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  fields	
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with #& $ !"0; i#; "1; 0#"T and #% $ !"1; 0#; "0;%i#"T .
Another feature of px & ipy superconductors is the

presence of chiral edge states [3,18,19]. With time reversal
symmetry, chiral edge states cannot occur in our system.
The surface—which itself is the boundary of a three-
dimensional crystal—cannot have a boundary. By break-
ing time reversal symmetry, however, a Zeeman field can
introduce a mass term M$z into (1) and (2), which can
open an insulating gap in the surface state spectrum. By
solving (2) we find that the interface between this insulat-
ing state and the superconducting state has chiral Majorana
edge states. This could possibly be realized by depositing
superconducting and insulating magnetic materials on the
surface to form a superconductor-TI-magnet junction. It is
interesting to note that for spinless electrons the px & ipy
superconductor violates time reversal, while the vacuum
does not. For our surface states it is the insulator that
violates time reversal. A related effect could also occur
at the edge of a two-dimensional TI [20–22], which is
described by (1) and (2) restricted to one spatial dimen-
sion. At the boundary between a region with superconduct-
ing gap !%x and a region with insulating gap M$z we
find a MBS, analogous to the end states discussed in
Refs. [23,24]. In the following we will focus on STIS
junctions, which can lead to nonchiral one-dimensional
Majorana fermions, as well as MBSs.

Consider a line junction of width W and length L! 1
between two superconductors with phases 0 and & in
contact with TI surface states. We analyze the Andreev
bound states in the surface state channel between the
superconductors by solving the BdG equation with
!"x; y# $ !0ei& for y >W=2, !0 for y <%W=2, and 0
otherwise. The calculation is similar to Titov, Ossipov, and
Beenakker’s [25] analysis of graphene superconductor-
normal-superconductor (SNS) junctions, except for the
important difference that graphene has four independent
Dirac points, while we have only one. For W ' v=!0
there are two branches of bound states, which disperse
with the momentum q in the x direction. For W $ ' $ 0
we find

 E!"q# $ !(v2q2 & !2
0cos2"&=2#)1=2: (4)

For & $ ( the spectrum is gapless. It is useful to con-
struct a low energy theory, for q* 0 and & $ (% ).
Finite W and ' can then easily be included. We first solve
the BdG equation for the two E $ 0 modes *a$1;2"y# at
q $ 0 and & $ (. It is useful to choose them to satisfy
"*a $ *a. Up to a normalization they may be written

 *1 ! i*2 $ !"1;!i#; "!i;%1#"Te!i'y=v%
Rjyj

0
d~y!0"~y#=v: (5)

We next evaluate h*ajq$x%zj*bi and h*aj)!0""y%
W#%yj*bi to obtain the ‘‘k + p’’ Hamiltonian,

 

~H $ %i~v%x@x & +%y; (6)

where ~v $ v(cos'W & "!0='# sin'W)!2
0="'2 & !2

0#
and + $ !0 cos"&=2#. The Pauli matrices %x;yab act on *a
and are different from those in (2). In this basis # $ i%yK
and " $ K. ~H resembles the Su-Schrieffer-Heeger (SSH)
model [26]. However, unlike that model, the E!"q# states
are not independent, and the corresponding Bogoliubov
quasiparticle operators satisfy ,&"q# $ ,%"%q#y. The
system is thus half a regular 1D Fermi gas, or a nonchiral
‘‘Majorana quantum wire.’’

Below it will be useful to consider junctions that bend
and close. When a line junction makes an angle " with the
x axis, the basis vectors (5) are modified according to *a !
ei$z"=2*a. ~H , however, is unchanged even when ""x#
varies. On a circle, *a changes sign when " advances by
2(. Therefore, eigenstates of ~H must obey antiperiodic
boundary conditions, ’"0# $ %’"2(#.

Next consider a trijunction, where three superconductors
separated by line junctions meet at a point, as in Fig. 1(c).
When &k$1;2 is in the shaded region of Fig. 1(d), a MBS
exists at the junction. Though the general BdG equation
cannot be solved analytically, this phase diagram can be
deduced by solving special limits. When &k $ 0, there is
no bound state. Another solvable limit is when three line
junctions with W $ 0 are oriented at 120,, and &k $
!k"2(=3#. This is a discrete analog of a ! vortex with
C3 symmetry, and is indicated by the circles in Fig. 1(d).
For ' $ 0 we find a MBS identical to (3) with the ex-
ponent replaced by %!0n̂ + r=v. Here n̂ is a constant unit
vector in each superconductor that bisects the angle be-
tween neighboring junctions. The MBS cannot disappear
when &k are changed continuously unless the energy gap
closes. The phase boundaries indicated in Fig. 1(d) there-
fore follow from the solution of the line junction and occur
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FIG. 1. (a) A STIS line junction. (b) Spectrum of a line
junction for W $ ' $ 0 as a function of momentum for various
&. The solid line shows the Andreev bound states for & $ (.
The dashed lines are for & $ 3(=4, (=2, and (=4. The bound
states for & $ 0 merge with the continuum, indicated by the
shaded region. (c) A trijunction between three superconductors.
(d) Phase diagram for the trijunction. In the shaded regions there
is a ! MBS at the junction.
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Experimental	
  Techniques	
  

