arrays  orientated 45O to the crystal axes

- probably parallel to twin boundaries

- The existence of twin boundaries is a signature of nematic order

- their presence implies an orthorhombic unit cell.

- this implies that supercond. coexists with other phases at low doping

Crystal axes

T>TS: tetragonal

twin 
boundary

from Fisher et al. Rep. 
Prog. Phys. ‘11

T<TS: orthorhombic



Twin Boundaries - Usually Vortex Traps
usually - expect the order parameter to be suppressed on a 

twin boundary

e.g. 

• MFM on YBCO near optimal doping

• vortices are on a line

• no modulation off the line

[Shapira et al., PRB 2015]

• STM on FeSe thin films [Song et al., PRL 2012]

• gap is suppressed on the twin boundaries

• vortices are on the twin boundaries

color span:

~0.75Hz
MFM on YBCO (T~4.3K) 

z~150nm

5μm

STM on FeSe thin films 

[Song et al., PRL 2012]

vortices
twin boundaries

150nm x 150nm



High Field – Lines of Vortices

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟑. 𝟗𝑯𝒛 →

T = 4.5K

B > 130G

z ≈ 70nm

𝟐𝝁𝒎



T = 4.5K

B ≈ 60G

z ≈ 100nm

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟒. 𝟑𝑯𝒛 →

𝟐𝝁𝒎

High Field – Lines of Vortices



Low Field: Vortices Avoid Stripes

T = 4.5K

B ≈ 3G

z ≈ 170nm

𝟐𝝁𝒎

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟑. 𝟏𝑯𝒛 →

stripes of enhanced Meissner repulsion

- width – hundreds of nanometers (scale probably given by 𝜆𝑎𝑏 ≈ 220𝑛𝑚)

stripes are NOT 

periodic



Stripes Are Visible w/o Vortices

T = 4.5K

B ≈ 0.2G

z ≈ 130nm

𝟐𝝁𝒎

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟐. 𝟒𝑯𝒛 →



Similar Behavior When We Flip the Field

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟐. 𝟕𝑯𝒛 → ← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟐. 𝟐𝑯𝒛 →

𝟑𝝁𝒎
𝟑𝝁𝒎

stripes

T≈4.6 K            B ≈ -1 G             z ≈ 110 nm

attractive vortex

repulsive vortex

T≈4.6 K            B ≈ 24 G             z ≈ 100 nm

same area at different field – vortices are repelled from the stripes

the same stripes



Stripes Disappear When T increased
𝑧 ≈ 200𝑛𝑚

position across stripes [𝜇m]

4.5K7.5K

10K

13K

15K

17K

0 5 10 15 2520

2

4

6
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Temperature [K]

contrast (peak to peak)

4 6 8 10 1412 16

Δ𝑓 [Hz]
Δ𝑓 [Hz]

