Phase coherent transport in hybrid superconductor-topological insulator devices

FS-MRL and Microsoft

Univ. of Illinois

Outline

- I. <u>Background</u>: Majorana Fermions and Topological Insulators.
- II. Fabry-Perot Interference

III. Aharonov-Bohm Interferometry

Majorana Fermions

Majorana equation

$$i\partial \psi = m\psi_c$$

> particle = antiparticle
$$\gamma' = \gamma'^+$$

 $\gamma_1 = \frac{1}{2}(c^+ + c)$
 $\gamma_2 = \frac{i}{2}(c^+ - c)$
 $\gamma_2 = \frac{i}{2}(c^+ - c)$

Ettore Majorana, 1937

Particle-hole symmetry

$$\gamma_{\varepsilon} = \gamma_{-\varepsilon}^{+}$$
 If $\varepsilon = 0$ $\gamma_{0} = \gamma_{0}^{+}$ Majorana

Vortices in Superconductors

Caroli et al, Phys Lett **9**, 307 (1964)

Read and Green, Phys Rev B **61**, 10267 (2000)

Braiding Majoranas

C. Nayak et al., Rev. Mod. Phys **80**, 1083 (2008).

Realizations of p-wave Superconductor

- "Naturally" occuring
 - Strontium ruthenate (Sr₂RuO₄)
- Fractional Quantum Hall systems – 5/2
- Semiconductors with spin-orbit coupling and superconductivity
 - InAs/InSb nanowires in high fields
 - HgTe or InAs/GaSb quantum wells
 - 3D Topological insulators: Bi₂Se₃ or Bi₂Te₃

3D Topological Insulators

Adapted from Kane and Moore, Physics World 2011.

Hsieh et al., Nature 2009.

L. Fu, C. Kane, Phys. Rev. Lett. 100, 096407 (2008)

Inducing Superconductivity via Andreev Reflection

Majorana Fermions in Topological Insulators with Superconductivity

FIG. 1. (a) A STIS line junction. (b) Spectrum of a line junction for $W = \mu = 0$ as a function of momentum for various ϕ . The solid line shows the Andreev bound states for $\phi = \pi$. The dashed lines are for $\phi = 3\pi/4$, $\pi/2$, and $\pi/4$. The bound states for $\phi = 0$ merge with the continuum, indicated by the shaded region. (c) A trijunction between three superconductors. (d) Phase diagram for the trijunction. In the shaded regions there is a \pm MBS at the junction.

Spectrum of Andreev bound states:

$$E_{\pm} = \pm \sqrt{v^2 q^2 + \Delta_0^2 \cos^2(\frac{\phi}{2})}$$

L. Fu, C. Kane, Phys. Rev. Lett. 100, 096407 (2008)

Experimental Techniques

Typical material parameters:

Mobility: 100-1000 cm² / V-s Carrier density: 1e13 – 1e14 cm⁻² Coherence length: ~1 micron

Josephson Effect in TI

Kurter et al., PRB **90**, 014501 (2014). Kurter et al., Nat. Commun. **6**, 7130 (2015).

Josephson Effect in TI

Kurter et al., PRB **90**, 014501 (2014). Kurter et al., Nat. Commun. **6**, 7130 (2015).

Majorana Fermion Induced Resonant Andreev Reflection

K. T. Law,^{1,2} Patrick A. Lee,² and T. K. Ng³

FIG. 3 (color online). dI/dV vs eV with $\tilde{t}_1^4 = 0.1$. eV is in units of $\pi \hbar v_m/L$ and dI/dV is in units of $\frac{2e^2}{h}$. Solid (dashed) line represents the case with even (odd) number of vortices in the superconductor.

Majorana Interferometry

$$G(V) = \frac{2e^2}{h} |S_{he}(eV)|^2 = \frac{2e^2}{h} \sin^2 \left(\frac{n_v \pi}{2} + \frac{eV\delta L}{2\hbar v_m}\right).$$

Fu and Kane, Phys. Rev. Lett. **102**, 216403 (2009). Akhmerov, Nilsson, and Beenakker, Phys. Rev Lett. **102**, 216404 (2009).

Quantum Interference in TIs

- Can we observe Fabry-Perot resonances in topological insulators?
- How do such resonances interact with...
 - Superconductivity?
 - Top and back gating?
 - Magnetic fields?

Andreev Spectroscopy Devices

L = 100-400 nm W = 250-500 nm Bi_2Se_3 thickness = 10-20 nm

Andreev Spectroscopy Devices

Sample with top gate

Transport at Zero Field

Re-entrant resistance effect due to competition between Andreev reflection and proximity-induced energy gap.

Artemenko et al., Solid State Comm. **30**, 771 (1979).

Gate Tuned Transport

9 nm thick TI flake; L = 230 nm

Fabry-Perot Oscillations

Low bias oscillations with period $\Delta V_{BG} = 0.5 \text{ V}$. High bias oscillations with period $\Delta V_{BG} = 1 \text{ V}$.

Fabry-Perot + Andreev

Path length difference between black and red: 2 L Resonance :

$$2Lk_F = 2\pi n \longrightarrow \Delta E_F = \frac{hv_F}{2L}$$

(observed: 0.8 mV) (expected: 3.8 mV)

Path length difference between black and red: 4 L

$$\Delta E_F = \frac{hv_F}{4L}$$

De Gennes and Saint-James, Phys. Lett. 4, 151 (1963). Rowell and McMillan, Phys. Rev Lett. 16, 453 (1966). Finck et al., Phys. Rev. X 4, 041022 (2014).

Complications

Various conductance channels are present.

Amplitude of oscillations is roughly independent of bulk doping -> surface states?

Dual Gating of Resonances

Dual Gating of Resonances

Aharonov-Bohm Interferometer

~200 nm wide niobium disk in the middle of a gold-TI-gold junction.

Magnetotransport

Conductance oscillations with period of ~200 mT.

Aharonov-Bohm Oscillations

Oscillation period corresponds to area of superconductor.

Oscillations in Larger Device

Off-Center Niobium Disk

No phase shift observed.

Off-Center Niobium Disk

Disk Extending Entire Width

No phase shift observed without multiply-connected geometry.

Phase Shift from Majoranas?

Phase shift is rapid yet smooth.

Conclusions

Realization of Fabry-Perot interferometers in topological insulators.

Observation of interplay between phase coherence and Andreev reflection.

Anomalous phase shift from Aharonov-Bohm effect, suggesting edge states.