Typical	
  material	
  parameters:	
  
	
  
Mobility:	
  100-­‐1000	
  cm2	
  /	
  V-­‐s	
  
Carrier	
  density:	
  1e13	
  –	
  1e14	
  cm-­‐2	
  
Coherence	
  length:	
  ~1	
  micron	
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We describe experimental signatures of Majorana fermion edge states, which form at the interface

between a superconductor and the surface of a topological insulator. If a lead couples to the Majorana

fermions through electron tunneling, the Majorana fermions induce resonant Andreev reflections from the

lead to the grounded superconductor. The linear tunneling conductance is 0 (2e2=h) if there is an even

(odd) number of vortices in the superconductor. Similar resonance occurs for tunneling into the zero mode

in the vortex core. We also study the current and noise of a two-lead device.
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Introduction.—Verifying the existence of Majorana fer-
mions in condensed matter systems is an important topic in
recent years because of their potential application for
quantum computations which are free from decoherence
[1,2]. Quantum Hall states as well as superconductors and
superfluids with px þ ipy pairing symmetry are candidates
which support Majorana fermions [2–6]. However,
Majorana fermions in those systems are yet to be found.

Recently, Fu and Kane [7] proposed that Majorana
fermions can be created in the vortices of s-wave super-
conductors deposited on the surface of a three-dimensional
topological insulator [8–13]. Moreover, chiral Majorana
fermion edge states can be created at the interface between
a superconductor and the area gapped by ferromagnetic
materials [7], and several experiments with rather complex
geometry have been proposed to study them [14,15]. In this
Letter, we propose experiments with relatively simple
geometry to probe the chiral Majorana fermion edge states.

More specifically, we study the tunneling current and
noise from noninteracting Fermi leads to a grounded su-
perconductor which possesses chiral Majorana edge states
at its boundary. The experimental setup is shown in Fig. 1.
An s-wave superconducting island is deposited on the
surface of a topological insulator whose surface state is
described by gapless Dirac fermions [8,9]. A proximity gap
is induced on the surface under the superconductor as a
result of proximity effect [7,16,17]. The area outside the
superconductor is gapped by ferromagnetic materials. At
the interface between the superconductor and the ferro-
magnetic material, there are gapless chiral Majorana fer-
mion modes surrounding the superconductor [7,14,15].
One or two noninteracting Fermi leads are coupled to these
chiral Majorana modes at points a and bwith amplitudes t1
and t2, respectively.

We first consider the single-lead case by setting t2 to
zero in Fig. 1. We show that Majorana fermions induce
resonantAndreev reflections from the lead to the grounded
superconductor and result in highly nonlinear I-V curve
which is a set of steps. At small voltage, the conductance

from the lead to the superconductor is 0. However, the
presence of a vortex in the superconductor changes the
conductance to 2e2=h. For a two-lead device with nonzero
t2, crossed Andreev reflections may happen. In the small
voltage regime, crossed Andreev reflections dominate over
local Andreev reflections and the cross current-current
correlations of the two leads are maximally positively
correlated. On the other hand, the presence of a vortex in
the superconductor in the small voltage regime increases
the current dramatically and the cross current-current cor-
relations become maximally negatively correlated.
Single-lead device.—This two-terminal device is shown

in Fig. 1 by setting t2 to zero. For simplicity, let us assume
that there is only a single mode in lead 1. The Hamiltonian
of lead 1 is

HL1 ¼ #ivf

X

!¼R;L

X

"¼";#

Z þ1

0
c y

1!"ðxÞ@xc 1!"ðxÞdx; (1)

where the tip of the lead is located at x ¼ 0 and vf denotes
the Fermi velocity.HL1 contains both left and right moving
fields but setting c 1L"ðxÞ ¼ c 1R"ð#xÞ for x > 0 maps the
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M

 

FIG. 1 (color online). A superconducting island is deposited
on the surface of a three-dimensional topological insulator. The
area outside the superconductor is gapped by ferromagnetic
materials. At the interface between the superconductor and the
ferromagnetic material, there is a branch of chiral Majorana
fermions denoted by #. Two noninteracting leads are coupled to
the Majorana fermions at point a and point b with amplitudes t1
and t2, respectively. The superconductor is grounded.
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where TðEÞ denotes the Andreev reflection probability
jshej2 at energy E. Near cos! ¼ 1, TðEÞ can be cast into
the resonance form: TðEÞ ¼ "2

1=½ðE% ElÞ2 þ "2
1', where

"1 ¼ 2~t21vm@=L and El ¼ ð2‘þ nþ 1Þ@vm#=L denote
the quantized energy levels of the chiral Majorana fermion
modes. Provided "1 is less than the level spacing, the
differential conductance dI=dV versus eV peaks at 2e2=h
whenever the electron energy is resonant with the
Majorana mode energy E‘. As seen from Fig. 3 the reso-
nance is shifted in voltage by half the level spacing when a
vortex is added. For eV ( ", the conductance jumps
between 2e2=h and near zero. We consider this a clear
signature of the Majorana mode.