0

0.2

0.4

0.6

0.8

We lose track of the stripes @ 𝑇 < 𝑇𝐶 ≈ 22𝐾

𝟑𝝁𝒎

T ≈ 4.5K

z ≈ 220nm

B ≈ 0.2G

← Δ𝑓 𝑠𝑝𝑎𝑛 ≈ 2.3𝐻𝑧 →

plot is preliminary



Surveillance

+

tip

z
-
+

Manipulation

+

-
+

z
pull

max
1~F
z

Vortex Manipulation: Stripes Are Barriers

z=110 nm 

𝟏𝝁𝒎

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟐. 𝟕𝑯𝒛 →

z=230 nm

T = 7 K

𝟏𝝁𝒎

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟏. 𝟔𝑯𝒛 →

indicates

- fast

- slow

scan axes

stripe



z=310 nm
z=130 nm 

Same Vortex, Different Scan Direction

T = 7 K

𝟏𝝁𝒎

𝟏𝝁𝒎

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟏. 𝟑𝑯𝒛 →

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟐. 𝟒𝑯𝒛 →
stripe

Surveillance

+

tip

z
-
+

Manipulation

+

-
+

z
pull

max
1~F
z



z = 200 nm z = 230 nm 

Pulling in Different Directions @ Higher T, Same Story

T = 8.5 K

𝟏𝝁𝒎 𝟏𝝁𝒎

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟑. 𝟏𝑯𝒛 →

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟑. 𝟒𝑯𝒛 →

𝟏𝝁𝒎

z = 230 nm 

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟑. 𝟔𝑯𝒛 →



z = 1300 nm
z = 290 nm 

Still Higher T, Still Can’t Cross
T = 15 K

𝟏𝝁𝒎
𝟏𝝁𝒎

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟎. 𝟐𝑯𝒛 →

← 𝚫𝒇 𝒔𝒑𝒂𝒏 ≈ 𝟎. 𝟖𝑯𝒛 →

stripes



Similar to SQUID results in Co-Ba122

Scanning SQUID on Ba(Fe1-xCox)2As2 (electron doped) from the Moler group @ Stanford.

Kalisky, Kirtley et al., PRB 81, 184513 (2010); PRB 81, 184514 (2010); PRB 83, 064511 (2011).

SQUID images are resolution limited to a few microns

phenomenological model (next slide) predicts MFM should have seen such lines

• as we do in P-Ba122

BUT – in MFM in Ba(Fe1-xCox)2As2 – no stripes were observed

our MFM scan 

on P-Ba122 our MFM scan 

on P-Ba122



Phenomenological Model - 𝝀 Not Uniform

Kogan & Kirtley, PRB 83, 214521 (2011)

Slightly modified London eqn.

𝒉 + 𝛁 × 𝜆2𝒋 = 0

approximation results consistent with the SQUID data

- assume variation in 𝜆2 is weak

- on every twin boundary𝜆2 is reduced

• 𝜆2 𝑥 = 𝜆0
2 − 𝛽3𝛿(𝑥)

we have implemented for MFM

- lots of algebra & asymptotics

preliminary

data + model + position of planes

Δ𝑓 [𝐻𝑧]

0.1

0.05

0

-0.05

-0.1

position along stripes [𝜇𝑚]

0-4-8-12

z=360nm

T=4.5K

Δ𝑓 𝑠𝑝𝑎𝑛 ≈ 1.1𝐻𝑧

𝟒𝝁𝒎

𝜆 = 230𝑛𝑚
𝛽 = 140𝑛𝑚

4

preliminary:

shows only 

plausibility of 

model

not to be 

taken too 

seriously



Origin of the Stripes Is Not Clear
Planes of enhanced superconductivity:

• Khlyustikov & Buzdin, Adv. Phys. ’87: enhanced 𝑇𝐶 in many (pre-HTSC) metals

o think of a twin boundary as an embedded 2D superconductor

• Mironov & Buzdin, PRB ’12: mostly for type-I

• Bo Li et al., New J. Phys. ’13: stripes consistent w/ simulations for pnictides

Stripes exist in Co-Ba122 (electron doped) & in P-Ba122 (isovalent doping):

- enhanced diamagnetism

- vortex repulsion

- vortex barrier

UNLIKE in many other superconductors. 

the reason for the different behavior can be mundane (i.e. details).

BUT for FeSe (a FeSC, cousin to pnictides) :

o vortices are trapped  & gap is suppressed on twin boundaries 

[Song et al., PRL ‘12]

o FeSe has no magnetic phase

so possibly in FeSe there are no stripes because there is no magnetic phase. 0kbar 10kbar 20kbar
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Summary
• Peak in 𝜆𝑎𝑏 at optimal doping  - verified by local measurements.

• we average over several microns – this gives an upper bound to any texture.

• 𝑇𝐶(𝜆𝑎𝑏) is the same on both sides of the peak in 𝜆𝑎𝑏 .

• 𝜆𝑎𝑏 is enhanced towards the underdoped edge of the superconducting dome.

• indication of mixing between superconductivity and other phases.

• Vortex decoration

• ordered vortex arrays for x>0.28

• in very underdoped samples - very weak pinning

• suppressed pairing or disorder? if disorder –is the source intrinsic?

• in mildly underdoped samples: 

• linear vortex arrays - co-existence of superconductivity and magnetic order

• stripes in the absence of magnetic field

• stripes repel vortices & act as barriers

see PRB 91, 060504 (2015)



The End