Two-lead device.—Next we couple to the chiral
Majorana mode with one more lead, by setting t2 to non-
zero in Fig. 1. The new Hamiltonian becomes H0

2 ¼ H0
1 þ

H0
L2 þHT2, where H

0
L2 and HT2 are H

0
L1 and HT1 with c 1,

t1, and a replaced by c 2, t2, and b, respectively.
The scattering matrix in the basics of (c 1k, c 2k, c

y
1%k,

c y
2%k) can be written as

S ¼ 1þ A A
A 1þ A

! "
; (8)

where

A ¼ 1

Z0
i~t21~t

2
2 sinð!2Þ % ~t21 cosð!2Þ

%2$
1þ%$

~t1~t2 cosð!2Þ
%2%
1þ%$

~t1~t2 cosð!2Þ i~t21~t
2
2 sinð!2Þ % ~t22 cosð!2Þ

 !
:

(9)

In the above equation, Z0 ¼ %ið1þ ~t21~t
2
2Þ sinð!=2Þ þ

ð~t21 þ ~t22Þ cosð!=2Þ, ~ti ¼ ti=ð2 ffiffiffiffiffiffiffiffiffiffiffiffi
vfvm

p Þ. !ðk; nÞ ¼ kLþ #þ
n# is the same as in the two-terminal case. %ð$Þ is the
phase factor acquired by a Majorana mode propagating
from point aðbÞ to point bðaÞ.

Because of the special form of the scattering matrix, the
average current from lead i to the grounded superconductor
!Ii, and the current noise correlators Pij, can be written in a
compact form [18]:

!I i ¼
2e

h

Z eV

0
ðAAyÞiidE; (10)

Pij ¼ e !Ii&ij þ
2e2

h

Z eV

0
½jAij þ ðAAyÞijj2

% jðAAyÞijj2'dE; (11)

where the current noise correlators are defined as

Pij ¼
Z þ1

%1
h½Iið0Þ % !Ii'½IjðtÞ % !Ij'i: (12)

The total current from the leads to the superconductor !I ¼
!I1 þ !I2 is

!I ¼ 2e

h

Z eV

0
TðEÞdE; (13)

where

TðEÞ¼1% ð1%~t41~t
4
2Þsin2ð!=2Þ

ð1þ~t21~t
2
2Þ2sin2!=2þð~t21þ~t22Þ2cos2ð!=2Þ

: (14)

For t1; t2 < 1, the resonant Andreev reflection condition is
E% El ( 2@vfð~t21 þ ~t22Þ=L, where El are the energy levels
of the Majorana modes. As in the two-terminal device, the
I-V curve of the total current is highly nonlinear and is a set
of steps. In the small voltage regime with eV ( 2@vfð~t21 þ
~t22Þ=L, the conductance is ½2~t21~t22=ð1þ ~t21~t

2
1Þ'ð2e2=hÞ when

there are no vortices in the superconductor. It is important
to note that the linear conductance is not 0 as in the two-
terminal case. We argue below that this is the consequence
of crossed Andreev reflections. If a vortex is created in the
superconductor, the conductance becomes 2e2

h because of
resonant Andreev reflection induced by the El ¼ 0
Majorana mode.
Crossed Andreev reflection is a process which an in-

coming electron from say, lead 1, is turned into an outgoing
hole in lead 2. As a result, one electron from each lead
tunnels into the superconductor to form a Copper pair. This
process is not allowed in the single-lead device. We show
below that measuring the shot noise of the tunneling cur-
rents can be used to reveal the mechanism of the tunneling
processes, whether they are due to local or crossed
Andreev reflections. In the following, we analyze the
shot noise in the small voltage regime with eV (
2@vfð~t21 þ ~t22Þ=L.
In this regime and in the absence of vortices, we have

!I 1 ¼ !I2 ¼ !I=2 ¼ 2e2V

h

~t21~t
2
2

1þ ~t21~t
2
2

: (15)

It is important to note that the individual contributions to
the total current !I from the two leads are equal and depend
on the products of the coupling strengths ~t1~t2 only. This is a
strong indication that the tunneling processes are domi-
nated by crossed Andreev reflections. In order to verify
this, we note that the noise correlators are given by

P11 ¼ P22 ¼ P12 ¼ P21 ¼
2e3V

h

~t21~t
2
2

ð1þ ~t21~t
2
2Þ2

: (16)

FIG. 3 (color online). dI=dV vs eV with ~t41 ¼ 0:1. eV is in
units of #@vm=L and dI=dV is in units of 2e

2

h . Solid (dashed) line

represents the case with even (odd) number of vortices in the
superconductor.
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Introduction.—Verifying the existence of Majorana fer-
mions in condensed matter systems is an important topic in
recent years because of their potential application for
quantum computations which are free from decoherence
[1,2]. Quantum Hall states as well as superconductors and
superfluids with px þ ipy pairing symmetry are candidates
which support Majorana fermions [2–6]. However,
Majorana fermions in those systems are yet to be found.

Recently, Fu and Kane [7] proposed that Majorana
fermions can be created in the vortices of s-wave super-
conductors deposited on the surface of a three-dimensional
topological insulator [8–13]. Moreover, chiral Majorana
fermion edge states can be created at the interface between
a superconductor and the area gapped by ferromagnetic
materials [7], and several experiments with rather complex
geometry have been proposed to study them [14,15]. In this
Letter, we propose experiments with relatively simple
geometry to probe the chiral Majorana fermion edge states.

More specifically, we study the tunneling current and
noise from noninteracting Fermi leads to a grounded su-
perconductor which possesses chiral Majorana edge states
at its boundary. The experimental setup is shown in Fig. 1.
An s-wave superconducting island is deposited on the
surface of a topological insulator whose surface state is
described by gapless Dirac fermions [8,9]. A proximity gap
is induced on the surface under the superconductor as a
result of proximity effect [7,16,17]. The area outside the
superconductor is gapped by ferromagnetic materials. At
the interface between the superconductor and the ferro-
magnetic material, there are gapless chiral Majorana fer-
mion modes surrounding the superconductor [7,14,15].
One or two noninteracting Fermi leads are coupled to these
chiral Majorana modes at points a and bwith amplitudes t1
and t2, respectively.

We first consider the single-lead case by setting t2 to
zero in Fig. 1. We show that Majorana fermions induce
resonantAndreev reflections from the lead to the grounded
superconductor and result in highly nonlinear I-V curve
which is a set of steps. At small voltage, the conductance

from the lead to the superconductor is 0. However, the
presence of a vortex in the superconductor changes the
conductance to 2e2=h. For a two-lead device with nonzero
t2, crossed Andreev reflections may happen. In the small
voltage regime, crossed Andreev reflections dominate over
local Andreev reflections and the cross current-current
correlations of the two leads are maximally positively
correlated. On the other hand, the presence of a vortex in
the superconductor in the small voltage regime increases
the current dramatically and the cross current-current cor-
relations become maximally negatively correlated.
Single-lead device.—This two-terminal device is shown

in Fig. 1 by setting t2 to zero. For simplicity, let us assume
that there is only a single mode in lead 1. The Hamiltonian
of lead 1 is

HL1 ¼ #ivf

X

!¼R;L

X

"¼";#

Z þ1

0
c y

1!"ðxÞ@xc 1!"ðxÞdx; (1)

where the tip of the lead is located at x ¼ 0 and vf denotes
the Fermi velocity.HL1 contains both left and right moving
fields but setting c 1L"ðxÞ ¼ c 1R"ð#xÞ for x > 0 maps the
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FIG. 1 (color online). A superconducting island is deposited
on the surface of a three-dimensional topological insulator. The
area outside the superconductor is gapped by ferromagnetic
materials. At the interface between the superconductor and the
ferromagnetic material, there is a branch of chiral Majorana
fermions denoted by #. Two noninteracting leads are coupled to
the Majorana fermions at point a and point b with amplitudes t1
and t2, respectively. The superconductor is grounded.
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number nv of superconducting vortices enclosed by the
two arms of the interferometer,

!b þ ð#1Þnvi!c ! cyd ; !b # ð#1Þnvi!c ! cd: (2)

For nv an even integer, no charge is transferred to the
superconductor, while for nv odd a charge%2e is absorbed
by the superconducting condensate. The conductance G,
measured by application of a voltage between a point on
the domain wall and the superconductor, becomes equal (in
the zero-temperature, zero-voltage limit) to G ¼ 0 for
nv ¼ even and G ¼ 2e2=h for nv ¼ odd.

Proceeding now to a theoretical description, we recall
that the surface of a three-dimensional topological insula-
tor, in the presence of a magnetization MðrÞ and super-
conducting order parameter !ðrÞ, is described by the
following Hamiltonian [16]:

H ¼ M '! þ vFp '! # EF !
!( M '! # vFp '! þ EF

! "
:

(3)

Here p ¼ ðpx; py; 0Þ is the momentum on the surface, ! ¼
ð"x;"y;"zÞ is the vector of Pauli matrices, vF is the Fermi
velocity, and EF the Fermi energy. The two magnetizations
M" and M# in Fig. 1 correspond to M ¼ ð0; 0;M0Þ and
M ¼ ð0; 0;#M0Þ, respectively. Particle-hole symmetry is
expressed by the anticommutation H" ¼ #"H of the
Hamiltonian with the operator

" ¼ 0 i"yC
#i"yC 0

! "
; (4)

with C the operator of complex conjugation.
There is a single chiral Majorana mode with amplitude

c (group velocity vm) at a boundary between a region with
a superconducting gap and a region with a magnetic gap
[16]. At a domain wall between two regions with opposite
signs of Mz there are two chiral Dirac fermion modes, an
electron mode with amplitude #e and a hole mode with
amplitude #h. The scattering matrix Sinð"Þ describes scat-
tering at excitation energy " from electron and hole modes
(along edge a) to two Majorana modes (along edges b and
c in Fig. 1), according to

c b

c c

! "
¼ Sin

#e
a

#h
a

! "
: (5)

Particle-hole symmetry for the scattering matrix is ex-
pressed by

Sinð"Þ ¼ S(inð#"Þ 0 1
1 0

! "
: (6)

At small excitation energies j"j ) jMzj; j!j the " depen-
dence of Sin may be neglected. (The excitation energy is
limited by the largest of voltage V and temperature T.)
Then Eq. (6) together with unitarity (S#1

in ¼ Syin) fully
determine the scattering matrix,

Sin ¼
1ffiffiffi
2

p 1 1
%i *i

! "
ei$ 0
0 e#i$

! "
; (7)

up to a phase difference $ between electron and hole
(which will drop out of the conductance and need not be
further specified). The sign ambiguity (matrix elements
þi;#i or#i;þi) likewise does not affect the conductance.
The scattering matrix Sout for the conversion from

Majorana modes to electron and hole modes can be ob-
tained from Sin by time reversal,

SoutðMÞ ¼ STinð#MÞ ¼ 1ffiffiffi
2

p ei$
0

0
0 e#i$0

 !
1 %i
1 *i

! "
: (8)

The phase shift $0 may be different from $, because of the
sign change of M upon time reversal, but it will also drop
out of the conductance.

FIG. 1 (color online). Three-dimensional topological insulator
in proximity to ferromagnets with opposite polarization (M" and
M#) and to a superconductor (S). The top panel shows a single
chiral Majorana mode along the edge between superconductor
and ferromagnet. This mode is charge neutral, so it cannot be
detected electrically. The Mach-Zehnder interferometer in the
bottom panel converts a charged current along the domain wall
into a neutral current along the superconductor (and vice versa).
This allows for electrical detection of the parity of the number of
enclosed vortices, as explained in the text.
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The full scattering matrix S of the Mach-Zehnder inter-
ferometer in Fig. 1 is given by the matrix product

S ! See Seh
She Shh

! "
¼ Sout

ei!b 0
0 ei!c

! "
Sin; (9)

where !b and !c are the phase shifts accumulated by the
Majorana modes along edge b and c, respectively. The
relative phase

!b # !c ¼ ""L=@vm þ #þ nv# (10)

consists of three terms: a dynamical phase (proportional to
the length difference "L ¼ Lb # Lc of the two arms of the
interferometer), a Berry phase of # from the rotation of the
spin 1=2, and an additional phase shift of # per enclosed
vortex.

The differential conductance follows from

GðVÞ ¼ 2e2

h
jSheðeVÞj2 ¼

2e2

h
sin2

!
nv#

2
þ eV"L

2@vm

"
: (11)

As announced in the introduction, the linear response
conductance Gð0Þ vanishes if the number of vortices is
even, while it has the maximal value of 2e2=h if the
number is odd. A finite temperature T will obscure the
even-odd effect if kBT * @vm="L. By reducing "L, the
thermal smearing can be eliminated—leaving the require-
ment kBT ' jMzj; j!j as the limiting factor.

The Mach-Zehnder interferometer can distinguish be-
tween an even and an odd number nv of enclosed vortices.
The next step towards measurement based topological
quantum computation is to distinguish between an even
and an odd number nf of enclosed fermions. If nv is odd,
the parity of nf is undefined, but if nv is even, the parity of
nf is a topologically protected quantity that determines the
state of a qubit [5]. To electrically readout the state of a
qubit encoded in a pair of charge-neutral vortices, we
combine the Fabry-Pérot interferometer of the FQHE
[8,9] with our Dirac-Majorana fermion converter.

The geometry is shown in Fig. 2. Electrons are injected
in the upper-left arm a of the interferometer (biased at a
voltage V) and the current I is measured in the upper-right
arm e (which is grounded). The electron at a is split into a
pair of Majorana fermions c b and c c, according to the
scattering matrix Sin. A pair of constrictions allows tunnel-
ing from c c to c d, with amplitude tdc. Finally, the
Majorana fermions c d and c b are recombined into an
electron or hole at e, according to the scattering matrix
Sout. The resulting net current I ¼ ðe2=hÞVðjT eej2 #
jT hej2Þ (electron current minus hole current) is obtained
from the transfer matrix

T ¼ Sout
ei!b 0
0 tdc

! "
Sin ) I ¼ e2

h
V Reðe#i!b tdcÞ:

(12)

Notice that the current is proportional to the tunnel ampli-
tude, rather than to the tunnel probability. In the low-

voltage limit, to which we will restrict ourselves in what
follows, the phase shift!b vanishes and tdc is real (because
of electron-hole symmetry)—so I directly measures the
tunnel amplitude.
In general, two types of tunnel processes across a con-

striction contribute to tdc: A Majorana fermion at the edge
of the superconductor can tunnel through the supercon-
ducting gap to the opposite edge of the constriction either
directly as a fermion or indirectly via vortex tunneling [24].
Fermion tunneling typically dominates over vortex tunnel-
ing, although quantum phase slips (and the associated
vortex tunneling) might become appreciable in constric-
tions with a small capacitance [25] or in superconductors
with a short coherence length [26]. Only vortex tunneling
is sensitive to the fermion parity nf, through the phase
factor ð#1Þnf acquired by a vortex that encircles nf fermi-
ons. Because of this sensitivity, vortex tunneling is poten-
tially distinguishable on the background of more frequent
fermion tunneling events.
The contribution to tdc from fermion tunneling is simply

tf;1 þ ð#1Þnvtf;2, to lowest order in the fermion tunnel
amplitudes tf;1 and tf;2 at the first and second constriction.
There is no dependence on nf, so we need not consider it

further.
To calculate the contribution to tdc from vortex tunnel-

ing, we apply the vortex tunnel Hamiltonian [24] Hi ¼
vi$i$

0
i, where i ¼ 1; 2 labels the two constrictions and vi

is the tunnel coupling. The operators $i and $0
i create a

vortex at the left and right end of constriction i, respec-
tively. The lowest order contribution to tdc is of second
order in the tunnel Hamiltonian, because two vortices need
to tunnel in order to transfer a single Majorana fermion.
The calculation of tdc will be presented elsewhere, but the
nv and nf dependence can be obtained without any calcu-
lation, as follows.

FIG. 2. Fabry-Pérot interferometer, allowing to measure the
state of a qubit encoded in a pair of vortices. Black lines
represent electron or hole modes at domain walls, gray lines
represent Majorana modes at magnet-superconductor interface.
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We describe experimental signatures of Majorana fermion edge states, which form at the interface

between a superconductor and the surface of a topological insulator. If a lead couples to the Majorana

fermions through electron tunneling, the Majorana fermions induce resonant Andreev reflections from the

lead to the grounded superconductor. The linear tunneling conductance is 0 (2e2=h) if there is an even

(odd) number of vortices in the superconductor. Similar resonance occurs for tunneling into the zero mode

in the vortex core. We also study the current and noise of a two-lead device.
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Introduction.—Verifying the existence of Majorana fer-
mions in condensed matter systems is an important topic in
recent years because of their potential application for
quantum computations which are free from decoherence
[1,2]. Quantum Hall states as well as superconductors and
superfluids with px þ ipy pairing symmetry are candidates
which support Majorana fermions [2–6]. However,
Majorana fermions in those systems are yet to be found.

Recently, Fu and Kane [7] proposed that Majorana
fermions can be created in the vortices of s-wave super-
conductors deposited on the surface of a three-dimensional
topological insulator [8–13]. Moreover, chiral Majorana
fermion edge states can be created at the interface between
a superconductor and the area gapped by ferromagnetic
materials [7], and several experiments with rather complex
geometry have been proposed to study them [14,15]. In this
Letter, we propose experiments with relatively simple
geometry to probe the chiral Majorana fermion edge states.

More specifically, we study the tunneling current and
noise from noninteracting Fermi leads to a grounded su-
perconductor which possesses chiral Majorana edge states
at its boundary. The experimental setup is shown in Fig. 1.
An s-wave superconducting island is deposited on the
surface of a topological insulator whose surface state is
described by gapless Dirac fermions [8,9]. A proximity gap
is induced on the surface under the superconductor as a
result of proximity effect [7,16,17]. The area outside the
superconductor is gapped by ferromagnetic materials. At
the interface between the superconductor and the ferro-
magnetic material, there are gapless chiral Majorana fer-
mion modes surrounding the superconductor [7,14,15].
One or two noninteracting Fermi leads are coupled to these
chiral Majorana modes at points a and bwith amplitudes t1
and t2, respectively.

We first consider the single-lead case by setting t2 to
zero in Fig. 1. We show that Majorana fermions induce
resonantAndreev reflections from the lead to the grounded
superconductor and result in highly nonlinear I-V curve
which is a set of steps. At small voltage, the conductance

from the lead to the superconductor is 0. However, the
presence of a vortex in the superconductor changes the
conductance to 2e2=h. For a two-lead device with nonzero
t2, crossed Andreev reflections may happen. In the small
voltage regime, crossed Andreev reflections dominate over
local Andreev reflections and the cross current-current
correlations of the two leads are maximally positively
correlated. On the other hand, the presence of a vortex in
the superconductor in the small voltage regime increases
the current dramatically and the cross current-current cor-
relations become maximally negatively correlated.
Single-lead device.—This two-terminal device is shown

in Fig. 1 by setting t2 to zero. For simplicity, let us assume
that there is only a single mode in lead 1. The Hamiltonian
of lead 1 is

HL1 ¼ #ivf

X

!¼R;L

X

"¼";#

Z þ1

0
c y

1!"ðxÞ@xc 1!"ðxÞdx; (1)

where the tip of the lead is located at x ¼ 0 and vf denotes
the Fermi velocity.HL1 contains both left and right moving
fields but setting c 1L"ðxÞ ¼ c 1R"ð#xÞ for x > 0 maps the
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FIG. 1 (color online). A superconducting island is deposited
on the surface of a three-dimensional topological insulator. The
area outside the superconductor is gapped by ferromagnetic
materials. At the interface between the superconductor and the
ferromagnetic material, there is a branch of chiral Majorana
fermions denoted by #. Two noninteracting leads are coupled to
the Majorana fermions at point a and point b with amplitudes t1
and t2, respectively. The superconductor is grounded.
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number nv of superconducting vortices enclosed by the
two arms of the interferometer,

!b þ ð#1Þnvi!c ! cyd ; !b # ð#1Þnvi!c ! cd: (2)

For nv an even integer, no charge is transferred to the
superconductor, while for nv odd a charge%2e is absorbed
by the superconducting condensate. The conductance G,
measured by application of a voltage between a point on
the domain wall and the superconductor, becomes equal (in
the zero-temperature, zero-voltage limit) to G ¼ 0 for
nv ¼ even and G ¼ 2e2=h for nv ¼ odd.

Proceeding now to a theoretical description, we recall
that the surface of a three-dimensional topological insula-
tor, in the presence of a magnetization MðrÞ and super-
conducting order parameter !ðrÞ, is described by the
following Hamiltonian [16]:

H ¼ M '! þ vFp '! # EF !
!( M '! # vFp '! þ EF

! "
:

(3)

Here p ¼ ðpx; py; 0Þ is the momentum on the surface, ! ¼
ð"x;"y;"zÞ is the vector of Pauli matrices, vF is the Fermi
velocity, and EF the Fermi energy. The two magnetizations
M" and M# in Fig. 1 correspond to M ¼ ð0; 0;M0Þ and
M ¼ ð0; 0;#M0Þ, respectively. Particle-hole symmetry is
expressed by the anticommutation H" ¼ #"H of the
Hamiltonian with the operator

" ¼ 0 i"yC
#i"yC 0

! "
; (4)

with C the operator of complex conjugation.
There is a single chiral Majorana mode with amplitude

c (group velocity vm) at a boundary between a region with
a superconducting gap and a region with a magnetic gap
[16]. At a domain wall between two regions with opposite
signs of Mz there are two chiral Dirac fermion modes, an
electron mode with amplitude #e and a hole mode with
amplitude #h. The scattering matrix Sinð"Þ describes scat-
tering at excitation energy " from electron and hole modes
(along edge a) to two Majorana modes (along edges b and
c in Fig. 1), according to

c b

c c

! "
¼ Sin

#e
a

#h
a

! "
: (5)

Particle-hole symmetry for the scattering matrix is ex-
pressed by

Sinð"Þ ¼ S(inð#"Þ 0 1
1 0

! "
: (6)

At small excitation energies j"j ) jMzj; j!j the " depen-
dence of Sin may be neglected. (The excitation energy is
limited by the largest of voltage V and temperature T.)
Then Eq. (6) together with unitarity (S#1

in ¼ Syin) fully
determine the scattering matrix,

Sin ¼
1ffiffiffi
2

p 1 1
%i *i

! "
ei$ 0
0 e#i$

! "
; (7)

up to a phase difference $ between electron and hole
(which will drop out of the conductance and need not be
further specified). The sign ambiguity (matrix elements
þi;#i or#i;þi) likewise does not affect the conductance.
The scattering matrix Sout for the conversion from

Majorana modes to electron and hole modes can be ob-
tained from Sin by time reversal,

SoutðMÞ ¼ STinð#MÞ ¼ 1ffiffiffi
2

p ei$
0

0
0 e#i$0

 !
1 %i
1 *i

! "
: (8)

The phase shift $0 may be different from $, because of the
sign change of M upon time reversal, but it will also drop
out of the conductance.

FIG. 1 (color online). Three-dimensional topological insulator
in proximity to ferromagnets with opposite polarization (M" and
M#) and to a superconductor (S). The top panel shows a single
chiral Majorana mode along the edge between superconductor
and ferromagnet. This mode is charge neutral, so it cannot be
detected electrically. The Mach-Zehnder interferometer in the
bottom panel converts a charged current along the domain wall
into a neutral current along the superconductor (and vice versa).
This allows for electrical detection of the parity of the number of
enclosed vortices, as explained in the text.
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  number nv of superconducting vortices enclosed by the
two arms of the interferometer,

!b þ ð#1Þnvi!c ! cyd ; !b # ð#1Þnvi!c ! cd: (2)

For nv an even integer, no charge is transferred to the
superconductor, while for nv odd a charge%2e is absorbed
by the superconducting condensate. The conductance G,
measured by application of a voltage between a point on
the domain wall and the superconductor, becomes equal (in
the zero-temperature, zero-voltage limit) to G ¼ 0 for
nv ¼ even and G ¼ 2e2=h for nv ¼ odd.

Proceeding now to a theoretical description, we recall
that the surface of a three-dimensional topological insula-
tor, in the presence of a magnetization MðrÞ and super-
conducting order parameter !ðrÞ, is described by the
following Hamiltonian [16]:

H ¼ M '! þ vFp '! # EF !
!( M '! # vFp '! þ EF

! "
:

(3)

Here p ¼ ðpx; py; 0Þ is the momentum on the surface, ! ¼
ð"x;"y;"zÞ is the vector of Pauli matrices, vF is the Fermi
velocity, and EF the Fermi energy. The two magnetizations
M" and M# in Fig. 1 correspond to M ¼ ð0; 0;M0Þ and
M ¼ ð0; 0;#M0Þ, respectively. Particle-hole symmetry is
expressed by the anticommutation H" ¼ #"H of the
Hamiltonian with the operator

" ¼ 0 i"yC
#i"yC 0

! "
; (4)

with C the operator of complex conjugation.
There is a single chiral Majorana mode with amplitude

c (group velocity vm) at a boundary between a region with
a superconducting gap and a region with a magnetic gap
[16]. At a domain wall between two regions with opposite
signs of Mz there are two chiral Dirac fermion modes, an
electron mode with amplitude #e and a hole mode with
amplitude #h. The scattering matrix Sinð"Þ describes scat-
tering at excitation energy " from electron and hole modes
(along edge a) to two Majorana modes (along edges b and
c in Fig. 1), according to

c b

c c

! "
¼ Sin

#e
a

#h
a

! "
: (5)

Particle-hole symmetry for the scattering matrix is ex-
pressed by

Sinð"Þ ¼ S(inð#"Þ 0 1
1 0

! "
: (6)

At small excitation energies j"j ) jMzj; j!j the " depen-
dence of Sin may be neglected. (The excitation energy is
limited by the largest of voltage V and temperature T.)
Then Eq. (6) together with unitarity (S#1

in ¼ Syin) fully
determine the scattering matrix,

Sin ¼
1ffiffiffi
2

p 1 1
%i *i

! "
ei$ 0
0 e#i$

! "
; (7)

up to a phase difference $ between electron and hole
(which will drop out of the conductance and need not be
further specified). The sign ambiguity (matrix elements
þi;#i or#i;þi) likewise does not affect the conductance.
The scattering matrix Sout for the conversion from

Majorana modes to electron and hole modes can be ob-
tained from Sin by time reversal,

SoutðMÞ ¼ STinð#MÞ ¼ 1ffiffiffi
2

p ei$
0

0
0 e#i$0

 !
1 %i
1 *i

! "
: (8)

The phase shift $0 may be different from $, because of the
sign change of M upon time reversal, but it will also drop
out of the conductance.

FIG. 1 (color online). Three-dimensional topological insulator
in proximity to ferromagnets with opposite polarization (M" and
M#) and to a superconductor (S). The top panel shows a single
chiral Majorana mode along the edge between superconductor
and ferromagnet. This mode is charge neutral, so it cannot be
detected electrically. The Mach-Zehnder interferometer in the
bottom panel converts a charged current along the domain wall
into a neutral current along the superconductor (and vice versa).
This allows for electrical detection of the parity of the number of
enclosed vortices, as explained in the text.
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